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Abstract. This paper provides a review of some recent theoretical results for time
series models with GARCH errors, and is directed towards practitioners. Starting
with the simple ARCH model and proceeding to the GARCH model, some results
for stationary and nonstationary ARMA-GARCH are summarized. Various
new ARCH-type models, including double threshold ARCH and GARCH,
ARFIMA-GARCH, CHARMA and vector ARMA-GARCH, are also reviewed.

1. Introduction

A primary feature of the autoregressive conditional heteroscedasticity (ARCH)
model, as developed by Engle (1982), is that the conditional variances change over
time. Following the seminal idea, numerous models incorporating this feature
have been proposed. Among these models, Bollerslev’s (1986) generalized ARCH
(GARCH) model is certainly the most popular and successful because it is easy
to estimate and interpret by analogy with the autoregressive moving average
(ARMA) time series model. Analyzing financial and economic time series data
with ARCH and GARCH models has become very common in empirical
research, with a huge literature having been established. Several excellent surveys
on ARCH=GARCH models are available, such as Bollerslev, Chou and Kroner
(1992), Bollerslev, Engle and Nelson (1994), and Bera and Higgins (1993). More
recently, the Stochastic Volatility model of Taylor (1986) offers an alternative to
GARCH. Stochastic Volatility models will not be discussed in this paper and
interested readers are referred to the excellent review by Shephard (1996). In a
series of papers, Nelson has made important contributions to the filtering theory
of ARCH processes. His work has been nicely summarized by Ross (1996), and
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hence will not be the focus of attention in this paper. Gourieroux (1997) provides
a summary of some earlier results on GARCH models.

The aim of this paper is to provide a review of some recent theoretical results
for time series models with ARCH=GARCH errors, and is directed towards
practitioners. The plan of the paper is as follows. We begin with the simple ARCH
model in Section 2 and proceed to the GARCH model in Section 3. The stationary
ARMA-GARCH model is considered in Section 4, and its nonstationary counter-
part in Section 5. Finally, we review some results for other ARCH-type models,
including double threshold ARCH, ARFIMA-GARCH, CHARMA, and vector
ARMA-GARCH, in Section 6. Concluding marks are given in Section 7.

2. ARCH models

Engle’s (1982) ARCH (r) model can be defined as follows:

"t ¼ �th1=2
t ; ht ¼ �0 þ �1"

2
t� 1 þ � � � þ �r"2

t� r; (2:1)

where �0 > 0, �i � 0 (i¼ 1; :::; r) are sufficient for ht > 0 and the �t are a sequence
of independently and identically distributed (i.i.d.) random variables with zero
mean and unit variance. Denote by Ft the �-field generated by {�t; �t� 1; :::}. Then
E("2

t j Ft� 1)¼ ht, that is, the conditional variance of the process "t varies over
time instead of being constant, as in traditional time series analysis.

2.1. Basic properties

When a new time series model is proposed, a basic question concerns the
conditions under which the model will be stationary. Engle (1982) showed that "t
is second-order stationary (i.e. E"2

t <1) if and only if all the roots of

zr �
Xr
i¼ 1

�iz
r� 1 ¼ 0 (2:2)

are outside the unit circle. To prove this result, Engle (1982) assumed that "t starts
infinitely far in the past with finite variance, which is impossible to verify in
practice. Using a different method, Milhøj (1985) avoided Engle’s (1982)
assumption and showed that "t is second-order stationary if and only if

�1 þ � � � þ �r < 1: (2:3)

In particular, Milhøj (1985) showed that (2.3) is also a sufficient condition for
strict stationarity and ergodicity of "t. Since �i is nonnegative for i¼ 1; :::; r,
conditions (2.2) and (2.3) are equivalent by Lemma 2.1 in Ling (1999b).

For the first-order ARCH model, Engle (1982) showed that, if �t is normal, the
2mth moment of "t exists if and only if

�m1
Ym
j¼ 1

(2j� 1) < 1; (2:4)
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under the assumption that "t starts infinitely far in the past with finite 2mth
moment. Without this assumption, Milhøj (1985) obtained the necessary and
sufficient condition for the existence of the 2mth moment of "t. When �t is normal
and r¼ 1, Milhøj’s condition is the same as (2.4). A unique drawback is that
Milhøj’s (1985) condition cannot be given an explicit form when r > 1 and m > 2.

It should be noted that (2.3) is not necessary for the strict stationarity of model
(2.1). The necessary and sufficient condition for the strict stationarity of model (2.1)
was established by Bougerol and Picard (1992) in terms of the top Lyapunov
exponent (see Section 3.1). The regions of strict stationarity are, in general, much
larger than those of second-order stationarity. As an illustration, for the first-order
ARCH model, ARCH(1), the various conditions under normality are summarized
as follows:

Moments

Variable "t Strict stationarity 2nd 4th 8th

Coefficient �1 (0, 3.56214) (0, 1) (0, 0.57735) (0, 0.31239)

Non-normality reduces the permissible range of the ARCH(1) parameter for the
4th and higher moments. It seems difficult to obtain a closed form expression of
strict stationarity in terms of the ARCH(r) parameters for any r > 1.

2.2. Sample ACVF and ACF

In time series analysis, the autocovariance function (ACVF) and autocorrelation
function (ACF) are important because they usually provide meaningful information
about the series. Define the sample ACVF and sample ACF, respectively, by

�n"(k)¼
1

n

Xn
t¼ kþ 1

"t"t� k;

	n"(k)¼
�n; "(k)

�n; "(0)
;

where n is the sample size and k � 0. Correspondingly, the true values are given by:

�"(k)¼ E("0"k);

	"(k)¼
�"(k)

�"(0)
:

As the ARCH process "t is an uncorrelated white noise sequence, �"(k)¼ 	"(k)¼ 0
if k > 0. Under the fourth moment condition, Milhøj (1985) showed that �n"(k)
and 	n"(k) are consistent estimators of �"(k) and 	"(k), respectively, andffiffiffi
n
p

