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Abstract 
Mass spectrometry is one of the key technologies of proteomics, and 
over the last decade important technical advances in mass 
spectrometry have driven an increased capability for proteomic 
discovery. In addition, new methods to capture important biological 
information have been developed to take advantage of improving 
proteomic tools.
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Over the past 15 years, the study of genomics has frequently 
made headlines as DNA sequencing has uncovered genes that  
contribute to or cause disease. When DNA sequencing began 
to move into the clinic, it generated hope that more biology and  
disease buried in a genome would be uncovered. However, it  
soon became clear that the number of genome sequences needed 
to understand human biology would be far greater than expected. 
An understanding of multigenic human variability requires  
sequencing many different genomes to tease out the interplay of 
genes that create complex traits. Even after large-scale sequenc-
ing efforts, it has been difficult to measure susceptibility for  
multigenic diseases, leading to a concern about missing patterns 
of heritability for some diseases1,2. For example, mutations in  
genes that increase the risk of familial Alzheimer’s disease 
have been identified, but genetic risk for sporadic Alzheimer’s  
disease has been harder to establish3–5. Are there other genes that 
are important that are not so obvious or is there a larger role for 
environment than expected? We are beginning to understand 
that DNA sequence mutations and variations may impact their  
protein products in yet-unknown ways and this may change as 
a function of age and environment and therefore may play an  
important role in health and disease6.

Genes encode proteins, which are complex molecules that  
catalyze reactions, transmit signals, and create cellular support 
structures that possess a three-dimensional structure organized 
in a spatial and temporal manner7,8. In many of the initial  
proteomic studies, the focus was to associate specific proteins 
with biological processes. Although this effort has been  
successful, it is important to understand that proteins do not 
necessarily have a single function or role in physiology (for  
example, pleiotropy) and thus one of the great challenges of  
proteomics is uncovering the diverse cellular functions and  
roles of proteins in cells. Further advances in proteomics have 
focused on the identification of post-translational modifications 
of proteins, protein–protein interactions, and the locations of  
proteins within cells9–11. Post-translational modifications of  
proteins are not encoded in the genome; instead, amino acid 
sequence signatures for modification sites may be obtusely  
encoded within the sequence of a protein. Modifications often 
regulate protein activity or function and thus play an important  
role in the regulation of processes. Tens of thousands of  
myriad modification sites have been identified by large-scale 
proteomic studies, and attempts to identify specific sites as  
regulators of biological processes are ongoing12. The exquisite 
complexity of modifications is perfectly exemplified in histones, 
which have intricate patterns of modifications on the exposed 
tails of the proteins. The functions or activities of proteins are  
separated by spatial organization in organelles or subcellular  
compartments. Identifying proteins present in organelles (that 
is, mitochondria) helps to define the roles of proteins as well 
as potential functions that may be carried out in a compartment 
and this information can better define the functions of the  
organelles13. Recent proteomic studies seek to determine the 
structures or folding of proteins on a large scale and in vivo14.  
Advances in cryogenic electron microscopy (cryo-EM) have  
resulted in a tremendous increase in the number of difficult  
structures that have been determined for proteins15. How-
ever, so far, these studies are performed mostly in vitro, so it is  

important to determine how these structures conform to those in 
cells. Mass spectrometry (MS) has been successfully employed 
for the analysis of native proteins and native protein complexes 
and now is being used to study whole cells in an attempt 
to measure the state of folding of proteins within complete  
proteomes14,16. To advance the capture of proteomic information, 
new instrumentation and methodologies are needed.

