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Abstract

Skeletons are formed through two distinct developmental actions, intramembranous
ossification and endochondral ossification. During embryonic development, most bone is
formed by endochondral ossification. The growth plate is the developmental center for
endochondral ossification. Multiple signaling pathways participate in the regulation of
endochondral ossification. Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling
has been found to play a vital role in the development and maintenance of growth plates.
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Missense mutations in FGFs and FGFRs can cause multiple genetic skeletal diseases with
disordered endochondral ossification. Clarifying the molecular mechanisms of FGFs/FGFRs
signaling in skeletal development and genetic skeletal diseases will have implications for the
development of therapies for FGF-signaling-related skeletal dysplasias and growth plate
injuries. In this review, we summarize the recent advances in elucidating the role of FGFs/FGFRs
signaling in growth plate development, genetic skeletal disorders, and the promising
therapies for those genetic skeletal diseases resulting from FGFs/FGFRs dysfunction.

Finally, we also examine the potential important research in this field in the future.
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Introduction on growth plate development

The skeleton is formed through endochondral or intra-
membranous ossification (Olsen et al. 2000, Long & Ornitz
2013). The skull and the inner clavicles are formed through
intramembranous ossification. The majority of bone is
formed by endochondral ossification, including the ribs,
limb bones, and vertebrae (Fig. 1). Endochondral ossifi-
cation is a highly regulated process, starting from initiation
of mesenchyme condensation. Mesenchyme differentiates
into chondrocytes and forms the cartilage anlage.
During endochondral ossification the chondrocytes

undergo an orderly sequence of events: proliferation,
hypertrophy, mineralization, and apoptosis, leaving the
mineralized cartilaginous templates, which will be
replaced by bone tissues through osteogenesis. Osteo-
genesis can be triggered by multiple factors released from
both prehypertrophic and hypertrophic chondrocytes,
such as Indian hedgehog (IHH) and vascular endothelial
growth factor (VEGF), which induce the differentiation of
perichondrial cells into osteoblasts, and also the invasion
of blood vessels into the mineralized cartilage, bringing
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Figure 1

Endochondral bone development. After condensation, mesenchyme
gradually differentiates into chondrocytes and forms a cartilage templa-
te.Then the chondrocytes will go through hypertrophy, mineralization, and
finally apoptosis, leaving the mineralized cartilaginous template. With

the osteoclasts and osteoprogenitors to the cartilaginous
templates to replace the growth plate cartilage with bone
through their bone resorption and formation function
respectively (Karsenty & Wagner 2002, Provot & Schipani
2005, Maes et al. 2010, Long & Ornitz 2013).

The growth plate has been described as the develop-
mental center for endochondral ossification. The chon-
drocytes exhibit distinct and observable stages during this
process (Wuelling & Vortkamp 2010). The growth plate
can easily be subdivided into four zones on the basis of
the shape and function of the chondrocytes (Burdan et al.
2009). The resting zone is constituted by small round
chondrocytes adjacent to the articular surface. These cells
undergo differentiation into proliferative flat chondro-
cytes to form proliferative columns. The resting and
proliferating chondrocytes secrete collagen type II
(COL2), aggrecan, and other matrix proteins to form
cartilage matrix. The proliferative chondrocytes differ-
entiate into prehypertrophic and thereafter hypertrophic
chondrocytes, which secrete collagen type X toward
the diaphysis. Prehypertrophic chondrocytes are essential
for controlling the pace of endochondral ossification.
A variety of molecules regulate growth plate development
by controlling prehypertrophic differentiation (Maes et al.
2010). Hypertrophic chondrocytes remodel the cartilage
matrix into a calcifying matrix (Ortega et al. 2004).
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invasion of blood vessels into the mineralized cartilage, osteoprogenitors
and osteoclasts are brought into replace the cartilaginous template with
bone tissue though their bone formation and resorption function
(Karsenty & Wagner 2002, Long & Ornitz 2013).

The terminal hypertrophic chondrocytes will finally
undergo apoptosis accompanied by resorption of miner-
alized cartilage and vascularization (Shapiro et al. 2005).
The proliferation and differentiation of chondrocytes
drives the elongation of skeletal elements (Long &
Ornitz 2013).

Endochondral ossification is spatially and temporally
governed by integrated networks of molecules, especially
the lineage-specific transcription factors such as SOX9 and
RUNX2 (Karsenty et al. 2009). SOX9 plays an essential role
in multiple steps of chondrocyte differentiation together
with L-SOXS and SOX6 (Chang et al. 2004). SOX9 is highly
expressed in the mesenchymal condensations and then in
proliferative chondrocytes, with a maximal expression in
prehypertrophic chondrocytes, but abruptly disappears
from the hypertrophic zone (Chang et al. 2004, Hattori
et al. 2010). SOX9-expressing precursors during mouse
embryogenesis give rise to all osteo-chondroprogenitor
cells (Dell’Accio et al. 2001). SOX9 activates multiple genes
expressed in proliferating chondrocytes, including the
extracellular matrix (ECM) genes COL2A1 (van Rhijn et al.
2002, Trebicz-Geffen et al. 2003) and Aggrecan (Keats et al.
2003). Some studies have indicated that SOX9 expressed
in the prehypertrophic zone may inhibit COL10A1
expression through MEF2C, a MADS box transcription
factor (Leung et al. 2011). SOX9 has been proposed to be
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necessary for chondrocyte survival and hypertrophy
to delay terminal maturation (Cowan et al. 2003, Hattori
et al. 2010). Furthermore, SOX9 can inhibit the expression
of RUNX2, a runt-domain transcription factor, and induce
the degradation of RUNX2 in chondrocytes (Mangion
et al. 1999, Amizuka et al. 2000). RUNX2 plays a pivotal
role in the promotion of chondrocyte hypertrophy.
RUNX2 is initially expressed in the chondrogenic
mesenchyme, subsequent to SOX9 (Dell’Accio et al.
2001). RUNX2 is restrictedly located to the perichondrial
cells and osteoblasts after cartilage anlage is formed, and
then is expressed in the prehypertrophic and early
hypertrophic chondrocytes (Provot & Schipani 200S5).
Several lines of evidence have supported the role of
RUNX2 as an important positive regulator of the hyper-
trophic program (Vidrich et al. 2009, Hafner et al. 2010,
Shinde et al. 2013). RUNX2 initiates chondrocyte hyper-
trophy, and loss of RUNX2 leads to severely delayed
chondrocyte maturation in developing bones (Dooley
et al. 2007, Shinde et al. 2013). Furthermore, RUNX2
expressed in the perichondrium can regulate the peri-
chondrial expression of fibroblast growth factor 18
(FGF18) to modulate growth plate development through
indirect mechanisms (Park et al. 2007). RUNX2 stimulates
the expression of IHH and VEGF (Tanaka et al. 2006) in
hypertrophic chondrocytes (Gunhaga et al. 2003). RUNX2
is also well known for its essential role in osteoblast
differentiation (Fortin et al. 2005, Shroff 2013) and its
promotion of expression of osteoblast-specific genes
(Ogata et al. 2008, Lin & Melero-Martin 2012).

The development of the growth plate is tightly
regulated by various systemic and local molecules such as
growth hormone, thyroid hormone, bone morpho-
genetic proteins (BMPs), Wnt/p-catenin, FGFs, and
transforming and growth factor (TGF) B (Long & Ornitz
2013). Previous work revealed that parathyroid hormone-
related protein (PTHRP)/IHH feedback loop plays a major
role during chondrogenesis (Kobayashi et al. 2002). PTHRP
is synthesized in the periarticular region, activates the
PTH/PTHRP receptor (PTR) expressed in prehypertrophic
zone, then stimulates cell proliferation, and delays the
hypertrophic differentiation (Eswarakumar et al. 2005).
Prehypertrophic and hypertrophic chondrocytes release
IHH, which stimulates chondrocyte proliferation and
PTHRP synthesis. PTHRP suppresses chondrocyte matu-
ration. IHH also determines the location of bone collar
formation (Chung et al. 2001). Many other pathways,
including FGF signaling, can regulate chondrocyte prolifer-
ation and maturation indirectly through their interactions
with the PTHRP/IHH feedback loop (Grimsrud et al. 2001,

Minina et al. 2001, Guo et al. 2009, Yano et al. 2013). Any
disturbances of these signaling pathways will interfere with
growth plate development, and finally result in a variety of
skeletal dysplasias (Maes et al. 2010, Kerkhofs et al. 2012,
Michigami 2013).

