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Recent state of stress change in the Walker Lane zone, 

western Basin and Range province, United States 

Olivier Bellier 

Centre National de la Recherche Scientifique, URA D1369, Universit6 de Paris-Sud, Orsay Cedex 

Mary Lou Zoback 
u.s. Geological Survey, Menlo Park, California 

Abstract. The NW to north-trending Walker Lane zone 

(WLZ) is located along the western boundary of the northern 

Basin and Range province with the Sierra Nevada. This zone is 
distinguished from the surrounding Basin and Range province 
on the basis of irregular topography and evidence for both 
normal and strike-slip Holocene faulting. Inversion of slip 
vectors from active faults, historic fault offsets, and 

earthquake focal mechanisms indicate two distinct Quaternary 
stress regimes within the WLZ, both of which are characterized 
by a consistent WNW o3 axis; these are a normal faulting 
regime with a mean o3 axis of N85ø+ 9øW and a mean stress 
ratio (R value) (R=(o2-ol)/(o3-ol)) of 0.63-0.74 and a younger 
strike-slip faulting regime with a similar mean o3 axis (N65 ø - 
70øW) and R values ranging between - 0.1 and 0.2. This 

younger regime is compatible with historic fault offsets and 
earthquake focal mechanisms. Both the extensional and strike- 
slip stress regimes reactivated inherited Mesozoic and 
Cenozoic structures and also produced new faults. The present- 

day strike-slip stress regime has produced strike-slip, normal 
oblique-slip, and normal dip-slip historic faulting. Previous 
workers have explained the complex interaction of active 

strike-slip, oblique, and normal faulting in the WLZ as a 
simple consequence of a single stress state with a consistent 
WNW o3 axis and transitional between strike-slip and normal 
faulting (maximum horizontal stress approximately equal to 
vertical stress, or R -- 0 in both regimes) with minor local 

fluctuations. The slip data reported here support previous 
results from Owens Valley that suggest deformation within 

temporally distinct normal and strike-slip faulting stress 
regimes with a roughly constant WNW trending o3 axis 
(Zoback, 1989). A recent change from a normal faulting to a 

strike-slip faulting stress regime is indicated by the 
crosscutting striae on faults in basalts <300,000 years old and 
is consistent with the dominantly strike-slip earthquake focal 

mechanisms and the youngest striae observed on faults in 

Plio-Quaternary deposits. Geologic control on the timing of 
the change is poor; it is impossible to determine if there has 
been a single recent absolute change or if there is, rather, an 

alternating or cyclical variation in stress magnitudes. Our slip 
data, in particular, the cross-cutting normal and strike-slip 
striae on the same fault plane, are inconsistent with postulated 
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simple strain partitioning of deformation within a single 

regional stress field suggested for the WLZ by Wesnousky and 

Jones [1994]. The location of the WLZ between the deep- 

seated regional extension of the Basin and Range and the 

right-lateral strike-slip regional tectonics of the San Andreas 

fault zone is probably responsible for the complex interaction 

of tectonic regimes in this transition zone. In early to mid- 

Tertiary time the WLZ appears to have had a similarly complex 
deformational history, in this case as a back arc or intra-arc 

region, accommodating at least part of the right-lateral 

component of oblique convergence as well as a component of 
extension. 

Introduction 

The Walker Lane belt or zone (WLZ), as defined by Stewart 

[1988], is a NW to north trending structural zone, - 700 km 

long and 200-300 km wide, located in the westernmost part of 

the Northern Basin and Range province. This zone is 

characterized by rather irregularly-shaped topography, in 

contrast to the linear ranges and basins to the east (Figures 1 

and 2), and has had a complex structural and tectonic evolution 

[Stewart, 1988, 1992; Bellier and Zoback, 1991]. 

Deformation within the zone was initiated during Late Triassic 

or Jurassic time, probably in response to oblique subduction 

which produced a broad right-lateral strike-slip fault zone 

along the magmatic arc and within the back arc region 

[Stewart, 1988, 1992]. Cenozoic deformation styles within 

the WLZ include both strike-slip fault zones and a range of 

extensional features including detachment faults and core 

complexes (in highly extended areas) as well as normal to 

oblique normal faulting associated with both symmetric and 

asymmetric basin-range blocks [e.g., Thompson and Burke, 

1973; Proffett, 1977; Stewart, 1978, 1979, 1983, 1988, 

1992; Zoback et al., 1981; Hardyman, 1984; Wallace, 

1984a,b; Beanland and Clark, 1995]. 

The study area for the current investigation is shown in 

Figure 1 and lies within the WLZ and adjacent regions of the 

western Basin and Range and includes sites along the Sierra 

Nevada frontal fault zone on the west and the north trending 

Nevada Seismic Belt on the east [e.g., Slemmons et al., 1979; 

Stewart, 1988, 1992] (note that this seismic belt is not 
limited to Nevada but extends southward into easternmost 

California and includes Owens Valley). The results reported 

here are a subset of a broader study of stress state in this region 

reported by Bellier and Zoback [ 1991 ] which demonstrated two 

phases of late Tertiary normal faulting regime within the WLZ 
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as follows: an older phase characterized by NE to ENE trending 

extension directions (believed to correspond to a regionally 

defined "pre-basin-range" extensional phase [Zoback et al., 

1981]) and a younger deformational phase corresponding with 

WNW trending "modern" basin-range extension [Zoback and 
Zoback, 1980, 1989; Stock et al., 1985; Zoback, 1989]. This 

.-- 40 ø clockwise change in the o3 stress direction was 

previously recognized elsewhere in the Northern Basin and 

Range province and is believed to have occurred between 10 

and 7 m.y.B.P. in response to superimposed shear related to 

development of the San Andreas transform system [Zoback and 

Thompson, 1978; Eaton et al., 1978; Eaton, 1979; Zoback et 
al., 1981]. Thus the WLZ shows an extensional deformational 

history similar to the rest of the Northern Basin and Range; 
however, within the WLZ the extensional deformation 

apparently preceded a complex early Tertiary deformational 

episode characterized by a strike-slip to oblique-reverse 

tectonism [Bellier and Zoback, 1991]. 

Both geologic and earthquake focal mechanism data indicate 

an abundance of strike-slip faulting in addition to normal 

faulting within the WLZ. Many of these strike-slip faults have 

been active during late Tertiary and into recent time [e.g., 
dePolo et al., 1989, 1991; Wallace, 1979, 1987; Bell, 1981, 

1984a,b; Bell et al., 1984; Doser, 1988, Beanland and Clark, 

1995]. A detailed field investigation of scarps formed in the 

1872 (M 7.6+4) Owens Valley earthquake established the 

dominantly strike-slip character of that particular fault zone as 

well as provided evidence for at least three large Holocene 

strike-slip events along the zone [Beanland and Clark, 1995]. 

The Owens Valley fault zone is subparallel to the adjacent 

dominantly normal Sierran frontal fault zone which, in this 

area, has demonstrated late Quaternary displacement but no 

resolvable Holocene movement [Gillespie, 1982]. Previously, 

Wright [1976] suggested that the complex interaction of 

active strike-slip, oblique, and normal faulting in the WLZ was 

a simple consequence of a single stress state with a consistent 

WNW 03 axis and transitional between strike-slip and normal 

faulting (maximum horizontal stress {JHmax = vertical stress 

Or) with minor local fluctuations. However, Zoback [1989] 

showed that the large difference in rake of slip vectors on 

these two subparallel faults can not be explained by a single 

stress state with {JHmax = (IV, and suggested a recent (post- 

100,000 to pre-10,000 years) major temporal variation in 

stress regime. 

Alternately, Wesnousky and Jones [1994] have suggested 

that the contrast in rake angles of slip on subparallel faults 

both in the Owens Valley region and throughout the Walker 

Lane is an example of "strain partitioning," a deformation 

style analogous to the contemporaneous strike-slip and thrust 

deformation on subparallel faults within the San Andreas fault 

system in California. Extensive study of the state of stress 

adjacent to the San Andreas indicates that this strain 

partitioning is the consequence of deformation within a single 
regional stress field, one in which the maximum horizontal 

stress is oriented roughly 80-85 ø clockwise to the strike of the 

San Andreas fault and in which the major strike-slip fault (the 

San Andreas proper) has a shear strength substantially lower 

than the surrounding faults and crust [Mount and Suppe, 1987; 

Zoback et al., 1987; Oppenheimer et al., 1988]. 

The focus of the current study is fourfold; (1) to determine 

the Quaternary to present-day state of stress acting in the WLZ 

by inversion of both geologically and seismically determined 

slip vectors on minor and major faults within the zone, (2) to 

test whether observed slip vectors can be explained by a 

single, transitional stress state, (3) to analyze implications of 

crosscutting sets of late Cenozoic fault striae with rake angles 

which differ by more than 60 ø for possible temporal variations 

in stress regime, and (4) to examine the hypothesis of strain 

partitioning in light of the temporal faulting relationships 

and slip compatibility within a uniform regional stress field. 

Inversion of Fault Slip Data to Determine Stress 
State 

Kinematics of a fault population can be defined using the 
striations observed on the fault planes. Often, however, more 

than one set of striae are present on a fault plane. Separation 
of distinct families of striations must be done on the basis of 

geological field data using relative chronology of the 

striations (crosscutting relationships) and their relationship 

with regional tectonic events. The initial analysis of the slip 
data presented here was conducted using graphical methods 

[e.g., Vergely et al., 1987] to distinguish, when necessary, 
distinct families of striations at individual sites. The 

methodology of kinematic analysis of fault slip data used here 

to define stress state has been developed over the past 20 years 

by French structural geologists [e.g., Carey, 1979; Carey and 

Brunier, 1974, Angelier, 1979, 1984]. This form of analysis 
has been applied to constrain temporal and spatial changes in 
the stress state in numerous regions such as in the Central 

Andes [e.g., S•brier et al., 1988; Bellier et al., 1991; Mercier 

et al., 1992]. 

If one assumes that the slip vectors indicated by the 
striations represent the direction of the maximum resolved 

shear stress on each fault plane [e.g., Bott, 1959], then the 

observations of fault slip on multiple planes can be inverted 

to determine a mean best fitting stress tensor. To determine 

the stress state responsible for late Cenozoic faulting in the 
WLZ, we performed such a quantitative inversion of families of 

slip data, determined at individual sites, using a method 

Figure 1. Simplified geological map of the Walker Lane zone with locations of fault slip measurement sites 
indicated by solid circles and identified by numbers (or letters for sites located along known historic active 
fault zones). Main Sierra Nevada eastern bounding fault zone is indicated by a thick, solid line, hachured on the 

down-thrown side. Major basins are indicated by stippling and the main range-bounding faults are 
schematically indicated. The Nevada Seismic Belt (which extends into easternmost California) is shown by the 
diagonally lined area, and the date and approximate locations of the major historic earthquakes within this belt 
are shown by the year in rectangles. 



BELLIER AND ZOBACK: STRESS CHANGE IN WALKER LANE ZONE 567 

i 

ß , ,tli:•,•' Pyramid Lake .... ... 

' o•.•tl• - 

,L'ab '•a•loe 

... 

i-'L 
,l, 

'1 

Figure 2. Digitally shaded relief map of the Walker Lane zone and westernmost Basin and Range with several 
localities noted. 

originally proposed by Carey [1979]. This fault slip inversion 

method computes a mean best fitting deviatoric stress tensor 

from a set of striated faults by minimizing the angular 

deviation between a predicted slip vector 'c and the observed 

striation s [Carey, 1979; Carey and Brunier, 1974]. The 

inversion results include the orientation (azimuth and plunge) 

of the principal stress axes c•l > (72 > (73 of a mean deviatoric 
stress tensor as well as a "stress ratio" R=(tj2-{51)/({53-{51) , a 
linear quantity describing relative stress magnitudes. It should 

be noted that R = 1-q•, q• being another commonly used stress 
ratio [e.g., Angelier, 1984; Zoback, 1989]. Discussion of the 

significance of stress ratio variations in interpreting 
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inversions results is presented in a recent paper by Ritz and 

Taboada [ 1993]. 

