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1. Introduction and summary

Let {X"} be a sequence of independent and identically distributed (i.i.d.)
random vectors in Rk with zero mean vector and identity covariance matrix.
The distribution Qn of the normalized sum n-'12(X1 + *-- + X") converges
weakly to the k dimensional standard normal distribution (D. Although many
important results on rates of convergence have been obtained in the past, most of
them refer to approximations of the distribution function F. of Qn by the normal
distribution function. An exception to this is the case where Qn is assumed to
have a density with respect to Lebesgue measure or to have a lattice distribution.
In this situation, one obtained local limit theorems as well (see [14], Chapter 16,
and [19]). The first notable exception was a result of Esseen [13] which states
that iffourth moments are finite, then, uniformly over all spheres S (open or closed)
with center at the origin, one has

(1.1) Qn(S) - < O( n-k(k+l)), n - 00.

Esseen showed the remarkable depth of this result by relating a special case of
this to the lattice point problem of analytic number theory. In 1960, Ranga Rao
[29] investigated the rate of convergence over the class IV of all measurable
convex sets and proved that if fourth moments are finite, then

(1.2) sup Q5(C)- c(C)I = O(n-1/2(log n)(k 1)/2(k+ 1)), n -+ Z0.

He also obtained a number of asymptotic expansions extending some results of
Cramer [9] (Chapter 7) and Esseen [13] for distribution functions. The present
author [1] and von Bahr [34] independently obtained rates of convergence for
general classes of sets; a typical application gives the following precise bound
for W :

(1.3) sup IQ.(C) - (D (C)I = O(n-12) n1.2
CEl

In [1], this was proved under the assumption of finiteness of moments of order
3 + 3 for some positive 6, while in [34] EIX, k +1 was assumed finite for k > 2.
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Sazonov [32] has now shown that (1.3) holds if E|X113 is finite. However,
Sazonov's method does not seem to extend to general classes of sets and
functions. In [2], [3]. the author has given an account of his results on the
estimation off g dQn- f g d(D for arbitrary real valued, bounded, almost surely
((D) continuous functions g.

In addition to the results mentioned above, various useful refinements of
other aspects of the central limit theorem have been obtained over the years.
We mention only a few. Petrov [27], Richter [30], [31]. and Linnik [21]. [22],
[23] improved Cramer's results on large deviations. Petrov [28]. and Bikjalis
[6], [7] sharpened some mean central limit theorems and asymptotic expansions.
Ibragimov [17]. [18] and Heyde [16] investigated exact rates of convergence for
F,. Nagaev [24], [25] obtained rates of convergence and asymptotic expansions
for Markov chains. Recently, Stein [33] has devised a general method for dealing
with dependent sequences. In another direction, Cramer [10] has obtained the
first significant results on the speeds of convergence to other stable laws.

In Section 2 of this article, two lemmas are proved for an arbitrary separable
metric group. They estimate the effect of a "small" perturbation by convolution
on a finite signed measure. Although the only uses of these lemmas made here
are in proving the main results in Section 4, they may be used to compute
convergence rates for limit theorems in locally compact abelian groups when
estimates of rates of convergence of characteristic functions are available. In
[4], the author has used them to obtain some convergence rates in the Levy-
Ito-Kawada theorem. Section 3 collects a number of lemmas of a different
nature. Some of them provide Cramer type expansions of the characteristic
function of Q,n. Others deal with truncation and choice ofproper kernels. Section
4 contains the main results of this article. Theorems 4.1 and 4.2 improve previous
results of [2]. [3] by relaxing the assumption of finiteness of moments of order
3 + 3 for some positive 6 to finiteness of third moments. Theorem 4.3 gives an
asymptotic expansion under Cramer's condition (3.31), for an arbitrary
bounded, almost surely ((D) continuous function. It shows that even for functions
which are not very smooth the error of approximation is of the order o (n - (s- 2)/2 )
if sth moments are finite. s being an integer not smaller than 3. Theorems 4.4
and 4.5 on asymptotic expansions when X1 has a nonzero absolutely con-
tinuous component and when it has a lattice distribution, respectively, are stated
for the sake of completeness. In their present form they are due to Bikjalis [6],
[7]. However, Ranga Rao [29] was the first to show that an expansion like
(4.113) holds uniformly over all Borel sets in the lattice case. Ranga Rao's
estimate of the remainder involved a logarithmic factor, which has been removed
in [7]. Theorem 4.6 gives a "distribution free" asymptotic expansion for a special
class of functions. Theorem 4.7 deals with the case of summands with inde-
pendent coordinates. The multidimensional extension of one dimensional results
is particularly simple here, and one gets a good hold on the constants involved
in the error bounds. Theorems 4.8 and 4.9 due, respectively, to Heyde [16] and
Ibragimov [17], are concerned with exact rates of convergence.
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2. Two lemmas for separable metric groups

In this section, G denotes a separable metric group, unless otherwise specified.
We write the group operation as + (addition) and the identity (or zero) element
as "0". Let p be a left invariant metric on G. that is,

(2.1) p(u + x.u +y) =p(x.y), u,x,ye G.

That there always exists such a metric defining the topology of G is well known
(see [15], Theorem (8.3)). As is usual, It-, and |u| will denote, respectively,
the positive, negative, and total variations of a finite signed measure P. Also,
|| denotes the variation norm of u: 11 ptll = IMI (G). All measures or signed
measures mentioned here are defined over the Borel a-field X4 generated by the
open sets of G. The convolution p * v of finite signed measures p, v, is defined by

(2.2) p*v(B) = Ip (B - x) dv (x). B EdM.

The n-fold convolution of a finite signed measure y with itself is written as pl*c,
Let f be a real valued function on G. Define

S(X. E) = {y; p(X. y) < 8}. XE G,

wf (A) = sup {lf(x) -f(y)|; x. yE A}, A c G,
(2.3)

fs '(x) = sup {f(y); y E S(x, e)};f'E(x) = inf {f(y); y c S(x, E)}

Wf (x; E) = fSe(X) -ffL(X) = Wf(S(X, E)).

One can show thatfs E is lower semicontinuous andfi E is upper semicontinuous
if f is bounded (see [3], relation 2.18)).
LEMMA 2.1. Let I be a finite measure, v a finite signed measure, and KE a

probability measure with all its mass in the sphere S(0, E). Letf be a real valued,
bounded, Borel measurable function on G. Define

7(E) = max{{ fSEd(p - V)*Ke, - fi9Ed(p - v)*K,
(2.4)

T(E) = max { (fs2E - f) dv+, X (f -ff 2E) dv+}

Then for all positive E.

(2.5) f d(y - v) _ 7(E) + T(E).
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PROOF. We have

(2.6) y (E) > fs,8d ( - v)*K.

= T|(Lfs[ (y + x)d(u/- v)(y)]dK8(x)
s(o,E)G

|TS() [|Gfs,E(y + x) d4u(y)- f(y) dv(y)s(0, E) GG
- (fStE(y + x) -f(y)) dv(y)] dKM(x)

>| [ f(y)d/(y) - f(y) dv(y)

|(f{ (y + x) -f(y))dv+(y)]dKe(x)

>|f( v _ |(fs,2E _f ) dv+ > |fd (/I - v) - T(£).TGTG fG
Similarly,

(2.7) - y(s) _ fi'ed( v)- *K

= LO,I ) [{Gbf(y + x) dy (y)
s(o, E)G

- f(y)dv(y) + | (f(y) ffi.E(y + x))dv(Y)]dKe(x)

fd{G v) + J|G (f - fi.2e) dv+ <= {fd(u - v) + T (E).

If JG fd(ju - v) is positive, then (2.5) follows from (2.6). Otherwise, it follows
from (2.7). Q.E.D.
COROLLARY 2.1. Under the hypothesis of Lemma 2.1, one has

(2.8) {fd(M - v) < fd( - v)*K. + { f -(; E) dl(- v)*K.1
+ fwf(; 2s) dlvl.