[�n"(k)� �"(k)] and
ffiffiffi
n
p

[	n"(k)� 	"(k)] are asymptotically normal.
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It is natural to ask if Milhøj’s results still hold if the fourth moment condition is
not satisfied. This is a difficult problem because ARCH processes exhibit a strong
heavy-tailed feature when E" 4

t ¼1. Using the point process technique, Davis and
Mikosch (1998) showed that, if E"2

t <1 but E"4
t ¼1, then

n1� 2=qL(n)�2�n"(k) 2d Vq(k);

n1� 2=qL(n)�2	n"(k) 2d

Vq(k)

E"2
t

;

where q 2 (2; 4) is the unique solution to E(�1�
2
t )
q=2 ¼ 1, Vq(k) is q=2-stable in R,

and L(n) is some slowly-varying function. From the above results, �n"(k) and
	n"(k) are consistent estimators of �"(k) and 	"(k), respectively, but the
convergence rate is slower than the usual n1=2. This result is different from those
for linear processes with i.i.d. regularly varying noise. Davis and Resnick (1985,
1986) showed that the sample ACF is still asymptotically normal with scaling n1=2

if the i.i.d. noise has finite variance but infinite fourth moment.
Furthermore, Davis and Mikosch (1998) showed that, if E j " jp <1 for

0 < p < 2 but E"2
t ¼1, then

n1�2=qL(n)�2�n"(k) 2d Vq(k);

	n"(k) 2d

Vq(k)

Vq(0)
;

where q 2 (0; 2). In this case, the estimator of the ACF is inconsistent. This result
is quite different from that for linear processes with i.i.d. regularly varying noise,
in which the sample ACF converges to the true ACF with a convergence rate
greater than n1=2 (see Davis and Resnick 1985, 1986).

The sample ACVF and ACF of " 2
t have also been investigated by Davis and

Mikosch (1998). Although they considered only the first-order ARCH model,
their results can be extended to higher-order ARCH models. de Vries (1991)
demonstrated that, under certain conditions, GARCH processes can generate
realizations that have a stable distribution unconditionally.

2.3. Parameter estimation

The parameters of model (2.1) can be estimated by several methods. The simplest
method is the least squares estimator (LSE). First, write model (2.1) as

"2
t ¼ �0 þ �1"

2
t� 1 þ � � � þ �r"2

t� r þ 
t; (2:5)

where 
t ¼ "2
t � ht and 
t can now be considered as a martingale difference. Let

� ¼ (�0; �1; :::; �r)
0 and ~""t ¼ (1; "2

t ; :::; "
2
t� rþ 1)

0. Then the LSE of � is

�̂� ¼
Xn
t¼ 2

~""t�1~"" 0t� 1

0
@

1
A
�1 Xn

t¼ 2

~""t� 1~""t

0
@

1
A:
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Weiss (1986) and Pantula (1989) showed that �̂� is consistent and asymptotically
normal. However, their results assume that the 8th moment of "t exists, which is a
strong condition.

In general, maximum likelihood estimation (MLE) is used to estimate the
parameter �. Given observations "t, t¼ 1; :::; n, the conditional log-likelihood can
be written as

L(�)¼
Xn
t¼ 1

lt; lt ¼�
1

2
ln ht �

1

2

"2
t

ht
; (2:6)

where ht is treated as a function of "t. Assume that � 2�, a compact subset of
Rrþ 1, and that the true value of � is �0. Define

�̂� ¼ argmax� 2� L(�): (2:7)

Since the conditional error �t is not assumed to be normal, �̂� is called the quasi-
maximum likelihood estimator (QMLE). Under the fourth moment condition,
Weiss (1986) and Pantula (1989) showed that the QMLE �̂� is consistent and
asymptotically normal. Ling and McAleer (2002b) proved that the QMLE of � is
consistent and asymptotically normal under only the second moment condition. It
is expected that, when "t is strictly stationary but E"2

t ¼1, the QMLE will still be
consistent and asymptotically normal. The BHHH algorithm is often used to
determine �̂�. However, Mak, Wong and Li (1997) suggested that the BHHH
algorithm has a convergence problem if the starting values are not sufficiently
close to the solutions and that a full Newton–Raphson procedure should instead
be used.

When �t is not normal, the QMLE is not efficient, that is, its asymptotic co-
variance matrix is not minimal in the class of asymptotically normal estimators. In
order to obtain an efficient estimator, one needs to know or estimate the density
function of �t and use an adaptive estimation procedure. This was considered by
Linton (1993) and Drost, Klaassen and Werker (1995), who proved that the
ARCH model belongs to the locally asymptotically normal (LAN) family. After
suitable re-parameterisation, they also constructed adaptive estimators for the
parameters of interest.

3. GARCH models

Bollerslev (1986) extended the ARCH model to the generalized autoregressive
conditional heteroscedasticity (GARCH(r, s)) model:

"t ¼ �t
ffiffiffiffi
ht

p
; (3:1)

ht ¼ �0 þ
Xr
i¼ 1

�i"
2
t� i þ

Xs
i¼ 1

iht� i (3:2)

where �0 > 0, �i � 0, i � 0 are sufficient for ht > 0 and �t is defined as in (2.1).
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3.1. Basic properties

Bollerslev (1986) showed that the necessary and sufficient condition for the
second-order stationarity of models (3.1)–(3.2) is:

Xr
i¼ 1

�i þ
Xs
i¼ 1

i < 1: (3:3)

For the GARCH(1,1) model, Nelson (1990) obtained the necessary and sufficient
condition for strict stationarity and ergodicity as follows:

E(ln(�1�
2
t þ 1)) < 0: (3:4)

Condition (3.4) allows �1 þ 1 to be 1, or slightly larger than 1, in which case
E" 2

t ¼1. For the general model (3.1)–(3.2), the necessary and sufficient
condition for strict stationarity and ergodicity was established by Bougerol and
Picard (1992) and Nelson (1990). Ling and Li (1997c) proved that, under (3.3),
there exists a unique Ft-measurable and second-order stationary solution to
model (3.1)–(3.2), and that the solution is strictly stationary and ergodic, with the
following causal representation:

ht ¼ �0 þ
X1
j¼ 1

c 0
Yj
i¼ 1

At� i

0
@

1
A
t� j a:s:; (3:5)

where 
t ¼ (�0�t; 0; :::; 0; �0; 0; :::; 0)(rþ s)
 1, with the first component �0�t and
(rþ 1)-th component �0; c¼ (�1; :::; �r; 1; :::; s)