As defined, the stress ratio R varies between two end- 

member uniaxial stress states (R=0 when (i2=(i1, and R=I when 
(i2=(i3). In a normal faulting stress regime (where vertical 

stress (iv = (i1, and maximum horizontal stress (iHmax = (i2) an 

R = 1 indicates that the two horizontal stresses are equal (radial 

extension) and the predicted deformation is pure normal 

(downdip) slip on dipping faults of all orientations. In a 

strike-slip faulting stress regime ((iv = (i2 and (iHmax = (i1) the 

R = 1 end-member represents a stress state transitional to 

thrust faulting (in which minimum horizontal stress, (ihmin = 
(iv). In contrast, R = 0 ((i2 = (i1) in either a normal faulting or 
strike-slip faulting stress regime indicates that the maximum 

horizontal and vertical stresses are equal ((iHmax = (IV), 
implying a stress state transitional between strike-slip and 
normal faulting. Near-transitional strike-slip or normal 

faulting stress states require only minor fluctuation of stress 

magnitudes to go from one stress regime to the other. The 
predicted deformation for the transitional or near-transitional 

stress states (R<0.15 in either a normal or strike-slip faulting 

stress regime) can range between oblique-normal faulting to 

pure strike-slip faulting, depending on the orientation of the 
fault. 

Results of stress inversions are generally considered 

reliable if 80% of the deviation angles (angle between the 

calculated slipvector 'r and the observed striation s) are less 

than 20 ø and if the computed solution is stable (i.e., the 

inversion tends toward the same solution regardless of the 

initial given parameter values). However, in our study we have 

established specific criteria for distinguishing well- 

constrained inversion solutions (Table 1). The objective, 

quantitative part of the quality assessment is based on the 

value of the mean deviation angle and its standard deviation. 

Equally important, but more subjective, parameters 

influencing the quality include the number of fault planes 

sampled and the distribution of their attitudes. All fault slip 

inversion schemes are based on the assumption that the 

measured slip direction on each plane represents the direction 

of the maximum resolved shear stress on that plane. In this 

case there are four unknowns (three defining the orientation of 

the principal axes and one defining the stress ratio R), and any 

inversion thus requires at least four independent fault sets. 

Ideal data sets contain faults dipping in both directions with 

distinct strike directions, not just a continuum of strikes 

around a single mean direction. 

We have adopted an alternate approach to deal with poorly 

distributed fault sets, utilizing a "fixed" inversion, i.e., one in 

which the principal stress axes are fixed to lie in horizontal 

and vertical planes (considered generally to be the case in the 

Earth's crust [see Zoback and Zoback, 1980] and consistent 

with results from most of the well-distributed data sets in this 

paper.). In this fixed inversion there are only two unknowns 
(the orientation of one of the horizontal stresses and the stress 

ratio), thus requiring only two independent fault sets. As 
discussed below, the inferred horizontal stress orientations 

from the fixed inversion are typically within 5-10 ø of the 
stress axes obtained from standard inversions of data sets 

which lack the fault distributions to define four independent 
fault sets. 

Table 1. Specific Criteria for Distinguishing Well- 
Constrained Inversion Solutions 

Criteria Value 

N, number of faults 

M.D., mean deviation angle 

[Z(x,s)l/N 

where ('r,s) is angle between 
the predicted ('r)and 

observed s slip vectors 
S.D., standard deviation 

[(Z('c,s)2)/NI 1/2 
Plunge of subvertical stress 

axes 

Plunge of minimum 
"horizontal" stress 

Plunge of maximum 
"horizontal" stress 

N>11 

M.D. < 13 ø 

M.D. < S.D. < 3/2 M.D. 

70-90 ø 

< 20 ø 

< 20 ø 

Results 

Sites of fault slip measurements in this study are shown in 

Figure 1, and the locations of each site and the age of the 

faulted formations in which striae are measured are given in 

Table 2. Detailed locations for a number of important fault slip 

localities are given in the appendix. As mentioned previously, 
the focus of this paper is the Quaternary to present-day state of 

stress in the WLZ. Unfortunately, it is generally difficult to 

date the age of fault striations any more precisely than being 
younger than the age of the rocks cut by the faults. In this 

study we have included results of measurements made in 

Mesozoic to Plio-Quaternary age rocks. The inversion results 

from the youngest striae affecting the Mesozoic and early 
Tertiary rocks generally agree with the results from the 

relatively few striations on faults affecting the Plio- 

Quaternary deposits. 

As shown in Figure 3, normal slip striations were found to 

be crosscut by right-lateral shallow rake striations along the 

same major fault planes or adjacent faults at two localities 

along the southern segment of the Nevada Seismic Belt, along 
the Owens Valley and Rainbow Mountain fault zones 

(localities owens2 and rm in Figure 1). In Owens Valley these 
two contrasting sets of striae are observed on a fault zone 

parallel to and directly west (<1 km) of the main Owens Valley 
fault zone (Figure 4). Both faults cut late Pleistocene basalt 

from Crater Mountain dated at 288 + 70 ka [Turrin and 

Gillespie, 1986]. The younger, shallow rake deformation on 

both the Owens Valley and Rainbow Mountain fault zones is 

in agreement with the dominantly strike-slip character of 

recent earthquakes along this seismic belt [e.g., Doser, 1988; 

Beanland and Clark, 1995; dePolo et al., 1987; 1991]. These 

data suggest a recent change in stress regime (or equivalently, 

temporal fluctuations in relative stress magnitudes); however, 

as discussed below, the orientation of the minimum horizontal 

stress axes (the (I3 axis) has apparently remained 

approximately fixed. The youngest set of deviatoric stress 

tensors determined geologically from fault slip measurements 

are shown to be remarkably consistent with the present-day 

strike-slip stress regime deduced from inversion of historic 

earthquake slips. 

Because of the evidence for temporal changes in stress 

regime, we have divided the data into dominantly normal and 
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Table 2. Location of Fault Striae Measurement Sites 

Site Latitude, øN Longitude, øW A[[e a Reference 
1 40.180 120.210 Q+Ne? 1 
1 c 40.156 120.283 Ne 1 

2 40.110 120.080 Mz 1 

2 c 40.095 120.067 Mz 1 

3 40.080 120.190 Mz-Ne 1 

3 c 40.098 120.219 Mz 1 

4 40.250 119.880 1M-P 2 

5 40.288 119.854 1M-P 2 

6 40.355 119.836 1M-P 2 

7 40.417 119.860 1M-P 2 

8 40.406 119.850 Q 2 
9 40.035 119.485 mM-eP 2,3,4,5 

10 40.106 119.503 mM-eP 2,3,4,5 

10 c 40.170 119.510 mM-eP 2,3,4,5 

11 40.027 119.301 Q 6 
11 c 40.050 119.290 Q+IMz 6 
11 c 40.065 119.285 1Mz 6 

12 39.680 119.380 M-eP 2 

12 c 39.650 119.426 M-eP 2 

13 39.800 119.377 eM-mM 2,3 

14 39.824 118.220 Ol-eM 2,7,8 

15 39.402 119.850 mM 9,10,11 

16 39.240 119.850 Mz 6 

17 39.115 119.840 Mz 6,12 

18 39.060 119.845 1Mz 6,12 

19 38.997 119.844 1Mz 6,12,13 

20 39.980 119.835 1Mz 6,12,13 

21 38.555 119.504 1Mz 13 

22 38.680 119.550 e+mMz 13 

23 38.735 119.355 eM+mM 13,14 

24 38.780 119.400 1Mz 14,15 

25 38.812 119.256 1P 13,14 

26 38.812 119.244 1P 13,14 

27 38.814 119.225 mM-1M 13,16 

27 c 38.814 119.216 mM-1M 13,16 

27 c 38.840 119.194 mM-1M 13,16 

28 38.845 119.185 M 13,16 

29 38.875 119.170 1Mz 13 

30 38.895 118.850 1Mz 13 

31 38.810 118.765 1Mz 13 

to38.830 118.770 1Mz+Q 13 
32 38.787 118.756 1Mz 13 

33 38.710 118.768 1Mz 13 

34 38.670 118.770 1Mz 13 

35 38.350 118.035 1Mz 13 

36 38.372 118.047 eMz 13 

37 37.900 118.340 Mz 6,17 

38 37.800 118.382 Mz 17 

chalf 37.540 118.315 Pz-Mz 17 

39 36.590 118.190 Mz 18 

40 36.600 118.202 Mz 18 

Pleasant Valley Fault 

plvl 40.381 117.580 1Pz 6,16 
ply2 40.360 117.601 1Pz 6,19 
ply3 40.320 117.620 eMz 6,19 
ply4 40.300 117.630 eMz 6,19 
ply5 40.290 117.630 eMz 6,19 

Dixie Valley Fault 
dvl 39.555 118.212 10-eM 6,7,8 

dv2 39.620 118.175 10-eM 6,7,8 

dv3 39.790 118.105 M-PI? 6,7,8 

Fairview Peak Fault 

fairy 39.260 118.135 mM-1M 6 

fairy 39.210 118.150 mM-1M 6 

Table 2. (continued) 

Site Latitude, øN Longitude, øW Age a Reference 
Rainbow Mountain Fault 

rm 39.440 118.526 mM-1M 6 

rm c 39.420 118.535 mM-1M 6 

Owens Valley Fault 
owensl 37.145 118.290 P1 18,20 

owensl 37.108 118.280 P1 18,20 

Olinghouse Fault 
oling 39.595 119.500 mP-1P 2 

olin• c 39.589 119.522 mP-1P 2 

a Ages of faulted formations are as follows: Q, 

undifferentiated Quaternary; P1, Pleistocene; Ne, 

undifferentiated Neogene; eP, early Pliocene; mP, middle 

Pliocene; 1P, lower Pliocene; P, undifferentiated Pliocene; eM, 

early Miocene; mM, middle Miocene; 1M, lower Miocene; M, 

undifferentiated Miocene; 10, late Oligocene; O1, 

undifferentiated Oligocene; eMz, Triassic; mMz, Jurassic; 

eMz, Cretaceous; Mz, undifferentiated Mesozoic; and 1Pz, late 

Paleozoic. 

b References used to date faulted formations are as follows: 

1, Lydon et al. [1960]; 2, Bonham [1969]; 3, Everden and 
James [1964]; 4, Axelrod [1966]; 5, Silberman and McKee 

[1974]; 6, Stewart and Carlson [1976a, 1978]; 7, D. A. John 

and E. H. McKee (written communications, 1990); 8, Page 

[1965]; 9, Bonham and Rogers [1983]; 10, Vikre and McKee 

[1987]; 11, Whitebread [1976]; 12, Pease [1980]; 13, Stewart 

et al. [1982]; 14, Stewart and Dohrenwend [1984]; 15, Noble 

[1962]; 16, Proffett and Proffett [1976] and Proffett [1977]; 
17, Strand [1967]; 18, Matthews and Burnett [1965]; 19, 

Stewart and Carlson [1976b]; and 20, Beanland and Clark 

[ 1995] and Lubetkin and Clark [ 1988]. 

c Multiple localities along the same fault zone. Data from 
all sites with same number or name are analyzed together. 

strike-slip faulting stress regime subsets. This distinction 

allows for determination of stress tensors individually, to test 

whether the observed slip patterns are compatible with a 

single stress state (e.g. a stress state transitional between 

normal and strike-slip faulting) or if they require distinct 

stress states. Results of the stress inversion on both geologic 

and earthquake slip data are tabulated in Tables 3 and 4, 

summary stereoplots of individual inversion axes are shown in 

Figure 5, and stereoplots of the actual fault slip data are given 

in Figures 6 and 11. The computed (53 orientations are shown 

in map view on Figures 7 and 12 and are discussed below by 
stress regime and locality. 

