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Abstract  
Background: COVID-19 has heterogeneous manifestations, though one of the most common symptoms is a 
sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of 
COVID-19. 
 
Methods: This preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to 
assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in 
chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for 
participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. 
Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-
19 olfactory recovery. 
  
 
Results: Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants 
(mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of 
COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing 
negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory 
yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was 
reported for ~50% of participants and was best predicted by time since illness onset.  
 
Conclusions: As smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale 

to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 

(4<OR<10), which can be deployed when viral lab tests are impractical or unavailable. 
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Introduction  

The novel coronavirus SARS-CoV-2 responsible for the global COVID-19 pandemic has left a staggering level 
of morbidity, mortality, and societal and economic disruption in its wake.1 Early publications2–8 indicate that 
sudden smell and taste loss are cardinal, early and potentially specific symptoms of COVID-19,9 including in 
otherwise asymptomatic individuals.10–13 While fever and cough are common symptoms of diverse viral 
infections, the potential specificity of early chemosensory loss to COVID-19 could make it valuable in screening 
and diagnosis.  

Anosmia and other chemosensory disorders have serious health and quality-of-life consequences for patients. 
However, the general lack of awareness of anosmia and other chemosensory disorders by clinicians and the 
public, including their association with upper respiratory infections,14 contributed to an underappreciated role of 
chemosensory symptoms in the diagnosis of COVID-19. Additionally, the impact of smell loss as a clinical 
consequence of COVID-19 has not been adequately addressed. Thus, there is an urgent need to better define 
the chemosensory dysfunctions associated with COVID-19 and to determine their relevance as predictors of 
this disease. It is critical to develop rapid clinical tools to efficiently and effectively integrate chemosensory 
assessments into COVID-19 screening and treatment protocols. Information on the duration and reversibility of 
post-COVID-19 chemosensory impairment is also lacking.  
 
We used binary, categorical and continuous self-report measures to determine the chemosensory phenotype, 
along with other symptoms and characteristics, of COVID-19-positive (C19+) and COVID-19-negative (C19-) 
individuals who had reported recent symptoms of respiratory illness. Using those results in logistic regression 
models, we identified predictors of COVID-19 and recovery from smell loss. Finally, we propose the Olfactory 
Determination Rating scale for COVID-19 (ODoR-19), a quick, simple-to-use, telemedicine-friendly tool to 
improve the utility of current COVID-19 screening protocols, particularly when access to rapid testing for 
SARS-CoV-2 is limited.  
 
 

Methods 

Study design  
This preregistered,15 cross-sectional online study was approved by the Office of Research Protections of The 
Pennsylvania State University (STUDY00014904); it is in accordance with the revised Declaration of Helsinki, 
and compliant with privacy laws in the U.S.A. and European Union. Data reported here were collected between 
April 7 and July 3, 2020 from the Global Consortium for Chemosensory Research (GCCR) core questionnaire 
(Appendix 1 and https://gcchemosensr.org),8 an online crowdsourced survey deployed in 32 languages that 
used binary response and categorical questions (e.g. Appendix 1, Questions 6,9) and visual analog scales 
(e.g., Appendix 1, Question 13) to measure self-reported chemosensory ability and other symptoms in adults 
with current or recent respiratory illness. Data reported here include responses in Arabic, Bengali, Chinese 
(Simplified and Traditional), Danish, Dutch, English, Farsi, Finnish, French, German, Greek, Hebrew, Hindi, 
Italian, Japanese, Korean, Norwegian, Portuguese, Russian, Spanish, Swedish, Turkish, and Urdu. 
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Participants (272) 
A convenience sample of 52,334 volunteers accessed the GCCR questionnaire; 25,620 met e

criteria (≥19 years old, respiratory illness or suspicion thereof within the past two weeks). After applyi

registered exclusion criteria, 15,747 participants were included in reported analyses (Figure 1).  
 

Figure 1. Flow diagram showing the demographics of participants included and excluded in the present analyses. 
Participants included in the prediction of COVID-19 status are highlighted in blue. Participants included in the smel
recovery models are highlighted in green. Participants included in the replication of our prior work are highlighted in
orange. N = number of participants; yo = age in years; W = women; M = men. Gender percentages do not include 
participants who answered “other” or “preferred not to say”.  Participants described in the green boxes are a subse
those described in the boxes listed above them.   