If, in addition,

(2.9) (j-v)*K.(G) = 0,
which will be true in all our applications, then

(2.10) Tfd( - v) _ wf(G)I(M -V)*KeII + Jwf(-;2')dlvl.
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The corollary follows easily from Lemma 2.1 and definitions of y(E) and T(E).
We choose the kernel probability measure Ke for the next lemma to satisfy

(2.11) Ja_ dKe >
S(0, E)

For a real valued function f on G, we define the translate f. off by

(2.12) f.(x) =f(x + u), ue G.

LEMMA 2.2. Let !1 be afinite measure, v be afinite signed measure, and Ke be
a probability measure 8atisfying (2.11). Let f be a real valued, bounded, Borel
measurable function on G. Define

Y (s) = sup max {J (f."' 8 d(j - v) *K , - |I j(f d(u - v) * K'.

(2.13)rr
T (s) = sup max {T (((fu)s,2, -fu)u) dv+,J| ((fu - (fU)i,2,)" ) dv+}.

Then one has

(2.14) 6 su fu d(u - v) . (2a - 1)[y1 (E) + T1(e)],

where a is defined by (2.11).
PROOF. Suppose t is a positive number such that 6 - 1-T (E) is non-

negative (if this is not possible, then 6 _ T1 (a) and (2.14) surely holds). Now
either (a) SUpueG {JGfu d(/ - v)} = 6, or (b) SUPueG {-JGfu d( - v)} = 6. If
(a) holds, choose uo such that JGfuo d(u- v) > 6 - 'i. Then

(2.15) | (fu). dd(u -v)*K

= |fS(O) [I| (fuo)s8(y + x) d(It - v)(y) dK.(x)]
S(, e) G

+ T [| (fuo)Se(y + x) d(t - v)(y)] dK.(x)
G-S(O,eC)G

-f>| fuo(y) dlu(y) - {fu(y) dv(y)
S(, e)GG

- J'G ((fso)S e(y + x) - f.0(y)) dv(y)] dK,(x)

+ J|S(y [|uo + x) d4u(y) - fG. + x) dv(y)
-S(O,+) G G

-1 ((fu0)' e(y + x) - fuo(y + x)) dv(y) dK,,(x)
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O [- - ((f ),s'(y + x) - fuo(y)) dv+(y)] dK.(x)

+ f|fSOs[ _(y + x) -ft(y + x))dv+(y)]dK.(x)
GS(O,e)G

>
| n1- ((fuo)s 2c (y) -f.,,(y))dv+(y) dK,(#)

S(O, e)G

+ jS( [-6 -I()] dK.(x)

> [6 - - (9)]a + [- 6 - Tj(E)](l - a)
= (2a - 1)6 -T1 (s).

Since I1 may be taken arbitrarily small, one has

(2.16) Vi(C) _ f (fuo)s d(u - v) *Ke > (2c - 1)6 - TI(s),
from which (2.14) follows. If (b) holds, choose u0 such that - fGGfu0 d (u - v) is
larger than 6 - i, then by looking at - fuo (instead of f.0) and noting that

(2.17) (-f.))S. = - (f )i,
(fG _ (f)i,f2z) dv+ = ((_f.)s - (-fu)) dv,

one obtains, exactly as in (2.15),

(2.18) (6) > - f (fu.)" d(li - v)*Kr _ (2c - 1)6 - T1().

Again, (2.14) follows. Q.E.D.
REMARK. If the group G in Lemma 2.2 is abelian, one may replace Tz (E) by

(2.19) T'(8) = sup max {J ((fu).2 - fu) dv , (fu - (fu) 2e) dv+}

COROLLARY 2.2. If Gisabelian, then under the hypothesis ofLemma 2.2

(2.20) fd(L - v) _ (2a- 1)1 sup [ff d( -v)*K'
ueG G

+ |wf.( s) d|, v) *Ke|l + suGp |wfu(-; 2&) dv 2

If, in addition, (- v)*Ke(G) = 0, then

(2.21) Jf d( - v)

< (2a - )-1'wf(G)jj(M - v)*K.Il + s J'fwfu( 2s)dv
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For G = Rk, Lemmas 2.1 and 2.2 were proved by the author in [2], [3]. In
Section 3, we shall make use of the inequalities (2.10) and (2.21). Although
adequate for our purposes, these inequalities appear somewhat wasteful because
of the presence of variation norms. For example, with G = Rk and the indicator
function of a measurable convex set as f, one may easily obtain the following
inequalities from Lemmas 2.1 and 2.2:

sup (U - v)(C)| < sup I(p - v)*K,(C)I + sup v
+

Cei-' CEW CeW

(2.22) sup (iu - v)(C)I . (2oc - I)-[supj(p - v)*K'(C)l + supv+((OC)')],
CEW CEW C e

where W is the class of all measurable convex sets, EC is the boundary of the set
C, and

(2.23) A' = {x; p(x, A) < E}, A c Rk,

where p denotes Euclidean distance.

3. Some lemmas on characteristic functions

The random vectors introduced below are all defined on a probability space
(Q, X, P), P being a probability measure on the a-field X of subsets of the set Q.
For a random variable X defined on this space, f X will denote EX the expecta-
tion of X. Let {XM = (X., * *, Xnlk)} be a sequence of independent and
identically distributed random vectors with values in Rk satisfying

(3.1) EX1 _ (EX1 - ,EXI,k) = (0. ,0), CovX1 =I,

where Cov X1 is the covariance matrix of X1, and I is the k x k identity
matrix. For x, y in Rk. (x. y) denotes the usual inner product between x and y,
|xI = (x, x)1/2. For positive integers s, define

k

(3.2) flsi = EIXl,iIs, AS = Z fis,i, P, = E|X1 S.

If ps is finite for a positive integer s, then define

(3.3) )L(u) = i '-ts [log E(exp {it(X1, u)})]If10, u E k,

where log is the principal branch of the logarithm. Thus, ).8(u) is the sth
cumulant of (X1, u). The definition goes over when u is a k-tuple of complex
numbers. Suppose now that p5 is finite for some positive integer s not smaller
than three. Let Pj(u), j = 0. 1, , s- 2, be polynomials in u (k-tuple of
complex numbers) obtained by equating coefficients of n - j,2 on both sides of the
formal identity

(3.4) exp {, n-(j-2)/2Ai (u) (!)-1} = nO-jl2p
j=3 j=o
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In particular,

1,= ).3(U) t4(u) )~~~~~~~~2(U)
(3.5) PO 1, PI(u)= 3(U) P2(U)= 24 + 72

6' i2~j 24 72Note that j= n '2Pj(it) exp {-iItI2} for t E Rk is an approximation of the
characteristic function f, of the normalized sum Y.,

yn = n-1/2 E Xi,
(3.6) j=1

fn(t) = E[exp {(it, Yn)}] = fn(tn-112), t e R".
This important idea as well as some of the estimates below are essentially due to
Cramer ([9], Chapter 7).
CONVENTION. In this section and the next the positive constants a, b, c, with

or without subscripts or superscripts, depend only on the indicated arguments.
LEMMA 3.1 (see [5]). Suppose ps is finite for some positive integer s, s _ 3.