A brief introduction to FGFs/FGF receptors
signaling

In addition to PTHRP/IHH feedback loop, FGF signaling
also remarkably regulate growth plate development
(Amizuka et al. 2004). FGFs are a family of 22 members
binding to their high-affinity receptors, FGF receptor 1-4
(FGFR1-4). FGFs mediate their cellular responses through
distinct binding affinity with individual FGFRs. FGFs
can be divided into three subfamilies: canonical FGFs
(FGF1-10, 16-18, 20, 22), hormone-like FGFs (FGF15/19,
21,23), and intracellular FGFs (FGF11-14) (Itoh & Ornitz
2008). Like other receptor tyrosine kinases (RTKs), a
prototypical FGFR contains an extracellular ligand-
binding domain, a hydrophobic transmembrane region,
and an intracellular tyrosine kinase domain (Burdan et al.
2009). FGFRs have two major FGFR isoforms generated by
alternative splicing of the third extracellular immuno-
globulin loop in FGFR transcripts, IIIb and IIc (Gong
(2014)). FGFs bind to the extracellular domain of FGFRs,
cause receptor dimerization, and induce phosphorylation
of tyrosine residues in their intracellular domain. The
activated FGFR recruits target proteins to its cytoplasmic
tail and modifies them mainly by phosphorylation
(Powers et al. 2000). There are several important down-
stream pathways of FGF signaling, such as the STAT,
MAPK, phosphatidyl inositol-3-kinase (PI3K)/AKT, and
phospholipase C-gamma (PLCy)/protein kinase C (PKC)
pathways. These pathways are associated with the phos-
phorylation of specific tyrosine residues and regulate
a variety of cell functions, such as cell proliferation,
differentiation, survival, and matrix production (Powers
et al. 2000, Dailey et al. 2005).

Expression of FGFs and FGFRs during
skeletal development

The spatiotemporal expression patterns of FGFs and
FGFRs have been characterized (Fig. 2; Ornitz 2005,
Du et al. 2012, Long & Ornitz 2013).

FGFR1 is expressed diffusely in mesenchyme of
limb buds and somites, in prehypertrophic, and hyper-
trophic chondrocytes, and perichondrium of the epiphy-
seal growth plates, and more in differentiated osteoblasts, as
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Figure 2
Expression of FGFs/FGFRs during endochondral bone formation. Expression patterns of FGFRs are shown in the upper panel and FGFs in the lower panel.

The cells are color coded for FGFRs (Liu et al. 2002, Ohbayashi et al. 2002, Minina et al. 2005, Hung et al. 2007, Yu & Ornitz 2008).
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well as osteocytes (Xiao et al. 2004, Jacob et al. 2006, Lazarus
et al. 2007, Kyono et al. 2012). FGFR2 has been detected in
condensing mesenchyme of early limb bud (Peters et al.
1992, Orr-Urtreger et al. 1993, Delezoide et al. 1998) and
appears as the first marker of prechondrogenic conden-
sation. FGFR2 is predominantly localized to perichondrial
and periosteal tissues and expressed weakly in endosteum
and trabecular bone during later limb development (Yu et al.
2003). In addition, expression of FGFR2 has been observed
in cartilage, especially in the resting zone (Rice et al. 2000,
2003, Wilkie 2005, Lazarus et al. 2007, Yin et al. 2008). In
cranial sutures, FGFR2 has been detected in osteoprogenitor
cells and osteoblasts (Iseki et al. 1999). FGFR3 expression has
been observed in chondrocytes located in the central core of
the mesenchymal condensation (Peters et al. 1993). As the
epiphyseal growth plate is formed, FGFR3 is expressed in all
chondrocytes except hypertrophic chondrocytes (Peters
etal. 1993, Szebenyi et al. 1995, Colvin et al. 1996, Delezoide
et al. 1998, Ornitz 2005, Jacob et al. 2006). Expression of
FGFR3 has also been found in osteoblasts and osteocytes
(Valverde-Franco et al. 2004, Su et al. 2010). In addition,
FGFR3 has been detected in head periostea and sutural
osteogenic fronts (Delezoide et al. 1998, Rice et al. 2000).
Very low amounts of FGFR4 are present in the osteoblasts of
calvarial bone and resting and proliferative zones of growth
plates (Partanen ef al. 1991, Cool et al. 2002, Lazarus et al.
2007).

FGF1 has been found in proliferating and hyper-
trophic chondrocytes (Krejci et al. 2007). FGF2 is expressed
in limb bud, chondrocytes, and osteoblasts (Fallon et al.
1994, Montero et al. 2000, Lazarus et al. 2007, Fei & Hurley
2012). Four FGFs are expressed in the mouse apical
ectodermal ridge (AER): FGF4, FGF8, FGF9, and FGF17
(Moon et al. 2000, Mariani et al. 2008). FGF1, 2, 4, 8, 9, and
particularly FGF18, which is produced by the perichon-
drium, bind to and activate FGFR3 (Moon & Capecchi
2000). FGF9 is expressed in the mesenchyme surrounding
the cartilaginous condensations, chondrocytes, and
primary spongiosa as well as perichondrium/periosteum
(Hung et al. 2007). FGF10 is found in the presumptive limb
field (Ohuchi et al. 1997, Martin 1998, Xu et al. 1998), and
its expression persists in the mesenchyme under AER after
initial limb bud formation (Xu et al. 1998). FGF18 is
expressed apparently in the perichondrium, mesenchymal
cells, and osteoblasts during bone development (Liu et al.
2002, Ohbayashi et al. 2002). FGF1, 2, 6, 7, 9, 18, 21, and
22 are expressed in perichondrium, while FGF2, 7, 18, and
22 are expressed in growth plates in rats (Lazarus et al.
2007). The transcripts for FGF1, 2, 5, 8-14, 16-19, and 21
have also been found in growth plates, while only FGF1,

2,17, and 19 are detectable at the protein level (Krejci et al.
2007). FGF23 is mainly synthesized by osteocytes and
osteoblasts (Bonewald & Wacker 2013). Recently, FGF23
expression has been found in resting and hypertrophic
chondrocytes (Raimann et al. 2013).

Roles of FGFs/FGFRs in skeletal development:
clues from human genetic skeletal syndromes
and mouse models

Numerous studies have demonstrated the important
role of FGFs/FGFRs in bone development. Mutations in
FGFs/FGEFRs are responsible for a diverse group of skeletal
genetic disorders. For FGFRs, mutations in FGFRI and
FGFR2 mainly cause syndromes involving craniosynos-
toses, whereas the dwarfing syndromes are largely
associated with FGFR3 mutations.