 
 
Based on the self-reported outcome of a COVID-19 lab test, participants were labeled as eithe

(positive result) or C19- (negative result). The specific collider bias characterizing this sample (high fra
C19+ participants and high prevalence of chemosensory disorders in both groups) underestimates the p
correlation between smell loss and COVID-19 (Figure S1). Thus, it represents a conservative scenario
the hypothesis that smell loss reliably predicts COVID-19 status. We benchmarked the GCCR datase
representative samples collected with the Imperial College London YouGov Covid 19 Behaviour T
(henceforth, YouGov; countries shared across datasets: Brazil, Canada, Denmark, Finland, France, Ge
Italy, Mexico, Netherlands, Norway, Spain, Sweden, UK, USA; YouGov: N=8,674, GCCR: N=3,96
publicly available at https://github.com/YouGov-Data/covid-19-tracker). Benchmarking shows the 
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sample underestimates the positive association between smell loss and C19+ (Figure S1, Table S1). The 
country-wise fraction of C19+ participants is correlated (r~0.45) when responses from the same calendar week 
are aligned (Figure S2). These findings are in line with other comparisons between crowdsourced versus 
representative health data,16 confirming that trends identified in crowdsourced data reasonably approximate 
population data. Because the GCCR cohort is not demographically balanced, it should not be used to estimate 
prevalence. However, the representative YouGov cohort indicates globally ~33% of C19+ individuals report 
smell loss (Table S1). 

 

Statistical analyses  
Statistical analyses were performed in Python 3.7.6 using the pandas,17 scikit-learn,18 and statsmodels19 
packages. The data and annotated code is included as supplemental material and will be publicly available on 
GitHub (http://github.com/GCCR/GCCR002) upon publication. Missing values for covariates used in prediction 
models of COVID-19 status and smell recovery were imputed as follows: binary features = 0.5, numeric 
features = median, categorical variables = “Missing”. Prediction targets themselves were never imputed. 
Responses incompatible with model generalization (e.g., open ended questions) were excluded. A one-hot 
encoding was applied to all categorical variables to produce binary indicators of category membership. L1-
regularized logistic regression (penalty α=1) consistently produced sparse models with comparable cross-
validation accuracy and were therefore the prediction test of choice. Model quality was measured using 
receiver operating characteristic (ROC) area under the curve (AUC). Cross-validation was performed in 100 
random splits of 80% training set and 20% test set, and ROC curves are concatenated over each test set. 
ROC curves are computed on predicted probabilities from each model, circumventing the high-cardinality bias 
of AUC. For single feature models, AUC is independent of most modeling details, including all rank-invariant 
decisions. To correctly compute p-values for model coefficients, the normalized data were standardized (mean 
0, variance 1) and then coefficients back-transformed to normalized form after fitting. 
 

Results 

Chemosensory loss associates with COVID-19  
A preregistered replication of our prior study8 confirmed that reported smell, taste, and chemesthesis abilities 
drop significantly in both lab-tested C19+ participants and those diagnosed by clinical assessment (Figure S3, 

Table S2).   
 
 Next, we compared lab-tested C19+ and C19- participants. C19+ participants reported a greater loss of 
smell (C19+: -82.5±27.2 points; C19-: -59.8±37.7 points; p=2.2e-46, extreme evidence of difference: 
BF10=8.97e+61; Figure 2A,B; Table S3), taste (C19+: -71.6±31.8 points; C19-: -55.2±37.5 points; p=6.7e-26, 
extreme evidence of difference: BF10=6.67e+24; Figure 2C,D; Table S3) and chemesthesis ability (C19+: -
36.8±37.1 points; C19-: -28.7±37.1 points; p=1.6e-07, extreme evidence of difference: BF10=3182; Figure 

2E,F; Table S3). However, both groups reported a similar degree of nasal obstruction (Figure 2G,H; Table 

S3). Self-reported changes in smell, taste, and chemesthesis were highly correlated within both groups (C19+: 
0.71<r<0.83; C19-: 0.76<r<0.87) and orthogonal to nasal obstruction changes (C19+: r=-0.20; C19-: r=-0.13). 
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Prediction of COVID-19 status from survey responses 
Binary (yes/no) and categorical reported symptoms suggested that COVID-19 is more strongly associated with 
chemosensory than with non-chemosensory symptoms, including fever, cough, and shortness of breath, 
cardinal symptoms currently highlighted by the US Centers for Disease Control and Prevention (CDC)(Figure 

3A). Using AUC to assess prediction quality (Figure 3B), we found that self-reported smell ability during 
illness, reported on a continuous scale, was the most predictive survey question for COVID-19 
status(AUC=0.71). Changes in smell as a result of illness (the difference between smell ability during and 
before illness) was similarly predictive (AUC=0.69). Changes in taste ability (assessed via rating) were the next 
most predictive features (AUC=0.64-0.65) (Figure 3B). Models fit to the same data but with shuffled COVID-19 
status consistently produced AUC~0.5 for all features. The most predictive non-chemosensory symptom, sore 
throat (which was negatively associated with COVID-19) was substantially less predictive (AUC=0.58) than the 
top chemosensory symptoms. Nasal obstruction was not predictive (AUC=0.52). Responses given on a 
continuous scale were more predictive (AUC=0.71) than binary responses to parallel questions (e.g., 
Appendix 1, Question 13 versus 14, FigureS5) (AUC=0.60-0.62), likely because a continuous scale contains 
a greater amount of diagnostic information (Figure S4). 