Then for It| _ n12/[8p'I(-2-)], one has

(3.7) f"(t) - exp {-IItI2}[1 + ; n-j2
j=1J

< c, (k, s)p.,|tl exp {- 'It|2}n (s-)/2-

LEMMA 3.2 (see [5]). Suppose ps is finite for some integer s, s > 3. Then one
has,for ItI . c2(k)n 12/f3s ,

(3.8) - {fn(t) - exp {- ItI2}[1 + En-j2Pj(it)]}

_ c3(k, s)fi(1tIs1r + It12(,-31) exp { -It12I-(s-2)/2
if 0. r . s, 1 < m . k.
LEMMA 3.3 (see [5]). If P3 is finite, then for It|I n12/(4p3), one has

(3.9) f,(t) < exp I ItI21.
LEMMA 3.4. If Pr is finite for some positive integer r, then one has

(3.10) -f (t) _ c4(r)Pr,mnr/21f1(tn-1/2)In, 1 < m < k.
atrm

m~~~~~
PROOF. Using Leibniz' formula, (@r/@tm)f"(t) may be expressed as the sum

of nr terms each of magnitude not exceeding -r/2fr,mIfi(tn-l/2)In-r. Q.E.D.
LEMMA 3.5 (see [5]). If Pj+2 is finite for some positive integer j, then for

1 . m _ k, 0 < r < j, one has

(3.11) Pj(it) _ c5(k,j)Pj+2(l + It13i).
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We shall truncate the random vectors Xi following Bikjalis [6]. Define

x* fxj, if lXjl < ni<i/2k(3.12) = _0 if lxji> n~ , 1 ik

Xj,n = (Xj, 1;n' *, Xj,k;n).
Let D = ((aj,j)) be the covariance matrix of Xi;n. The same symbol will be used
to denote a linear operator and its matrix relative to the standard Euclidean basis.
Thus, D will also denote the linear operator whose matrix is D.
LEMMA 3.6. Suppose p, is finite for some integer s, s > 3. Let v1, v2, * Vk

be nonnegative integers and let v = v1 + V2 + * + Vk. Then for 1 < i, i' < k,
one has

IE(Xt 1;n X'ikk;n) - E(Xv'. 1 * XXvikk)I < n (S v)/2p5kv/2 if v _ s,
(3.13) E(X, l;n. Xvk;n) = E(Xv,1 X''k)

+ o(n- (s - v)12) if v < s;

(3.14) E 1Xvll;n * * * vlkk;"l < n(v-s)12 PvkvI2 if v > s,
() ~~~~~~EIX!iI 1;** Xtjlkk |l = o(n(v-5)12) if v > s;315~~~~~~~~~~~lv |Xv ;ni p n psk)/

( * ) ~~~~~~~IEXi;nl = (--l/)

(3.16) |V~Jar (Xi,i;n) - 1 < p5n-(s2)'2 + pSn-s
(3.16) Var (Xi,;n) -1 =

|Coy (X1i;EnX 1 ; )n 2psn-(s- + p5n '(3.17)Coy(X1i;n, XiEX;n) = o(n- (- 2);

Lemma 3.6 may be proved along the lines of Bikjalis ([6], Section 4).
Let )A be the smallest eigenvalue of D. Since D is self adjoint and nonnegative

definite,

~~ k k \2~~~(s- 2)/2 2 (-

(3.18) ). = ( infIDxV2)1a2= (inf i (s-2] )
(s 2)/2 (-1/2

= 3in iC +(XliZn, jXj)2 + 2p,xn a psn

_ 1 - c6(k)fi3n-1/2,

if n is sufficiently large, that is, if

(3.19) fX3< c7(k)nX12.
We shall henceforth always assume that (3.19) holds, even though this will not
usually be mentioned. In obtaining the inequality (3.18), we have made use of
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(3.16) and (3.17) from Lemma 3.6. The largest eigenvalue A of D likewise
satisfies

(3.20) A _ 1 + c8(k)fi3n-12.
Similarly, if p, is finite, s _ 3, then, denoting by |D| the determinant of D, one
obtains

31 A = 1- o(n-(s- 2,,2 A = I + o(n-(s- 2,,2(3.21) IDI > Ak > 1 - c9(k)f3n-"/2, IDIA = 1 - o(n-(S-2)I2)
Let D = IF=1 AiEi be the spectral decomposition of the operator D. The
distinct eigenvalues of D are A1, 22, * * *, Ap; and E1, E2, - * *, Ep are the corres-
ponding orthogonal projections. Let T = If= 1 A-1/2 Ei. Then T is self adjoint
and positive definite, and

T'T = T = D1 ||T| 1 + c1O(k)fl3n-12,
(322) |IT - I cll(k)fl3n-1/2, ||TIT = 1 + o(-(s-2)/2),

|IT -II = o(n-(s-2)/2)
We now define for each n an i.i.d. sequence {Zr;n} by

(3.23) Zr;n = T(Xr;n - EX,;n), r = 1, 2, .

Note that

(3.24) EZ, = (0, 0, * * 0), Cov Zr;n = I.

Define
k

(3.25) fv,i;n = EIZi,i;nIl filv;n = Z- fv,i;n Pv;n = ElZl;nIv.
Also, by Lemma 3.6 and (3.22), if p5 is finite, s > 3, then

(3.26) Pv;n _ C12(k)f3s, Pv;n = Pv + o(n-(s-2)'2) if V < s,
Pv;n < c13(k)n (vs)/2fPS, Pv;n = o(n(v-S)I2) if v > 8;

(3.27) E(Zl; Zl,k;n)
{E(X, 1... Xv k) + o(n ) if v = v1 + + Vk < 8s

-to(n(v-s)12) if V = V1 + + Vk > S.

Let the polynomials {Pj;.;j = 1, 2, * * , s -2} correspond to {Zr;n} as the
{Pj;j = 1, 2, * * *, s - 2} correspond to {Xr}. Noting that

(3.28) P(u) j+2(u) + 1 (
"' (j ± 2) ! i= (j + 2-

one may prove the following lemma using (3.26) and induction (see [5], relation
(10)).
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LEMMA 3.7. If p5 is finite for some integer s, s _ 3, then

(3.29) lPi(it) - Pj;n(it)l = o(n-(s-J-2)2) 1 _ j _ s-2.

It should be noted that Lemmas 3.1 to 3.5 hold iffn, 1s p, Pj are replaced by
fn, 13s; n, Ps; n, and Pi; n, respectively. Here fg is the characteristic function of the
normalized sum Z,

n
(3.30) Zn = n-1/2 E Z f;,,f"(t) = E(exp {it, Zn}) = (fj(tn-112))n, te Rk.

r= 1

LEMMA 3.8. Iff, satisfies Cramer's condition

(3.31) lim sup If1 (t)I < 1,

then there exists an integer nO such that

(3.32) sup limsup fi(t)I <1.

PROOF. Note that

(3.33) If;'(t)I = IE(exp {(it, Zj;n)})I
= |E(exp {(it, TXi;n)})l = IE(exp {(iTt, Xi;n)})I
_ IE(exp {(iTt, Xj)})l + 2P(Xl;n $ X1) _ 1f1(Tt)I + 2p3n .

By (3.22), for a sufficiently large integer no, n > nO implies

(3.34) ITtl > !Itl, 2p3n-112 < '(I - lim sup If1(t)I).
Q.E.D.
The next two lemmas are concerned with the choice of proper kernels.
LEMMA 3.9. There exists a probability measure M on the Borel a-field f?l4k of

Rk which concentrates all its mass in S(O, 1) and which has a characteristiCfunction
4 satisfying

(3.35) |,at,|_)<C14(k, s) exp {-|It|u(|tI)}, It| _ 1, t E- R,

for 0 < r . k + s, 1 < m < k, where s is a given nonnegative integer, and u is
a nonnegative decreasing function on [1, oo) satisfying

(3.36) J x-lu(x)dx < oo.
PROOF. Let { Un } be a sequence of independent random variables, U. having

uniform distribution in the interval (-rn, rn ), where the rn are positive numbers
such that 0

(3.37) rrn < (k + s + )-1k-2,
n= 1

and, further, such that the characteristic function 4C of the distribution M1 of
In'= 1 Un (the sum converges almost surely) satisfies
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(3.38) 14,(t)l -< c15(k, s) exp {- Itlu(|tI)}, Itl _ 1, t e R'.
This is possible by a result of Ingham [20]. Let M2 = M("k+s+ 1). Then, clearly,
M2 and its characteristic function 42 4(Ik+s+1) satisfy

M2[(-k- 1/2, k-1/2)] 1

-g V(k+S+')(t)l C16(k, 8) exp {-t|u(|tl)}, Itl _ 1, t c- R',

for 0 _ r < k +s. Now take M = M2 x M2 x * x M2, a k dimensional
product probability measure on (Rk, k). Q.E.D.
REMARK. Ingham [20] actually proved that in order that there exists a prob-

ability measure Ml with compact support (in R') whose characteristic function 4,
obeys (3.38), it is necessary as well as sufficient that (3.36) holds.
COROLLARY 3.1. There exists a probability measure M in Rk which concen-

trates all its mass in S(0, 1) and whose characteristic function 4 satisfies the
inequality

(3.40) '9 .)< c17(k, s) exp {-t2}, ItI _ 1,
m

for all r, 0 _ r _ k + s.
LEMMA 3.10. There exists a probability measure K' on the Borel a-field fRk of

Rk with a characteristic function 4' such that~~3r
(3.41) dK' > 4, { x|k+sdK'(x) < C, 4'(t) = o

if It _ c18(k, s),

where s is a given positive integer and c18 (k, s) is a suitable positive constant.
PROOF. One can construct a probability measure obeying (3.41) in various

ways. We give just one such construction. In R1, let Ua be the uniform distribu-
tion in the interval (-a, a), a > 0. The characteristic function Pa of Ua is given
by

(3.42) pa(t) = (at) sin at, t E R'.