0, and

At ¼

�1�t ::: �r�t 1�t ::: s�t
I(r� 1)
 (r� 1) O(r� 1)
 1 O(r� 1
 s

�1 ::: �r 1 ::: s
O(s� 1)
 r I(s� 1)
 (s� 1) O(s� 1)
 1

0
BBBB@

1
CCCCA:

(3:6)

Bollerslev (1986) provided the necessary and sufficient condition for the existence
of the 2mth moment of the GARCH(1,1) model, and the necessary and sufficient
condition for the fourth-order moments of the GARCH(1,2) and GARCH(2,1)
models. Using a similar method as in Bollerslev (1986), He and Teräsvirta (1999a)
provided the moment conditions for a family of GARCH(1,1) models. Ling
and McAleer (2002d) derived the sufficient condition for the existence of the
stationary solution for this family of GARCH(1,1) models, showed that He and
Terävirta’s (1999a) condition is necessary but not sufficient, and provided the
sufficient moment condition. He and Teräsvirta (1999b) and Karanasos (1999)
examined the fourth moment structure of the GARCH(r, s) process. From the
proof in Karanasos (1999), it can be seen that the condition is necessary but not
sufficient. He and Teräsvirta (1999b) stated that their condition is necessary and
sufficient. Ling and McAleer (2002c) showed that the necessary condition for the
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existence of the fourth moment is incomplete, that the condition is not sufficient
for the existence of the fourth moment, and also derived the necessary and
sufficient conditions for the existence of all the moments.

Based on Theorem 2.1 in Ling and Li (1997c) and Theorem 2 in Tweedie (1988),
Ling (1999b) showed that a sufficient condition for the existence of the 2mth
moment of model (3.1)–(3.2) is

	 [E(A�mt )] < 1; (3:7)

where 	(A)=max{eigenvalues of a matrix A}. Ling’s result does not need to
assume that the GARCH(r, s) process starts infinitely far in the past with finite
2mth moment, as is required in Bollerslev (1986) and He and Teräsvirta (1999a,b),
and has a far simpler form as compared with that of Milhøj (1985). Ling and
McAleer (2002c) further showed that condition (3.7) is also necessary for the
existence of the 2mth moment. Thus, the moment structure of the GARCH(r, s)
model in (3.1)–(3.2) has now been established completely. Bera, Higgins and
Lee (1996) considered a random coefficient formulation of GARCH processes.
An asymptotic theory for the sample autocorrelations and extremes of a
GARCH(1,1) process is provided in Mikosch and Stărică (2000). As an extension
of the GARCH(r, s) process, Ling and McAleer (2002c) also derived the necessary
and sufficient moment conditions of the asymmetric power GARCH(r, s) model
of Ding et al. (1993).

3.2. Quasi-maximum likelihood estimation

The GARCH model is usually estimated by the quasi-maximum likelihood
method. However, the properties of the QMLE are not completely clear. Consider
the simple but important GARCH(1,1) model. In this case, the likelihood can be
written as

L(�)¼
Xn
t¼ 1

lt; lt ¼�
1

2
ln ht �

1

2

"2
t

ht
; (3:8)

where ht is treated as a function of "t, and the parameter � ¼ (�0; �1 1)
0 and ht are

calculated through the following recursion:

ht ¼ �0 þ �1"
2
t� 1 þ 1ht� 1; h0 ¼ a positive constant: (3:9)

Lee and Hansen (1994) and Lumsdaine (1996) proved that the local QMLE is
consistent and asymptotically normal, assuming that E(ln(�1�

2
t þ 1)) < 0, which

is the necessary and sufficient condition for strict stationarity. However, Lee
and Hansen (1994) required that all the conditional expectations of � 2þ �

t <1
uniformly with � > 0, while Lumsdaine (1996) required that E� 32

t <1. In
addition, Lee and Hansen (1994) showed that the global QMLE is consistent if
"t is second-order stationary. Lee and Hansen (1994) and Lumsdaine (1996) stated
that their methods are valid only for the simple GARCH(1,1) model and cannot
be extended to more general cases.
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For the general order GARCH(r, s) model, Ling and Li (1997b) proved that
the local QMLE is consistent and asymptotically normal if E"4

t <1. Based on
uniform convergence as a modification of a theorem in Amemiya (1985, page
116), Ling and McAleer (2002b) proved the consistency of the global QMLE
under only the second- order moment condition. They also derived the asymptotic
normality of the global QMLE under the 6th moment condition.

When �t is not normal, the QMLE is inefficient. Drost and Klaassen (1997)
investigated adaptive estimation of the GARCH(1,1) model. This method was
extended to nonstationary ARMA models with higher-order GARCH(r,s) errors
by Ling and McAleer (2002a). Francq and Zako�̈an (2000) consider the estimation
of weak GARCH representations (Drost and Nijman, 1993) characterized by an
ARMA structure for the squared error terms.

4. Stationary ARMA-GARCH models

The ARCH process is a non-independent white noise sequence, which first
appeared in the regression model of Engle (1982). Engle’s original motivation
seems to have been that an ARCH structure provides improved statistical
inference for the mean of the regression model, such as confidence intervals and
forecasting. Over the last decade, there has been a tendency to employ the
ARCH=GARCH model to analyze the volatilities of financial and economic data,
while ignoring the specification and estimation of the conditional mean. However,
if the conditional mean is not specified adequately, then it may not be possible to
construct consistent estimates of the true ARCH process, for which statistical
inference and empirical analysis regarding the ARCH component might be
misleading. Thus, even though the primary interest might be on the volatilities
in the data, the specification and estimation of the conditional mean are still
important.

The conditional mean is typically given as an AR or ARMA model. However,
since the conditional variances of the white noise are not constant, the generating
mechanism of the AR or ARMA model is quite different from the traditional AR
or ARMA model with i.i.d. errors, or martingale differences with a constant
conditional variance. As a number of statistical properties of the traditional AR
or ARMA model cannot be extended to the present case, it is necessary to have a
thorough investigation of these types of models.