It is significant to note that we have strictly applied the 

quality criteria in Table 1 to our data. Only 10 of the 31 normal 

fault inversions given in Table 3 are considered well- 

constrained, reliable results. Similarly, none of the results on 

small individual strike-slip data sets (Table 4) was judged to be 

well constrained; only the results on the combined data sets 

met the quality criteria in Table 1. We have chosen to show 

inversion results for all data sets collected and to highlight the 

well-constrained results in Figures 5-6 and 11. 
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Owens Valley Rainbow Mountain 
Ng mg 

' x • '• chronology 

Figure 3. Lower hemisphere stereographic projection of 

faults with crosscutting families of striae measured along the 

Owens Valley and Rainbow Mountain fault zones. Arrows on 

fault planes point in the horizontal slip azimuth direction. The 

older slip vector on each fault plane is indicated by .1 suffix; 

the younger is given by .2 suffix. The slip vectors for historic 

earthquakes along each fault zone (data given in Table 5) are 

also plotted; 1872 is Owens Valley earthquake; June 6, 1954, 

and August 24, 1954, correspond to Rainbow Mountain 

earthquakes. Also given on each stereonet are the results of 

stress inversions on young fault slip data measured along the 

Owens Valley and the Rainbow Mountain faults (Table 4); c•l is 

given by a star; c•2, a diamond; and c•3 is shown by a circled 

triangle. 

Evidence for Basin-Range Normal Faulting Stress 
Regime 

Evidence for a "basin-range" extensional stage is found 

throughout the northern Basin and Range province. This 

deformational stage is characterized by a generally WNW 
trending extension direction [Zoback et al., 1981; Zoback, 

1989]. We found this deformational stage recorded throughout 
the WLZ by slip on both minor and major faults which affect 

Plio-Quaternary fluvial, lacustrine, and colluvial deposits, and 
Quaternary volcanic flows, as well as Cenozoic and Mesozoic 

bedrock. The major faults bordering the ranges, including the 

normal fault zone forming the eastern boundary of the Sierra 

Nevada, also expose slickensides with striations, all 

indicating a roughly WNW trending extension. 

Results of inversion of all fault slip data sets belonging to 

this extensional deformational stage are given in Table 3. 

Lower hemisphere stereoplots of all slip data and inversion 

results, including histograms of deviation angles (angle 

between the observed slip direction and that predicted from the 

maximum shear direction), are plotted in Figure 6; the well- 

constrained results are indicated by the solid c• 3 arrows. 

Corresponding horizontal stress axes (with the well- 

constrained results also highlighted) are plotted on the 

stereonet labeled NF/GEO in Figure 5, together with mean 

stress axes and their 95% confidence ellipses (determined 

independently using Fisher statistics, as modified by Watson 

[1960], on each subset of axes). Individual site c• 3 directions 

are shown on the geologic map in Figure 7. The data and 

results of the stress inversion are described below by 

geographic and tectonic setting, generally in the order they 

appear in Tables 2 and 3. 

Sierra Nevada frontal fault zone. The NNW trending 

east facing Sierra Nevada frontal fault zone consists of steep, 

fresh-looking scarps which mark the trace of the fault. A series 

of large, fresh triangular facets in the footwall block provide 

slickensided bedrock fault exposures along portions of the 

fault zone. Examples of these striated bedrock fault exposures 

can be seen along the Genoa fault in Figure 8 (sites 17 to 20, 

Figures 1 and 7) and along the Independence fault (from 

northwest of site owens l to south of site 40, Figures 1 and 7) 

which forms the west side of Owens Valley. These border fault 

traces also cut late Quaternary fluvial and colluvial deposits, 

producing surface fault scarps which are sometimes arranged in 

an en echelon pattern such as along the Jack Valley zone 
(south of Carson, near and between sites 17 and 18 in Figures 

1 and 7). The profound relative vertical relief across the Sierra 

frontal fault zone and the large vertical offset of late 

Pleistocene glacial moraines with no detectable lateral offset 

[Clark et al., 1984; M. M. Clark, oral communication, 1988] 

attest to the dominantly dip slip character of this fault zone 

and imply a Pleistocene normal faulting stress regime. 

Striations were measured on the major fault planes of the 

Sierran frontal fault zone and on secondary, associated 

fractures within the fault zone. The striations were typically 

located at the base of the major fault scarps, primarily within 

Late Cretaceous granitic bedrock. The slightly weathered 

slickensides showed well-preserved grooves and frictional 

striations. As indicated in Table 3, all inversions yielded a 

normal faulting stress regime with c•3 axes trending between 

WNW and about E-W. Only three of the datasets (sites 17, 21, 

and 39) yielded well-constrained inversion results (indicated 

by the crosses in Table 3); the stress axes for these were 

similar to the overall trends, varying between WNW (N57øW, 

site 17) and approximately E-W (N87øW to N98øW, sites 21 

and 39 respectively). Stress ratio values R for the well- 

constrained inversions range between 0.75 and 0.82, 

indicating a stress state in which the two horizontal stresses 

are close in magnitude and much less than the vertical stress 

c•l. These high R values are a direct result of the fact that most 

deformation measured represents nearly pure dip-slip 

movement on fault planes with a rather wide range in strike. 

Only the fault kinematics of the northernmost Sierran 

frontal fault (Honey Lake region, inversion from the combined 

sites 1, 2, and 3) are very discordant and indicate a NE trending 

c•3 axis. Note on Figure 1, however, that the major Sierran 

bounding fault in this area strikes NW, thus the NE trending c• 3 

axis may be due to extension in a normal faulting stress 

regime with R -- 1 (two horizontal stresses approximately 

equal in magnitude), in which case the c•3 direction determined 

by the inversion would be strongly influenced by the overall 

orientation of the faults sampled. However, the NE trending c• 3 

axis indicated by the inversion of the combined data from sites 

1, 2, and 3 (Figure 7 and site l&2&3 in Table 3) may also 

represent a real rotation of c•3 orientation in the northernmost 

Sierra Nevada/southern Cascade region. Volcanic vent 

alignments farther to the NW in the Lassen-Susanville region 

of northeastern California indicate (many <1.0 m.y. old) 

indicate a NE to ENE c• 3 direction in that region [Luedke and 
Smith, 1981]. 

Range-bounding fault zones within the Basin 

and Range province. Numerous Basin and Range-type 

mountain blocks within the WLZ have recent scarps at their 

base, for example, the Dry Valley border fault shown in Figure 
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Figure 5. Late Neogene to present-day regional stress states in the Walker Lane zone. NF/GEO and SS/GEO 

are lower hemisphere summary stereoplots showing local "horizontal" stress axes determined by inversions 

for each individual site. NF/GEO shows results for the normal faulting inversions given in Table 3, while 

SS/GEO gives the more limited results for the strike-slip faulting inversions given in Table 4. Stars, squares, 

and triangles refer to the c•l, c•2, and c• 3 axis, respectively. For NF/GEO the results from well-constrained 
inversions (pluses in Table 3) are shown by solid symbols, while open symbols refer to results from poorly 

constrained inversions (minuses in Table 3). For SS/GEO the solid symbols refer to results of the fixed 

inversions (i.e., inversions in which the principal stresses are fixed to lie in horizontal and vertical planes; 

asterisks in Table 4), and open symbols indicate standard, poorly constrained inversions (minuses in Table 4). 

The encircled star, square, and triangle indicate the mean horizontal c•l, c•2, and c•3 axes, respectively, 
determined by the Fisher statistics method (modified by Watson [1960]), to each of the local horizontal stress 

axes. Dotted areas correspond to 95% confidence cones for the mean directions. Histograms at bottom show 

distribution of computed mean stress ratio R values for each individual inversion. Numbers inside the 

histograms refer to site numbers given in Table 2 and which correspond to labels outside of the individual 

stereoplots on Figures 6 and 11. The lettered sites are dv, Dixie Valley; pl, Pleasant Valley; f, Fairview Peak; r, 

Rainbow Mountain, f+r, combined Fairview Peak and Rainbow Mountain; ol, Olinghouse; ow, Owens 2; m, 

SS/g-minor; M, SS/g-major; fm, SS/fm. Dotted squares in histograms show R values for the well-constrained 

inversions (pluses in Tables 3 and 4), while on the SS/GEO histogram the minus superscripts refer to R values 

from poorly constrained standard inversions and the asterisk superscripts refer to R values obtained from the 
fixed inversions. 

Figure 4. (a) Close-up photograph of a fault plane within the Owens Valley fault zone cutting a late 
Pleistocene basalt flow (age 288 + 70 ka, [Turrin and Gillespie 1986]) and showing two crosscutting striae 
families (owens 2 site in Figures 1 and 4c). The older striae (2.1) indicate normal slip and the younger (2.2) 
show right-lateral slip, these data are plotted on Figure 3. (b) A general view of the fault plane containing the 
crosscutting striae, large square shows area of the close-up photograph in Figure 4a. (c) Location of the fault 
striae measurement localities in Owens Valley on (left) a U.S. Geological Survey aerial photograph and (right) 

on a geological map after Beanland and Clark [1995]. Rectangle on left inset indicates the owens 2 fault zone 
which contains the fault plane depicted in Figures 4a and 4b. Legend for geological map on right is: (1) pre- 
Cenozoic bedrock, (2) Pleistocene basalt (<300,000 years in age), (3) Pleistocene lake sediments, (4) 

Pleistocene fanglomerates, (5) late Pleistocene to early Holocene fan deposits, and (6) 1872 fault rupture trace. 
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9 (sites 4 and 5 in Figures 1 and 7). In most cases this faulting 

occurs ,,•,,ly at or near the -" .... :-'"--•' .... '- range frolit dl I U V I ill/D•11 UUK 

boundary, and these faults bound asymmetric, graben-in- 

graben structural basins [e.g., Slemmons, 1957; Thompson 

and Burke, 1973; Anderson et al., 1983; Wallace, 1984a]. 

Fault slip data were collected along these major normal fault 

planes and from secondary fractures within the fault zone. The 

studied striations are mechanical striations in volcanic, 

granitic, and sedimentary rocks. 

Results of the inversions of all these range-bounding fault 

slip data are given in Table 3, and the actual fault data are 

shown in Figure 6. The inversion results indicate a normal 

faulting stress regime with •3 axes trending between WNW to 
about E-W (between N61øW and N95øW, with one site, 32, 

somewhat discordant with a •3 axis trending N109øW). The •3 
axes for the well-constrained inversions covered the entire 

range and included the somewhat discordant site 32. The R 

values for four of the five well-constrained, high-quality 

inversions were very consistent, varying between 0.68 and 
0.77, similar to those determined from the well-constrained 

inversions along the Sierran frontal fault zone. One well- 

constrained inversion (site 24), however, yielded a much 

smaller R value, 0.24. 

Minor faulting in Plio-Quaternary deposits. 