The characteristic function p2(k+s) of U.*2(k+s) is nonnegative real valued and
integrable. Let the constant c'8(a, k, s) be chosen so that

(3.43) fcIl8(a, k,s)pa(k+)(x) dx = 1.

The probability measure Nl, whose density is given by the integrand in (3.43),
has finite moments of all orders up to 2 (k + s) - 2, and has a characteristic
function which is equal to a constant multiple of the density of Ua*2(k+s), and
therefore vanishes outside the interval [-2a(k + s), 2a(k + s)]. Let N2 =
N, x N, x ... x N,, a product probability measure in Rk. To get K' from N2
one only has to choose a suitably. Q.E.D.
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4. Main results

We continue to use the notation introduced earlier.
THEOREM 4.1. If /33 is finite then for every real valued, bounded, Borel

measurable function g on Rk, one has

(4.1) IL g d(Q. - 4D) - a(k)w9(Rk)f3nl12 + 2 suiP W9ue;6n)dc

for all n such that /B3 < a, (k)n12 (log n)k, where

(4.2) £n = a2(k)fl3n ,

and the positive constants a(k), a, (k), a2(k) depend only on k.
PROOF. We shall apply Lemmas 3.1 to 3.5 throughout this proof to the

sequence {Zr;n} . Let Q' denote the distribution of Zn = EJ' Z;n112 Let=e
be the distribution of eX, where X has distribution K' of Lemma 3.10 with
s = 2, and K." that of sTX. The characteristic function 4e of K"' satisfies

(4.3) (t) = C'(sTt) = 0

if ItI _ a3(k)/e. We first show that, for a suitable choice of £,

(4.4) (Qn- D) *KE' . a'(k)fl3n- 1/2

if ,B3 < a, (k)n 1/2 (log n) -k. Let hn denote the density, and (n the Fourier-Stieljes
transform of (Q' - (D) *K,". Then as in Bikjalis [6],

(4.5) ||Q' - D) *KE"

= IRk Ih(x) dx
Rk

= Rk (mI1 (1 + x2k+2),12k) Ih (x) fl (1 + x2(k+2))-1I2k dx
Rk m=1 m m=Ik 1/2 k /2

~LJicm1 (1+ x2(k+2)) /kdx LJ2'm1( x(k+2))I/k)h (X)dXj

. a4(k) HI (1+ (I(k+2))h(x) dx]
m=1 Rk

k
< a4(k) l (I + Im)1/2k,

m=1

where

(4.6) I = Rk hn (Xdx, Im fJRk Xm nhn(X) dx.
Let us write

k-i

(4.7) ln(t) = E n 12Pj;n(it) exp {- jItI2}.
j=0
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By the Plancherel theorem, and noting that iAk+2)(@k+2/tk+2)4(t) is the
Fourier transform of XI +2h.(x), one has

(4.8) I = (27) -|k n(t)12 dt, Im = (27r) -|k kk+2 n(t) 2 dt.

Now let

(4.9) c = a5(k)fl3n"2, a5(k) > a3(k)8p3;
p3

Using Lemma 3.1 with s = 3, one then has

(4.10) I < ~~a6(k)p3;n < a7(k) 3(4.10) I <
-n - n

The last inequality of (4.10) follows from (3.26) and (3.27). Also, Im < Im,1 +
I. 2, where

Im,1 -k(ff | ,k+2 {(0nt - Yn(t))C (8Tt)I2 dt,(, * = 227r) t
gk+2 2

Im,2 = 2(2ltVk atk+2 {(Yn(t) -exp {-y 1(t))(TTt dt,

where both integrals are taken over the set { tI . n-112/(4p3,n)} so that

(4.12) Im,1 _ a8(k) O n(t) dt + O n(t) dt),

where
k+2/k + 2\For lak+2-r 2

an (t) =
r

r )[j (fn(t) - Vt(t))J8k+2_r'(ETt)

(4.13) B1 = {ItI _ C2(k)fl+l;n"n}1 n___2
B2 = C2(k)# knn 12 < |t| <k+2; ~~4P3;nf

Noting that

(4.14) tk'+2 -(rC(Tt) < as (k), 0 < r < k + 2,

it follows, by Lemma 3.2 with s = k + 2, that

(4.15) |Oan(t) dt _ alo(k)pk2+2; nn-k < all(k) 32
The last inequality is a consequence of (3.26) and (3.27). To evaluate JB2 aCn(t) dt
note that, by (3.26) and (3.27),

(4.16) C2(k)#,- nnl1 > al2(k)pi 1lnlk
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Hence, by Lemmas 3.3 and 3.4, and letting B3 = {It| _ al2(k)fB3I Ikn1/2k},

(4.17) j f (t) dt C2(r)p 2 n' ifIf(tn1/2)12(n t) dt

< a13(k)fB32n2r| exp - 2 (n - r) t2dt3 B~ 13 n f
< a14(k) 3l
= n log n

if fl3 < al(k)n1l2/(log n)k. Also, by Lemma 3.5, if #3 < a1 (k)n1/2 (log n) k, then
k+2 ar 1)2 or 2

(4.18) E |'(yn(t) - exp {-IIt2}) dt + irexp I-t2 dt
r=O B2 m B2m

_ E a15(k,j)n-jpj4+2. + a15(k)IN
j=i n

< a16(k)B32
n

From (4.14), (4.17), and (4.18), one gets

(4.19) ;an(t) dt =B2 n
The inequalities (4.15) and (4.19) yield

(4.20) Iml < a18(k) 3.

The estimation Of Im,2 is simpler. In fact, using Lemma 3.5 as in obtaining (4.18),
one gets

(4.21) Im2 <= alg(k) 3
n

Combining (4.20) and (4.21), we obtain

(4.22) I < a20(k) l3
n

Finally, (4.10) and (4.22) lead to (4.4). We shall now show that

(4.23) 1j (Q. -D) *K. || _ a"(k)f33n1/2,
if 1B3 < a1 (k)n1/2 (log n) k. Let Qn, 1 and Qn, 2 denote the distributions of
nl/2 r Xr, n, and 1 n-1/2 I;= (Xr; - EXr;,), respectively. Also, F1 will
denote the normal distribution with mean vector -n - 1/2 , EX,; n and
covariance matrix I, while 02 stands for a normal distribution with mean vector
- l/2 En=I T(EX,;,) and covariance matrix D-1. Now
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(4.24) f1(Q. - ¢)*K' - (Q,,, - D)*K' _ - _ 2nP([Xil > n71)
< 2p3n'12 . 2k112#3n112

Next,

(4.25) II(Q.,, - D)*Ke|l
ep2 2 (Q., I(B x) @(B - x)) dKe'(x)

= 2 s |p (Qn,2(B n- 1/2 Y EX,; n -x)

n

-DI(B - n 1/2 EXr;n X) dK.(x)
r=1

= 2 su (Q,, 2 (B -x) - (I(B - x)) dKe(x)
= l(Qn2 - (DI) *Ke

Also, letting Wl, W2, sX be independent random vectors with respective distri-
butions Qn,,2,2D1, Ke,
(4.26) Ik(Qn,2 - (I *K.