We define the ARMA-GARCH model by the following equations:

yt ¼
Xp
i¼ 1

’iyt� i þ
Xq
i¼ 1

 i"t� 1 þ "t; (4:1)

"t ¼ �t
ffiffiffiffi
ht

p
; ht ¼ �0 þ

Xr
i¼ 1

�i"
2
t� i þ

Xs
i¼ 1

iht� i: (4:2)

There is no paper which is especially devoted to the ARMA-GARCH model,
although it is a special case of Ling and Li (1997c, 1998) and Ling and McAleer
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(2002b). When s¼ 0, the ARMA-GARCH model reduces to the ARMA-ARCH
model, which is a special case of the ARMA-ARCH model of Weiss (1986). When
q¼ 0, s¼ 0 and r¼ 1, the AR-ARCH(1) model was investigated by Pantula
(1988). The properties of the ARMA-GARCH model appear in Ling and Li
(1997c). When all the roots of � (z)¼ zp �

Pp
i¼ 1 ’iz

p� i lie outside the unit circle,
yt is strictly stationary if "t is strictly stationary, and yt is 2mth order stationary if
"t is 2mth stationary. Thus, in this section, we consider estimation of only the
ARMA-GARCH model.

The parameters in (4.1)–(4.2) consist of two sets: one set includes the
parameters of the conditional mean, denoted by m, and another set includes the
parameters of the conditional variance ht, denoted by �. In practice, m is first
estimated and then the residuals from the estimated conditional mean are
calculated. When the residuals have been obtained, � can be estimated using the
methods in Sections 2–3. Furthermore, the estimated ht is used to obtain a more
efficient estimator of m. If the density function of �t is symmetric, the MLE of m
and � can be obtained through a separate iteration procedure without loss of
asymptotic efficiency. The following section examines the estimation of m when �
is assumed to be known.

4.1 Least squares estimation

Denote the true value of m by m0. Given observations y1; :::; yn, the LSE of m0, m̂m,
is defined as the values in � which minimize

Sn ¼
Xn
t¼ 1

"2
t : (4:3)

For the ARMA-ARCH model, Weiss (1986) showed that m̂m is consistent for m0

and ffiffiffi
n
p

(m̂m�m0) 2L N(0; A); (4:4)

with

A¼ E�1
@"t

@m

@"t

@m 0

2
4

3
5E " 2

t

@"t

@m

@"t

@m 0

2
4

3
5E�1

@"t

@m

@"t

@m 0

2
4

3
5
m¼m0

Pantula (1989) also obtained the asymptotic distribution of the LSE for the AR
model with ARCH(1) errors, and gave an explicit form for A. The results in Weiss
(1986) and Pantula (1989) require that yt has finite fourth moment. As yet, no one
seems to have considered the LSE of m0 for the ARMA-GARCH model.
However, the result in Weiss (1986) for the LSE can be easily extended to the
ARMA-GARCH model. When GARCH reduces to an i.i.d. white noise process,
the LSE is equivalent to the MLE of m0.

There is presently no asymptotic theory for the LSE of the ARMA-GARCH
model when the fourth moment condition is not satisfied. From the results of
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Davis and Mikosch (1998), it would be expected that the LSE is inconsistent if the
variance of "t is infinite, but is consistent but with a slower convergence rate thanffiffiffi
n
p

if "t has finite variance and infinite fourth moment. In such cases, the results
would be different from those in Davis and Resnick (1985, 1986).

4.2. Quasi-maximum likelihood estimation

Although the LSE is consistent and asymptotically normal if the fourth moment is
finite, it is inefficient for ARMA-ARCH=GARCH models. In such cases, it is
standard to use MLE. The maximum likelihood method was first used by Engle
(1982) for both the AR-ARCH model and a fixed design regression with ARCH
errors. First, the log-likelihood function can be written as

L(m)¼
Xn
t¼ 1

lt; lt ¼�
1

2
ln ht �

1

2

"2
t

ht
; (4:5)

where ht is treated as a function of yt and m, and is calculated through the
following recursion:

ht ¼ �0 þ
Xr
i¼ 1

�i"
2
t� i þ

Xs
i¼ 1

iht� i; h0 ¼ a positive constant: (4:6)

Define m̂m¼maxm 2� L(m). Since �t is not assumed to be normal, m̂m is referred to
as the QMLE of m. For the ARMA-ARCH model, Weiss (1986) showed that the
QMLE is consistent and asymptotically normal under a finite fourth moment
condition. From Ling and Li (1997c), there exists a locally consistent and
asymptotically normal QMLE for the ARMA-GARCH model if it has finite
fourth moment. When �t is normal, the asymptotic covariance matrix offfiffiffi
n
p

(m̂m�m0) is

B¼ E
1

ht

@"t

@m

@"t

@m 0
þ

1

2h2
t

@ht

@m

@ht

@m 0

2
4

3
5
�1

m¼m0

(4:7)

Engle (1982) demonstrated that the MLE is more efficient than the LSE through a
simple fixed design regression model and a first-order ARCH process. Pantula
(1989) also showed that the MLE is more efficient than the LSE for the AR model
with ARCH(1) errors. In fact, it can be shown that A � B for the general ARMA-
GARCH case.

Under the existence of the second moment, Ling and McAleer (2002b) showed
that the global QMLE is consistent. However, in order to derive the asymptotic
normality of the global QMLE, the model must satisfy the sixth moment
condition. For the ARMA-GARCH(1, q) model, it is possible to show that the
global QMLE of m0 is consistent and asymptotically normal, even if the fourth
moment condition is not satisfied.
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4.3. Adaptive estimation

The QMLE of m0 in the stationary ARMA-GARCH model is efficient only if �t
is normal. When �t is not normal, adaptive estimation is useful for obtaining
efficient estimators. A comprehensive account of the theory and method of
adaptive estimation can be found in Bickel (1982) and Bickel, Klaassen, Ritov and
Wellner (1993), with valuable surveys available in Robinson (1988) and Stoker
(1991).