Faults with minor displacements (1-2 m) cutting Plio- 

Quaternary fluvio-lacustrine and volcano-sedimentary deposits 

that infill the present-day basin-range grabens were observed 

at several sites within the WLZ (sites 1, 11, 25, 26, 28, and 31 

in Figure 1). Unfortunately, striations are rarely preserved in 

such poorly consolidated deposits. The best example of these 

faults, exposed by a road cut in Smith Valley, is shown in 

Figure 10 (sites 25 and 26 in Figure 1). Here the faulting cuts 

Pliocene sedimentary deposits of the Wilson Canyon 

formation, a poorly consolidated silt, sand, and gravel unit 

Table 3. Results of Stress Tensor Inversion for Slip Data Representing Basin-Range Normal Faulting Stress 

Regime 
Azimuth/Plunge c, deg 

Site a N b (51 (52 (53 M.D. d S.D. e R f Age g Qual h 
Sierra Nevada Frontal Fault Zone 

1 &2&3 12 164/51 313/34 054/15 8.9 11.8 0.22 Q+Ne+M - 

15 10 227/86 019/03 109/02 14.0 18.1 0.71 mM - 

16 7 233/75 012/11 104/09 1.5 1.7 0.76 Mz - 

17 14 335/83 213/03 123/06 11.1 13.3 0.82 Mz + 

1 8 7 174/53 005/37 271/05 11.5 13.7 0.92 1Mz - 

19&20 13 114/86 358/02 268/03 14.2 19.4 0.95 1Mz - 

21 20 247/84 357/02 087/06 9.7 11.7 0.75 1Mz + 

39 14 048/72 169/10 262/15 7.3 9.8 0.81 Mz + 

40 8 324/63 188/20 092/18 12.1 14.1 0.40 Mz - 

Range-Bounding Fault Zones Within the Basin and Range Province 

Faulting in Cenozoic Basin Fill Within the Basin and Range Province 

1 -Q 2 ENE-WSW P-Q 

1 1 7 069/74 171/04 262/16 13.2 16.2 0.11 Q+IMz - 

25 16 206/83 018/07 108/01 9.6 11.1 0.89 1P + 

26 8 251/89 008/00 098/01 4.9 7.9 0.83 1P - 

• i'-•6 24 184/85 009/05 279/00 7 9 10 7 0 86 1P + 

28 12 161/79 353/11 263/02 11.3 18.9 0.81 M - 

3 1 14 296/84 181/03 091/06 13.5 15.9 0.34 1Mz+Q - 

Nevada Seismic Belt Faults 

plv 40 195/84 009/06 099/01 10.2 12.3 0.84 Pz-Mz + 
dv 31 219/64 026/25 119/05 16.0 18.4 0.41 10+M - 

owensl&2 8 200/85 358/05 088/02 9.7 13.0 0.99 P1 - 

owensl&2 8 131/90 356/00 266/00 9.6 13.8 0.82 P1 * 

4&5 24 031/85 207/05 297/0.3 12.4 16.3 0.75 1M-P + 

6&7 13 302/81 200/02 110/08 7.3 9.8 0.75 1M-P + 

10 15 042/80 209/10 299/02 8.3 9.9 0.68 mM-eP + 

13 12 074/73 179/05 270/17 14.3 19.1 0.79 eM-mM - 

14 9 318/76 180/10 089/09 18.2 33.4 0.75 Ol-eM - 

24 18 204/73 356/15 088/08 5.6 7.3 0.24 1MZ + 

29 19 235/74 017/13 110/10 14.7 19.0 0.26 1Mz - 

32 23 139/71 343/18 251/07 12.3 16.7 0.77 1Mz + 

33&34 19 165/59 359/30 265/06 11.6 14.1 0.75 1Mz - 

35&36 21 115/68 005/08 272/20 10.5 14.3 0.75 1Mz - 

37&38 6 085/72 194/06 286/17 3.2 3.9 0.34 Pz-Mz - 
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Table 3. (continued) 

Azimuth/Plunge c, deg 
Site a N b 15! 62 i53 M.D. d S.D. e 'i• f Age g Qual h 
fairv 4 vertical ENE-WSW mM+IM 

rm 1 1 216/69 342/13 076/16 7.4 12.3 0.55 mM+iM - 

rm 1 1 153/90 355/00 265/00 10.2 14.6 0.66 mM+IM * 

fair&rm 15 154/90 344/00 254/00 15.0 17.2 0.31 mM+IM * 

All Data 

NF/GEO i 5+8/04 275+9/0.2 0.63 

0.74Q + 

a Ampersands indicate an inversion solution computed from data from two or more different sites. For example, 
l&2&3 corresponds to an inversion computed from data set 1, 2, and 3. Site 1-Q is the Pliocene-Qualernary age 
shriae only at site 1. Sites plv and dv represent inversions of all normal striae collected at all the sites along the 
Pleasant Valley and Dixie Valley fault zones (plvl to plv5 and dvl to dv3, respectively). Other named sites 
include: owens l&2; Owens Valley Fault; fairv, Fairview Peak fault; rm, Rainbow Mountain fault. 

b N is number of striated fault planes used to compute the solutions. 
c Deviatoric principal stress axes 15! > 152 > 153, specified by azimuths measured clockwise from north and 

plunges measured from horizontal. 

d M.D. is the mean deviation angle (defined in Table 1). 
e S.D. is the standard deviation of deviation angle (defined in Table 1). 
f R equals (152-151)/(153-151), the "stress ratio" of the deviatioric stress tensor. 
g Ages are same as in Table 2. 

h Qual refers to the quality of the stress inversion; crosses indicate a well-constrained inversion as defined in 
Table 1, minuses indicate inversion results which did not meet the quality criteria in Table 1, and asterisks indicate 
a fixed inversion (stress axes constrained to lie in horizontal and vertical planes). 

i NF/GEO is the mean an average regional deviatoric axes determined using Fisher statistics independently on 
the two subhorizontal stress axes from each of the individual inversions. The R value is the arithmetic mean of all 

sites, second R value (followed by Q) is the mean for only well constrained sites (crosses in Qual column). 

[Stewart and Dohrenwend, 1984]. The majority of the fault 
planes strike NNE to NNW and are imprinted by very thin 
normal (dip slip) frictional striations on silt-clayish 
slickensides which agree roughly with a west to WNW 

trending extension (see stereoplots in Figure 10). As given in 
Table 3, inversion of these striations from two sites yield 
consistent results, indicating a normal faulting stress regime 
with 153 axes which trend N82øW (site 26) and N72øW (site 25) 
and R values which vary between 0.83 and 0.89 (although 
only results for site 26 with the small mean deviation angle 
and standard deviation are considered well constrained). 
Results of inversion of the combined data from sites 25 and 26 

(25&26 in Figure 10 and Table 3) yield a well-constrained 
solution which confirms the local individual site inversions 

and indicates a normal faulting stress regime with a N81øW 
trending 153 axis and an R value of 0.86. 

Inversions of fault slip data from the other sites in Plio- 

Quaternary deposits which showed normal faulting slip 
vectors generally agree with an approximately E-W trending 
153 axis (sites 11, 28, and 31 in Figure 6 and Table 3) and 
yielded R values ranging between 0.11 and 0.81. However, all 

these inversions are poorly constrained because of the 

restricted distribution of fault trends (all faults were dipping in 
approximately the same direction). Only two striations were 
measured at site 1-Q so these data were not inverted. 

Range-bounding fault zones within the Nevada 

Seismic Belt. Many of the range-bounding fault zones 
within the WLZ and adjacent parts of the western Basin and 

Range province have been reactivated in historic earthquakes, 
defining the Nevada Seismic Belt [see Slemmons, 1957; 

Wallace, 1984b; Bell and Katzer, 1990; dePolo et al., 1991]. 
Many of these Nevada Seismic Belt fault zones were sampled 
in this study (see Figure 1 for localities): Pleasant Valley 
(sites plv l to plv5), Dixie Valley (sites dvl to dv3), Fairview 
Peak (site fairv), Rainbow Mountain (site rm), and Owens 
Valley (site owens l&2). These fault zones typically have 
recent scarps at their base which occur at, or near, the alluvial 

and colluvial/bedrock range front boundary. The Dixie Valley 
and the Rainbow Mountain fault zones also have associated 

minor surface ruptures which propagated outward into basins. 
Only the Owens Valley fault zone is located completely within 
a basin; this basin is bounded on the west by a part of the 
Sierra Nevada frontal fault zone, the Independence fault zone. 
The slip data come from mechanical striations collected along 
the major normal fault planes and from secondary fractures 
within the fault zone. The studied striae affect late Miocene to 

early Pleistocene volcanism and Paleozoic to Cenozoic 

granitic and sedimentary rocks. 

The actual fault data are shown in stereoplots in Figure 6. 
The inversion results are given in Table 3 and indicate a 

normal faulting stress regime with an approximately WNW to 
west trending least principal stress. Only the Pleasant Valley 
fault zone data set (plv) yielded well-constrained results from 

the standard inversion, a normal faulting stress regime with a 
N81 øW trending 153 axes, and an R value of 0.84. This R value 
is very consistent with the other R values determined from the 

well-constrained inversions within the WLZ, including along 
both the Sierran frontal and range-bounding fault zones. Note 
that for several of the data sets (owens l&2, rm, and 
fairvw&rm), both fixed and standard inversions were 
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Figure 6. Lower hemisphere stereoplots of normal faulting slip data from the Walker Lane region, together 
with inversion results presented in Table 3. Labels outside and to top right of stereoplots refer to site names 

and numbers shown in Figure 1 and described in Table 2. Individual fault planes and measured slip vectors at 

each site are plotted, arrows on fault planes point in the directions of the horizontal azimuth of the slip vector. 

Solid lines on the individual fault planes give the deviation angle between measured s and predicted • slip 
vectors on each fault plane. Stress axes obtained from the inversions are given by diamonds ((•]), triangles 

(•2), and squares (•3). Large arrows outside stereoplots give azimuth of least horizontal stress (•3). Results 
from well-constrained inversions (pluses in Table 3) are shown by solid stress axes symbols and solid outer 

arrows. Results of either fixed or poorly constrained standard inversions are represented by open symbols and 

arrows. Histograms below each stereplot show distribution of deviation angles. R values for the well- 

constrained inversions are given outside and to the bottom right of the stereoplots. 

performed (with the results of the fixed inversion indicated by 
the asterisk in Table 3); in all three cases the distribution of 

the sampled faults did not satisfy the four independent fault set 

criteria. It is interesting to note that the fixed solutions all 

have o3 azimuths within 10 ø of the standard (but not well- 
constrained) inversion results. In contrast, a large and well- 

distributed data set was collected along the Dixie Valley fault 

zone (dv); however, the inversion results are rather 

inhomogeneous with a large mean deviation angle suggesting 
possible superimposed slip events that were, unfortunately, 
not recognized by field observations. 

Summary of geologic fault slip data on Basin 

and Range extensional deformation stage. Striae 

corresponding to the "basin and range" extensional 
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Figure 6. (continued) 
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deformation stage found in the four regions described above 

consistently indicate a normal faulting stress regime with an 
(53 direction between WNW and E-W, as shown in Figures 5, 6, 

and 7. A Fisher statistics analysis done on the two sets of 
individual site subhorizontal stress axes for the entire 

geologic fault slip data set yields a mean (53 (or (shmin) axis 
trending N95ø+9øW with a plunge of 0.2 ø and a mean (52 (or 
(sHmax) axis trending N5ø+8øE with a plunge of 4 ø (see solution 

NF/GEO in Figure 5 and Table 3). The 8-10 ø uncertainties 

quoted in mean stress azimuths correspond to the radius of the 

95% cone of confidence in Fisher statistics. Stress ratios (R 

values) obtained for this normal faulting deformation stage are 
generally >0.50 (Table 3). The arithmetic mean value for all 

inversions listed in Table 3 is R = 0.63, which is similar to 

the mean R value, R = 0.74, determined for only the 11 well- 

constrained inversions given in Table 3. Both R values are 

clearly distinct from a "transitional to strike-slip" stress state 
(characterized by R -- 0; i.e., (52--(51) and from a "radial 

extension" stress state (characterized by R = 1; i.e., (52--(53). 
However, a few sites, including two with high quality 
inversions, yielded very large R values (R > 0.85), implying a 
local stress state close to the uniform radial extension. Not 

surprisingly, as shown in Figure 5, the sites with these large R 
values (notably from inversions 18, 19 & 20, 25, and 25 & 

26) are characterized by slip data with very steep rakes on 
normal faults with a wide range in strike. 