= 2 sup [P(W1 + sX e B) - P(W2 + sX e B)]
Beak

= 2 sup [P(TW1 + eTX e TB) - P(TW2 + sTX e TB)]
Beak

= l(Qn -(N *K.
Finally,

(4.27) k(Qn - b2)*K ' - (Qn - F)*K| . D2 - .D a21(k)a3n1.-
The last inequality is obtained in a straightforward manner using (3.22) and the
fact, which follows from (3.15) in Lemma 3.6, that

n

(4.28) n-1/2 Z EXr;n _ n2 |EXr;nl _ P3n-
r=1

The desired inequality (4.23) now follows from (4.4), and (4.24) through (4.27).
An immediate application of Corollary 2.2 with y = Qn and v = 4D, and the

kernel K' as used here, completes the proof of the theorem. Q.E.D.
APPLICATION 4.1. In the space 9 of all probability measures on the Borel

a-field of Rk, define the distance do by

(4.29) do(P, Q) = sup IP(C) - Q(C)I,
being the class of all Borel measurable convex sets of Rk. If f3 is finite, then

(4.30) do(Qn, (D) . a22(k)#3n-1,
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if fl3 < a, (k)n112/(log n)k. This follows from Theorem 4.1 by taking the indi-
cator function Ic of an arbitrary Borel measurable convex set C for g, and by
noting that the class ' is translation invariant, that is, (C - x) belongs to '
for all x in Rk and for all C in ', and that

(4.31) suPJwc(.;E) do = sup F((0C)c) < d(k)s, E > 0,

where AC is the boundary of C and (@C)E is the E neighborhood of AC as defined
by (2.23). The constant d(k) depends only on k. The inequality (4.31) was first
obtained by Ranga Rao [29]. Later it was independently obtained by von Bahr
[34] and Sazonov [32]. The last named author has shown

(4.32) do(Q., 'D) _ ck4fl3n112,

where c is an absolute constant. The usefulness of the metric do derives from
the richness of the class W which is large enough for many applications. It is also
quite convenient to have a metric like do which isfree of scale; that is, ifP and Q
are two probability measures and L is an affine non singular linear transforma-
tion on Rk then do satisfies

(4.33) do(P, Q) = do(PoL-, QoL-).

Here PoL-1(B) = P(L-1B), B being an arbitrary Borel set.
APPLICATION 4.2. Let F be the class of all real valued functions g on Rk

satisfying

(4.34) W,(Rk) _ 1, lg(x) - g(y)l _ - Y1,
for all x, y in Rk. The distance d1 on 9 defined by

(4.35) d1(P, Q) = sup gd(P- Q)|

is known to metrize the topology of weak convergence (see [11], Theorem 12).
It is immediate from Theorem 4.1 that if /33 is finite, then

(4.36) dj(Qn, ) _ a23 (k)fl3n- 1/2

if f3 < a, (k)n112/(log n)k.
Several other applications are given in [2]. There are Borel measurable

functions g for which

(4.37) w(; E) d@D = O(E), sup wg9((; E) dD -+ 0 as E °0.

For example, see [3]. Clearly, for such functions Theorem 4.1 is useless. The
following theorem provides effective bounds in this situation.



470 SIXTH BERKELEY SYMPOSIUM: BHATTACHARYA

THEOREM 4.2. If fl3 is finite then for every real valued, bounded, Borel
measurable function g on Rk, one has

(4.38) I gd(Q. - D) < b(k)w9(Rk)13n 12 + {wg(-;en) dD

if 133 < b1 (k)n12 (log n) k, where

(4.39) EN = b2(k)133n- 1/2 log n,

and the positive constants b(k), b I(k), b2(k) depend only on k.
PROOF. Let the probability measure M be as in the Corollary 3.1. Let Me be

the distribution of sTY, where the random vector Y has distribution M. Let
Kp e = M"*P,p being a positive integer (depending on n) specified by (4.41) below.
We continue to use the notation introduced in the course ofproving Theorem 4.1.
We first show that if fl3 is less than b1(k)n12 (log n)k, then

(4.40) JI(Qn- (D)*Kp E|| _ b'(k)fl3n-1/2,
where, denoting by [x] the smallest integer larger than x,

(4.41) p = [log n], £ = b2(k)P3;'n-1/2
The constant b'2(k) will be appropriately chosen in the sequel. Now define

(4.42) /:(t) = [fn(t) - exp {-_jtj2|}] P(fTt),
where 4 is the characteristic function of M. As in (4.5),

(4.43) Jf(Qn- ID)*Kp,.e| _ b3(k) H (i + Jm)lI2k,
where r

J = (27r) k J I, (t)12 dt,
(4.44) a+

f

tk + 2
2

Jm = (2 at+z X(t)k dtM
Now

(4.45) J . 3(2X) (J' + J2 + J),

where
I= {|tI _ n112/(8p3;n)} If,(t) - exp {- |tI2}12 dt,

(4.46) J2 = I {|t| _ n"l2/(8p3;n)} If,(t) CP(eTt)I2 dt,
J3 = I {|tI > n1/2/(8P3;n)} exp {-_ t12} dt.

By Lemma 3.1, with s = 3,

(4.47) J1, < b4(k) 3
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It is elementary to check that

(4.48) J3 < b5(k)f3
n

By (3.22) and (3.40),

(4.49) J2 fJ{ltl > n112/(8P3;.)II (sTt)12P dt

_ b2p(k) Jf {|tj > n1/2/(8P3;n)} exp {- 2pStj1/2} dt

. b (k)b7(k) fJ/(8P3u exp {-
P

du

. b2p(k)b8(k)c -2k+1 exp {-a.1,
where

(4.50) Cn = 2P812, a, = 2ps2fln4(8P3;.)-12

It is clearly possible to choose b'2 (k) such that

(4.51) J2 =<
n

Combining (4.47), (4.48), and (4.51), we get

(4.52) J blO(k) i3
n

To estimate Jm write

(4.53) J. < 2(27r) Ik ak+2 ((f(t) - y.(t))4P(Tt)) 2 dt

+ J8t+ ((v"(t) -exp {- !ItI2})((Tt)) dt.

Estimation of the integrals over the set {ItI < nfl2/(8P3;n)} is exactly like that of
Im. The integrals need to be estimated, therefore, only over the set B3 =
{ItI > nl112/(8P3;n)}I. Clearly,

k+2 2 b Ik)2
(4.54) J |a k+2 ((y.(t) - exp {- ItI2})P(eTt)) dt <

Also,

(4.55) ((fn(t) Yn(t))CP(MTt)) dt < 2(Jm,1 + J,2)
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where

I atk + 2

(4.56) = J im (fY(t)4 (£Tt)) dt
ak+2 ~~~~2

m,2 = JyB3)CPsTidt

By (3.22), (3.26), and (3.27),

J I
k+2 ak+2-r 2

(4.57) Jm _ b12(r, k)f3r,m;n J 8tk+2-r (sTt dt

k+2
< b23(r r

k) 18rTl2(k+2-r),2(k+2-r)p2(k+2-r),
r=O

(4.58) b2p(k) r exp {-(p + r - k - 2)11/2tlT1/2} dt _ b14(k) l,

if the constant b'2 (k) is suitably chosen. Note that there is no conflict between
this choice and that made in getting (4.51). In both cases one has to take it
sufficiently large. Estimation of Jm, 2 is much simpler. In fact, J, 2 is of the order
Of fB3(k+2/8atk + 2) exp {- It 12} dt. Hence,

(4.59) Jm 2 < bl(k4
n

It then follows that if ,B3 is less than b1(k)n 12 (log n) -k, then

(4.60) 'm < b16(k) 3
n

By (4.52) and (4.60), one finally obtains the inequality (4.40). It now follows
exactly as in the proof ofTheorem 4.1 that if ,B3 is less than b1(k)n 12(log n)k
then

(4.61) JI(Qn- dF)*Kp,.|l _ b(k)#3n- 1/2

The proof of the theorem is now completed by applying Corollary 2.1 with
Jp = Qn, v = F, replacing e bype. Q.E.D.