In the time series context, Kreiss (1987a) investigated the stationary ARMA
model with i.i.d. errors. He proved the local asymptotic normality (LAN)
property of the model and constructed adaptive estimators of m0. Unlike Bickel
(1982), Kreiss’ adaptive procedure avoids the split sample technique, and hence is
quite useful for practical applications. Jeganathan (1995) and Koul and Schick
(1996) constructed adaptive estimators without splitting the sample for some
nonlinear AR time series with i.i.d. noise. Koul and Schick (1996) also showed
through simulation that the adaptive estimator without splitting the sample is
superior to those based on the split sample technique.

Lee and Tse (1991) and Engle and González-Rivera (1991) are among the first
to have used a semiparametric approach for models (4.1)–(4.2), but they did not
obtain any theoretical results. Koul and Schick (1996) investigated adaptive
estimation for a random coefficient AR model, which is an ARCH-type time series
model. Jeganathan (1995) and Drost, Klaassen and Werker (1997) developed
general frameworks suitable for stationary ARCH-type times series. The results in
Ling and McAleer (2002a) include the development of the adaptive method for
stationary ARMA-GARCH models and the conditions required for adaptive
estimation.

5. Nonstationary ARMA-GARCH models

Nonstationary time series have now been extensively investigated for the last two
decades. Some important results for nonstationary AR models can be found in
Fuller (1976), Dickey and Fuller (1979), Phillips (1987), Chan and Wei (1987,
1988), Tsay and Tiao (1990) and Jeganathan (1995), among many others.
However, research on nonstationary time series is almost always limited to
innovations with constant conditional variances. Under the framework of Phillips
and Durlauf (1986) and Phillips (1987), the long-run variance and the innovation
variances are equal in the presence of heteroscedasticity, but it does not include
conditional heteroscedastic processes as defined in (3.1)–(3.2).

The ARMA-GARCH model is called nonstationary if the characteristic
polynomial � (z) has a root on the unit circle. Consider the simple AR(1) case:

yt ¼ �yt� 1 þ "t (5:1)

where �¼ 1, and "t follows the GARCH(1,1) process, that is,

"t ¼ �t
ffiffiffiffi
ht

p
; ht ¼ �0 þ �1"

2
t�1 þ 1ht� 1: (5:2)
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When 1 ¼ 0, in which case "t follows a first-order ARCH process, Pantula (1989)
derived the asymptotic distribution of the LSE of the unit root under the fourth
moment condition. Ling and Li (1997b) obtained the same result under the second
moment condition, namely �1 þ 1 < 1. The asymptotic distribution is

n(�̂�LS � 1) 112
L

Ð 1

0 B(t) dB(t)Ð 1

0 B
2(t) dt

;

where �̂�LS ¼ (
Pn

t¼ 2 y
2
t� 1)

�1(
Pn

t¼ 2 ytyt� 1) and B(t) is a standard Brownian
motion. Thus, the Dickey–Fuller test statistic can still be used. However, Peters
and Veloce (1988) and Kim and Schmidt (1993) provided simulation results
showing that Dickey–Fuller tests based on the LSE are generally not robust.

It should be noted that, for stationary ARMA-GARCH models, the QMLE is
more efficient than the LSE. It seems natural to expect this advantage to extend
to nonstationary time series, in which case unit root tests based on the MLE in
the presence of ARCH=GARCH innovations should be useful. According to
standard statistical theory, an efficient estimator will often provide locally most
powerful tests [e.g. see Rao (1973; Chapter 7)]. For this reason, unit root tests
based on QMLE would be expected to be more powerful than those based on
LSE.

Note that Leybourne, McCabe and Tremayne (1996) observed that hetero-
scedasticity will be present automatically if � is actually a random variable
fluctuating about 1. They developed a score test for such a randomized unit root.

5.1. Quasi-maximum likelihood estimation

In this section, we assume that the characteristic polynomial � (z) has only a unit
root of þ1. The general case was investigated in Ling and Li (1998). Since ’ (z) has
a unit root, it can be decomposed as (1� z)� (z), where � (z)¼ 1�

Pp� 1
i¼ 1 �iz

i.
Let wt ¼ (1� B)yt, where B is the backshift operator. Model (4.1) can be rewritten
as

yt ¼ �yt� 1 þ wt; wt ¼
Xp� 1

i¼ 1

�iwt� i þ
Xq
i¼ 1

 i"t� i; (5:3)

where � ¼ 1 and "t is defined by (4.2). The parameters in model (5.3) are �
and m¼ (� 0;  0) 0, where �¼ (�1; :::; �p� 1)

0 and  ¼ ( 1; :::;  q)
0. As in the

stationary case, we assume that the parameters in (4.2) are known or can be
estimated consistently.

Given the observations y1; :::; yn, with initial values yi ¼ 0, or some constants,
for i ˘ 0, the log-likelihood function can be written as

L(�)¼
Xn
t¼ 1

lt; lt ¼�
1

2
ln ht �

1

2

"2
t

ht
; (5:4)
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where �¼ (�;m 0) 0, and ht is treated as a function of yt and �. Ling and Li (1998)
showed that there exists a locally consistent QMLE such that

G�1
n (�̂�� �) 2L (
ML;N

0) 0; (5:5)

where


ML ¼
c
Ð 1

0 w1(t) dw2(t)

F
Ð 1

0 w
2
1(t) dt

; (5:6)

c¼ [1� � (1)]�1, N is a normal random vector independent of 
ML, F is a
constant depending on the GARCH parameters, �¼ E� 4

t � 1, and (w1(t); w2(t)) is
a bivariate Brownian motion with covariance t�. When r¼ s¼ 1,

�¼
Eht 1

1 E(1=ht)þ ��2
P1

k¼ 1 
2(k� 1)E("2

t� k=h
2
t )

 !
; (5:7)

and when �t is normal, �¼ 2 and F¼ E(1=ht)þ 2�2
P1

k¼ 1 
2(k� 1)E(" 2

t� k=h
2
t ).

For higher-order GARCH models, the structure of � can be found in Ling and Li
(1998). Note also that, unlike the least squares case, the moving average
parameters do not appear in (5.6) and (5.7).