A gain-of-function (GOF) missense mutation in FGFR1
(Pro252Arg) causes Pfeiffer syndrome (PS) which result in
broad toes and split thumbs (Muenke et al. 1994). Several
activating FGFR1 mutations, such as N330I and C379R,
cause osteoglophonic dysplasia (OD), and the patients
displayed craniosynostosis, prominent supraorbital ridges,
and depressed nasal bridge, as well as rhizomelic dwarfism
and non-ossifying bone lesions (White et al. 2005). In
contrast, loss-of-function (LOF) mutations in FGFR1 such
as C277Y, R622X, P772S, G97D, and A167S are responsible
for autosomal-dominant Kallmann syndrome (KS), charac-
terized by hypogonadism and anosmia. Some KS patients
have skeletal abnormalities, i.e. butterfly vertebra and
oligodactyly of the feet, indicating that FGFR1 can regulate
endochondral ossification (Jarzabek et al. 2012). GOF
mutations in FGFR2 can cause multiple types of craniosy-
nostoses, such as Apert syndrome (AS), Crouzon syndrome
(CS), and PS, as well as Beare-Stevenson cutis gyrata
syndrome (BSS) (Wilkie 2005, Cunningham et al. 2007,
Park et al. 2012, Sharma et al. 2012, Wilkinson et al. 2012).
Several de novo FGFR2 mutations have been demonstrated
to be responsible for a perinatal lethal skeletal dysplasia
designated as bent bone dysplasia (BBD)-FGFR2 type
(Merrill et al. 2012). GOF mutations in FGFR3 lead
to hypochondroplasia (HCH), achondroplasia (ACH), and
thanatophoric dysplasia (TD) with dysregulated endo-
chondral ossification (He et al. 2012, Krejci 2014). GOF
mutations in FGFR3 have also been found to cause
premature suture fusion, leading to craniosynostoses.
FGFR3, p.Ala334Thr, has been found to be responsible for
mild craniosynostosis (Barroso et al. 2011). FGFR3 A391E
mutation in the transmembrane region is responsible
for Crouzon dermoskeletal syndrome (Wilkes et al. 1996).
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FGFR3 P250R and P252R mutations cause Muenke syn-
drome (Meyers et al. 1995, Wilkes et al. 1996, Muenke et al.
1997, Arnaud-Lopez et al. 2007, Agochukwu et al. 2012).
Furthermore, some TD patients show joint fusion and
craniosynostoses (Tavormina et al. 1995). A p.R621H
substitution in the tyrosine kinase domain, leading to
partial loss of FGFR3 function, causes camptodactyly, tall
stature, and hearing loss (CATSHL) syndrome (Toydemir
et al. 2006). Until now, no mutation in FGFR4 has been
found to be responsible for genetic skeletal disorders
in humans (Valverde-Franco et al. 2004, Marie et al. 2005).
Mutations of FGFs have also been found in multiple
genetic skeletal disorders. Genotyping of SNPs in FGF
genes revealed associations between cleft palate and SNPs
in FGF3, FGF7, FGF10, FGF18, and FGFR1 (Riley et al. 2007).
In humans, constitutionally increased dosage of the FGF3
and FGF4 genes plays an important role in the onset of
craniosynostosis (Grillo ef al. 2014). FGF8 mutations may be
associated with craniofacial defects and acrocephalosyndac-
tyly (Whitehead et al. 2004, Bouillon et al. 2008). A mutation
(S99N) in FGF9 is associated with multiple synostosis
syndromes (SYNS) in humans (Wu et al. 2009). LOF
mutations in FGF10 cause lacrimo-auriculo-dento-digital
syndrome (Milunsky et al. 2006, Rohmann et al. 2006, Shams
et al. 2007), which is an autosomal-dominant multiple
congenital anomaly disorder characterized by lacrimal duct
aplasia, malformed ears and deafness, dental, and digital
anomalies. FGF10 is also thought to be a candidate gene for
cleft palate (King et al. 1991, Perry et al. 1991, Schwartz
et al. 1992, Turnquist et al. 1992). FGF23 plays a crucial role
in phosphate homeostasis (Yu & White 2005, Fukumoto &
Yamashita 2007). X-linked hypophosphatemic rickets (XLH)
and autosomal recessive hypophosphatemic rickets/osteo-
malacia are caused by mutations in the phosphate-regulating
endopeptidase (PHEX) and dentin matrix protein 1 (DMPI)
genes respectively and patients show elevated FGF23
levels (Jonsson et al. 2003, Fukumoto & Yamashita 2007,
Yoshiko et al. 2007). Excess levels of FGF23 in patients with
these hypophosphatemic disorders lead to renal phosphate
wasting and suppression of circulating 1,25(0OH),D5 levels
(Wohtle et al. 2013). Autosomal dominant hypophospha-
temic rickets (ADHR) are caused by missense mutations in
the FGF23 gene, leading to the resistance of the mutant
FGF23 to degradation (White et al. 2000). Furthermore,
patients afflicted with tumor-induced osteomalacia
(Shimada et al. 2001) also show elevated FGF23 serum levels.
Accumulating evidence from mouse model studies
(Table 1) and cell lines have confirmed the roles of
FGFs/FGFRs and their underlying mechanisms in skeletal
development and human skeletal dysplasias.

Fgfr1 P252R transgenic mice mimicking human PS
exhibit premature suture closure and de novo digit I
polydactyly in the hind limb with upregulation of Wnt5a
and downregulation of Dkk1, which encodes a secreted
Wnt inhibitor (Hajihosseini et al. 2004). FGFR1 exists in
hypertrophic chondrocytes and perichondrium of the
epiphyseal growth plates, but knowledge regarding its
role in growth plate development is limited. Zhou found
that FGFs/FGFR1 signals cause increased expression of
RUNX2 and lead to premature fusion of cranial sutures in
mice carrying the Fgfr1 P250R mutation (Zhou et al. 2000).
Fgfrl-deficient (Fgfr1~/~) mouse embryos display severe
growth retardation and die before or during gastrulation
(Deng et al. 1994, Yamaguchi et al. 1994). We found that
disruption of Fgfr1 in adult mouse articular chondrocytes
(via Col2alCre) inhibits the progression of cartilage
degeneration in aging-related and induced osteoarthritis
(Weng et al. 2012). Jacob et al. (2006) revealed that FGFR1
inhibits proliferation of mesenchymal progenitor cells but
promotes their differentiation into preosteoblasts and
suppresses the maturation and mineralization of osteo-
blasts. Our preliminary data indicate that conditional
deletion of FGFRI in osteoblasts leads to an increase in
bone mass in adult and aging mice (Nan Su & Lin Chen
2013 unpublished observations). In addition, FGFR1 may
positively regulate osteoclasts (Lu et al. 2009). FGFR1
also participates in phosphorus metabolism through
regulating the transcription of FGF23 (Wohrle et al. 2011,
2013, Donate-Correa et al. 2012).

Mice mimicking human AS show premature closure of
cranial base synchondroses and retarded endochondral
bone growth with expanded resting zone and narrowed
proliferating and hypertrophic zones in growth plates
(Chen et al. 2003). The P253R mutation in FGFR2 leads to
retardation of the growth of long bones by directly affecting
endochondral ossification (Yin et al. 2008). BBD patients
have growth plates with smaller hypertrophic chondro-
cytes and thicker hypercellular periosteum. The chondro-
cytes from patients have reduced responsiveness to
extracellular FGF18 and deficient plasma-membrane local-
ization of FGFR2 (Merrill et al. 2012). In zebrafish, fgfr2 is
required for mesenchyme condensation and later chon-
drogenic differentiation (Larbuisson et al. 2013). Targeted
disruption of Fgfr2IlIIC leads to narrowing of the prolif-
erative and hypertrophic chondrocyte zones with
decreased IHH and PTHRP expression and retarded
ossification with a decrease in the transcription of secreted
phosphoprotein 1 and RUNX2 (Eswarakumar et al. 2002).
As FGFR2 is predominantly expressed in osteogenic cells, a
lot of studies have been carried out in order to understand
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its role and the underlying mechanisms in osteogenesis.
FGFR2 is mainly involved in the regulation of the
proliferation of osteogenic cells in sutures (Iseki et al.
1997, 1999). Results from some studies have indicated that
FGFs/FGFR2 signaling positively regulates the differen-
tiation of osteoblasts (Lomri et al. 1998, 2001, Lemonnier
et al. 2001). The FGFR2 S252W mutation results in
advanced proliferation and differentiation of osteoblastic
cells, as well as increased apoptosis of osteogenic cells in
mice (Chen et al. 2003, Wang et al. 2005). On the other
hand, results from several studies have indicated that
FGFs/FGFR2 signaling blocks the differentiation and
mineralization and induces apoptosis of osteoblasts
(Mansukhani et al. 2000, 2005). Furthermore, the FGFR2
C342Y mutation (the equivalent mutation in humans
causes CS and PS) promotes aberrant cranial osteoblast
differentiation and apoptosis, and the mutant bone
marrow stromal cells have an autonomous defect in
osteoblast differentiation and bone mineralization (Feteih
et al. 1990, Eswarakumar et al. 2004). Studies of the Fgfi2
W290R mouse model mimicking CS revealed that W290R
is a LOF mutation (Gong 2012). Heterozygotic abrogation
of Fgfr2IlIc in mice leads to a splicing switch, resulting in a
GOF mutation, which causes a phenotype similar to those
of some AS and PS patients (Hajihosseini et al. 2001). Due
to the embryonic lethality of conventional Fgfr2 knockout
in mice, conditional knockout of Fgfr2 has been adopted
to explore the role of FGFR2 in osteogenesis. Yu and
colleagues found that conditional deletion of Fgfr2 in
mesenchyme (via dermol-Cre) of mice causes dwarfism
and decreased bone mineral density with reduction in
diaphyseal thickness, indicating that FGFR2 is required for
mineral deposition (Yu et al. 2003). Results from a study by
Wang and colleagues indicate that FGFR2 may influence
transdifferentiation. Cultured cells isolated from the limbs
of Fgfr2 S252W mice can differentiate into chondrocytes
in osteogenic medium, and these mice have enhanced
chondrogenic markers and ectopic cartilage formation at
sagittal sutures (Wang et al. 2005). In addition, FGFR1/2
have been found to regulate the markers of mesenchymal
stem cells (MSC) and are important in the maintenance
of MSC stem cell properties (Coutu et al. 2011).

