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Chemotherapy drugs are cytotoxic to tumor cells, but their lack of specificity leads to a range of side effects. The off-target effects of
such drugs can be improved through the use of nanoparticles (NPs). Administered NPs show enhanced accumulation in tumor
tissue near the blood vessels, enhancing both anticancer drug permeability and tumor retention. Several nanocarriers are now
approved for clinical use in a range of cancer therapies, and many novel formulations are in the later stages of clinical trials.
Here, we describe the advances in this area through the review of novel NP drug formulations developed over the last year. We
focus specifically on lung, colon, cervical, and breast cancers and discuss the future of NPs as potential treatment options in
these areas.

1. Introduction

Cancer encompasses a variety of diseases that result from the
deregulated growth and spread of malignant cells. According
to recent World Health Organization (WHO) statistics, up to
10 million new cancer cases are estimated to occur each year
and are projected to increase to 13 million cases in the next
20 years [1]. Despite the increased occurrence, cancer-
related mortality has decreased due to improved diagnostics,

molecular knowledge of cancer cell biology, and treatments
[2]. Cancer therapy typically involves surgery, chemother-
apy, and radiation therapy alone or in combination, with
sequencing technologies, permitting the era of precision ther-
apy that tailors cancer treatments to the genetic basis of each
individual cancer [3, 4]. Chemotherapy drugs primarily
interfere with DNA synthesis, targeting rapidly dividing can-
cer cells. These agents, whilst effective, are nonspecific, lead-
ing to healthy tissue damage and subsequent side effects that
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can contribute to the high mortality rates of cancer patients
[5]. An additional issue with chemotherapy drugs is the
increased incidence of drug resistance [6]. Hence, the ability
to develop chemotherapeutics that actively target cancer cells
is highly desirable.

In recent years, the improved understanding of tumor
biology combined with the advancements in the develop-
ment of versatile materials has led to improved drug delivery
systems of chemotherapeutics to tumor sites. More specifi-
cally, nanotechnology has profoundly improved clinical can-
cer therapeutics in the last 20 years [7–12]. NP-based drug
delivery systems or nanocarriers can improve drug efficacy
and selectivity through enhanced permeability and retention
(EPR) effects in tumor tissues [13–20]. Nanocarriers also dis-
play improved cellular uptake in comparison to standard
chemotherapy drugs. Among the nanocarriers, liposomes,
polymeric nanoparticles, and micelles have received the most
attention [21]. To date, several nanoparticle-based chemo-
therapeutics are clinically approved whilst others are in the
advanced stages of clinical development. However, nanocar-
riers are associated with certain drawbacks such as poor bio-
degradation, bioavailability, stability, tissue distribution, and
toxicity, thus causing safety concerns, particularly for long-
term cancer treatment. Herein, we will discuss drug delivery
nanocarriers for cancer therapy to improve chemotherapeu-
tics that have been developed recently. We will further
discuss the future directions of NP-based cancer chemother-
apy with a focus on lung, colon, and female cancers.

2. Nanocarriers

The physical and chemical properties of NPs greatly influ-
ence their efficacy. Nanoscale compounds from synthetic
polymers, lipids, proteins, and inorganic particles have been
developed [21–29]. They promote drug protection, solubility,
and stability, enhancing drug delivery. NP functionalization
with target specific ligands, such as folic acid, aptamers, pep-
tides, and antibodies, permits the targeted delivery of drugs.
The culmination of these benefits is numerous drug delivery
vehicles with reduced toxic side effects and improved phar-
macokinetics, which vary according to surface physicochem-
ical properties and size [30–35].

Among organic nanocarriers, liposomes are spherical
lipid vesicles composed of a self-forming phospholipid
bilayer that surrounds an aqueous internal cavity [25, 36].
The commercially available lipids for liposome NPs include
cholesterol, phosphatidylcholine, phosphatidylethanol-
amine, and phosphatidylserine. Liposomes are attractive as
they lack toxicity and easily internalize into tumor cells, per-
mitting drug transport across cellular membranes. However,
their major disadvantages are expensive preparation
methods, low drug-loading capacity and stability, and rapid
disintegration in the human body before achieving the ther-
apeutic effect. ThermoDox®, a thermosensitive liposomal
formulation (TSL) containing doxorubicin, is the only TSL
in development. This formulation selectively unloads its pay-
load in the tumor microenvironment due to its responsive-
ness to a temperature above 40°C, thus resulting in
increased anticancer efficacy of its loaded drug [37]. The