APPLICATION 4.3. The Prokhorov distance d2 is defined in 9 by

(4.62) d2(P, Q) = inf{e; e > 0, Q(A) _ P(Ae) +8,P(A) _ Q(Ae) +8,AeC _k}.

This distance metrizes the topology ofweak convergence ofprobability measures
on the Borel a-field of a separable metric space (see, for example, [8], pp. 237-
239). It may be shown (see [12], Proposition 1) that

(4.63) d2(P, Q) = inf {e; £ > 0, Q(A) < P(A') + s, A E Vk}.

Now letting ji = Q, and v = P, in Lemma 2.1, one obtains the following
inequality from the inequalities (2.6).
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(4.64) f,' d(Q - P) - fRkf f)dP

where P and Q are arbitrary probability measures on 0, and f is an arbitrary
real valued, bounded, Borel measurable function on Rk. Specializing to indicator
functions of Borel sets, one gets

(4.65) Q(A) - P(A) < (Q - P)*KE(AE) + P(A2C - A).
Now take Q = Q, P = (D, and replace E by ps, to get

(4.66) Q.(A) _ (I(A) + qID(A2PE- A) + JI(Qn-)*Kp Ell
= D(A2p') + ||(Qn - @)*Kp Ej|

from which, using (4.61), and (4.63), we obtain

(4.67) d2(Q", 4)) . max {2ps, b(k)f33n- 12} < bl7(k)fi3n-112 log n,

for all n such that f3 is less than b1 (k)n12 (log n) - k.
REMARKS. The author does not know if the factor log n in (4.39) may be

removed. The method of computation of d1 and d2 as given here is valid in
the more general context mentioned in the introductory section (see [4] in
this connection).
We next turn to asymptotic expansions. Suppose Pj+ 2 is finite for a positive

integer j. Let Pj(- 'p) be the real valued function on Rk whose Fourier trans-
form (evaluated at t) is Pj(it) exp {- IItI2}. Since exp {- IItI2} is the value
at t of the Fourier transform of the standard normal density which we denote
by p, Pj(-p) is obtained by formally replacing (itl)V"(it2)v2 ... (itk)Vk
exp {-IItI2} in Pj(it) exp {-|1t12} by (-0@1x1)V1(-/zX2)V2 *.* 0Xk).k-
For example, from the expression for PI (it) given in (3.5) one obtains

(4.68) P1(-p)(x) = -6 E E(Xl,jX1,j.X1,j) o ( )6 _ O~~~xj axj axj

Let Pj(- D) be the finite signed measure whose density (with respect to
Lebesgue measure) is Pj(-p). We write PO(-p) for (, and PO(-'D) for 4D.
For the random vectors {Zr;,, }, we similarly define Pj;,, (- p) and Pj;,, (- 'D) to
correspond to Pi; n(it).
THEOREM 4.3. If p5 is finite for some integer s, s > 3, and if the characteristic

function f, of X1 satisfies Cram& 's condition (3.31), then for every real valued,
bounded, Borel measurable function g on Rk one has

(4.69) { [Qn EZniI2pj(-)1
1w()t(n+{w( )d ns-2

< W,(Rk)6j(n) + w,(-; e B"n) d E -j/2p(_qD)
Rk j=0
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and, also,
p F ~~~s-21

(4.70) g d Qn-_E n-12Pj(-.P)I
Rk j=O

< W (R')6'((n) + (1 + 6(n)){ w,(; e-n)d4D,
Rk

where 61(n) = o(n-(s- 2)12), '1(n) = o(n (s-2)/2), b(n) = o(l), and , is a positive
constant. The quantities 31(n), 6'1(n), b(n), and fi depend only on the distribution of
X1 and not on the function g.

PROOF. We continue to use the notation introduced earlier. In addition, let
r r

tyr = Z n- j2Pj (-D), '; n = Y n ij Pj,.(D),j=O j=o
r

(4.71) y,(t) = 2 n~2Pj(it) exp {- |t|2},
j=0

r

Yr;n(t) = E n i'Pj;n(it) exp { HtI2}.
j=O

Let us first show that

(4.72) (Qn- 'Ps-2;n)*1j-. o(n-(s-2)/2),
where sis defined bye = e- ,ca being a suitable positive constant to be chosen
later. The probability measure Me is the distribution of eTY, Y having distri-
bution M of corollary to Lemma 3.9. Now remembering how the density of
Pi; n (- D) is formally obtained from the polynomial Pj; n (it), it is easy to see that

4.73) lin-j/2Pj;n(_(D)|j _ n-j/2b,8(k,j)pj+2;.
= o(n-(s-2)/2), for j > s - 2.

Therefore, (4.72) will be proved if we prove

(4.74) lI(Qn - WIk+s-1;n)*MeA o(n- (s-2)/2

As in (4.5) (also see [6], p. 413),

(4.75) || (Qn - 'Pk+sIs- 1; n) * < b'l8(k) ml [|( + Xms) P2(dx
k

< b' 8(k) l (Lo + Lm)lI/k

wherepn is the density of (Q- 'Pk+s-l;n) *M and Lo and Lm are given by

Lo= (27r) fn(t) - pk+s-.l;f(t)V k(ETt)V dt,
(4.76) k+s 2

Lm = (27t)-kJ' i+ ((f,n(t) - Yk+s-I;n(t))4(sTt)) dt.
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Again,

(4.77) o < 4(27r)-k(LO,1 + Lo 2 + Lo 3 + Lo 4),
where

Bl=YBi If+()Yk+s-l;n(t)I2dt,

Lo 2= jr If(t)12 dt,
(4.78) B2-B I

Lo,3 =R-R B2 |f,(t)C;(sTt) dt,

Lo,4 = JRk lYk+sl- 1;n(t)12 dt,

the sets B1, B2 being defined by

(4.79) B1 -{It< k,lI2p-s(2s)} B2 = {It| < 4f I P3;}-

By Lemma 3.1, (3.26), and (3.27),

(4.80) Lo,1 < b19 (k, S)pp2+s+2;nn- (k+s) 0(n- (s - 2)

By (3.26) and (3.27),

(4.81) .n Pk+s) > b20(k, s)p3ln12 - (k+2)/[2(k+s)1

Hence, by Lemma 3.3,

(4.82) Lo 2. exp {- 2It12} dt -o(n-(s-2)

By Lemma 3.8, (3.26), and (3.27),

(4.83) _ sup sup Ifi(')I < 1.
n >no lt| >(4P3;n)

Hence,

(4.84) Lo 3 _ b21 (k, 8)?12n r k exp {-2 |Tt| 1/2} dt _ b22(k, s)1,2n(E |ITII|)-k.

Now choose a number 'i' such that t1 < ' < 1, and let

(4.85) = (11)2flIk = exp {-an}, a = (2) log ().