Next, we examined which simple multi-feature model would best predict COVID-19 status. As some 
questions have highly correlated responses, the question most complementary to “Smell during illness” is 
unlikely to be one that carries redundant information. Adding “Days since onset of respiratory symptoms” 
(DOS) to “Smell during illness” (Smell Only) produced the largest incremental gain in predictive performance 
(AUC=0.72, +0.01 versus the Smell Only model) (Figure 3C).  

We directly compared the Smell Only+DOS model to other candidate models. The Smell Only+DOS 
model (Figure 3D) yielded an equal or higher AUC than the model including the three cardinal CDC symptoms 
(AUC=0.55) or the full model using 70 features (AUC=0.72). Because the Smell Only+DOS model exhibits the 
same AUC as the full model it strikes a good balance between model parsimony and predictive accuracy for 
C19+. However, the Smell Only model also offers reasonable sensitivity of 0.85 (at specificity=0.51, cutoff=13 
on the 100-point VAS) and/or specificity of 0.75 (at sensitivity=0.51, cutoff=1) as desired. By sharp contrast, 
fever has a sensitivity of only 0.54 with specificity of 0.49 and dry cough has sensitivity of 0.52 and specificity 
of 0.46. 
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Figure 2. Chemosensory ability and nasal obstruction in C19+ and C19- participants. Self-reported smell (A,B

(C,D), chemesthesis (E,F), and  nasal obstruction (G,H; formulated as “How blocked was your nose?”) before an
respiratory illness in C19+ (darker shades) and C19- (lighter shades) participants. Ratings were given on 0-10
analog scales. Left panels (A,C,E,G) show mean values. Right panels (B,D,F,H) show distributions of the change
(during minus before). Thicker sections indicate relatively more subjects (higher density of responses). The thic
horizontal bar indicates the median, the shaded area within each violin indicates the interquartile range. E
represents the rating of a single participant.  
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Figure 3. Smell loss is the strongest predictor of COVID-19 status. (A) A normalized measure of association (Cram
between binary or categorical responses on COVID-19 status. V=0 reflects no association between the respon
COVID-19 status; V=1 reflects a perfect association; V>0.1 is considered a meaningful association. Features in
positively associated with C19+ (odds ratio > 1); features in blue are negatively associated with C19+ (odds ratio <
Logistic regression is used to predict COVID-19 status from individual features. Top-10 single features are ra
performance (cross-validated area under the ROC curve, AUC). Chemosensory-related features (bold) show 
predictive accuracy than non-chemosensory features (non-bold). Responses provided on the numeric scale (ital
more informative than binary responses (non-italic). Red arrows indicate differences in prediction quality (i
between features. (C) Adding features to “Smell During Illness” results in little improvement to the model; only Day
Onset of Respiratory Symptoms (DOS) yields meaningful improvement. (D) ROC curves for several models. A
using “Smell during illness” (Smell Only, abbreviated “Smell” in figure) is compared against models containing this
along with DOS, as well as models including the three cardinal CDC features (fever, dry cough, difficulty breathing
indicates a regularized model fit using 70 dozen survey features, which achieves prediction accuracy simila
parsimonious model “Smell Only+DOS”. 
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Recovery from smell loss  
Recovery from smell loss was modest (approximately half the initial average loss) in C19+ participants with full 
or partial resolution of respiratory symptoms. Overall, self-reported, post-illness olfactory ability was still lower 
for C19+ (39.9±34.7) than C19- (52.2±35.2, p=2.8e-11, Figure S6A). However, the mean recovery of smell 
(after illness relative to during illness) was greater for C19+ (30.5±35.7) than C19- (24.6±31.9, p=0.0002, 
Figure S6B). A similar but smaller effect of COVID-19 status on recovery was observed for taste (Figure S6C, 
D), while little to no association with COVID-19 was observed for recovery of chemesthesis (Figure S6E,F) or 
nasal obstruction (Figure S6G,H). When illness-induced change in olfactory function (during minus before 
illness) and recovery of olfactory function (after minus during illness) were evaluated, we identified three 
respondent clusters: those self-reporting no loss of smell (Intact Smell), those reporting recovery from smell 
loss (Recovered Smell), and those reporting smell loss without recovery by up to 40 days (Persistent Smell 
Loss, Figure 4, Table S3). Intact smell was reported by only 8.5% of the participants in the C19+ group but by 
27.5% in the C19- group (p=3.8e-31). A greater proportion of C19+ participants were included in both the 
Recovered Smell group (C19+: 40.9%, C19-: 33.3%; p=4.9e-10) and the Persistent Smell Loss group (C19+: 
50.7%, C19-: 39.2%; p=5e-5; Figure 4A, B). C19+ participants in both the Recovered Smell and Persistent 
Smell Loss clusters reported a similar extent of olfactory loss, irrespective of time since respiratory symptom 
onset. By contrast, the rate of self-reported smell recovery increased over time, with a plateau at 30 days 
(Figure 4C). Finally, DOS was the best predictor (AUC=0.62) between the Persistent Smell Loss and the 
Recovered Smell groups (Figure S6A, Table S3). 