Evidence for Recent Strike-Slip Faulting Stress 
Regime 

Both historic earthquake slip and the youngest geologic 
striae data measured provide evidence for a contemporary, 
dominantly strike-slip stress regime in the WLZ. Along the 
Nevada Seismic Belt in easternmost California and 

westernmost Nevada, numerous historic and Holocene 

earthquake scarps along the major faults are associated with en 
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echelon ruptures and discontinuous ruptures, strongly 

suggestive of a strike-slip component in the last event [e.g., 
dePolo et al., 1989, 1991]. Major (at the fault scarp offset 

scale) and minor (at the slickenside scale) deformation along 

the Nevada Seismic Belt shows evidence of a recent change in 

stress state. This change is clearly demonstrated by families of 

crosscutting striae which show differences in rake angle of 65 

+ 15 ø (Figure 3) measured along both the Owens Valley and the 

Rainbow Mountain fault zones. Along both fault zones the 

older striae set (marked by a .1 at the end of the fault plane 

number in Figure 3) records a normal faulting slip episode 

overprinted by younger (marked by a .2 at the end of the fault 

plane number in Figure 3), right-lateral strike-slip faulting. As 

shown in Figure 4, this youngest slip is recorded geologically 

in parallel, rough grooves and thin frictional strike-slip 

striations along small faults in basalts dated at 288 + 70 ka 

[Turrin and Gillespie, 1986] which are parallel to the main 

Owens Valley fault zone and located 600-700 m to the west 

(Figure 4c). (See appendix for more a detailed description of 

this site locality.) 

The young strike-slip striae along the Owens Valley fault 

zone indicate a slip direction which is in excellent agreement 

with the historic (1872) seismic slip on the main fault zone, 

as determined by detailed surface fault offset studies [Beanland 

and Clark, 1987, 1995] (Figure 3). Similarly, the youngest 

striae along the Rainbow Mountain fault zone are also in good 

agreement with slip determined from focal mechanism studies 

of the 1954 earthquakes [Doser, 1986, 1988]. Thus slip 

vectors recorded both by the youngest near-surface striations 

and historic earthquakes appeared to have occurred in response 

to the same or very similar stress state. The clear 

chronological relationship between an older normal faulting 

event and a younger strike-slip faulting event recorded by 

crosscutting striae in young basalts adjacent to the Owens 
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Valley fault zone is consistent with the contrast between 

large-scale late Pleistocene pure dip-slip displacement and 

dominantly strike-slip 1872 earthquake offset on subparallel 

major faults in the Owens Valley region time reported by 

Zoback and Beanland [ 1986] and Zoback [ 1989]. 

Geologic evidence for recent strike-slip 

faulting stress regime. Striae indicating very young 

strike-slip deformation were measured at five sites, all along 

fault zones with historic offsets; the Olinghouse, Fairview 

Peak, Rainbow Mountain, Pleasant Valley, and Owens Valley 

fault zones (Figure 1). The slip data were measured both on 

major fault planes and within adjacent secondary faulting in 

late Neogene and Quaternary volcanic rocks as well as in 

Paleozoic and Cenozoic bedrock; the measured slip data are 

shown on lower hemisphere stereoplots in Figure 11. The 
results of the stress inversions are tabulated in Table 4. 

Unfortunately, none of the inversions for the individual young 

strike-slip sites can be considered well constrained because all 

of the data sets contained only a small number of striae on 

fault planes with limited distributions, generally only 

defining three independent sets of fault planes. For this 

reason, all of the data were also inverted using a fixed 
inversion in which the stress axes are restricted to lie in 

horizontal and vertical planes; the results of the fixed 

inversions are indicated by asterisks in Table 4. Both the 
standard and the fixed inversions indicate a NW to west 

trending Ohmin direction (03 axes varying between N41øW and 

N82øW). Interestingly, the orientation of the horizontal stress 

axes were generally very similar between the standard and the 

fixed inversions (typically within 5-10ø). Individual site 03 

and o• directions are shown in Figure 12. 

The subhorizontal stress axes (03 and o•) determined by 
both the standard and fixed inversions of the five individual 

(plv, fairv, rm, oling and owens2 in Table 4) and one 

combined (fairv&rm in Table 4) data sets are shown on the 

SS/GEO lower hemisphere stereoplot in Figure 5. A mean 

regional stress state was determined from the horizontal stress 

axes determined by both standard and fixed inversions using 

the Fisher statistic method (modified by [Watson, 1960]). The 

Fisherian mean o3 axis for the results from these 12 
inversions (SS/GEO in Table 4 and Figure 5) trends N69_+11 øW 

(with a plunge of 1 ø to the ESE), while the Fisherian mean ol 

axis trends N21_+17øE (with a plunge of 8 ø to the NNE). 

Although the inferred stress directions did not vary more 

than -10-15 ø between the fixed and the standard inversions, 

the R values were, in some cases, significantly different (Table 

4). Only the R values from the standard (not fixed) inversions 

are considered reliable since the criterion of 4 independent 

fault sets (the minimum to define the complete stress tensor 

and R value was not met by the smaller data sets). The R values 

determined by the standard inversions are consistently 

between 0.0 and 0.33, with a mean value of 0.25 (R(*) -- 0.25 

in Table 4, also see histogram on Figure 5). Recall that an R 
value close to 0.0 indicates a stress state transitional between 

strike-slip and normal faulting. 

In an attempt to constrain the parameters of this strike-slip 

stress state at a regional scale, we also did a combined 

inversion including slip data from all five sites. The data were 

separated into two subsets, one containing striae 

measurements on the major fault planes and a second set 

including striae on minor fault planes adjacent to the main 

exposed fault plane. The inversion of the major fault 

population (SS/g-major in Figure 11 and Table 4) yields a 

well-constrained and stable result (mean deviation angle of 

5.7 ø + 8.3 ø) with a horizontal N65øW trending o3 axis and R = 

0.11, indicating a regional strike-slip stress state transitional 
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Figure 7. Azimuths of (73 (least horizontal stress) axes for the normal faulting stress regime deduced from 

fault slip inversions given in Table 3 and shown in Figure 6. Larger solid arrows plot (73 axes determined from 

well-constrained inversions (pluses in Table 3); smaller solid arrows are deduced from the poorly constrained 

inversions (minuses in Table 3); and the dashed arrow is a graphically determined (73 direction compatible with 

the few normal slip data measured at Fairview Peak. 
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Figure 8. View looking southwest of the Genoa fault scarp. Arrows point to the two fault slip measurement 
sites along this fault zone (sites 19 and 20; see Table 2 for precise locations). 

to normal faulting. Results of the combined inversion using 

data from significant minor faults at all five sites (SS/g-minor 

in Figure 11 and Table 4) yielded very similar results with a 
N70øW {53 axis and with R = 0.19. 

As can be discerned from Table 4, there is remarkable 

similarity between the three geologically determined regional 
strike-slip stress states, inversions SS/g-major and SS/gminor 
as well as the Fisherian mean based on individual site 

inversions, SS/GEO. All three of these separately inferred 

stress states are characterized by {53 axes trending N65-70øW 

and R values ranging between 0.11 and 0.25. 

Present-day strike-slip stress regime inferred 
from historic seismic offsets. A NE to NNE trending 

zone of active seismicity crossing the WLZ region (the Nevada 
seismic belt in Figure 1) has been the locus of a series of large 
(M>6) earthquakes accompanied by surface-faulting events 
during the last century [e.g., dePolo et al., 1989, 1991; 
Wallace, 1979, 1984b, 1987; Bell, 1981, 1984a, 1984b; Bell 
et al., 1984]. Twelve NNW to NNE trending faults were 
reactivated along this zone during earthquakes occurring 
between 1872 and 1986 (Table 5). These faults represent a 

variety of structural styles from right-lateral strike-slip, and 

Figure 9. View looking northeast of the eastern Dry Valley fault scarp. Arrows point to the fault slip 
measurement sites (site 5' see Table 2 for location). 
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Figure 11. Lower hemisphere stereoplots of strike-slip faulting slip data from the Walker Lane region, 

together with inversion results presented in Table 4. Labels outside and to top right of the stereoplots refer to 

site names and numbers shown in Figure 1 and described in Table 2. (See Figure 6 for a detailed explanation of 
the stereoplots and histograms.) Also given are stereoplots showing the data and inversion results for three 

combined "regional" data sets listed in Table 4. Abbreviations include SS/g-major, combination of all strike- 

slip data measured on major faults at all five sites; SS/g-minor, combination of all slip data measured on more 

significant minor faults at each of the five sites; and SS/fm, inversion of the best constrained fault planes and 
slip vectors for historic earthquakes. The individual fault planes and slip data shown on SS/fm come from Table 

5; the fault numbers on this stereoplot refer to the numbers in the second column of Table 5. 

right-lateral oblique-slip to normal dip-slip faults. The 

historic faults are, from north to south (see Figure'l); the 1915 

Pleasant Valley, the 1954 Dixie Valley, the 1954 Rainbow 
Mountain, the 1903 Wonder, the 1954 Fairview Peak, the 

1932 Cedar Mountain, the 1986 Chalfant Valley, the 1980 

Mammoth Lakes, and the 1872 Owens Valley faults. 

Geological field data and focal mechanisms [e.g., Doser, 

1986, 1988; Zoback, 1989; dePolo et al., 1989, 1991] 

indicate that the style of slip in these earthquakes along the 

Nevada Seismic Belt varies from predominantly normal dip 
slip in the northern part of the zone (the Pleasant Valley fault) 
to oblique right-lateral slip in the central part of the zone 
(Dixie Valley/Fairview Peak/Rainbow Mountain faults) to 

nearly pure right-lateral strike-slip events in the southernmost 

part of the seismic belt (Chalfant Valley and Owens Valley 
faults). 

In addition, several other historic earthquakes have occurred 

in the WLZ with sparsely distributed surface faulting. These 
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Table 4. Results of Stress Tensor Inversion for Slip Data Representing Strike-Slip Faultin8 Stress Regime 
................ •,,•, de• 

Site N • •2 •3 M.D. S.D. R Age Qual 
Pleasant Valley Fault 

plv 10 191/14 017/76 281/02 04.6 05.6 0.40 eMz - 
plv 10 188/00 042/90 278/00 06.7 07.2 0.33 eMz * 

Faimiew Peak and Rainbow Mountain Faults 

fairv 04 007/41 212/47 108/13 04.1 05.2 0.70 mM+IM - 
fairv 04 188/00 041/90 278/00 11.7 16.1 0.33 mM+IM * 
rm 06 033/52 199/37 294/07 09.3 10.3 0.23 mM-1M - 
rm 06 200/00 065/90 290/00 10.3 14.4 0.20 mM-1M * 
hirv & rm 10 016/21 185/68 285/04 11.5 14.4 0.31 10+M - 
hirv & rm 10 193/00 050/90 283/00 12.8 16.0 0.32 10+M * 

Olinghouse Fault 

oling 12 222/11 352/74 129/12 09.6 12.9 0.50 mP-1P - 
oling 12 229/00 094/90 319/00 12.4 16.2 0.00 mP-1P * 

Owens Valley Fault 
owens2 37 016/20 212/70 108/05 12.1 16.2 0.96 P1 - 
owens2 37 216/00 106/90 306/00 18.9 24.9 0.32 P1 * 

Regional Results 
SS/GEO a 21 !l 7/08 11 !l 1/01 0.25 

SS/g-minor b 12 017/18 229/70 110/10 08.4 10.1 0.19 Mz-Q + 
SS/g-major c 19 025/02 272/85 115/05 05.7 08.3 0.11 Mz-Q + 
SS/fm d 13 199/38 034.51 295/07 10.8 13.7 0.28 Historic - 
SS/fm d 13 203/00 056/90 293/00 13.5 16.0 0.20 Historic * 

Description of individual columns same as in Table 3. Note that plv represents inversion of strike-slip stiae 
measured along the Pleasant Valley hult zone (plv l to plv5). 

a SS/GEO is the mean regional horizontal deviatoric stress axes determined using Fisher statistics independently 
on the two subhorizontal stress axes from each of the individual inversions, arithmetic mean R value computed 

only from fixed inversion results (* in Qual column). 
bSS/g-minor is an inversion of all slip data measured on minor hults adjacent to the main hult zone at each of the 
five sites. 

c SS/g-major is an inversion of all slip data measured on the major faults zones at each of the sites. 
d SS/fm is an inversion of historic hult slip along the Nevada Seismic Belt and adjacent parts of the Walker Lane 
zone computed using parameters for historic hult slip reported in Table 5 and shown in Figure 12, both poorly- 
constrained (-) and fixed inversion (*) results given. 

distributed surface ruptures include the ENE trending 

Olinghouse and Excelsior Mountain faults, the north trending 

Fort Sage Mountain fault, and the NE trending Truckee fault 

(Figure 1). The historic slip in these earthquakes was a 
combination of right-lateral and normal faulting on NNW to 

NNE trending faults and predominantly left-lateral to normal 

faulting on ENE to WNW trending faults. We have tabulated in 
Table 5 all the available information on slip vectors for these 
historic events. 