Mice carrying mutations of Fgfr3, mimicking human
ACH exhibit smaller body size, dome-shaped skulls, and
shortened long bones with disorganized chondrocyte
columns in growth plates (Naski ef al. 1998, Chen et al.
1999, Wang et al. 1999, 2004, Segev et al. 2000, Ornitz &
Marie 2002). Mice mimicking human TDII-carrying
the Fgfr3 K644E mutation exhibit enhanced chondrocyte
proliferation during the early embryonic skeletal

2013)
Carlton et al. (1998)

Xiao et al. (2010,
Harada et al. (2009)
Larsson et al. (2004)
Shimada et al. (2004)
Bai et al. (2004)

References

Related human
syndromes (mutation)
Similar to XLH
Similar to CS

KS
ADHR
ADHR

hypophosphatemia and low serum 1,25(0OH),D level
Viable/smaller size, hypophosphatemia, and low serum ADHR

several cranial sutures (craniosynostosis)
craniosynostosis, lung hypoplasia

and increased FGF23 level
Viable/facial shortening and precocious closure of

serum 1,25(0H),D level

1,25(0OH),D level
Viable/rachitic bone, hypophosphatemia, and low

Viable/dwarfism, osteomalacia, hypophosphatemia
Lethal/radiohumeral and tibiofemoral synostosis,

Viable/rachitic bone and growth retardation,

Survival/phenotypes

caused by retroviral
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FGF2-IRES-GFPsaph
N143T

Col1a3.6-HMW
Up-regulation of FGF3/4
Apoe3-hFGF23*R176Q

Mutation position
Col1a-hFGF23

CAG-hFGF23

(spontaneous
mutation)

OE (TG)

Mouse model
Generation
methods

OE (TG)

GOF

OE (TG)

OE (TG)

GOF, gain of function; KI, knock-in; OE, overexpression; TG, transgenic; cKO, conditional knockout; CS, Crouzon syndrome; PS, Pfeiffer syndrome; AS, Apert syndrome; BSS, Beare-Stevenson cutis gyrata
syndrome; CATSHL, camptodactyly, tall stature, and hearing loss; MS, Muenke craniosynostosis syndrome; TD, thanatophoric dysplasia; ACH, achondroplasia; SADDAN, severe achondroplasia with

developmental delay and acanthosis nigricans; XLH, X-linked hypophosphatemic rickets; EKS, elbow-knee synostosis; ADHR, autosomal dominant hypophosphatemic rickets.
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development and reduced hypertrophic chondrocytes
throughout the embryonic stage (Li et al. 1999, Iwata et al.
2000). The Fgfr3 K644M mutation causes severe dwarfism
in mice (Iwata et al. 2001) and the Y367C mutation causes
chondrodysplasia, hearing loss, and inner ear defects in mice
(Pannier et al. 2009). The above data indicate that FGFR3
negatively regulates the proliferation and differentiation of
chondrocytes. Results from several studies have indicated
that FGFR3 signaling inhibits chondrocyte proliferation
through STAT1 signaling by inducing the expression of P21
(Suetal. 1997, Lietal. 1999, Sahni etal. 1999, Murakami et al.
2004), and promotes chondrocyte terminal hypertrophic
differentiation partially through MAPK (Minina et al. 2002,
Dailey et al. 2003). The cellular mechanisms underlying the
growth arrest of chondrocytes induced by FGFR3 remain
unclear. Chen et al. (1999) found that ACH mice exhibits
increased staining for cell-cycle inhibitors including P16 and
P19 in growth plates. Further studies have shown that P21
and P27 are accumulated upon FGF2 treatment and that
the expression of P21 is increased in the chondrocytes of
achondroplasic children (Krejci et al. 2004, Parafioriti et al.
2009). These results indicate that upregulation of cell-cycle
inhibitors contributes to the growth arrest of chondrocytes.
Some results indicate that FGFR3 downregulates the IHH
signaling pathway in both growth plate chondrocytes and
perichondrium (Naski et al. 1998, Iwata et al. 2000).
JAK/STAT has been found to mediate the downregulation
of PTH/PTHRP signaling by FGFR3 (Chen et al. 2001, Li et al.
2010). FGFR3 inhibits the proliferation of chondrocytes by
downregulating telomerase reverse transcriptase expression
and reducing telomerase activity (Mendelsohn & Larrick
2012). Results from some studies indicate that FGFR3 can
induce chondrocyte apoptosis partially through the PLCy-
STAT1 pathway (Yamanaka et al. 2003, L’'Hote & Knowles
2005, Harada et al. 2007, Krejci et al. 2010, Elo et al. 2012).
Henderson found that the expression of G380R FGFR3 in
CFK2 chondrocytic cells inhibits cell growth but protects
them from apoptosis caused by serum starvation
(Henderson et al. 2000). Krejci demonstrated that activation
of endogenous Fgfr3 in rat chondrosarcoma (RCS) cells
(proliferating chondrocytes derived from RCS) leads to a
reversible premature senescence phenotype (Krejci et al.
2010). There are also some disputes about the role of FGFR3
in hypertrophic differentiation of chondrocytes. Chen and
colleagues found that FGFR3 inhibits the hypertrophic
differentiation of chondrocytes in cultured metatarsals
(Chen et al. 1999), while Minina et al. (2002) revealed that
FGFs/FGFR3 signaling accelerates the onset and the pace of
hypertrophicdifferentiation of chondrocytes in limb culture
system. Conversely, Fgfr3 deficiency in mice causes