Then clearly Lo,3 = o(n (s-2)). Lastly, because of (4.81) and the presence of
the exponential term exp {- ItI2} in the integrand of Lo, 4, Lo4 = o(n-(S-2)).
It follows that

(4.86) L= (- (s - 2
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Next,

(4.87) L._ 4(2n)-k(Lm,1 + Lm,2 + Lm,3 + Lm,4),

where

Lm|i1B3 |k+s -+((fn Yk+s-l;n(t))C(sTt))2 dt,
3 2

Lm 2 = ak+s (It)(eTt))2 dt,
(4.88) 2-B3 2

Lm.3 | Bakt+s (f,n(t)eC(sTt)) dt,

L.,4 = ak+s (k+s-l;n(t)C(sTt)) 2
dt,

the set B3 being defined by B3 = {|t| _ c2(k)n1/2fi#1-}. By Lemma 3.2,
(3.26), and (3.27),

(4.89) Lm,i _ b23(k, s)k,f+s+2;.n (k+S) + b24(k, s)Ik +s+2;n(811TII)k+2S
= 0(n-(s- 2

By Lemmas 3.3 and 3.4,

(4.90) Lm,2 - B | b25(k, r, s)fir;n exp dtn } 2

=o(n-(s-2)).
Again by Lemma 3.4 and (4.83),

r k+s ak+s-r 2

(4.91) Lm, 3 - Jk b26(k, s,r)(r;nnr/221nr atk+s-r (Tt)2 dtJR_-B2 r=O m
k+s

. Y b27(k, s, r) r; nn 112(T)(EIITI)k+2S2r
r=o

0 (n-(s-2))

Finally, the presence of an exponential term exp {_- It 2} in the integrand of

Lm,4 immediately gives Lm,4 = 0(n-(S-2)I2). We then have

(4.92) Lm = o(n-(s-2)2)
which combined with (4.86), when substituted in (4.75), gives (4.74) and,
therefore, the desired inequality (4.72). We next show that

(4.93) II(Q. - Ts -2)*1MrII = (-( )

where M' is the distribution of sY, Y having distribution M of Corollary 3.1.
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Now remembering the definitions of Q.,,l Qn,2, we see that

(4.94) I(Qn - T...2)*ME - (Qn, -2)*ME
< IIQn - Q,,,II _ 2nP(IX,I > n"/2) =o(n-(--2)/2

We next define two finite signed measures T,P- 2; 1' TsP-2;2, by
n

Ps-2;1(B) = T'P2(B + n-l/2 E EXr;n),
(4.95) r=O

Ts-2;2(B) = Ts-2(T-'B), BE k.

It is not difficult to show that

(4.96) VPTs-2;1 - Ts-211 = o(n (s 2)/2), ||Ts-2;2 - Ts-211 =o(n-(s-2)/2
The first assertion follows by estimating the density of TP -2; 1 -s-2' using
the readily verified fact that

n

(4.97) n- 12 E EXr;n = o(n-(s-2)/2-
r=1

The second assertion in (4.96) follows in the same way, this time using the
relation || T -II = o(n-(s-2)/2) given in (3.22). Since

(4.98) II(Qn,i - Ts-2)*ME = II(Qn,2 Ts-2;1)*ME
the first assertion in (4.96) together with (4.94) imply

(4.99) I(Q. - Ts-2) M. | (Qn,2 - T,- 2)* ME || + o(n( )/2)-

But

(4.100) I(Qn,2 - 's-2)*ME|| = I(Qn' - Ts-2;2)*Mj-
Hence, the second assertion in (4.96) yields

(4.101) l(Qn - Ts-2)* MrE I(Q'n - Ts -.2)* M. + o (n I),

which, combined with

(4.102) IlTs-2 - _2;nI =o(n-(--2)/2)
leads to

(4.103) II(Qn TsP-2)*AME|| = (QnTs - 2;n)*AMe| +(1(S2)/2)
The assertion (4.102) is a simple consequence of Lemma 3.7 (see [6], pp. 420-
421). The desired relation (4.93) now follows from (4.72) and (4.103). The first
assertion (4.69) of Theorem 4.3 follows on applying Corollary 2.1 with
9 = Qn, V = T,-2K2 = M. (note that M concentrates all its mass in the
sphere S(0, s TT I), and that 2e || T || < exp { -,Bn} for any positive ,B smaller
than a, if n is sufficiently large). To obtain the second assertion (4.70) observe
that
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(4.104) .fRIig(; 28) d ITs-21 = JS(O,r) wg(; 2E) dI8-21

fRk-S( r) g(; 2E) djs-21.
Take r = (3s log n)112. Then the first integral is bounded above by

(4.105) [1 + b28(k)psn 1/2(1 + r3s)] Js(O) wg(-; 2E) d@D.

and the second is bounded above by

(4.106) Wg(Rk)ITMs-2j(Rk - S(0, r)) = wg(Rk)62 (n),

where 62(n) = o(n-(s-2)/2) Hence,

(4.107) wgkw :( 2E) d|VPs21 . wg(R)k2(n) + (1 + o(l)) Jk wg(: 2E) d(D.

Q.E.D.
Note that the error of approximation in Theorem 4.3 is of the order of

o(n-(s- 2)/2 ) even for those functions g for which

(4.108) Wg(2 E)d'F = o[(log-> 2) 410.

It may also be noted that if X1 has an integrable characteristic function, then
no kernel measure is needed for smoothing and one may show more simply

II(Q - Ts-2)11 = o(n-(s-2)12). if'sth moments are finite. However, Bikjalis [6]
has the following better result.
THEOREM 4.4. Suppose X, has a nonzero absolutely continuous component

If p5 is finite for some integer s, s _ 3. then

(4.109) Q,- n 2Pj(-(D) = o(n )
j=O

Theorems 4.3 and 4.4 do not cover the important class of discrete distributions.
For the one dimensional lattice distributions, Esseen [13] obtained asymptotic
expansions of the distribution function of Q, Noting that Q,, has point masses
of the order of n- 1/2 (for k = 1), it is clear that the so called Edgeworth type
expansions above do not hold. But the fact that the distribution Q,, may be
roughly viewed as a probability measure on a group isomorphic to the additive
group of integers enables one almost trivially to express the "density" of Q,,
with respect to counting measure on the group in terms of its characteristic
function via the Fourier inversion theorem (the dual group of the group of
integers being the circle group T, Fourier inversion always holds for summable
functions on the integer group). Since the expansions offn, given by Lemmas 3.1
and 3.2, are still valid, one obtains an expansion of the Edgeworth type for the
point masses of Q,. This is the so called local limit theorem in the lattice case.
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To get approximations for Q"(B), where B is an arbitrary Borel set, one then
uses something like the Euler summation formula to express a sum as an
integral. The multidimensional extensions of Esseen's result as well as expan-
sions for arbitrary Borel sets are due to Ranga Rao [29]. Theorem 4.5 below is
a refinement of these results due to Bikjalis [7]. To be able to state it, we need
some additional notation. Let L be a lattice in Rk defined by

(4.110) L = {x0 + m; m is an integer vector}, x0 = (x0, 1, * XO,k)
where by an integer vector we mean a point in Rk all of whose coordinates are
integers. Without any essential loss of generality, we assume that the k dimen-
sional lattice distribution of X1 has all its point masses in L (and in no proper
sublattice of L). We further assume, again without loss of generality, EX1 =
(0, 0, * * *, 0), Cov X1 = V. Here V is a positive definite matrix. The following
functions appear in the Euler summation formula. For t in R', define

(1)J2 - 1 E 2 cos (2a7rt)/(2air)j ifj is even
(4.111) Sj(t) = a=1

1(-1)(i 1)/2 E 2 sin (2a7rt)/(2a7t)j ifj is odd,
a=1

j = 1, 2, * . The function S1 (t) is periodic with period unity, and the expression
for S1(t) in (4.111) is merely the Fourier series for S1(t) = t - [t] with
[t] = integer part of t. The function S1 is right continuous, is linear in the
open interval (N, N + 1) (for every integer N) with slope 1, and has a jump -1
at every integer point. Also, (d/dt)Sj(t) = Sj_1(t),j _ 2. Thus, the functions Si,
j > 2, are all absolutely continuous. Now define the following operators T]",
1 _j < k,

s-2 or

(4.112) TIS) = 1 + l(n1)rf-r2Sr(Xjnf12 - nxo,j)r
r=l X;

Also, let us denote the formal product of T(s), 1 _ j _ k, by I= 1 Tj(s). Let Q.
here stand for the distribution of n- 121 'r= Xr. Other notation will also
remain unchanged.
THEOREM 4.5. If X1 has a lattice distribution as described above, and if sth

moments are finite for some integer s, s > 3, then

(4.113) Qn(B) - d[(H TIs))Ts-2] = o(n (S 2)/2)

uniformly over all Borel sets B. Here T'-2 is as defined by (4.71).
REMARKS. Theorems 4.3, 4.4, and 4.5 do not cover nonlattice discrete

distributions (as well as some singular distributions). For some special functions
g the Edgeworth type expansion