Seismic activity has also been intense in the Mammoth 

Lake/Long Valley caldera region just south of Mono Lake. In 

addition to a May 25, 1980, M=6.3 earthquake near Mammoth 

Lake, swarmlike sequences of several (M>5) earthquakes 
occurred in October 1978 and May 1980 in the Mammoth Lake 

region [Ryall and Ryall, 1981a,b; Hill et al., 1985]. Most 
focal mechanisms obtained for these earthquakes show a mean 

N65øE trending T (tension) axis, nearly 40 ø to 50 ø oblique to T 

axes of earthquakes in the surrounding region [Lide and Ryall, 
1985; Vetter and Ryall, 1983; Vetter, 1990]. Deformation in 
the Mammoth Lake and Long Valley caldera region appears to 

be a local anomaly in the regional stress pattern and is 

possibly related to active magmatic resurgence superimposed 

on regional extension of the Basin and Range province [Hill 

et al., 1985; Moos and Zoback, 1993]. For this reason, we 

have not included focal mechanisms of any of the Mammoth 

Lake earthquakes within this present-day state of stress study. 
The available slip vectors for the historic earthquakes along 

the Nevada Seismic Belt and within the WLZ deduced from 

published focal mechanisms or from analyses of geological 
surface rupture are given in Table 5 and are plotted on the 
stereonet SS/fm in Figure 11. The inferred, contemporary 
mean stress state deduced from a standard inversion of these 

data is a strike-slip stress regime characterized by 
subhorizontal N65øW trending (53 (lJhmin) axis, with (51 and (52 

lying in a well-constrained plane perpendicular to this 
direction, and with (52 having the steepest plunge (51 ø toward 

the NE) (Figure 12 and Table 4). An R value of 0.28 for this 
SS/fm inversion indicates a stress state where (51 is close in 

magnitude to (52, explaining the clear definition of the (5•-(52 
plane but not the unique definition of the individual axes. An 

inversion fixing one of the principal stresses to be vertical 

yielded a (53 axis trending only 2 ø differently and a similar R 

value (R=0.20) confirming that the present-day strike-slip 

stress state is very close to transitional between the strike- 

slip and normal faulting stress regimes. 

In conclusion, a recent strike-slip stress regime along the 
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Figure 12. Azimuths of {71 (maximum horizontal stress) and G 3 (least horizontal stress) axes for the strike- 
slip stress regime deduced from the individual fault slip inversions given in Table 4. Large, open arrows, 
representing the {73 (least horizontal stress) axes determined from the normal fault slip inversions along the 
Pleasant Valley and Dixie Valley fault zones (from Table 3), are given for comparison. 
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Table 5. Seismic Fault Slip From Historical Earthquakes 
Fault Fault Date Magnitude Fault Plane b Method c Reference 

Number a Strike Dip Rake 

de• de[[ deg 

Olinghouse 1 Dec. 27, 1869 M1 6.7 45 60 -30 G 1, 2 
Owens Valley 2 March 26, 1872 Mw 7.25-8 160 85 - 170 G 3 
Owens Valley March 26, 1972 Mw 7.25-8 195 89 - 160 G 3 
Wonder 1903 ? M1 5.5-6.5 N-S G 4 

Pleasant Valley 3 Oct. 2, 1915 Ms 7.6 25 59 -94 G 5, 6 
Pleasant Valley Oct. 2, 1915 Ms 7.6 14 44 -119 FM 7 
Cedar Mountain Dec. 21, 1932 M1 7.2 181 72 -176 FM 7, 8, 9 

Cedar Mountain 4 Dec. 21, 1932 M1 7.2 167 81 -179 FM 7 

Excelsior Mtn. 5 Jan. 30, 1934 M1 6.3 49 54 -53 FM 7, 10, 11 

Excelsior Mtn. Jan. 30, 1934 M1 6.3 68 40 -90 FM 7 

Fort Sage Dec. 14, 1950 M1 5.6 N-S G 5, 12, 13 
Rainbow Mtn. 6 June 6, 1954 Mw 6.2 156 80 -140 FM 4, 5, 14, 15 

Rainbow Mtn.-1 June 6, 1954 Mw 6.2 160 60 -115 FM 14 

Rainbow Mtn.-2 7 June 6, 1954 Mw 5.9 165 60 -135 FM 14 

Rainbow Mtn.-3 8 Aug. 24, 1954 Mw 6.5 175 50 -125 FM 4, 5, 14, 15 
Fairview Peak 9 Dec. 16, 1954 Mw 6.9 170 60 -160 FM 4, 5, 14, 15 

Dixie Valley Dec. 16, 1954 Mw 6.7 170 50 -90 FM 14-17 
Dixie Valley 10 Dec. 16, 1954 Mw 6.7 169 62 -152 FM 18 
Dixie Valley 1 1 March 23, 1959 Ms 6.3 ? 168 46 -168 FM 14 
Truckee 12 Sept. 12, 1966 Ms 5.7 224 80 -1 FM 19, 20 
Mammoth Lake May 25, 1980 M1 6.3 FM 21, 22, 23 
Chalfant Valley July 21, 1986 Ms 6.2 335 60 -179 FM 24 

Chalfant Valley 13 July 21, 1986 Ms 6.2 335 59 -152 FM 25, 26 

a Fault numbers refer to the stereoplot in Figure 12. Where two fault slip parameters are given for the same 
earthquake, the numbered fault parameters are considered to be the best determined and are used in the inversion. 
The result of standard and fixed inversions of this data set are given as solution SS/fm in Table 4. 
b Fault plane slip vectors are specified by strike, dip, and rake using standard seismological convention. Strike 
azimuth measured clockwise from north, 90 ø less than dip direction; dip measured from horizontal; and rake gives 
the direction of motion of the hanging wall with respect to the footwall measured counterclockwise from the strike 

direction (positive rakes indicate thrust faulting, negative rakes indicate normal faulting, rakes with absolute 
values < 90 ø are left-lateral, rakes with absolute values > 90 ø are right-lateral). 
CMethod indicates how the mean slip vector was determined; G, determined geologically from surface rupture and 
displacements and FM, determined from an earthquake focal mechanism where the fault plane was selected using the 
surface fault trace. 

d References are as follows: 1, Slemmons [1977]; 2, Sanders and Slemmons [1979]; 3, Beanland and Clark [1995]; 
4, Slemmons et al. [1959]; 5, Bonilla et al. [1984]; 6, Wallace [1984b]; 7, Doser [1988]; 8, dePolo et al. [1987, 

1989, 1991]; 9, Molinari [1984]; 10, Ryall and Priestley [1975]; 11, Slemmons et al. [1965]; 12, Gianella and 
Callahan [1934]; 13, Gianella [1957]; 14, Doser [1986]; 15, Slemmons [1957]; 16, Bell and Katzer [1990]; 17, 

Zoback [1989]; 18, Romney [1957]; 19, Ryall et al. 1966]; 20, Tsai and Aki [1970]; 21, Ryall and Ryall [1981a]; 
22, Hill et al. [1985]; 23, Clark et al. [1982]; 24, Cockerham and Corbett [1987]; 25, Gross and Savage [1987]; 
26, Lienkaemper et al. [1987] and dePolo and Ramelli [1987]. 

Nevada Seismic Belt and within the WLZ has been 

demonstrated by fault slip inversions on both the youngest 

geologically measured striae and inferred earthquake slip 

vectors. All inversions suggest that the present-day state of 

stress is a strike-slip stress regime close to transitional to a 

normal faulting stress regime (low R value), explaining the 

compatibility between the observed normal, oblique, and 

strike-slip active faulting. Even the geologically determined, 

dominantly normal slip (rake = 86 ø) in the 1915 Pleasant 

Valley earthquake is compatible with this strike-slip stress 

tensor because the mean fault trend is approximately 

perpendicular to the c53 (lJhmin) direction. As discussed in the 

beginning of the Results section, slip-vector chronologies on 

fault planes cutting recent deposits suggest a recent change 
from a normal to a strike-slip faulting in stress regime with a 

consistent WNW trending c53 OJhmin ) axis, supporting results 

of a previous analysis of well-constrained major fault offsets 
in Owens Valley by Zoback [1989]. Whether there is one, 

single change in stress regime, or fluctuations or temporal 
variations in stress regime, can not be resolved with the 

existing data. 

Explanations for Slip on Subparallel Strike-Slip 
and Normal Faults 

Wright [1976] explained the complex interaction of active 

strike-slip, oblique, and normal dip-slip faulting within the 

WLZ as a simple consequence of a single stress state, one 

transitional between strike-slip and normal faulting OJHmax = 

c5 v, or R ,• 0 in both regimes) with minor local fluctuations. 

However, as summarized by the data presented above, while 

the WNW orientation of the least principal axis appears to 
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remain approximately constant, substantial changes in 

relative stress magnitudes are required to explain the observed 

deformation in this region. The contemporary stress field in 

the WLZ does appear to be characterized by a strike-slip stress 

regime transitional to normal faulting (with R • 0.1-0.2); 

however, this stress state is incompatible with the slip data 

from the best constrained normal fault inversions (which 

require a normal faulting stress regime with R -- 0.7) as well as 

with the observations of crosscutting striae with highly 

oblique rakes (65 ø _+ 15 ø) observed on several fault planes. 

These data suggest temporal changes in stress regime in the 

WLZ and, specifically, a recent change (possibly post late 
Pleistocene and pre-Holocene based on the crosscutting striae 

in Owens Valley) from a dominantly normal faulting regime to 

a strike-slip regime. These results are consistent with 

conclusions based on a previous analysis of large-scale late 

Pleistocene fault offsets in the Owens Valley region which 

indicate a relatively recent (post-300,000 year, pre-10,000 

year) change from a normal faulting stress regime with a high 

R value to a strike-slip faulting regime with a low R value 

[Zoback, 1989]. The change from a normal to a strike-slip 

faulting stress regime can be interpreted in terms of a temporal 
and/or lateral variation in the magnitude of one or more of the 
stresses. 