increased bone length due to increased chondrocyte
hypertrophy (Colvin et al. 1996, Deng et al. 1996).
FGFs/FGFR3 signaling decreases the chondrocyte ECM.
On the one hand, FGFR3 signaling inhibits synthesis of
chondrocyte ECM through inhibition of the expression of
the matrix proteins such as aggrecan and collagen2 (Krejci
etal. 2004, Foldynova-Trantirkova et al. 2012). On the other
hand, FGFR3 can promote the degradation of ECM via
upregulating the expression, release, and activation of
several MMPs, including MMP3, 9, 10, and 13 (Krejci et al.
2005). Fgfr3-deficient mice show early onset of arthritis,
and disruption of Fgfr3 in cartilage at the adult stage leads to
early onset of arthritis with elevated expression of MMP13
(Valverde-Franco et al. 2006). FGF18/FGFR3 signaling is
involved in autophagy of chondrocytes (Bernheim &
Benchetrit 2011). FGFs/FGFR3 signaling inhibits C-type
natriuretic peptide (CNP) signaling, while CNP antagonizes
the activation of the MAPK (Ozasa et al. 2005). Snaill has
been found to be a downstream molecule of FGFs/FGFR3
signaling, regulating both STAT and MAPK in chondrocytes
(de Frutos et al. 2007). Results obtained by Shung and
colleagues revealed that dysregulation of SOX9 and
B-catenin levels and their activity in growth plates might
be an important underlying mechanism in skeletal dyspla-
sias caused by mutations in FGFR3 (Shung et al. 2012).
Furthermore, FGFR3 also regulates osteogenesis (Marie et al.
2012). FGFR3 P244R mice mimicking human Muenke
craniosynostosis syndrome show rounded skulls, shortened
snouts and decreased cortical thickness and bone mineral
densities in long bones, indicating that FGFR3 participates
in the regulation of osteogenesis (Twigg et al. 2009). Su et al.
(2010), found that FGFR3 inhibits the proliferation of
bone marrow stromal cells, but promotes their osteogenic
differentiation. Activation of FGFR3 in cartilage induces
premature synchondrosis closure and enhances osteoblast
differentiation around synchondroses through upregula-
tion of expression of BMPs and down-regulation of
expression of BMP antagonists, Noggin, Chordin, and Gremlin
expression via MAPK pathway (Matsushita et al. 2009).
Mugniery and colleagues found that activating FGFR3
signaling pathways may affect trabecular bone formation
by a paracrine mechanism and that FGFR3 has a direct effect
on osteoblasts (Mugniery et al. 2012). Conditional deletion
of FGFR3 in osteoblasts (via OC-Cre) leads to impaired
bone formation and remodeling, indicating the vital role of
FGFR3 in the differentiation and function of osteoblasts
(Nan Su & Lin Chen 2013 unpublished observations). Both
FGFR3 deletion and activation lead to defective bone
mineralization and osteopenia with changed osteoclastic
activity, indicating an indirect effect of FGFR3 on osteoclasts
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through its regulation of osteoblasts (Valverde-Franco et al.
2004, Su et al. 2010).

Fgfr4-deficient mice are developmentally normal,
while Fgfr3/Fgfr4 double-null mice show pronounced
dwarfism (Weinstein et al. 1998). Further studies revealed
that Fgfr3/Fgfr4 double-null mice have lower serum
phosphorus levels and elevated FGF23 and 1,25(0OH),.
vitamin D3 levels compared with WT mice (Gattineni et al.
2011). The supraphysiological levels FGF23 and 1,25(OH),.
vitamin D3 may be responsible for the growth retardation
of Fgfr3/Fgfr4 double-null mice (Larsson et al. 2004, Kawai
et al. 2013, Bach et al. 2014). Results also indicated that
FGFR1, FGFR3, and FGFR4 function cooperatively to
mediate the effects of FGF23 on kidney, and that loss of
FGFR function leads to feedback stimulation of FGF23
expression in bone (Li et al. 2011a, Gattineni et al. 2014).

Fgf2 transgenic mice (TgFGF2), such as the dwarf,
show shortened bone and moderate macrocephaly and
defective bone formation and mineralization (Coffin et al.
1995). Fgf2 deficiency in mice leads to osteopenia in the
adult stage, without observable abnormalities during
development (Montero et al. 2000). Results from multiple
studies have indicated the role of ectogenic FGF2 in
regulation of bone formation (Mayahara ef al. 1993,
Nakamura ef al. 1995). Sobue et al. (2005) proposed that
FGF2 negatively regulates postnatal bone growth and
remodeling resulting from targeted overexpression of Fgf2
in the chondrocytes and osteoblasts of mice. FGF2 also
participates in bone homeostasis and phosphate metab-
olism. Targeted overexpression of high molecular weight
(hmw, 21 and 22 kDa) isoforms of FGF2 in osteoblasts of
mice results in dwarfism, decreased BMD, increased FGF23
level, hypophosphatemia, and rickets/osteomalacia,
which is similar to XLH (Xiao et al. 2010, 2013). Targeted
overexpression of low molecular weight isoform (Imw,
18 kDa) of FGF2 in osteoblasts leads to increased BMD,
bone mass, and enhanced mineralization, resulting from
the reduced expression of the secreted frizzled receptor 1, a
Wnt antagonist (Xiao et al. 2013). In contrast to TgFgf2lmw
mice, Fgf2"™ =/~ mice show markedly reduced BMD and
impaired mineralization (Xiao et al. 2009). Interestingly,
endogenous FGF2 has been proved to be required for
bone formation and osteoclastogenesis either under basal
conditions or after treatment with PTH and BMP2
(Okada et al. 2003, Hurley et al. 2006, Sabbieti et al.
2009). Activating transcription factor 4 (ATF4) (Fei et al.
2011) and prostaglandin F,, also induce osteoblast
proliferation and differentiation via endogenous FGF2
(Sabbieti et al. 2010). Insertional mutations at the
Fgf3/Fgf4 locus can lead to craniofacial dysmorphology

in mice (Carlton et al. 1998). FGF6 has been considered to
be a regulator of bone metabolism as shown by its activity
in both osteoblasts and osteoclasts in vitro (Huch et al.
2003). Conditional disruption of Fgf8 in the forelimbs
leads to aplasia of radius and/or humerus and digit
disorders, but mouse limbs lacking other AerFgfs, such as
Fgf4, Fgf9, and Fgf17, show normal skeletal patterns (Moon
& Capecchi 2000). Fgf8 can effectively predetermine the
osteogenic differentiation of mouse bone marrow stromal
cells and C2C12 cells and increase bone formation in vitro
(Valta et al. 2006, Omoteyama & Takagi 2009). In another
study, Fgf8 has been found to promote proliferation
of primary rat osteogenic cells and inhibit osteogenic
differentiation and mineralization (Lin et al. 2009). FGF8
has also been shown to be as a regulator of ectopic
cartilage formation by breast cancer cells (Valta et al.
2006). FGF8 can promote the degradation of cartilage
leading to exacerbation of osteoarthritis (Uchii et al. 2008).
The Fgf9 N143T mutation in mice causes elbow-knee
synostosis (EKS) (Murakami et al. 2002, Harada et al. 2009).
Fgf9 promotes chondrocyte hypertrophy and vasculariza-
tion of the growth plates (Hung et al. 2007). Over-
expression of Fgf9 in mouse chondrocytes causes
rhizomelia similar to ACH, with disturbed proliferation
and terminal differentiation in growth plate chondrocytes
(Garofalo et al. 1999). Fgf18 deficiency in mice leads to
increased chondrocyte proliferation and delayed long
bone ossification and calvarial suture closure with reduced
expression of the osteogenic markers such as osteopontin
and osteocalcin. These results indicate that FGFI8 is
involved in chondrogenesis of growth plate and osteo-
genesis in cortical and trabecular bone, as well as the
osteogenesis in the calvarial bone (Liu et al. 2002,
Ohbayashi et al. 2002). Increased expression of FGF21
during food restriction causes growth attenuation via
antagonizing the stimulatory effects of growth hormone
on chondrogenesis, while high concentrations of FGF21
may directly suppress chondrocyte proliferation and
differentiation in growth plates (Wu et al. 2012). FGF21
can enhance the osteogenic activity of BMP2 via upregu-
lating the Smad signaling pathway in C2C12 cells (Ishida
& Haudenschild 2013). FGF23 is a member of the
endocrine FGFs and is mainly produced by bone cells,
klotho, a single-pass transmembrane protein, is required
for the binding of FGF23 to its receptors (Yu et al. 2005).
FGF23 targets the kidney to suppress 1,25(OH),vitamin D3
synthesis and accelerate phosphate excretion into the
urine. Patients with elevated FGF23 have similar clinical
phenotypes and serum biochemical profiles, such as short
stature, rickets, osteomalacia, lower extremity deformities,
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and a low serum phosphate concentration. Transgenic
mice overexpressing Fgf23 have phenotypes similar to the
clinical characteristics of ADHR, TIO and XLH (Bai et al.
2004, Larsson et al. 2004, Shimada et al. 2004, Yu & White
2005). Conversely, mice with deletions in Fgf23 show
hyperphosphatemia, ectopic mineralization, and poorly
formed skeletons with an extremely low PTH level and
an elevated 1,25(OH),vitamin D3 level (Liu et al. 2006).
Fgf23 decreases the expression of renal NaPi-2a and NaPi-2c
and induces hypophosphatemia predominantly via Fgfr1
(Gattineni et al. 2009). Results from further studies indicate
that supraphysiological FGF23 and soluble a-klotho
may directly affect bone through their suppression on
IHH expression, and administration of IHH protein
partially rescued the suppressive effect of FGF23 on
metatarsal growth (Shalhoub et al. 2011, Kawai et al. 2013).