use of lipid-based nanocarriers as opposed to liquid oils per-
mits controlled drug release through reducing drug mobility
[38]. Solid lipid NPs (SLNs) are frequently used as NPs for
intravascular administration and consist of a hydrophobic
lipid core into which drugs can be dissolved permitting high
drug-loading efficiencies [39]. Polymeric micelles are another
form of lipid based‐NP < 100 nm in size and composed of
phospholipids and polymers that spontaneously form in
aqueous solution [40, 41]. They are suitable carriers for drugs
with poor water solubility due to their amphiphilic character-
istics, viz., hydrophobic core and hydrophilic shell. Reverse
micelles (RMs) are frequently used due to their ease of solu-
bility in oil phases [42–44]. However, a disadvantage of RMs
is their lack of tissue specificity and inability to mediate tar-
geted drug delivery [42]. Micellar nanocomplex (MNC)
NPs are mainly composed of (−)-epigallocatechin-3-O-gal-
late (EGCG), an anti-inflammatory polyphenol [45]. MNCs
can shield protein drugs from the action of proteolytic
enzymes during transportation to the tumor tissues.
Genexol-PM® is amphiphilic polymer-based micellar formu-
lation loaded with paclitaxel and is used for the effective
treatment of metastatic breast and small-lung-cell carci-
noma. The formulation achieves enhanced anticancer activ-
ity of the drug to its long circulation as it gets avoidance
body clearance [46].

Among nonlipid-based NPs, mesoporous materials hold
promise due to their facile synthesis, highly ordered struc-
tures, biocompatibility, and large pore sizes, typically pre-
pared from assemblies of inorganic components such as
silica [30]. The pore size of mesoporous silica NPs (MSNs)
influences their pharmacological potential in terms of drug
adsorption, loading capacity, and drug release [30]. Pore
diameters vary from 2 to 50 nm enabling the production of
NPs that bind to small drug molecules or macromolecules.
The stability of the pore also dictates controlled drug-
release kinetics. So far, MSNs characterized by temperature,
pH, irradiation, enzymes, magnetic field, ultrasound, and
redox-based stimuli-responsive drug release have been devel-
oped [47].

Metal-organic frameworks (MOFs) constitute a class of
porous NPs with differing hybrid structures that consist of
a metal ion and an organic linker or spacer [48]. MOFs show
promise for controlled drug release due to their large surface
area and tunable pore size. However, MOFs must be scaled
down to the nanoscale level for utility as in vivo anticancer
drug carriers [49, 50]. Nano-MOFs have particular utility in
pharmaceutical applications as they permit controlled drug
release [49, 50]. Compared to conventional porous materials,
nano-MOFs incorporate much higher amounts of drugs
offering obvious advantages to cancer treatment. MOF-
based stimuli-responsive systems responding to pH, redox-
based, ATP, magnetic fields, temperature, pressure, irradia-
tion, and humidity have been developed.

Recently, NPs based on biocompatible and biodegradable
polymers such as polylactic acid (PLA) esters and their
copolymers with glycolic acid (PLGA), poly(ε-caprolactone),
polyglutamic acid, and poly(alkyl cyanoacrylate) have gained
popularity for nanocarrier fabrication [51]. These polymers
are broken down in the body to oligomers and monomers
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which are further eliminated via metabolic pathways. To sur-
mount the issue of phagocytosis upon intravenous adminis-
tration, the NPs may be coated with a hydrophilic polymer
such as polyethylene glycol (PEG), which hinders the identi-
fication of the NPs by the reticuloendothelial system. Dendri-
mers, inorganic NPs, nanoemulsions, carbon-based
nanomaterials, etc. are some of the other popular nanocar-
riers (Figure 1).

The first nanobased therapeutic approved by the FDA
was the liposomal NP doxorubicin Doxil®, a chemothera-
peutic primarily employed for breast cancer (BCa), bladder
cancer, and acute lymphocytic leukemia treatment. This
liposomal formulation results in enhanced anticancer
activity of the drug due to long circulating properties of
the liposomes achieved through inclusion of polyethylene
glycol in their composition [52–56]. The development of
this NP system was followed by Abraxane® (nab-pacli-
taxel), a BCa chemotherapy drug. Abraxane® is based on
albumin NPs; albumin NPs not only increase the drug sol-
ubility but also localize the drug into tumors due to its
higher affinity for hydrophobic molecules [57–61]. Notable
nanocarriers that have undergone FDA approval or are in
clinical trials are presented in Table 1 [54, 62–67]. Even
though most of the FDA-approved nanocarriers rely on
passive targeting via EPR, a few next-generation nanocar-
riers in clinical trials utilize active targeting approaches
due to the recent advances in protein engineering and
polymer chemistry.