The above results were derived under the fourth moment condition in Ling and
Li (1998). Furthermore, under the second moment condition, Ling and Li (1997b)
derived the same result for models (5.1)–(5.2) when c=1. If the second moment
condition is not satisfied, the asymptotic distribution for the LSE or QMLE of the
unit root is as yet unknown. For the unit root process with i.i.d. errors having
infinite variance and in the domain of attraction of an �-stable law, Chan and
Tran (1989) and Chan (1990) showed that n�1(�̂�LS � 1) converges to a functional
of a Levy process with � 2 (0; 2). It is conjectured that there is a similar
asymptotic distribution for the LSE or QMLE of the unit root when the GARCH
noise has an infinite variance.

5.2. Unit root tests based on QMLE

The asymptotic distribution for the QMLE of the unit root can be used to
construct a unit root test. For simplicity, we consider only models (5.1)–(5.2).
Denote ~��ML as the QMLE of �, and let

B1(t)¼
1

�
w1(t) and B2(t)¼�

1

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

�2K� 1

vuut w1(t)þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

�2K� 1

vuut w2(t);

where �2 ¼ Eht and K is the (2, 2)th element of �. Then B1(t) and B2(t) are two
independent standard Brownian motions. As shown in Ling and Li (1998),

n( ~��ML � 1) 112
L

Ð 1

0 B1(t) dB1(t)

�2F
Ð 1

0 B
2
1(t) dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2K� 1
p

�2F

Ð 1

0 B1(t) dB2(t)Ð 1

0 B
2
1(t) dt

: (5:8)
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The second term in (5.8) can be simplified to [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2K� 1
p

=F�2](
Ð 1

0 B
2
1(t) dt)

�1=2
,
where 
 is a standard normal random variable independent of

Ð 1

0 B
2
1(t) dt (see

Phillips, 1989). Thus,

n(�̂�ML � 1) 112
L

Ð 1

0 B1(t) dB1(t)

�2F
Ð 1

0 B
2
1(t) dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2K� 1
p

�2F

ð1

0

B2
1(t) dt

0
@

1
A
�1=2


: (5:9)

From (5.8)–(5.9), we see that the asymptotic distribution of �̂�ML can be
represented as a combination of the asymptotic distribution of �̂�LS and a scale
mixture of normals. This property is similar to that of the least absolute deviation
estimator of unit roots given in Herce (1996). Ling and Li (1998) showed that the
QMLE of � is more efficient than the LSE.

As the asymptotic distribution in (5.9) includes nuisance parameters, we cannot
use it directly to test for a unit root. There are two methods to overcome this
difficulty. The first is to combine the LSE and QMLE to construct a unit root test,
as in Ling and Li (1997b). Let

L� ¼ n(�̂�LS � 1); Lt ¼
1

n2

Xn
t¼ 1

y2
t� 1

0
@

1
A

1=2

L�;

where Zy¼ n�1
Pn

t¼ 1 yt� 1. Furthermore, define

M� ¼
�̂�2F̂Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂�2K̂K� 1

p {n(�̂�ML � 1)� (F̂F�̂�2)�1[n(�̂�LS � 1)]};

Mt ¼
1

n2

Xn
t¼ 1

y2
t� 1

0
@

1
A

1=2

M�:

Ling and Li (1997b) showed that

M� 112
L

ð1
0

B2
1(t) dt

2
4

3
5
�1=2


 and Mt 112
L


;

where 
 is a standard normal random variable independent of
Ð 1

0 B
2
1(t) dt.

The limiting distributions of M� and Mt are the same as those based on the
least absolute deviations estimators of Herce (1996). However, the test statistics
themselves are quite different. Empirical critical values of these distributions
were reported in Ling, Li and McAleer (2002), who showed that M� and Mt can
overcome the excessive sizes, as reported in Peters and Veloce (1988) and Kim
and Schmidt (1993), and have power comparable to that of the Dickey–Fuller
test.

Another method of overcoming the presence of nuisance parameters is to
construct a unit root test without using the LSE, as used in Seo (1999). First,
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rewrite (5.9) as

nc1( ~��ML � 1) 112
L 	

Ð 1

0 B1(t) dB1(t)Ð 1

0 B
2
1(t) dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p Ð 1

0 B1(t) dB2(t)Ð 1

0 B
2
1(t) dt

; (5:10)

where c1 ¼ �F=
ffiffiffiffi
K
p

and 	2 ¼ 1=(�2K) 2 (0; 1). The t-statistic is then given by

nc2
1

n2

Xn
t¼ 1

y2
t� 1

0
@

1
A

1=2

( ~��ML � 1) 112
L

	
Ð 1

0 B1(t) dB1(t)

(
Ð 1

0 B
2
1(t) dt)

�1=2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p Ð 1

0 B1(t) dB2(t)

(
Ð 1

0 B
2
1(t) dt)

�1=2
; (5:11)

where c2 ¼ c1=�. Seo (1999) tabulated the limiting distribution in (5.11) for
different values of 	. The simulation results in Seo (1999) showed that the unit
root test based on (5.11) not only overcomes the size distortion problem, but is
also consistently more powerful than tests based on the LSE. These results
confirm the expectation that more efficient estimates of unit roots yield more
powerful unit root tests.

When the conditional errors �t are not normal, the estimator of the unit root is
not efficient. Ling and McAleer (2002c) investigated adaptive estimation of the
non-stationary ARMA model with GARCH errors. They obtained the locally
asymptotic quadratic form of the log-likelihood ratio, and showed that it was
neither locally asymptotic normal nor locally asymptotic mixed normal. A new
efficiency criterion was given for a class of defined M-estimators. When the
conditional error density is known, Ling and McAleer (2002c) showed that
efficient estimators can be constructed using the kernel estimator for the score
function. It is also shown that the adaptive procedure for the parameters in the
conditional mean part uses the full sample.

6. Other ARCH-type models

In this section, some other ARCH-type models are considered, namely
double threshold ARCH, ARFIMA-GARCH, CHARMA, and vector
ARMA-GARCH.