Although there are controversies about the role of
FGFs/FGFRs signaling in skeletal cells, the results described
above indicate that FGF signaling regulates skeletal deve-
lopment and homeostasis by affecting all skeletal cells,

Articular surface

Subchondral bone

Resting zone

y

Proliferating zone

including MSCs, chondrocytes, osteoblasts, osteocytes,
and osteoclasts. FGF signaling affects skeletal cells through
their downstream signaling pathways and their inter-
actions with other molecules controlling skeletal develop-
ment and homeostasis, including IHH, BMPs, PTHRP,
WNTS, SOXS, and RUNX2 (Fig. 3; Murakami et al. 2004,
Dailey et al. 2005, Mansukhani et al. 2005, Ambrosetti
et al. 2008, Yin et al. 2008, Su et al. 2010, Foldynova-
Trantirkova et al. 2012, Krejci et al. 2012).

Promising therapeutic methods to alleviate
the skeletal phenotypes resulting from
dysfunction FGFs/FGFRs

A better understanding of the underlying mechanisms
involved in the skeletal diseases mentioned earlier will
allow the development of novel biologic therapies for
these diseases. Accumulated studies have been carried out
to alleviate the skeletal phenotypes caused by dysfunc-
tional FGFs/FGFRs signaling (Table 2). For GOF mutations,
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Figure 3

Signals regulating growth plate development. The growth plate is divided
into four distinct zones. IHH and PTHRP coordinate chondrocyte prolifer-
ation and differentiation through a negative-feedback mechanism.
Prehypertrophic and hypertrophic chondrocytes release IHH, which stimu-
lates chondrocyte proliferation and PTHRP synthesis. PTHRP synthesized
in periarticular region/resting zone before/after the second ossification
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center formation in turn suppresses chondrocyte differentiation associated
with IHH expression. FGF9/18 from the perichondrium suppresses chon-
drocyte proliferation and maturation through FGFR3 in the growth plate
during embryonic development and postnatal bone growth. A number of
WNTs expressed by growth plate chondrocytes stimulate the proliferation
of chrondrocytes (data from Long & Ornitz (2013)).
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the major strategy is to reduce their excessive activities,
subsequently alleviating the impaired cell functions,
while, for LOF mutations or deficiency, supplementation
of related factors may be helpful.

To prevent excessive intracellular signaling and rescue
the symptoms of FGFs/FGFRs-related genetic disorders,
a variety of molecules targeting FGFRs or their tyrosine
kinase activity were used. A soluble form of the Apert
mutant, FGFR2 (sFGFR2IIIcS252W), lacking the trans-
membrane and cytoplasmic domains, as a decoy receptor,
can compete for ligand binding with FGFRs and enhance
osteoblastic differentiation of the MG63 osteosarcoma
cell line transfected with the Apert mutant (Tanimoto et al.
2004). Furthermore, calvarial osteoblasts derived from
SFGFR2IIIcS252W mice show lower activation of MEK,
ERK, and p38 pathways than that in osteoblasts from Apert
mice (Suzuki et al. 2012). Recently, Morita and colleagues
found that sFGFR2IIIcS252W may partially prevent
craniosynostosis in the Apert mouse model (Morita et al.
2014). RNA interference targeting the Fgfr2 S252W can
completely rescue the Apert-like phenotype in mice
(Shukla et al. 2007). There are also an increasing number
of works related to Fgfr3-related skeleton disorders. A31,
a novel tyrosine kinase inhibitor, can restore normal
expression of cell cycle regulators (proliferating cell
nuclear antigen, KI67, cyclin D1, and pS7) and allow
pre-hypertrophic chondrocytes to properly differentiate
into hypertrophic chondrocytes in cultured femurs from
ACH mice (Jonquoy et al. 2012). We have described the
utility of a novel FGFR3-binding peptide for rescuing the
lethal phenotype and partially restoring the structural
distortion of growth plates of mice carrying the TDII
mutation (Jin ef al. 2012a). Garcia et al. (2013) developed a
recombinant protein therapeutic approach using a soluble
form of human FGFR3 (sFGFR3), as a decoy receptor,
and found that it could rescue the phenotypes of ACH
transgenic mice with no toxicity. Another approach to
target FGFR3 directly is use of an anti-FGFR3 antibody.
To date, antibodies targeting FGFR3 have been developed
and shown to exhibit antitumor activity for FGFR3-
associated multiple myeloma and bladder carcinoma
(Trudel et al. 2006, Hadari & Schlessinger 2009, Qing
et al. 2009, Kamath et al. 2012). But antibody may carry
a risk of an antibody-dependent cell cytotoxic reaction
(Yamamoto et al. 2010), which prevents its use in ACH.

So far, several approaches aiming to reduce excessive
activation of FGF signaling by targeting its downstream
pathways have been proposed. Treating Fgfr2 S252W mice
mimicking AS in humans with an inhibitor of MEK1/2,
U0126, can effectively alleviate craniosynostoses (Shukla

etal. 2007). An inhibitor of p38, SB203580, can ameliorate
skin and skull abnormalities in Beare-Stevenson mice
(Wang et al. 2012). Deletion of STAT1 in Ach mice can
restore the reduced chondrocyte proliferation but cannot
rescue the Ach phenotype (Murakami et al. 2004). ERK has
been found to be responsible for the retarded growth of
long bones and premature fusion of the synchondroses
caused by aberrant FGFR3 expression (Nowroozi et al.
2005, Matsushita et al. 2009). Sebastian and colleagues
found that genetic inactivation of ERK1 and ERK2 in
chondrocytes can enlarge the spinal canal and promote
bone growth (Sebastian et al. 2011). MEK inhibitors
PD0325901 and AZD6244 are under clinical investigation
for cancer treatment, they can expand the hypertrophic
zone of the growth plates in cultured bone (El-Hoss et al.
2014). These results indicate that inhibition of ERK
signaling may enlarge the narrowing of the spinal canal,
alleviating the neurological complications of ACH.
As overexpression of SNAIL1 in mice causes an ACH-like
phenotype, and SNAIL1 acts as a transcriptional factor
for FGFR3 signaling, targeted inhibition of SNAIL1 may be
a therapeutic method for FGFR3-related disorders
(Martinez-Frias et al. 2010). CNP rescues the shortened
bones due to ACH by ameliorating the decreased synthesis
of ECM in chondrocytes through inhibition of MAPKs.
Targeted overexpression of CNP in cartilage or systemic
administration of CNP can rescue the disturbed growth of
ACH mice (Yasoda & Nakao 2010). A 39-amino-acid CNP
analog (BMN 111) mimicking CNP pharmacologically has
an extended half-life. Treating Ach mice with BMN 111
leads to the attenuation of the dwarfism phenotype
(Lorget et al. 2012). Weaker PTH/PTR expression was
found in the growth plates of Ach mice, we for the first
time, to our knowledge, found that PTHRP can partially
reverse the growth retardation of cultured long bone
rudiments from ACH mice (Chen et al. 2001). Ueda and
colleagues found that the PTH1-34 treatment may
counterbalance the effects of FGFR3 with ACH mutation
on long bone development (Ueda et al. 2007). We further
found that intermittent PTH1-34 injection rescues the
retarded skeletal development and postnatal lethality of
mice mimicking human ACH and TD dysplasia through
the promotion of chondrocyte proliferation (Xie et al.
2012). Minina and colleagues revealed that BMP signaling
improves the narrowed proliferative and hypertrophic
zone in growth plates of ACH mice (Minina et al.
2002). Recently, Matsushita found that Meclozine, a
histamine H1 antagonist, facilitates the proliferation
and differentiation of chondrocytes by attenuating
excessively activated FGFR3 signaling possibly mediated
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Table 2 Promising therapeutic methods to alleviate the skeleton phenotypes resulting from FGFs—FGFRs related mutations