Developments in mass spectrometers over the last decade have 
been numerous, but there are some clear trends. The drive to  
increase confidence in the identification of peptides and post- 
translational modifications pushed the development of high-
resolution and high-mass accuracy instruments, most notably  
Orbitrap and time-of-flight (TOF) mass analyzers17–20. Improve-
ments in mass resolution in these instruments resulted in an increase 
in the mass range for effective analysis, precipitating greater  
interest in the “top down” proteomics which now could be 
performed without expensive high-field magnets previously  
required for ion cyclotron resonance MS of intact proteins21–23. 
Additionally, the emergence of biological therapeutics has fueled 
a greater need to characterize intact proteins to verify structure, 
sequence, and modifications24–26. Fragmentation of the amide 
bonds in intact proteins requires more robust methods than  
fragmentation of peptides to obtain sequence information27.  
Two methods in particular—electron transfer dissociation  
(ETD) and ultraviolet photodissociation (UVPD)—have been used 
to achieve more efficient fragmentation of intact proteins, espe-
cially when used in combination28–31. These substantial improve-
ments in MS capability have led to greatly improved prospects  
for top-down MS.

A common strategy to improve the performance of mass  
spectrometers has been to create hybrid instruments. A hybrid  
instrument uses different ion analyzers or separators to increase 
the capabilities of the mass spectrometer as a whole. For  
example, development of the triple quadrupole mass spec-
trometer led to big improvements in performance over a single 
quadrupole instrument by adding two other quadrupoles; one  
quadrupole was used to select m/z values, another was used as 
a collision cell, and the third quadrupole was used to perform 
more routine analysis of ions. A more recent hybrid instrument 
is the Orbitrap Fusion Lumos Tribrid mass spectrometer, which  
includes five different ion separation/storage devices32. In the  
Orbitrap Fusion Lumos Tribrid, the quadrupole mass filter is 
used to select an m/z, and an ion routing multipole serves as a  
“traffic cop” to store and direct ions to either a linear ion trap 
for collision-induced dissociation or to the Orbitrap for high- 
resolution and high-mass accuracy measurements. The ion  
routing multipole can also be used for higher-energy collisional  
dissociation (HCD) ion fragmentation. The use of an ion storage 
device like the ion routing multipole device allows simultaneous 
experiments within the instrument which can increase the effec-
tive scan speed and consequently the number of tandem mass 
spectra collected for peptide ions. Thus, scan speed is increased 
in the Orbitrap Fusion Lumos Tribrid by using the available 
ions more effectively, and routine analysis of digested protein  
mixtures results in a larger number of peptide (and hence protein)  
identifications. 
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Over the last 20 years, there has been increasing interest in  
using ion mobility spectrometer (IMS) devices to add ion  
separation capabilities to mass spectrometers. IMS devices use 
high-pressure gas and constraining electric fields to separate 
ions based on features besides m/z, thus providing improved  
separation of molecules before the mass analyzer33,34. Hoaglund 
et al. used ion mobility separation in conjunction with a  
quadrupole TOF mass spectrometer to analyze peptide mixtures, 
and the success of this experiment triggered further interest in 
IMS devices as adjuncts to traditional mass analyzers35. As a  
result, a variety of devices have emerged based on the ion  
mobility concept, including the traveling wave, which uses an  
electrical wave (and lower gas pressure) instead of a constant 
high voltage to drive ions through a gas36. A trapped IMS (TIMS)  
device uses electric and radiofrequency fields to trap ions in 
a flowing gas37. In the TIMS device, ion motion against the gas 
determines the resolution of the separation. The success of  
TIMS led to the development of parallel accumulation-serial 
fragmentation (PASEF), which is a mass selective release of  
peptide ions from the TIMS device for MS/MS38. Combining 
these methods (TIMS/PASEF) provides another means to  
fractionate complex mixtures of ions to increase the number of  
tandem mass spectra of peptides collected and thus the number  
of protein identifications.

A different type of ion mobility, differential mobility spectrom-
eter or field asymmetric IMS (FAIMS), has been used to create  
separation of ions39. In this instrument, ions pass through a gas 
with an orthogonal field driving ions toward the wall of the cell.  
Based on the selection of the electric field, ions of a certain m/z 
will pass through to the outlet of the device. When coupled to 
a mass spectrometer, FAIMS can decrease the complexity of 
ions entering the mass spectrometer and can selectively pass  
through different sets of ions by systematically changing the  
electric field.