6.1. Double threshold ARCH models

Given the success of Tong’s (1978, 1980) threshold model in nonlinear time series,
it is natural to consider threshold structures for the conditional variance
specification. The use of thresholds to model asymmetries is supported by well
known empirical characteristics as to the likely asymmetric behaviour of volatility
in the stock market (see, for example, French et al. (1987)).
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Li and Li (1996) proposed the double threshold AR conditional heteroskedastic
(DTARCH) time series model:

yt ¼ � (j)
0 þ

Xpi
i¼ 1

� (j)
i yt� i þ "t; aj� 1 < yt� b ˘ aj; (6:1)

"t ¼ �th1=2
t ; (6:2)

ht ¼ � (k)
0 þ

Xrk
i¼ 1

� (k)
i "

2
t� i; ck� 1 < yt� d ˘ ck; (6:3)

where j¼ 1; :::; �1; k¼ 1; :::; �2; and b and d � 1 are the delay parameters. In
(6.1)–(6.3), the threshold parameters satisfy �1¼ a0 < a1 < � � � < a�1 ¼1 and
�1 < c0 < c1 < � � � < c�2 ¼1, � (j)

i and � (k)
i are constants, � (k)

0 > 0 and � (k)
i � 0. The

model generalizes the threshold AR model of Tong (1978, 1980) to include a
threshold ARCH component. Tong (1990) referred to this type of hybrid model as
a second generation model. Note that other indicator variables may be used in
place of yt� b and yt� d. The threshold variables are typically defined as a linear
combination of the lagged values of the observed process, but van Dijk, Teräsvirta
and Franses (2000) relaxed this definition of threshold variables to include non-
linear combinations of the lags of the observed process as well as of other
variables. Li and Lam (1995) combined the threshold autoregressive model with a
fixed ARCH specification in studying the asymmetry of a stock index. Extension
to a double-threshold GARCH model was considered by Brooks (2001).

Ling (1999b) showed that, if
Pp

i¼ 1 maxj j � (j)
i j < 1 and

P r
i¼ 1 maxk �

(k)
i < 1,

then there exists a strictly stationary solution {yt; "t} satisfying models (6.1)–(6.3),
and E�1

(j yt j) and E�2
(" 2
t ) are finite, where �1 and �2 are the stationary

distributions of {yt} and {"t}, respectively. However, the uniqueness and ergodicity
conditions are as yet unknown. If the second threshold, ck� 1 < yt� d ˘ ck, is
replaced by ck� 1 < "t� d ˘ ck, the strict stationarity and ergodicity condition has
been obtained by Liu, Li and Li (1997).

Under the assumption that yt is strictly stationary and ergodic, and the
threshold parameters ai and ci are known, Li and Li (1996) proved that the MLE
is consistent and asymptotically normal. In practice, the threshold parameters ai
and ci are unknown and can be estimated by the maximum likelihood method.
However, the asymptotic distributions of the estimators are as yet unknown. For
the threshold AR model with i.i.d. errors, Chan (1993) showed that the estimator
of the threshold parameter has a convergence rate of n and an asymptotic
distribution associated with the compound Poisson process. This method could
possibly be used for the DTARCH model.

Pesaran and Potter (1997) considered a floor and ceiling model of US output
which may be interpreted as a double threshold ARCH model. Rabemanjara and
Zako�̈an (1993) examined an asymmetric ARCH model which may be regarded
as a special case of the DTARCH model. Fornari and Mele (1997) considered
a similar formulation to handle asymmetry in volatility. Lee and Li (1998)
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developed a smooth transition double threshold model. Lundbergh and Teräsvirta
(1998a) used a double smooth AR-GARCH model to analyse some high-
frequency exchange rate data. Wong and Li (1997) considered tests for the
presence of autoregression under ARCH, while Wong and Li (1999) examined
tests for the null of AR-ARCH against the double threshold ARCH model.

In the spirit of threshold nonlinear models Wong and Li (2000), Wong and
Li (2001a,b) considered mixtures of autoregressive models and mixtures of
autoregressive models with ARCH. Some interesting features of these types of
models are that some components of the mixture can be non-stationary while the
entire series can be stationary, the predictive distributions can be multimodal, and
it is fairly easy to derive the conditions for stationarity and expressions for the
autocorrelations.

6.2. Fractional ARIMA models

Let {yt} satisfy

� (B)(1� B)d(yt � �)¼ �(B)"t; (6:4)

"t j Ft� 1 �N(0; ht); ht ¼ �0 þ
Xr
i¼ 1

�i"
2
t� i þ

Xs
i¼ 1

iht� i; (6:5)

where (1� B)d is defined by the binomial series:

(1� B)d ¼
X1
k¼ 0

(kþ d� 1)!

k!(d� 1)!
Bk: (6:6)

The specifications in (6.4)–(6.5) are referred to as the fractional ARIMA-
GARCH or equivalently the ARFIMA-GARCH model, which was investigated
by Ling and Li (1997c). Baillie, Chung and Tieslau (1995) considered a fractional
ARIMA(0, d, 1)-GARCH(1,1) model for the CPI series of 10 different countries.
Note that exact maximum likelihood estimation of (6.4) with ht=a constant was
considered as early as 1981 in the University of Western Ontario Ph.D. Thesis by
W. K. Li.

Sufficient conditions for stationarity, ergodicity and the existence of higher-
order moments of the fractional ARIMA model were derived by Ling and Li
(1997c). Under some mild conditions, it is shown that the MLE is locally
consistent and asymptotically normal. It is well known that, when p¼ q¼ 0 so
that (1� B) dyt ¼ "t, the MLE of d converges to N(0; 6=�2) in distribution if "t is
i.i.d. (see Li and McLeod, 1986). However, when "t is a GARCH process, Ling
and Li (1997c) showed that the asymptotic variance is

�� ¼ E
1

ht

@"t

@d

0
@

1
A

2

þ
1

2h2
t

@ht

@d

0
@

1
A

2
2
64

3
75;
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which is no longer independent of d and is less than 6=�2. Ling and Li (1997c) also
examined the large sample distributions of the residual autocorrelations and the
squared-residual autocorrelations, and two portmanteau test statistics. Robinson
(1991) considered tests for conditional heteroskedasticity in long memory
processes. More recently, Beran and Feng (1999) considered local polynomial
estimation of a fractional ARIMA model similar to the above.