Gene Targets Molecules/methods Materials

Effects References

FGFR2 Itself sFGFR2111cS252W

blasts

Transgenic mice

FGFR2 S252W RNAi Transgenic mice

MG63 osteosar-
coma cells
Calvarial osteo-

Binds to FGFs acts as a decoy Tanimoto et al.
receptor (2004)

Downregulates the activity of MEK, Suzuki et al. (2012)
ERK, and p38 pathways

Prevents craniosynostosis in the
Apert mouse

Rescues Apert-like syndrome

Morita et al. (2014)

Shukla et al. (2007)

Downstream MEK inhibitor, Apert mice Rescues craniosynostosis Wang et al. (2012)
signaling uo0126
P38 inhibitor, Beare-Stevenson Ameliorates skin and skull Shukla et al. (2007)
SB203580 mice abnormalities
FGFR3 Itself or Tyrosine kinase Femur from ACH Restores the expression of Jonquoy et al.
tyrosine kinase inhibitor A31 mice cell cycle regulator (2012)
Rescues differentiation of
chondrocytes
Peptide P3 Cell lines Inhibits the tyrosine kinase activity Jin et al. (2012a)
of FGFR3
TDII mice Reverses the neonatal lethality of
Td2 mice
sFGFR3 Cell lines Binds to FGFs as a decoy receptor  Garcia et al. (2013)
ACH mice Rescues the phenotypes of Ach mice
Downstream Deletion STAT1 ACH mice Ameliorates the reduced Murakami et al.
signaling chondrocyte proliferation (2004)
Inactivation of ACH mice Enlarges the spinal canal and Sebastian et al.
ERK1 and ERK2 promotes bone growth (2011)
MEK inhibitors Osteoblasts and Promotes bone formation and El-Hoss et al. (2014)
PD0325901 and osteoclasts inhibits bone resorption
AZD6244
Mice Expands the hypertrophic zones of
the growth plates
MAPKs antagonist, ACH mice Rescues the impaired skeletal Yasoda & Nakao
CNP growth of Ach mice (2010)
CNP analog BMN ACH mice Attenuates the dwarfism pheno- Lorget et al. (2012)
11 type of Ach mice
Other PTHrP Metatarsal bone Partially reverses the retarded long Chen et al. (2001)
signaling from ACH mice bone growth
PTH1-34 Femur from Ach Promotes bone growth of Ach mice Ueda et al. (2007)
mice
PTH1-34 ACH and TDIl mice Rescues the retarded skeletal Xie et al. (2012)
development
BMP Limbs from ACH Rescues the reduced domains of Minina et al. (2002)

mice

Histamine H1

antagonist, explant
meclozine
FGF23 Itself Recombinant WT mice
FGF23
Neutralizing Hyp mice

anti-FGF23 MABs

Cell lines and bone Facillitates the proliferation and

proliferating and hypertrophic

chondrocyte

Matsushita et al.

differentiation of (2013)
chondrocytes

Induces hypophosphatemia with
increased renal phosphate
clearance

Ameliorates the rachitic bone

phenotypes of Hyp mice

Shimada et al.
(2004)

Aono et al. (2011)

by downregulation of ERK phosphorylation (Matsushita
et al. 2013). Shung and colleagues revealed that dysregula-
tion of SOX9 and B-catenin levels and activity in growth
plates might be an important underlying mechanism in
skeletal dysplasia caused by mutations in FGFR3 (Shung
et al. 2012) which indicates that regulating SOX9 or
B-catenin could be a therapy for these diseases.

Either GOF- or LOF of FGF23 can cause abnormal
growth plate development and several metabolic bone
diseases (Lu & Feng 2011). Novel therapies, inhibiting the
excessive activity of FGF23 or replacement therapy with
recombinant FGF23, may be beneficial for those patients
with abnormal growth plate development and several
metabolic bone diseases. Aono et al. (2009, 2011) showed
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that applications of neutralizing anti-FGF23 MABs can
ameliorate the rachitic bone phenotypes of Hyp mice
mimicking XLH in humans (e.g., impaired longitudinal
elongation, defective mineralization, and abnormal carti-
lage development). Administration of either recombinant
WT Fgf23 or the ADHR mutant form of Fgf23 to WT mice
induces hypophosphatemia with increased renal phosphate
clearance (Shimada et al. 2004, Shimada & Fukumoto 2012).

More studies are needed before clinical application,
through close collaboration between laboratory scientist
and clinicians. Encouragingly, BMN 111 developed by
BioMarin Pharmaceuticals is now being evaluated in a
Phase 2 pediatric study in children with ACH (http://www.
bmrn.com).

Perspectives

Although we have made extensive progresses in under-
standing the roles of FGF signaling in the skeleton,
especially in growth plate development and diseases
during the last 20 years by using genetically modified
mouse models and patients with mutations in FGFs and
FGFRs, we are still far from fully understanding their
underlying mechanisms, which prevents us from finding
effective cures for those FGFs/FGFRs-related genetic
diseases and injuries. Much work need to be done before
can develop successful treatments. We here list several
important issues that need further study.

Each individual FGF and FGFR has its own spatio-
temporal distribution and unique roles in skeletal
development and diseases as mentioned earlier (Ornitz &
Itoh 2001, Marie et al. 2012). These results are mainly
derived from animal models, especially from mice, which
are quite different from human beings. For example,
FGF18 is expressed in the adjacent perichondrium but not
in the cartilage of mice, acting as a physiological ligand for
FGFR3 and regulating FGFR3 activity in growth plate
chondrocytes and FGFR2 in perichondrium to coordinate
chondrogenesis and osteogenesis in mice (Liu et al. 2002,
2007). However, in humans FGF18 is not found in
perichondrium or cartilage, and FGFs secreted from
perichondrium are unlikely to efficiently diffuse into the
whole growth plate chondrocytes, indicating that other
FGFs but not FGF18 expressed in human growth plates
such as FGF1, FGF2, and FGF17 may be involved in the
regulation of chondrocyte proliferation and differen-
tiation (Krejci et al. 2007, Foldynova-Trantirkova et al.
2012). The accurate spatiotemporal expressions of
FGFs/FGFRs, especially in the case of diseases, need to
be further studied. Using conventional or inducible

transgenic Cre mice with genes driven by endogenous
FGFs/FGFRs promoters, together with reporter mice, it
should be possible to explore the expression patterns of
FGFs/FGFRs during skeletal development and genetic or
acquired diseases/injuries. Expression patterns founded in
animal models need to be further checked in clinical
specimens. In addition, there are still some FGFs, such as
FGF21 and FGF23, that have been found to be expressed
in growth plates (Krejci et al. 2007, Raimann et al. 2013),
but for which their function in growth plate development
and damage is still largely unknown. In vivo models with
spatially and temporally modified expression of FGFs, and
FGFRs in mice or other animals need to be generated to
explore the roles of each individual FGF and FGFR
in growth plate development and diseases/injuries.

Although there are accumulating studies about the
role of FGFs/FGFRs signaling in growth plate develop-
ment, we still have very limited information about
how FGFs, and FGFRs themselves are regulated by other
molecules. We need to know how FGFs, and FGFRs are
transcriptionally regulated, whether they are also
subjected to epigenetic modification, such as regulation
by methylation, non-coding RNA (microRNA and long
non-coding RNA). Post-transcriptional modifications
(PTM) such as phosphorylation, acetylation, and small
ubiquitin-related protein modification are also very
important in regulating protein activity; however, we
know very little about the PTM of FGFs and FGFRs.
Stability of proteins is essential for the maintenance of
protein function. Overexpression of Sprouty 1 in chon-
drocytes results in decreased FGFR2 ubiquitination,
increased FGFR2 stability, and sustained ERK activation
(Yang et al. 2008). The detailed mechanisms underlying
the degradation of FGFRs after ligand binding are poorly
known.