A very exciting development in the ion mobility field is a  
device called structures for lossless ion manipulations  
(SLIMs)40–42, which makes use of the traveling wave principle 
to move ions. SLIMs are fabricated from printed circuit board 
technology and thus are inexpensive to create and have great  
flexibility in design and construction. Features have been added 
to turn ions around corners and to effectively create very long  
path lengths that facilitate increased ion separations. Webb  
et al. have interfaced SLIM devices with TOF mass spectrom-
eters to perform mass analysis43. Because of the ease of con-
struction and flexibility in design, these devices have enormous  
potential for creative separations, especially with the lossless  
nature of the ion manipulations.

High-resolution ion separations have enabled improved mass 
spectrometer performance for analysis of intact proteins with less  
sophisticated instruments which has increased interest in the  
application of top-down proteomics to biological problems. A  
common problem in protein analysis is measuring the pro-
teoforms of a protein, which include all modifications and  
sequence variations present44. It is important to identify all the 
modifications on a protein to determine how those modifications 
attenuate or alter the protein’s functions. Improvements in mass 

spectrometers and methodology are increasing the scale of intact  
protein analysis as well as the effective size of proteins that can 
be reasonably analyzed. Intact protein identification methods  
require fragment ion data at amide linkages throughout the  
backbone of the protein to both identify the proteins and more 
accurately localize modifications. As described above, the devel-
opment of ETD and UVPD has enabled better fragmentation 
of proteins to more confidently assign modifications to sites  
within the protein.

Another rapidly improving method in MS is the analysis of native 
protein complexes, which has been advanced by Marcoux and 
Robinson to enable the characterization of membrane proteins 
and membrane protein complexes45. A recent breakthrough in this  
area has been the use of surface-induced dissociation to frag-
ment protein complexes46–49, which allows the user to direct a 
greater amount of the kinetic energy of the collision into the ion 
complex than if a gas-phase dissociation method is used. By  
varying the energy of the collisions, proteins on the outside of 
the native complex can be peeled away to reveal the organiza-
tion of the complex. Skinner et al. have used non-denaturing  
separations of protein complexes in conjunction with analysis 
of the native complex and an MS3 approach for top-down iden-
tification of the individual components of the complex50,51.  
Using this strategy, the authors were able to determine pro-
teoforms of the proteins in the complex. In these native protein  
analyses, UVPD has been used in conjunction with HCD to help 
fragment the protein. Snijder et al. elegantly used native MS to 
decipher the sequence of protein–protein interactions involved in 
the circadian rhythms of the Kai system in cyanobacterium16.

The method used by Skinner et al. to separate protein complexes 
is based on a new strategy called protein correlation profiling 
(PCP)52,53. This method uses the co-elution of proteins under  
non-denaturing conditions as a measure of whether the proteins 
are in a complex together and is based on the theory that if  
proteins co-elute under different chromatographic conditions, 
there is a calculable probability that they are present together in a  
complex. This strategy may offer a means to more quickly  
measure the dynamics of protein complexes in systems under-
going some sort of perturbation such as disease or drug  
treatment. Cross-linking of complexes has been used to maintain 
the integrity of complexes that might involve membrane proteins, 
as they sometimes require buffers that might be denaturing to  
maintain solubility54. Very large-scale studies have been per-
formed using individual pull-downs of proteins to obtain protein 
complexes and these studies have provided the reference sets to  
establish the validity of methods such as PCP55,56. However, 
pull-down approaches are too time-consuming to be practical  
for the study of protein dynamics on a large scale. PCP may 
prove to be a good solution to the time constraints of studying  
large-scale protein complex dynamics, but more development  
of the method will be required.