 

Simple screening for COVID-19: the Olfactory Determination Rating scale in 
COVID-19 (ODoR-19) (136) 
 
Our results indicate that a continuous rating of current olfactory function is the single best predictor of COVID-
19 and improves the discrimination between C19+ and C19- over a binary question on smell loss. For 
example, the Smell Only model can reach a specificity of 0.83 at the low end of the VAS (sensitivity=0.36, 
cutoff=0). We propose here a numeric variation of the rating scale (0-10), the ODoR-19, that can be 
administered in person or via telemedicine to improve early COVID-19 screening for individuals without 
preexisting smell and/or taste disorders. Responses to the ODoR-19 scale ≤2 indicate high odds of COVID-19 
positivity (4<OR<10, Figure 5D). An ODoR-19 response of 3 indicates a borderline risk (OR=1.2). 
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Figure 4: Smell loss, recovery, and time course. (A, B) Joint distribution of smell loss (during minus before illness 
and smell recovery (after minus during illness ratings) for C19+ (A) and C19- (B) participants. Darker color indicate
higher probability density; the color map is shared between (A) and (B); dashed lines are placed at a third of the wa
across the rating scale to aid visualization of the clusters. Severe smell loss that is either persistent (lower left) or 
recovered (upper left) was more common in C19+ than C19-. n indicates the number of participants in each panel.
indicates the percentage of participants of the given COVID status in each quadrant. (C) In C19+ participants who 
their sense of smell (Recovered Smell + Persistent Smell Loss), the degree of smell recovery (right y axis) increas
~30 days since onset of respiratory symptoms before plateauing; the degree of reported smell change (left y axis) 
vary in that window of observation. Solid lines indicate the mean of the measure, the shaded region indicates the 9
confidence interval. 
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Figure 5. The odds of a COVID-19 diagnosis as a function of olfactory loss. (A) The solid line indicates 
probability of a COVID-19 diagnosis as a function of “Smell during illness” ratings. The shaded region ind
the 95% confidence interval. (B) The solid line expresses the probability of a COVID-19+ diagnosis as a
function of “Smell during illness” in odds (p/(1-p)); it is shown on a logarithmic scale. The shaded region 
indicates the 95% confidence interval. (C) Stylized depiction of change in the odds of a COVID-19 diagn
and of the odds ratio. (D) The ODoR-19 screening tool. After healthcare providers or contact tracers hav
excluded previous smell and/or taste disorders such as those resulting from head trauma, chronic 
rhinosinusitis, or previous viral illness, the patient can be asked to rate their current ability to smell on a s
from 0-10, with 0 being no sense of smell and 10 being excellent sense of smell. If the patient reports a v
below or equal to 3, there is a high (red) or moderate (orange) probability that the patient has COVID-19
Values in yellow (ratings above 3) cannot rule out COVID-19. 
 

Discussion  
Self-reported smell loss was more common in C19+ than C19- participants, but present in both 

The use of a VAS to assess olfactory loss better predicted COVID-19 status than using a binary questi
found that the best predictor of COVID-19-associated smell recovery, within the time frame captured
survey (~40 days), was days since onset of COVID-19.  
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The SARS-CoV-2 pandemic requires healthcare providers and contact tracers to quickly and reliably 

assess an individual’s COVID-19 risk, often remotely. Thus, reliable screening tools are critical to assess a 
person’s likelihood of having COVID-19 and to justify self-quarantine and/or testing recommendations. Indeed, 
some reports suggest that COVID-19-associated smell loss might be an indicator of disease severity.2,20 
Current symptom criteria (e.g., fever, dry cough) are less specific than severe olfactory loss. Indeed, the value 

of our ODoR-19 tool lies in the high specificity of values ≤2 for indicating COVID-19 positivity, therefore 

representing a valuable addition to the current repertoire of COVID-19 screening tools. Those who receive a 
negative outcome from a COVID-19 viral test, yet report significant idiopathic smell loss, should be considered 
as high-priority candidates for COVID-19 re-testing. 

Our online survey and sampling methodology likely selected participants with a heightened interest in 
smell and taste and/or their disturbances. This self-selection bias could be viewed as a limitation since the 
C19- group also showed chemosensory loss. However, finding difference between groups in a sample with a 
higher barrier for discriminating between C19+ and C19- supports the robustness of this tool when used in a 
typical clinical population; our collider bias analysis also suggests that our findings are likely conservative 
estimates (Figure S1, Table S1). 