Recently, Wesnousky and Jones [1994] suggested that the 
combined normal and strike-slip deformation in the Owens 

Valley and surrounding WLZ can be explained simply as a 

consequence of strain partitioning of dip-slip and strike-slip 
displacement on subparallel normal and strike-slip faults 
within a single regional stress state (provided there are marked 

differences in the frictional strength of the dip-slip and strike- 

slip faults). They argued that the shallow rakes (strike-slip 

movement) inferred for the steeply-dipping Owens Valley fault 

zone could also be compatible with a number of stress states 

which would also permit the observed dip-slip movement on 

the Independence fault (within the uncertainities of published 

data) by correctly point out a problem with the stress analysis 

based on slip on only these two faults: for horizontal and 
vertical stress axes, a near-vertical fault (900+5 ø) will always 

exhibit nearly pure strike-slip motion, regardless of the stress 

regime or R value, as long as there is shear stress in the 

horizontal plane (that is, IJHmax :/: IJhmin ). However, we think 

that the crosscutting strike-slip and normal fault striae 

reported here on the same fault planes with moderate dips (dips 
between 40 ø and 58 ø in Owens Valley and between 56 ø and 59 ø 

along the Rainbow Mountain fault zone) support the earlier 

conclusion of temporal variations in stress regime, rather than 

simple strain partitioning within a single regional stress 

field. However, the concept of strain partitioning is currently 

being widely discussed and its relationship to regional stress 
state deserve more discussion. 

The combined strike-slip and thrust deformation on 

subparallel faults within the San Andreas fault system could be 

viewed as an analog to deformation in the WLZ. Extensive 

stress studies [Mount and Suppe, 1987, 1992; Zoback et al., 

1987; Oppenheimer et al., 1988] indicate that the strain 

partitioning along the San Andreas fault system and also 

adjacent to the similar Great Sumatran right-lateral strike-slip 

fault (in an oblique subduction environment [see Mount and 

Suppe, 1992]) occur in response to a uniform regional stress 

field, one in which IJHmax is oriented nearly perpendicular (80- 

85 ø) to the strike of the main strike-slip fault. In both areas a 

small component of right-lateral shear allows the "weak" 

strike-slip fault to slip, while the normal component of plate 
motion is accommodated on subparallel thrusts. In fact, 

Zoback et al. [1987] have argued that the regional 
approximately fault-normal orientation of IJHmax in an-100- 

km-wide zone on both sides of the plate boundary in 
California is a consequence of the very low shear strength of 

the main San Andreas fault zone; the stress rotation occurring 

because the San Andreas fault zone is nearly a principal stress 
plane, thus, the shear stress across it must be reduced. Hence, 

while the strain field is partitioned to dip-slip movement on 

dipping faults and strike-slip motion on subparallel vertical 

faults, the stress field responsible for both sets of slip appears 
uniform. 

In the context of these discussions of the San Andreas fault, 

it is clear that strain partitioning within a uniform stress 

model requires marked variations in the relative shear strength 
of vertical strike-slip and subparallel dipping faults. 
Wesnousky and Jones' analysis suggests that the 
Independence normal fault zone in Owens Valley must be at 

least 4 times stronger than a vertical Owens Valley strike-slip 
fault (their figure 3). Unlike the many papers written about the 

absolute and relative weakness of major plate-boundary faults 
like the San Andreas fault, Wesnousky and Jones simply 
assume the weakness of the strike-slip Owens Valley fault 
relative to the Independence fault without presenting any 
evidence to support this assumption. This assumption requires 
that the discontinous strike-slip faults within the WLZ are 
much weaker than the major, subparallel, continuous Sierra 

Nevada frontal fault system. Thus in rejecting possible 
temporal variations in the stress field to explain deformation 

in the WLZ, Wesnousky and Jones [1994] offer a "simpler" 
hypothesis of strain partitioning that requires marked 
differences of the strength of faults without any independent 
substantiating evidence. 

Considering the concept of strain partitioning in general, it 
could be assumed that the Sierran frontal normal fault system 
is a weak fault controlling the stress field. However, the 

observed nearly pure dip-slip movement on this fault would 

require little or no shear stress in the horizontal plane and/or 
an IJHmax oriented subparallel to the Sierran frontal fault 

(-NNW). Neither case would be conducive to slip on the 
subparallel Owens Valley fault zone, requiring that the strike- 
slip fault would also have to be weak in order to slip! 

Inversion of the slip data presented here as well as the 

alignment of young volcanic vents suggest a NNE to north 
trending IJHmax orientation in this region (not NNW); the 

nearly pure dip-slip movement on the NNW trending frontal 
fault requires a normal faulting stress regime in which the two 
horizontal stresses are approximately equal (R .• 1.0). The 
north to NNE IJHmax orientation is compatible with activation 

of the NNW trending Owens Valley strike-slip fault zone; 
however, a change in relative stress magnitudes is required in 
order to have enough horizontal shear stress to drive the 

strike-slip faulting. That is, while the orientation of the 

principal stress axes remains constant, the apparently 
younger dominantly strike-slip deformation on subparallel 
faults occurs in a stress regime transitional between strike-slip 
and normal faulting (IJHmax • IJhmin or R -• 0.1-0.2). 
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Table 6. An,eular Difference Between Measured and Predicted Slip Vectors on Owens Valley Fault 
Fault Data SS/l•-major, del• SS/l•-minor, del• SS/GEO, de• SS/fm, de[• NF/GEO, deg 

1872 slip 0 3 8 7 40 
2.2 (younger) 15 14 17 18 7 2 
2.1 (older) 61 62 58 58 4 

Values are the deviation angles (the difference between predicted x and measured s slip vectors) for the various 

regional stress states indicated, NF stress state from Table 3, SS stress states from Table 4. See text for discussion 
of significance of results presented here. 

Previously mentioned crosscutting dip-slip and strike-slip 
striae are further evidence of variations in relative stress 

magnitudes within this actively deforming region. Striae sets 

2.1 and 2.2 (Figure 3) were measured on a minor fault in a 

<300,000-year-old basalt flow adjacent to the Owens Valley 

fault zone and are an excellent example of very young changes 
in slip on the same fault plane. To quantitatively test whether 

these slip data or the slip in the 1872 Owens Valley earthquake 

(from Table 5) could be explained by strain partioning in a 
single regional stress field, we computed predicted slip vectors 
on these fault planes using the regionally significant strike- 

slip stress states (SS/g-major, SS/g-minor, SS/GEO and 
SS/fm) as well as the "earlier" normal faulting (NF/GEO) stress 
state determined in this paper. The deviation angles between 
the predicted and observed slip are tabulated in Table 6. Note 

that the deviation angles for the most recent deformation 

(Owens Valley earthquake and striae set 2.2) are very 
consistent with the computed regional strike-slip stress states 

(deviation angles between 0 ø and 18 ø) and are incompatible 
with the "older" normal faulting stress regime (deviation 
angles between 40 ø and 72ø). In contrast, the slip represented 

by the older striae set, 2.1, is well predicated by the normal 

fault stress state (deviation angle = 4 ø) and is incompatible 
with the strike-slip stress states (deviation angles = 60ø___2ø). 

These results suggest that the deformation along the Owens 
Valley fault zone can not be explained by strain partitioning 
within a single regional stress field; the normal dip slip 
movement appears related to a normal faulting stress regime, 

while the strike-slip faulting is compatible with a recent 

strike-slip faulting stress regime. 

The postulated change in stress regime from a normal 

faulting regime with R -- 0.75-1.0 to a strike-slip regime with 
R -- 0.1-0.2 could be accomplished by a temporal variation in 

the magnitude of the maximum horizontal stress (ONNE). To 
demonstrate how different these two stress states are, we can 

examine changes in the magnitude of the maximum horizontal 

stress required by the "frictional strength of optimally- 
oriented faults" model to predict crustal stresses at depth 
[Jaeger and Cook, 1979, p. 80]): 

(Oi_ p)/(03 _ p) = [(g2 + 1)1/2 + g]2 (1) 

where P is pore pressure, and g is the sliding frictional 
coefficient on the most well-oriented faults assumed to control 

frictional strength. Using g=0.65 as a typical value of crustal 

friction (Byerlee's law [Byerlee, 1978]) and assuming 
hydrostatic pore pressure (P=(1/2.67)ov=O.3737ov), Ol/O 3 
values can be computed. Assuming the vertical principal stress 
is equal to the lithostat (pgz) and utilizing mean R values for 
the two regimes (R=0.15 in strike-slip regime, R=0.75 for 

normal faulting regime), we calculated the predicted effective 

stress magnitudes. Because the two stress states have the same 

principal axis directions (coaxial), they can be easily 

represented on the same Mohr's circle. The stress values 

shown on the Mohr's circle in Figure 13 correspond to 7.5 km 

depth, roughly half the thickness of the brittle layer in the 

Basin and Range as defined by seismicity, and hence they 

should represent approximate mean stress values within the 

brittle layer. As is clear on the Mohr's circle, the primary 

difference between the two regimes is a roughly 80 MPa 

difference in the relative magnitude of the maximum 

horizontal effective stress (ONNE-P, which is O1 in the strike- 
slip regime, o2 in the normal faulting regime). 

The source of either a lateral or temporal variation in ONN E 

(OHmax) magnitude is enigmatic. As Zoback [1989] pointed 

out, tectonic processes related to the Sierra Nevada-Basin and 

Range boundary zone such as stress effects due to the abrupt 

and high topography of the Sierra or shear tractions due to the 

lateral contrast in crust/lithosphere structure and/or heat flow 

should primarily affect the magnitude of the WNW horizontal 

stress (o3). The -80 MPa difference in ONN E magnitudes 
between the two regimes is much greater than the stress 

change associated with an individual large earthquake in the 

50- 

• effective 
tnorrn•al stress (MPa) 

(oWNW - P) 50 loo (Ov - P) (ONNE - P)SS 

! 

normal faulting regime 

- ß - strike-slip faulting regime 

Figure 13. Mohr's circle representation of effective stress 

states (P-P) for the two coaxial stress regimes determined for 

the WLZ; the normal faulting stress regime (R=0.15) is 

represented by the solid circle, and the strike-slip stress regime 
(R=0.75) is given by the dashed circle. In both regimes the 
minimum horizontal stress is o3 and is given by OWNW; the 
maximum horizontal stress is given by ONNE; and the vertical 
stress is given by Ov (equals o2 in the strike-slip case, o l in 
the normal faulting case). Stress magnitudes determined using 
the frictional strength of optimally oriented faults model to 

predict crustal stresses at depth (see text). Note that the primary 
difference between the two stress states can be explained by a 
relative change in the maximum horizontal effective stress 

(ONNE -P) of- 80 MPa. 
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region (earthquake stress drops are typically of the order of 
0.1-10 MPa [Thatcher and Hanks, 1973]). The differences in 

stress magnitude between the two regimes could be much 
smaller in the case of elevated pore pressure in the source 

region which would reduce the overall stress differences 
(53) required to cause faulting [e.g., Zoback, 1992]. 

Unfortunately, the timing of the temporal variations in 
stress state inferred from the geologic data is too poor to 

determine if there has been a single recent absolute change in 

stress magnitude or if this variation is fluctuating or cyclical. 
Stewart [1992] noted that strike-slip deformation has occurred 

in the WLZ throughout the late Tertiary, as well during the 
Mesozic when the faulting may have begun as intra-arc or back 

arc strike-slip faults. He also points out that the present-day 
WLZ is largely coextensive with the Miocene (20-24 Ma) 
magmatic arc and attributes much of the pre-5.5 m.y. old shear 
deformation in the WLZ to intra-arc strike-slip faulting 

subparallel to the active offshore obliquely convergent 
subduction zone, a style of deformation observed in a number 

of present-day analogs [e.g., Fitch, 1972; Beck, 1983; 
Jarrard, 1986; McCaffrey, 1991; Beck et al., 1993]. Thus 
deformation in easternmost California and westernmost 

Nevada appears to have accommodated a portion of the relative 

plate motion along the western plate boundary throughout 
much of the late Tertiary and possibly since the Mesozoic. 