6.3. CHARMA models

Tsay (1987) proposed the conditional heteroskedastic autoregressive moving
average (CHARMA) model, given by:

yt � �¼
Xp
i¼ 1

 i(yt� i � �)þ
Xq
i¼ 1

�i"t� i þ "t; (6:7)

"t ¼
Xr
i¼ 1

�it"t� i þ
Xs
i¼ 1

wit(yt� i � �)þ w0t(ŷyt� 1(1)� �)þ "t; (6:8)

where the orders p, q, r and s are finite and non-negative integers; �,  i and �i
are constant; �it, wit and et are random variables; and ŷyt� 1(1)¼ E(yt j Ft� 1),
where Ft� 1 is the �-field generated by {et� i; wt� i; �t� i j i¼ 1; 2; :::},
wt ¼ (w0t; w1t; :::; wst)

0, and �t ¼ (�1t; :::; �rt)
0.

The LSE method can be used to estimate the parameters in (6.7). Tsay (1987)
proved that the LSE is consistent if E"4

t <1, and is asymptotically normal if
E" 8

t <1. Since the model is an extension of the random coefficient AR model, the
asymptotic MLE results can be obtained using the method in Nicholls and Quinn
(1982). Basic properties such as strict stationarity, ergodicity and the moment
structure are given in Ling (1999a).

The CHARMA model has been extended to the multivariate case. Wong and Li
(1997) considered a stationary multivariate CHARMA model, and Li, Ling and
Wong (1999) investigated a partially nonstationary AR model with conditional
heteroscedasticity, as follows:

Yt ¼ �1Yt� 1 þ � � � þ �pYt� p þ "t (6:9)

and

"t ¼ �1t"t� 1 þ � � � þ �qt"t� q þ et; (6:10)

where the �i are constant matrices; det{�(z)}¼ j I� �1z� � � � � �pz
p j ¼ 0 has

d ˘m unit roots and other roots outside the unit circle; rank[�(1)] ¼m� d;
�t ¼ (�1t; :::; �qt) is a sequence of i.i.d. matrices with mean zero and nonnegative
covariance E[vec(�t)vec

0(�t)]¼ �; and et is an i.i.d. random vector with mean zero
and positive covariance E(ete

0
t)¼ G.

Under the condition for the finite fourth moment, Li, Ling and Wong (1998)
derived the asymptotic distributions of the LSE, a full rank MLE, and a reduced
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rank MLE. When the multivariate ARCH process reduces to the innovation with a
constant covariance matrix, these asymptotic distributions are the same as in Ahn
and Reinsel (1990). However, in the presence of multivariate ARCH innovations,
the asymptotic distributions of the full rank MLE and the reduced rank MLE
involve two correlated multivariate Brownian motions, which are different from
those given in Ahn and Reinsel (1990). The asymptotic results in Li, Ling and Wong
(1998) can be used to construct cointegration tests based on the MLE.

6.4. Vector ARMA-GARCH models

Ling and McAleer (2002b) proposed the vector ARMA-GARCH model:

�(B)(Yt � �)¼�(B)"t (6:11)

"t ¼D1=2
t �t; Ht ¼Wþ

Xr
i¼ 1

Ai~""t� i þ
Xs
i¼ 1

BiHt� i; (6:12)

where Dt ¼ diag(h1t; :::; hmt) 0, Ht ¼ (h1t; :::; hmt)
0, �(B)¼ I� �1B� � � � � �pB

p

and �(B)¼ Iþ�1Bþ � � � þ�qB
q are polynomials in B, ~""t ¼ ("2

1t; :::; "
2
mt)
0, and

�t ¼ (�1t; :::; �mt)
0 is a sequence of i.i.d. random vectors with mean zero and

covariance �. The constant correlation multivariate GARCH (CC-MGARCH)
model of Bollerslev (1990) is a special case of (6.11)–(6.12). There are as yet no
asymptotic results available for the extension of the constant correlation model to
its dynamic counterpart, VC-MGARCH, namely the variable correlation
multivariate GARCH model.

Ling and McAleer (2002b) obtained the conditions for strict stationarity and
ergodicity, and the higher-order moments of the model. The consistency of the
global QMLE is proved under the existence of only the second-order moment. In
order to derive the asymptotic normality of the global QMLE, the results require
the second moment condition for the vector ARCH model, the fourth moment
condition for the vector ARMA-ARCH model, and the sixth moment condition
for the vector ARMA-GARCH model.

7. Conclusion

Most of the theoretical results for GARCH-type processes require that the fourth-
or higher-order moments exist. In practice, this condition may not be satisfied.
When the fourth moment of the GARCH process is infinite, it exhibits the feature
of heavy tails. At present, a theory is lacking for ARMA models derived from this
type of GARCH specification, even for ARMA models with i.i.d. heavy-tailed
noise (see Resnick (1997)). Since heavy-tailed phenomena are often encountered in
finance and economics, an analysis of data exhibiting heavy tails would seem to be
an important direction for future research.

Although there have been many contributions to the ARCH=GARCH
literature, it seems that until recently very little attention has been paid to model
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selection. Apart from the diagnostic checking method of Li and Mak (1994) and
its extension by Ling and Li (1997a), there would seem to be few formal tools for
checking model adequacy. Tse and Zuo (1997) provided a simulation study of the
Li–Mak test. More recently, Lundbergh and Teräsvirta (1998b) showed that the
Li–Mak test is equivalent to a Lagrange multiplier test of no residual ARCH. Tse
(1999) provides a recent review of this literature. A generalization of Li and Mak
(1994) is obtained by Horvath and Kokoszka (2001). A robustified version of Li
and Mak (1994) against outliers is developed by Jiang, Shao and Hui (2001). All
order selection methods for ARMA models, such as those in Hannan (1980),
Potscher (1983, 1989), Tsay (1984), and Wei (1992), require that the error
processes are i.i.d. or martingale differences with supt E(" 2

t j Ft� 1) ˘ a constant.
However, ARCH-type models generally do not satisfy these conditions. It is
important to develop a theory for order selection of ARCH, GARCH and
ARMA-GARCH models, with Wong and Li (1996) and An, Fong and Li (1999)
being two useful attempts in this direction.
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He, C. and Teräsvirta, T. (1999a) Properties of moments of a family of GARCH processes.

Journal of Econometrics, 92, 173–192.
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