The measurement of protein interactions using affinity pull- 
downs and MS has been a powerful method for the discovery 
of protein interactions, but for interactions to survive the  
enrichment process they needs to have a certain level of affinity 
to the interaction. “Spatial proteomics” is a recent method that  
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determines proteins in the region around a bait without requir-
ing a high level of affinity between interactors; rather, the  
method requires only that interactors be within a defined region. 
Two methods for spatial proteomics have been developed. 
One method employs an engineered version of ascorbic acid  
peroxidase (APEX) fused to proteins which produces a hydroxyl 
radical when hydrogen peroxide and phenoxy biotin are added 
and labels proteins within 30 angstroms of APEX13. The  
biotinylated proteins then can be enriched for analysis. The  
BioID strategy uses the biotin ligase enzyme BirA to collect the 
same type of data57–60. In BioID, BirA ligase is added to a bait  
protein, and when biotin is fed to a cell, biotin is added to  
nearby lysine residues. APEX is much faster than BioID, which 
can require up to 24 hours to get sufficient labeling, allow-
ing the BirA-labeled protein time to move around the cell if it 
is not fixed to a membrane. In both methods, good controls are  
required to differentiate signal from noise. Recently, Branon  
et al. engineered a version of the BirA protein that is able to  
sufficiently label proteins in 10 minutes in a method aptly 
named TurboID61. A very clever use of APEX involved epitope  
tagging of CAS9 with the ascorbate enzyme62. In this applica-
tion, CAS9 guide RNAs are used to place the labeled CAS9 at a  
specific gene, where it labels proteins in the vicinity, including  
transcription factors and histones that subsequently can be  
enriched for identification and post-translational modification 
analysis. Spatial proteomics is drawing particular interest for  
determining the type of histone modifications that are present at 
a specific location in the genome. Spatial proteomic methods 
provide a strategy to supplement the type of information that  
might be derived from protein–protein interaction studies.

The use of biorthogonal chemistry has exploded over the last 
two decades as a means to label proteins or glycans within  
cells63. Biorthogonal chemistry uses specific types of biomole-
cules that can be metabolized in cells or tissues and inserted into  
proteins or glycans. Generally, the molecule will have an affinity 
tag to allow enrichment of the modified proteins after inser-
tion. A particularly interesting molecule is azidohomoalanine 
(AHA), which can be used by the endogenous Met t-RNA  
synthetase to incorporate AHA into proteins64. AHA then can 
be reacted with biotin alkyne using a copper-catalyzed Huisgen  
1,3-dipolar cycloaddition in aqueous solution64, and the biotin-
labeled proteins can be enriched using avidin. This has become 
a powerful method to introduce affinity labels into proteins. 
For instance, AHA has been used to determine the identity of 
newly synthesized proteins in response to perturbations and to  

identify proteins secreted by cells65. A few strategies have been 
developed to quantitate proteins using AHA. The first method  
combines the introduction of AHA with stable isotope-labeled 
amino acids where heavy amino acids could be used for one  
state and light amino acids used in another state65. A second  
strategy uses a heavy and light labeled version of biotin alkyne 
together with AHA as a means to quantitate66. A third strategy 
uses a heavy and light version of AHA to provide quantitation67. 
Each method has different advantages which pertain to when 
labels are introduced into the sample and the subsequent manipu-
lations required. In the method that uses stable isotope-labeled 
amino acids, the introduction of labels is separated from the  
incorporation of AHA and thus quantitation errors introduced 
by sample handling inequities are minimized, although mixing  
errors of the heavy and light cells could occur. The process that 
uses heavy and light -biotin alkyne requires the introduction 
of the labels into two different samples which requires careful  
control over processes to avoid reaction or recovery errors. The 
last process of using a heavy and light AHA incorporates the label 
into proteins using the metabolic machinery of the cell and thus  
quantitation errors could stem from mixing or mass balance  
errors. An interesting application of AHA is for protein turnover 
measurements68. The use of stable isotope-labeled amino acids 
for protein turnover measurements has been hampered by  
difficulty in distinguishing the isotope signatures in the midst 
of increasing background from normal signals. AHA can be  
pulsed into cells or animals followed by a chase of normal 
Met, and over time AHA can be recovered by affinity capture,  
providing a means to enrich very low levels that might be present 
at long time points.

Proteomic capability is constantly evolving as a result of  
technological and methodological advances in the field. Many 
of these advances come from improvements in MS technology 
that provides new capabilities and measurement improvements. 
Researchers then are able to leverage these advances into 
measurements of new features of biological systems and to  
improve the diagnosis of medical conditions.
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