The existence of a present-day NNW trending zone of right- 
lateral shear extending northward from the San Andreas fault in 
the south through the eastern Mojave Desert and up into 

Owens Valley carrying -8 mrn/yr of relative plate motion has 
been suggested on the basis of geologic and geodetic data 
[Bird and Rosenstock, 1984; Sauber et al., 1986; Dokka and 

Travis, 1990a, 1990b; Savage et al., 1990] and recently by 

Ward [1990] using very long baseline interferometry (VLBI) 
measurements. Dokka and Travis [1990b] suggest that this 
eastern California shear zone has carried between 18% and 

23% of Pacific-North American plate motion over the last 5.5 

m.y. and they further suggest that this intracontinental shear 

may continue to the north and include the Walker Lane zone. 
These observations all suggest a link between deformation 

along the southernmost part of the Nevada Seismic Belt within 
the WLZ and broad-scale San Andreas plate motion 
deformation. 

Conclusions 

Late Cenozoic tectonics in the WLZ are characterized by 

normal, oblique, and strike-slip faulting which reactivated 
inherited Mesozoic structures and produced new faults. 

Inversion of fault slip data collected along both major and 
minor fault zones indicate two Plio-Quaternary stress states. A 

normal faulting stress regime with a mean (53 axis of N83øW 
and a mean R value (R=((52-(51)/((53-(51)) of 0.63 - 0.74 appears 
to have been replaced in much of the region by a younger 

strike-slip faulting stress regime with a (53 axis of N65-70øW 
and a mean R value of 0.1 - 0.2. This younger strike-slip stress 
state is close to transitional to normal faulting and is 

consistent with focal mechanisms of the historic earthquakes 

in the WLZ. Previous workers have explained all the complex 

patterns of strike-slip, oblique, and normal faulting in the 

WLZ as a simple consequence of minor fluctuations about a 

such single transitional stress state (with a WNW trending (53 

axis and with the maximum horizontal stress approximately 

equal to vertical stress, or R -- 0 in both regimes). However, 

such a stress state is not consistent with observed post- 

Pleistocene, nearly pure dip-slip movement on the Sierran 

frontal fault zone. An alternative, strain-partitioning model 

has been proposed to explain slip on the subparallel strike- 

slip and normal faults in the Walker Lane zone within a single 

uniform regional stress tensor, this model requires that the 

discontinuous strike-slip faults be substantially weaker than 

the main Sierran frontal fault system. 

Our slip data, including crosscutting striae on the same fault 

planes, support previous results from Owens Valley [Zoback, 

1989] that indicate deformation within temporally distinct 

extensional and strike-slip stress regimes with a roughly 

constant WNW trending (53 axis. A recent change from a 

normal faulting to a strike-slip faulting stress regime is 

indicated by the crosscutting striae on faults in rocks 

<300,000 years old and is consistent with the dominantly 

strike-slip earthquake focal mechanisms and the youngest 

striae observed on faults in Plio-Quaternary deposits. 

Geologic control on the timing of the change is too poor to 

determine if there has been a single recent absolute change or 

if there is an alternating or cyclic variation in stress 

magnitudes. 

A change from a normal faulting stress regime with R -- 

0.75 to a strike-slip faulting stress regime with an R --0.1- 

0.2, both with a WNW trending (53 axis, can be explained by 

an increase in IJNN E magnitude. Assuming that stress 

differences in the crust are predicted by the "frictional strength 

of optimally-oriented faults" model [Jaeger and Cook, 1979, 

p. 90] and using Byerlee's Law [Byerlee, 1978] and hydrostatic 

pore pressure, the primary difference between the inferred 

normal faulting regime and the strike-slip regime is an -80 

MPa difference in the magnitude of the effective maximum 

horizontal stress ((5•4NE-P) for hydrostatic pore pressure. This 

value is far greater than typical earthquake stress drops, 

suggesting that the changes in stress regime are related to 

something other than the simple stress changes related to 

individual earthquake cycles (or alternately, that stress 

differences at focal depths may be smaller than predicted by 

frictional faulting theory, perhaps as a result of elevated pore 

pressure). The location of the WLZ between the deep-seated 

regional extension of the Basin and Range and the right- 

lateral strike-slip regional tectonics of the western plate 

boundary (presently the San Andreas fault) is no doubt 

responsible both for the Plio-Quaternary tectonic regimes as 

well as much of the late Tertiary and Mesozoic deformational 

history of strike-slip faulting acting in this zone. The historic 

(possibly extending back through the Holocene) strike-slip 

deformation in the WLZ may be in response to the 

development of a NNW trending zone of shear which may be 

accommodating roughly 20% of Pacific-North American plate 

motion [Dokka and Travis, 1990b]. 

Appendix: Detailed Description of Important 
Fault Slip Localities 

Dry Valley (Sites 4 and 5) 

Sites 4 and 5 are located along the western and eastern 

border faults, respectively, of the Dry Valley graben. The data 
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were collected both on minor slickensides (centimeter to meter 

•,• ...:,,•: c , •,•,,•,e, fault •caic] w•tmn the ,au,t zoncs and on the main t,•,,.,• ,. 

planes. All the sampled fault planes cut late Miocene-Pliocene 

(17-6 Ma) basalt flows. The morphology of the western fault 

scarp yields no indication of recent fault movement, whereas 

the eastern fault scarp is exposed along a steep free face in 

basalts and colluvium which probably indicates recent 

(Holocene) vertical fault displacement. Measurements for site 

4 were made along a 3-km segment of the east dipping range 

front scarp located 5 to 8 km NNW of the Double Check Well 

near Flanigan. Site 5 represents two localities along the west 

dipping range front fault zone adjacent to Dry Slick Hill and 

Mission Peak (which are < 1 km apart ); both localities are 
-10 km north of the Double Check Well. 

Winnemuca (Site 11) 

Site 11 consists of three measurement localities on or close 

to the west dipping Nightingale range front fault escarpment 
which forms the eastern edge of the Winnemuca valley. All 

three localities are in canyons along a 5-km stretch of the fault 

(from -2 km north of the water tank of the "MGL mine" to 3 
km south of this water tank). The measured striae represent 

deformation on minor planes within the fault zone proper 
which affect Plio-Pleistocene fanglomerates and Late 

Mesozoic quartzites, rather than on the actual major fault 

plane. 

Genoa Fault Zone (Sites 17 to 20) 

Sites 17 to 20 are located on or close to the east dipping 

Genoa range front escarpment of the Sierran frontal fault zone 

which forms the western margin of Jack Valley. This Sierran 
frontal fault zone has a mean direction which trends N-S at 

sites 18 to 20, while at site 17 the frontal fault trends NNE. 

Site 17 consists of several measurement localities of fault 

planes affecting Cretaceous granitic rocks along highway7 50, 

2-3 km west of highway 395. One locality was in road cuts just 

north of the gauging station at Clear Creek, and the second 

was along natural exposures along the banks of Clear Creek. 
Site 18 also consists of several measurement localities in 

Cretaceous granites in small canyons between Bennett and 

James Canyons, close to Jack Ranch. 

Sites 19 and 20 record measurements along the main Genoa 

range front fault zone and represent two different kinds of fault 

slip data. Site 19 is along the prominent main bedrock 

escarpment exposed just west of state highway 206, -1 km 

south of the town of Genoa (this site is shown in Figure 8). In 

contrast, site 20 represents stiae measurements on minor 

normal fault planes adjacent to the main range front fault 

which affects Cretaceaous granitic rocks and are exposed in 

road cuts of highway 206, 2 to 3 km south of Genoa. 

Antelope Valley (Site 21) 

Site 21 measurements were made on the east dipping range 
front escarpment forming the west margin of the Antelope 
Valley graben; this fault zone is part of the Sierran frontal 
fault zone. Striae data were collected south of Coleville, 

behind the Meadowcliff Motel, from both minor slickensides 

along the range front fault scarp and on major fault planes 
generally oblique to the frontal fault zone. The striae data were 

measured on inherited fractures which affect Cretaceaous 

gr•n•tt•c and ctrnnr•rtlr•rit•c 

Smith Valley (Sites 25 and 26) 

Sites 25 and 26 are located in Smith Valley along state 

highway 208, where the road crosses low hills --4 to 6 km east 

of the Smith Valley airport. Minor normal fault zones (1 to 2 

m displacements) affecting Plio-Pleistocene fluvio-lacustrine 

deposits are exposed in road cuts as illustrated in Figure 10. 

Wassuk Fault Zone (Sites 30 to 34) 

Sites 30 to 34 are located just east of U.S. highway 95, 

along the east dipping Wassuk range frontal fault zone. The 

striae measurements represent deformation on small planes 

within the fault zone proper (sites 30 to 33) and on the actual 

main bedrock fault plane (sites 33 and 34). Site 30 is -5 km 

north of Reese River Canyon; site 31 is between Penroc and 

Deadman Canyons; site 32 is 3 km south of Deadman Canyon; 

site 33 is between Cooper Canyon and Dry Creek; and site 34 

is along the main escarpment just north of Cottonwood Creek. 

Pleasant Valley Fault Zone (Sites plvl-5) 

Sites plv l to plv5 are located along the central segment of 

the west dipping Pleasant Valley fault scarp formed in 1915, 

specifically along the central part of the 30-km long Pearce 

scarp segment [see Wallace, 1984b]. Sites plv l to plv5 are 

located from north to south where bedrock is exposed in the 

scarp face; plv l is at the latitude of the old Siard Ranch 

damaged in 1915; plv2 is 4 km north of Pearce Ranch; plv3 is 

just south of Golconda canyon; and plv4 and plv5 are located 

-8 to 10 km south of Pearce Ranch. Data from plv l and 2 were 

collected on minor (centimeter to meter scale) and major (more 

than 1 m scale) fault planes. Data from plv3 and plv5 represent 

deformation on small planes within the fault zone proper, 

while plv4 data represent major slickensides along a major 

quartzite escarpment. 

Dixie Valley Fault Zone (Sites dvl-3) 

Sites dvl to dv3 are located along the central part of the east 

dipping Dixie Valley fault scarp formed in 1954 which forms 

the eastern border of the Stillwater range, west of Dixie Valley 

road. Site localities from south to north are: in the vicinity of 

Sheep and Coyote Canyons (dvl), between Little Box and 

Brush Canyons (dv2), and between Cottonwood and Hare 

Canyons (dv3). The data were collected on minor and major 

slickensides which represent deformation just adjacent to the 

fault front and along the major escarpment. The measured fault 

planes, at localities dvl and dv2, affect Oligocene to early 

Miocene granites and granitic and metamorphic rocks with 
undifferentiated ages ranging between Jurassic and Miocene. 

At site dv3, they affect Mio-Pliocene and early Pleistocene(?) 
volcanic rocks. 

Olinghouse Fault Zone (Site Oling) 

This site is located along the range front fault, -2-3 km 

north of the "powerhouse" and gauging station near the 
Patrick interchange on Interstate 80, 26-28 km ENE of Reno. 

The slip measurements were made on major and minor 
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slickensides along a major basaltic escarpment within the 
south dipping segment of the Olinghouse fault scarp formed in 
1869. 

Rainbow Mountain Fault Zone (Site rm) 

This site consists of several data localities along the 

Rainbow Mountain fault scarp formed in 1954, between 5 and 
10 km north of the U.S. highway 50 and just NNE of Salt 
Wells. Measurements were made on minor fault planes 

affecting both rhyolitic and basaltic Miocene flows. 

Owens Valley Fault Zone (Sites owens 1-2) 

The Owens Valley sites are all located along the northern 

segment of the Owens Valley fault zone (Figure 4c). At site 
owensl (-2 km SSE of Big Pine) we observed only normal slip 
on minor faults cutting the main east dipping major fault 

scarp. Site owens2, located about 6 km SSE of Big Pine, is the 
more important locality because it exposed crosscutting 

relationships between an older normal striae set and a younger 

strike-slip set. The majority of the data came from an en 

echelon, left-stepping east dipping scarp. However, the 

crosscutting relationships were observed along a roughly 1-m 
high and 8-m wide west dipping fault scarp within this left- 

stepping en echelon scarp system (Figure 4). 
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