Our results suggest that chemosensory impairment has strong COVID-19 predictive value and is useful 
when access to viral testing is limited or absent. As with any self-report measure, veracity of self-reports 
cannot be guaranteed. However, the ability to screen individuals in real-time should outweigh this potential 
confound.21 While objective smell tests are the gold standard for assessing olfactory function,22,23 they are 
costly, time-consuming to administer, and can require in-person interactions with potentially infectious 
patients.23,24 By contrast, the ODoR-19 is free, quick, and can be administered in person or remotely. We 
cannot exclude that our C19- sample contains COVID-19 false negatives.25 However, self-reported smell 
during illness distinguishes between C19+ and C19-, but not between randomly shuffled cases, suggesting 
that the difference between C19+ and C19-, even in a sample with over-represented chemosensory 
dysfunction, is substantial and can be captured via self-report.  

Approximately half of the participants in the C19+ group recovered their sense of smell within 40 days 
from the onset of respiratory symptoms. This suggests the presence of at least two subgroups of patients: one 
that recovers quickly (<40 days, 40.9%) and another that may present a more variable time course of recovery 
(50.7%). Since these data are collected before the full recovery of all symptoms, we cannot offer a complete 
picture of recovery from olfactory loss in COVID-19-positive individuals, but they align with other early 
reports.26 The COVID-19 pandemic will greatly increase the number of patients suffering from anosmia and 
other chemosensory disorders,27 conditions that significantly affect quality-of-life,28,29 dietary behavior,30 
cardiovascular health,31 and mental health.32,33 Thus, it is necessary to prepare healthcare providers to address 
the long-term needs of these patients.  

Based on our results, we propose the use of the ODoR-19 tool, a quick, free, and effective smell-based 
screening method for COVID-19. This 0-10 rating scale accurately predicts COVID-19 in individuals without 
pre-existing smell and taste disorders (e.g., from head trauma, chronic rhinosinusitis34). ODoR-19 combines 
the utility of a continuous scale with the ease and speed needed for a screening tool. ODoR-19 is safe for 
remote administration during an illness with high viral spread and can precede and complement viral testing. 
This tool will improve screening for patients with limited or no access to medical care around the globe.  
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Supplementary Material 

Collider bias results in underestimation of an association between smell loss 
and COVID-19 
As others have noted,35 collider bias, resulting from selection or conditioning on variables involved in the 
analysis, may result in the distorted association between COVID-19 and candidate symptoms or patient 
attributes. In the present sample, it is likely that we have selected for both a higher probability of COVID-19 
and a higher probability of smell and taste disorders than the population at large. However, rather than leading 
to an overestimation of the positive correlation between smell loss and COVID-19, collider bias is expected to 
lead to an underestimation of this correlation (Figure S1). If we consider the hypothetical scenario in which 
there is no association between smell loss and COVID-19 status in the general population, we would expect a 
distribution similar to that depicted in Figure S1A, where the correlation between the likelihood of smell change 
and likelihood of COVID-19 is r = 0. Based on our recruitment method, we expect that the participants who 
elected to complete the GCCR core questionnaire were likely to have COVID-19, smell loss, or both. We can 
simulate participant selection to reflect this hypothesis by censoring subjects which do not meet a fixed sum of 
smell loss and COVID-19 probabilities (i.e., the red dots are excluded from the calculation of the correlation; 
Figure S1B). As a result, the estimated correlation between smell loss and COVID-19 status originating from a 
population with r = 0 would be negative (Figure S1B). A similar scenario would manifest if the association 
between smell loss and COVID-19 status in the general population is positive (Figure S1C). Again, simulating 
the removal of participants with low likelihood of having COVID-19 and/or reporting smell loss would result in a 
bias of the estimated correlation towards more negative values (Figure S1D). This collider bias indicates that 
the positive correlation between smell loss and C19+ is underestimated in the present sample. Indeed, a direct 
comparison of the binary (y/n) smell loss questions in the two empirical samples yields an C19 odds ratio of 
5.96 in the YouGov sample (Table S1) but only 4.89 for GCCR. Therefore, our analyses represent a 
conservative scenario for the prediction of C19+ and C19- based on chemosensory alterations. 
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Figure S1. Collider bias leads to underestimation of the positive correlation between smell loss and COVID-19-positiv
(A) Hypothetical scenario depicting no relationship between smell change and likelihood of COVID-19 positive status. Bl
indicate individual potential subjects, each of whom has a latent likelihood of COVID-19 and of smell loss. (B) Hyp
scenario depicting the emergence of a negative correlation between smell change and likelihood of COVID-19 positiv
following a baseline lack of correlation, if participants with greater smell loss and/or COVID-19 positive are prefe
included in the sample. Red dots indicate subjects not observed due to this selection bias; subjects observed remain 
(C) Hypothetical scenario depicting a positive relationship between smell change and likelihood of COVID-19 positive st
Hypothetical scenario depicting the emergence of a negative correlation between smell change and likelihood of CO
positive status following a positive baseline correlation, if participants with greater smell loss and/or COVID-19 pos
preferentially included in the sample.  
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Table S1. Comparison with the representative YouGov database shows that the GCCR sample underestimates 
the positive correlation between smell loss and COVID-19 positive status. 