(4.114) fR gdQn = f gddT'-2 + o(n1 2)/2),
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may be obtained, if p5 is finite, s > 3, no matter what the type of distribution XI
may have. For example, if g is a trigonometric polynomial then Lemma 3.1
immediately provides such an expansion. Our next theorem provides a class of
functions for which this expansion is always valid.
THEOREM 4.6. If p, isfinitefor some integer s, s _ 3, and ifg (real or complex

valued) is the Fourier-Stieljes transform of a finite signed measure p satisfying

(4.115) fB I 2 dl,Ul(x) < oo,

then one has
r ~~s-2\

(4.116) ggd Qn - n n-j2p}(-.)) = o(n-(s-2)2) n - 0o.
Jk j= O

PROOF. We need the following sharpening ofLemma 3.1 (see [29], Theorem
5.4.1, or use truncation and Lemma 3.1), a one dimensional version of which
appears in [13] (Lemma 2b, p. 44): if p5 is finite for some integer s, s > 3, then
for Itl| nI2/(8p}jI( 2)), one has

s-2

(4.117) fn(t) - exp {-_ It2} E n- '2Pj(it)
j=o

_ c',(k, s)psltls exp {- 4It2n-(s-)2(n),
where b(n) goes to zero as n goes to infinity. Now by Parseval's relation (see [14],
p. 480)

r / s-2
(4.118) g d Q. _- n-j2p;( _q)

JRk j=O
s-2

= J f (t)- exp {-jjt2} nnJ'2Pj(it) dli(t).
j=O

The integral on the right is first estimated over the region B = {|jt|
n1/2/(8p 11(s-2))}. This is of the order o(n-(s-2)/2) by (4.117). Over the com-
plement of B the integral is of the order of

(4.119) jRkB II (8pn12>(s-2) |t|-2 d,liu(t) = o(n-(s-2)/2
by (4.115). Q.E.D.
Theorem 4.6 is a considerable improvement on a previous result ofthe author

(see Theorem 3 in [3], where a different form of Parseval's relation was used).
The next theorem is designed to show that with the additional assumption of
independence of the coordinates of the random vectors, multidimensional
results become simple consequences of one dimensional results. The proof is
based on an easy trick involving Fubini's theorem. Let P, Q be two probability
measures on (Rk, -k). Let U = (U1, * , Uk) and V = (V1,I.., Vk) be two
random vectors with respective distributions P, Q. Denote by Pi, Qi, the
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(marginal) distributions of Ui, Vi, respectively. On the space of all probability
measures Y (on (Rk, AK)) define the pseudometrics do,j,1 _ i _ k, by

(4.120) do,i(P, Q) = do(Pi, Qi) = sup {JPi(I) - Qi(I)|; I an interval of R1}.

THEOREM 4.7. If P and Q are product probability measures on (Rk, k), then
k

(4.121 ) do(P, Q) _ do, i (P Q)-
i=l1

PROOF. We have P = P, x P2 x ... x Pk, Q = Q1 X Q2 X .. XQk. Let
C be an arbitrary Borel measurable convex set in Rk. Denoting by 01, 02, * ok,
appropriate real numbers of magnitudes not exceeding unity, one has

(4.122) P(C) = P'Rk 23(C. kJd(P, X P3 X x Pk)

= fRk Ql(Cx2x3x---k)d(P2 X P3 x x Pk) + 01 do, 1 (P, Q)
= Q,x P2 x ..x Pk(C) + 61 do, I(P, Q)

= JRkkP2(C x.x34...xkd(Q1 x P3 x x Pk) + 01 do,1(P, Q)

= fRk Q2(CX.x3x4...xk)d(Ql x P3 x ... x Pk) + 01 do,1(P, Q)
+ 02 do, 2 (P, Q)

= Ql X Q2 X P3 x ..*x Pk(C) + 01 do,, (P, Q)
+ 02 do, 2 (P, Q) =

k
= Q1 X Q2 X ... X Qk(C) + E 6do,i(P,Q),

i= 1

where

(4.123) CX2X3x...Xk = {X1; x1 e R1, (xl, X2, X3, k,X) E C}
cx(1) X3X4 ...Xk = {X2; X2 R1, (xI, x2, x3, , Xk) E C,

and so on. Q.E.D.
As an immediate application it follows from the Berry-Esseen theorem

(with Zolotarev's estimate of the absolute constant involved, as appears in [35])
that if third moments are finite and X1 has independent coordinates, then
do(Q., bD) < 1.64fi3n-112* Similarly, one may obtain asymptotic expansions of
Q"(C) for convex sets C using one dimensional Edgeworth expansions for
distribution functions. It should be pointed out that the equalities in (4.122)
hold for any set C (not necessarily convex) whose "sections" CX223...xk, and so
forth, are all line segments (empty, finite, or infinite). In fact, the method
extends to all Borel sets B whose "sections" are disjoint unions of m(B) line
segments or less, 1 _ m(B) < oo.
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For the sake of completeness, we state now two theorems on exact rates of
convergence. Theorem 4.8 is due to Heyde [16], while Theorem 4.9 is due to
Ibragimov [17]. These are both one dimensional results.
THEOREM 4.8. Let k = 1. Let 6 be a positive number, 0 < 6 < 1. Then

co

(4.124) E do(Q., (D)n- +12 < oo,

if and only if l2+a is finite. Also,
OD

(4.125) E do(Q, (D)n < oo
n=1

if and only if E(X' log (1 + IX,1) is finite.
THEOREM 4.9. Let k = 1. Let 6 be a positive number, 0 < 6 < 1. Then

(4.126) do(Qn, <D) = 0(n- 12

if and only if

(4.127) x2 dQ,(x) = O(z-'), z -oo0.

Also,

(4.128) do(Q., (D) = 0(n- /2

if and only if (4.127) holds with 6 = 1, and

(4.129) fZ x3dQl(x) = 0(1), z - oo.

Extensions of Theorems 4.8 and 4.9 to all k would be useful. In case the
random vector X1 has independent coordinates, these extensions are immediate
in view of Theorem 4.7.

In conclusion, we make a few additional remarks. First, the assumption (3.1)
is merely a convenient normalization and does not involve any essential loss of
generality (see, for example, Section 4 of [2], and the concluding remarks in
[3]). Second, most of the results presented in this article have extensions to the
nonidentically distributed case. For example, Theorems 4.1 and 4.2 are proved
for this case in [2], [3], respectively, under the assumption of finiteness of
moments of order 3 + 6 for some positive 6. The average of the (3 + 6)th
moments of the first n random vectors appears in the bounds. For k = 1, 2,
one may take 6 = 0, so that complete extensions of Theorems 4.1 and 4.2 are
available in one and two dimensions (see [2], Theorems 2 and 3. Theorem 1
in [3] admits similar modifications for k = 1, 2). To do away with 6 in the
general case, one would require a suitable extension of Lemma 3.2, which, to
the knowledge of the author, is not yet available. Third, Theorems 4.1 and 4.2
hold with f3 replaced by P2+, and n- 12 replaced by n-.12 throughout, for 6
satisfying 0 < 6 < 1. This follows by truncation if one remembers, in the
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notation of Section 3. that /33;n = o(n(1-62), 3;n _ c(k)n(t-°612 #2+6. In fact,
it is easily shown that the remainder in Theorem 4.1 is o(n-"/12), while that in
Theorem 4.2 is o(n-12 log n), if one merely assumes finiteness of fl2+,
0 < 3 < 1. It should be mentioned that Bikjalis [6] was the first to exploit the
technique of truncation in the present context. Fourth, finally, a great deal
remains to be done as far as efficient estimations of constants appearing in the
bounds are concerned.
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