FGF signals are transduced by a series of downstream
signaling molecules typically including but not limited to
FRS2-RAS-MAPK, PI3K-AKT, DAG-PKC, and PLCy (Chung
et al. 1998). Presently, we do not know whether all FGFs,
and FGFRs share similar downstream signaling molecules,
or whether each individual FGF and FGFR, in different
cell lineages or development stages, exert its functions
through a distinctive combination of different down-
stream molecules. For example, are the differential roles
of FGFR3 and FGFR1 in growth plate chondrocytes just the
result of the distinct spatiotemporal expression patterns
of FGFR1, and FGFR3? Or also related to the distinct
downstream signaling molecules of FGFR1, and FGFR3?
One important phenomenon in this field is the inhibition
of AKT activity and chondrocyte proliferation by FGFR3,
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which normally acts as a mitogenic signal in other cell
lineages. We need to clarify why just FGFR3, but not other
FGFRs, can downregulate AKT activity and cause inhibited
chondrocyte proliferation and differentiation (Raucci et al.
2004, Priore et al. 2006). Whether there is interplay or
redundancy among FGFs and FGFRs during growth plate
development and diseases also needs further study. Like
other signaling pathways, FGF signaling also need
coordination with other pathways to regulate cartilage
development and diseases (Jin et al. 2012b, Marie et al.
2012). For example, in early mouse embryos, FGFs and
BMPs are integrated to regulate limb-bud overgrowth
(Verheyden & Sun 2008). The balance between BMP and
FGF signaling pathway determines the rate of chondrocyte
proliferation during chondrogenesis (Minina et al. 2002).
Some data indicates that FGFs and BMPs can regulate the
expression and stability of their downstream signaling
components mutually (Matsushita et al. 2009, Retting
et al. 2009). We recently found that FGFR3 can down-
regulate protein levels of BMPRla in a proteasome-
dependent way (Qi et al. 2014). However, it is not clear
how these two important signaling pathways regulate
each other in processes involved in the development and
damage of growth plates. Many pathways such as WNT/
B-catenin, TGF-B, and PTH play essential roles in growth
plate development and diseases and the interplay among
FGF signaling, and these important signaling pathways
occur in multiple cell types of the skeleton during
development and disease development. Clarifying the
interactions among FGF signaling and other signaling
pathways in skeleton cells will deepen our understanding
of the mechanisms underlying growth plate development
and diseases, which will provide us with the molecular
bases to search for therapies for growth plate maldevelop-
ment and diseases/injuries. Different mutations in the
same FGFRs cause distinct clinical syndromes, for example
A391E in FGFR3 causes CDS, while G380R leads to ACH,
P250R in FGFR1 causes PS, but C379R cause OD syndrome,
which indicates that mutations in FGFRs do not just cause
just GOF or LOF, studying these mutations may lead to
identification of novel functions of FGFRs, but we know
little about this at present.

Other RTK-related molecules such as VEGF has
been found to have intracrine functions (Lee et al. 2007).
The traffic of FGFs/FGFRs inside cells may also play an
important role in exerting the physiological and patho-
physiologic functions of FGFs/FGFRs (Ueno et al. 2011,
Coleman et al. 2014). We need to study the trafficing of
FGFs/FGFRs, especially the nuclear FGFs/FGFRs, and their
role in growth plate development and diseases.

The development of growth plates involves a series
of coordinated cellular events including the prolifera-
tion and chondrogenic/osteogenic differentiation of
mesenchymal cells, and the hypertrophic differentiation,
mineralization, and apoptosis of chondrocytes. To date, the
detailed effect of individual FGFs and FGFRs on each of
these developmental stages of chondrocytes is not fully
understood. For example, there are disputes about the role
of FGFR3 in chondrocyte proliferation, differentiation, and
apoptosis, a similar dispute also exists about the role of
FGFR2 in osteoblast differentiation and apoptosis. Further-
more, we have found that prehypertrophic chondrocytes in
Ach mice express osteocalcin, a marker for mature osteo-
blasts (Chen et al. 1999), but whether activating FGFR3
causes the transdifferentiation of prehypertrophic chon-
drocytes into osteoblasts has still not been elucidated. The
activation FGFR2 has been found to cause chondrogenic
differentiation of cultured cells in osteogenic medium,
collected from the long bone of Apert mice (Wang et al.
2005). All these results indicate that FGF signaling
may also change the fates of chondrocytes and osteoblasts.
We need to confirm this and explore the underlying
mechanisms. Luckily, emerging new techniques will
certainly help with exploration of the mechanisms of
growth plate development. These new techniques include,
but are not limited to, genomics technology, generation
of novel Cre/Cre-ERT2 mouse models (inducible, split
Cre-ERT, etc.) and endogenous FGFs/FGFRs reporter mice,
cell lineage tracing, in vivo dynamic imaging, cell ablation,
etc. Also important is cloning of more specific markers
for distinct developmental stages of chondrocytes, which
could be used to generate more stage-specific Cre mouse
strains and to classify developing chondrocytes into more
narrow but distinct stages. In addition, emerging clues
indicate that FGF signaling regulates many important
cellular events such as autophagy, endoplasmic reticulum
stress, and cell senescence under both physiological and
pathological conditions, but whether FGF signaling also
regulate these events in skeletal development and diseases
and the underlying mechanisms are still unknown.

Numerous variants clustered in genomic loci including
FGF18, FGFR3, and FGFR4 have been found to affect human
height (Lango Allen et al. 2010, Lui et al. 2012). FGFR1 has
been found to be associated with normal variation in
craniofacial shape (Coussens & van Daal 2005). More
clinical studies such as Genome Wide Association Studies
(GWAS) and exon sequencing need to be carried out to
explore the relationships between single-nucleotide poly-
morphisms in FGF and FGFR genes and skeletal phenotypes
including body height, bone shapes, and bone mineral
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density, as well as to find new genetic disorders resulting
from mutations in FGFs/FGFRs.

Although some drugs such as BMN111 appears to be
promising for ACH, as they are for other genetic diseases,
we presently do not have effective biological treatments
for almost all FGF signaling-related skeletal dysplasias.
While measures such as preimplantation genetic diagnosis
and prenatal screening should be taken to prevent these
diseases, biological treatment of FGF-related genetic
diseases is an important research field. In general, we
can modulate FGF signaling at multiple levels. For GOF
mutations, we can target mutant FGFs, and FGFRs at
their DNA, RNA, and protein level. Genome editing is
being increasingly used to correct genetic diseases (Li et al.
2011b, Ma et al. 2013), so far little similar work has been
done to treat FGF-signaling-related genetic skeletal
diseases. These new techniques include, but are not
limited to, genome editing technology (zinc finger
nuclease, transcription activator-like (TAL) effector
nucleases, and CRISPR/Cas9), RNA interference, and
neutralizing antibodies (Li et al. 2011b, Lokody 2014,
Ochiai et al. 2014). We can also target the downstream
signaling molecules such as MAPK by using CNP (Yasoda
& Nakao 2010), or we can regulate other pathways
involved in regulation of growth plate development, such
as PTH (Xie et al. 2012). As there are a variety of downstream
molecules and related pathways regulating growth plate
development, we need to screen these molecules carefully
to find out which molecules and/or pathways are more
suitable and practical for use to alleviate the phenotypes of
those skeletal dysplasia. Also importantly, we need to test at
which levels (DNA, RNA, and protein), using which
strategies (e.g., CRISPR/Cas9 versus TALEN, RNAi versus
antisense, neutralizing antibody versus chemical inhibitors,
etc.) we can better modulate those pathways. Another
important issue is to find better way to target those
modulating molecules to chondrocytes, the fact that
chondrocytes lack a blood supply makes this task more
difficult. Finally, skeletal dysplasia is caused by maldevelop-
ment, indicating that the timing of intervention is very
important, the treatment should usually be carried out early.
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