 N % C19+ % C19- 
OR  

(C19+ vs C19-) 
OR 

(C19+ vs Not Tested) 

OR 

(C19- vs Not 
Tested) 

p(Smell Loss | C19+) 

Global 
10939

5 

0.51 3 5.96 49.7 8.33 0.33 

Brazil 4167 0.91 5.4 8.39 33.9 4.04 0.47 

Canada 5524 0.47 3.4 7.76 71.6 9.22 0.35 

Denmark 5839 0.36 5.7 9.35 77.8 8.32 0.33 

Finland 5927 0.32 1.9 1.85 27.8 15.1 0.21 

France 9820 0.46 1.7 7 57.9 8.27 0.29 

Germany 9468 0.49 2.1 4.56 94.2 20.7 0.37 

Italy 9790 0.33 2.8 9.17 50.8 5.54 0.22 

Mexico 5840 0.24 3.5 8.91 27.6 3.1 0.21 

Netherlands 3822 1.2 2.7 2.73 16.1 5.92 0.3 

Norway 5794 0.86 4.4 5.82 51.2 8.8 0.32 

Spain 9789 0.37 3.5 5.81 43.5 7.48 0.33 

Sweden 9741 0.44 2 3.69 38 10.3 0.35 

United 
Kingdom 

13565 0.15 1.2 23.1 108 4.66 0.5 

United States 10309 1.2 4.8 4.61 54.7 11.9 0.34 

Column 1 includes the list of countries available in the YouGov database. Column 2 indicates the number of participants over the history 

of their survey up to July 3, 2020. Minimum N=1000 per time point. Column 3 reports the percentage of participants who reported C19+. 

Column 4 reports the percentage of participants who reported C19-. Columns 5-7 report the odds ratios using Smell Loss for either C19+ 

vs. C19- (Column 5, and as reported in Figure 5 based on the data of the GCCR survey), for C19+ vs. untested individuals (Column 6) and 

C19- vs. untested individuals (Column 7). Untested individuals in YouGov's survey are those who did not report to be sick but were 

contacted as representative participants of a country. Column 8 reports the probability of smell loss in the C19+ group. The first row 

indicates the Global average (across countries) weighted by sample size. The global odds ratio for Smell loss calculated from a binary 

question for the group C19+ vs. C19- is 6.72, which is greater than what we identify in the GCCR survey (OR for changes in smell (binary 

question) = 4.89). The OR for C19+ vs. untested individuals is 58 and lowers to 11 for C19-. This confirms that smell loss is also associated 

with other etiologies, but is not nearly as prevalent as in participants with C19+ 

 

How representative is the GCCR sample? 
As with most COVID-19 studies,19 the sample studied here is not representative of the general population. To 
better understand the extent to which this is the case, we computed a cross-correlation between GCCR and 
YouGov data.36 These data were aligned by weighting YouGov samples to achieve an identical survey date 
distribution to the GCCR samples. Specifically, GCCR survey dates were converted to a YouGov “week 
number” because YouGov surveys only weekly. The distribution of week numbers was computed for each 
country in the GCCR data. The YouGov data for the same country was then weighted by week number to 
match the corresponding GCCR distribution for that country. So, for example, if a country had 10 GCCR survey 
responses in week 1 of the YouGov survey period, and 30 in week 2 of that period, then the YouGov data in 
week 1 would be weighted at 25% and in the YouGov data in week 2 at 75%. This procedure was applied 
independently for each country, and the weights were used to compute a weighted mean COVID-19-positive 
rate for each country from the YouGov data. This was then directly compared against the raw COVID-19-
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positive rate for each country in the GCCR data. A lag (x-axis value in Figure S2) of 0 exactly refle
above description. Other values of the lag indicate that the alignment was shifted: for example, a lag
week means that the hypothetical GCCR responses above would be weighted 25/75 towards weeks 2
instead of weeks 1 and 2. Under the hypothesis that the COVID-19-positive rates in the two surve
related, but may have different temporal dynamics, changing the lag allows these dynamics to be est
Figure S2 depicts the country-wise correlation in participants with a positive COVID-19 test results 
fraction between the two datasets, as a function of the lag between GCCR survey date and YouGov 
date. The country-wise C19+ fraction is correlated (r ~ 0.45) when responses from the same calenda
are aligned, but diminishes outside of that window, showing both surveys capture a similar within-
temporal component of the epidemic. 
 

 
Figure S2. COVID-19 status in the GCCR cohort is correlated with a representative YouGov sample.  
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Sample description 
Based on responses to question 7 of the GCCR survey (“Have you been diagnosed with COVID-19?”, 
Appendix 1), participants can be split into six groups (see Figure 1). Participants who responded with Option 
2 (“Yes – diagnosed with viral swab”) or 3 (“Yes – diagnosed with another lab test”) were classified as C19+; 
participants who responded with option 5 (“No – I had a negative test, but I have symptoms”) were classified as 
symptomatic C19-; participants who responded with option 4 (“No – I was not diagnosed, but I have 
symptoms”) were classified as C19 Unknown; participants who responded with option 6 (“No – I do not have 
any symptoms”), with option 7 (“Don’t know”), or with option 8 (“Other”) were classified as undefinable and 
excluded from the final analyses. To replicate our previous findings,8 we first compared individuals newly 
included in the GCCR dataset (responses from 14 May to 2 July, 2020, replication sample in Figure 1) with 
COVID-19 who were lab tested and those who were diagnosed by a clinician based on the self-reported 
quantitative changes in smell, taste, chemesthesis, and nasal obstruction (Figure S3). Participants with lab-
test confirmed C19+ did show slightly greater chemosensory deficits than did those diagnosed with C19+ 
clinically, but the difference was not clinically meaningful (smell: 4.4±28.6, p=2.7e-13) (Figure S3, Table S2). 
We then focused our descriptive and predictive analyses of participants who received a positive (C19+) or a 
negative (C19-) lab test for COVID-19. We also computed descriptive and predictive analysis for the C19+ 
subsample who reported partial or full signs of recovery from their recent respiratory illness. Lastly, the 
unknown group was originally hypothesized as similar to the C19- group. Yet the ratings of smell ability during 
illness suggest that the majority of these participants has a smell profile closer to C19+ than C19- (Figure S4). 
To maximize the validity of the COVID-19 diagnosis in our sample, we therefore excluded the C19 Unknown 
group from further analyses.  
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Figure S3. This figure describes a pre-registered replication of Parma et al, 2020 and includes only new data c
between May 14th and July 3rd 2020 via the GCCR survey. (A-D) Changes in smell (A), taste (B), chemesthesis 
nasal blockage (D) during versus before in COVID-19-positive individuals (Groups 1, 2 and 3, see Figure 1). All s
had a COVID-19-positive status either via lab test (darker shades) or via clinical assessment (lighter shades
Principal component analysis shows that smell, taste, and chemesthesis changes in both the lab test (E) and
assessment (F) groups) were orthogonal to blocked nose changes, i.e., the three chemosensory changes wer
correlated across subjects whereas blocked nose changes were mostly uncorrelated. 
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Figure S4. (A) Self-reported smell change and comparison of smell change between four diagnosis groups: Positiv
COVID-19 lab-test (C19+), positive COVID-19 clinical assessment (C19+ (Clin)), COVID-19 Unknown (Unkn; lack 
clinical and lab test diagnosis, but reported symptoms), and negative COVID-19 lab test (C19-). Solid horizontal lin
reflect the median; dashed lines reflect the quartiles. (B, C) Differences between groups, in terms of (B) effect size
(Cohen’s D) and (C) means (on a 0-100 scale). 
 
 

Replication of previous analyses 
 
The replication of Parma et al.8 used the same Bayesian linear regression approach with Cauchy pr
sqrt(2)/2]. This approach is appropriate for estimating the strength of the evidence in support of the alte
hypothesis: the clinical assessment and the lab test C19+ groups show similar smell, taste, chemesthe
nasal obstruction changes before vs. during the illness. The interpretation of the Bayes factors BF follo
classification scheme proposed by Lee and Wagenmakers37 and adjusted from Jeffreys38, which consid
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> 3 as moderate evidence, BF > 10 as strong evidence, BF > 30 as very strong evidence and BF > 100 as 
extreme evidence for H0 or H1.  
 

 
Table S2. Differences between lab-tested and clinically-assessed COVID-19-positive 
participants on changes in smell, taste, chemesthesis and nasal blockage. 

 Smell 
Change 

Taste 
Change 

Chemesthesis 
Change 

Change in 
Nasal Blockage 

Δ 
-4.4 -3.4 0.37 3.9 

σ 0 0 37 33 

seΔ 

-0.048 -0.037 0.0041 0.043 

D -0.15 -0.1 0.01 0.12 

p 2.70E-13 2.00E-06 0.38 4.00E-09 

Change means the rating “before” illness minus the rating “during” illness on the 0-100 visual-analog 
scale. Δ indicates the mean difference in change between lab-test and clinically-assessed COVID-
19-positive subjects, while σ indicates the standard deviation. D indicates effect size (Cohen’s D). p 
indicates p-value from a Mann-Whitney U-test. In contrast to the prediction of the pre-registration, we 
found statistically significant differences between groups. However, the effect sizes are small and 
thus unlikely to be of practical importance. 
 

 

 
 

Chemosensory characterization of C19+ and C19- 
We asked how accurately COVID-19 status could be predicted from the survey responses. The data matrix 
had strictly non-negative values and was normalized (column-wise min=0, max=1) to apply regularization in an 
equitable fashion across features and give regression coefficients the same interpretation for each feature. 
Compared with the main text, models with similar AUC values (but with non-zero coefficients for additional, 
likely spurious features) were obtained for smaller values of α, and inferior results for larger ones (which 
contained fewer or no non-zero coefficients). Quantitatively similar AUC values were obtained for other models 
predicting COVID-19 status using multiple features including ridge regression and random forest, but L1-
regularized logistic regression consistently produced sparser models with comparable cross-validation 
accuracy. Each logistic regression model included an intercept term and one or more normalized features. 
Each model attempted to predict, using the value of the response to a single question (and an additive 
constant), whether a subject reported a C19+ or C19- status. Coefficients in a logistic regression model can be 
interpreted as changes in odds, or as odds ratios when two values are compared. Each ROC curve -- 
constructed using predictions on holdout test sets and concatenated over these test sets -- summarizes the 
tradeoff between sensitivity (fraction of C19+ cases correctly identified) and specificity (fraction of C19- cases 
correctly identified) as the threshold value for the predictor is varied.  
 

Value of using a scale rather than a binary response to detect C19+ 

We quantified the information entropy for each survey question used the following standard equation: I�

∑ ���� � ��	����

�
�  evaluated over the n response options. Re-binning to mimic new scales was achieved by 

dividing response values by a constant and rounding to the nearest integer. Relative mutual information was 
calculated by computing the mutual information between survey response and COVID status based on the 

following standard equation: � � ∑ ∑ ���� � ��	��
���

����


�

�
�
�  where survey response options are indexed with i and 

the C19+/C19- status (two possible values) are indexed with j, and then dividing by the entropy available from 
that same C19 status distribution, calculated using the first equation. Results indicate that soliciting responses 
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on either a continuous 100-point scale or a downsampled 10-point numeric version of the scale i
informative about symptoms themselves and about COVID-19 status (given the symptoms) than s
binary responses (Figure S5).  
 
 

 
 

Figure S5. (A) Relative information available from the distribution of responses to the two primary “Smell” survey 
questions. Binary refers to the yes/no question about symptomatic smell loss. A relative information of 1 would cor
to a question whose response is perfectly informative about COVID-19 status. By contrast, a similar question aske
numeric scale (0-100, the original scale; or a hypothetical 10-point scale obtained by rounding responses) contains
substantially more information due to the resolution of the scale. A 10-point scale may be familiar from clinical self
of pain. (B) The relative mutual information about COVID status contained in the survey response is also higher fo
numeric scale or the hypothetical 10-point scale than for the binary question. 
 

Prediction of recovery from COVID-19-associated smell loss 
We applied the same predictive modeling framework used in Figure 4 to try to predict smell recovery i
participants. In other words, we asked which survey responses predicted that a subject would fall i
Recovered Smell rather than the Persistent Smell Loss cluster, given both smell loss during the disea
C19+ status. The only predictive feature of any practical significance was “Days Since Onset” of resp
symptoms (AUC=0.62), indicating that those who experienced their first respiratory symptoms less rece
more likely to have Recovered Smell (Figure S6A). Adding additional features to the model provided 
improvement (AUC=0.65 for the optimal model), but overall it was difficult to predict whether a C19+ par
would exhibit Recovered Smell or Persistent Smell Loss based on the data available (Figure S6B). Ta

includes the means and SD by recovery group for C19+ and C19-participants.  
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Figure S6. COVID-19 recovery. Similar to Figure 1, but self-reported smell (A,B), taste (C,D), chemesth
(E,F), and nasal blockage(G,H) during and after respiratory illness in C19+ (darker) versus C19- (lighter)
(A,C,E,G) mean values during and after respiratory illness, respectively. (B,D,F,H) Change (after minus 
as a distribution over subjects. 
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APPENDIX 1 

GCCR core questionnaire 
The core questionnaire of the Global Consortium for Chemosensory Research (GCCR) has been deployed in 
Compusense Cloud in 32 languages. The questionnaire was published previously8 and also appears in the 
NIH Office of Behavioral and Social Sciences Research (OBSSR) research tools for COVID-19.39 Responses 
to the GCCR core questionnaire in 23 languages were collected between April 7 and July 2, 2020 and included 
in the final dataset, on which we conducted the analyses reported in this paper.  
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