3. Recent Advances in Nanocarrier Delivery
Systems for Cancer Treatment

3.1. Anticancer Drug Targeted Delivery through NPs.
Improved chemotherapy requires the drugs to cross the bio-
logical barriers followed by their selective localization in the
target tumor tissues, thus leading to enhanced anticancer
activity with minimum off-target side effects. Passive and
active NP drug targeting is a widely used approach [86, 87].
In passive targeting, nanocarriers localize their loaded anti-
cancer drugs passively in tumor tissues exploiting the
physiopathologic characteristics of tumors such as tumor
vasculature. Tumor vessel architecture becomes highly
defective along with poor lymphatic drainage, thus leading
to enhanced permeation and retention (EPR) effect [88, 89].
Small size of nanocarriers and defective tumor vasculature
are also exploited for anticancer drug passive targeting [90].
Blood vessels in the tumor tissue microenvironment have
larger gaps (100nm-2μm) in the endothelium; thus, they
differ from that of the normal. Therefore, nanocarriers in this
size range can easily reach tumors, resulting in selective local-
ization of the drugs in tumors [91, 92]. Furthermore, tumor
tissues are associated with poor lymphatic system which
results in higher interstitial pressure at their centers than
peripheries. This in turn leads to nanocarrier access into the
interstitial space; thus, nanocarriers remain in interstitia for
longer time with ultimate enhanced anticancer activity in
tumors [93]. Passive targeting strategies through nanocarriers
are depicted in Figure 2. Anticancer drugs can also be passively
targeted through making nanocarriers long circulating. Such

nanocarriers avoid clearance from the body and remain in bio-
logical systems for a longer time; thus, they pass through the
tumor microenvironment repeatedly with ultimate increased
anticancer activity of their loaded drugs. Similarly, cationic
nanocarriers are also used to localize their loaded drugs in
tumors due to their electrostatic interactions with angiogenic
endothelial cells in tumor blood vessels [86, 87].

Active drug targeting uses nanocarrier surface modified
with a targeting moiety. Targeting moiety attached to the sur-
face of nanocarriers recognizes specific receptors or antigens
associated with tumors as shown in Figure 3. This results in
the selective localization of drugs in the site of action whilst
preventing their uptake in healthy cells and tissues. Further-
more, some targeting ligands can trigger drug release from
nanocarriers inside target cells via receptor-mediated endo-
cytosis process [94]. Drug tumor internalization through
receptor targeting is an effective approach for improved che-
motherapy [95]. Cancer cells overexpress certain types of
receptors; thus, targeting moieties recognize these receptors
and highly selective drug localization in tumors is achieved
[96, 97]. Similarly, nanocarriers are also made responsive to
the changes in the tumor microenvironment; drugs get
released from nanocarriers in the tumor vicinity as a result
of their responsiveness to those stimuli such as pH, hyper-
thermia, redox potential, and certain enzymes in the tumor
microenvironment [86, 87]. Thus, increased drug concentra-
tion is achieved in the tumor microenvironment with ulti-
mate improved chemotherapy.

3.1.1. Targeting Lung Cancer. Lung cancer (LCa) is a leading
global cause of cancer-related deaths [98]. A chemotherapy
regimen, dependent on it being either adenocarcinoma or
squamous cell carcinoma, is often administered, combining
2 or 3 chemotherapy agents including cisplatin, docetaxel,
gemcitabine, Abraxane®, paclitaxel, pemetrexed, and vinorel-
bine [98, 99]. Many promising NP formulations for LCa ther-
apy have been described recently.

Due to their ability to permeate blood vessels and tissues
into tumors, metal-based NPs can be applied as drug carriers
for reducing cytotoxicity to healthy cells. Using nonorganic-
based approaches, Ramalingam and coworkers conjugated
Dox onto gold NPs using polyvinylpyrrolidone [100]. The
NPs inhibited the proliferation of A549 cells, increased cellu-
lar ROS production, and led to the induction of apoptosis.
Similarly, Kalaiarasi and colleagues synthesized copper oxide
NPs that could downregulate specific oncogenes including
histone deacetylase in A549 cells, leading to apoptotic induc-
tion [101]. Although platinum-based antitumor agents have
been widely used for LCa, their clinical outcomes are largely
limited by severe side effects and multidrug resistance.
Hence, platinum(II)-loaded drug nanocarriers have been
developed to overcome these drawbacks. For instance, Tsai
and coworkers synthesized diaminocyclohexane-platinu-
m(II)- (DACHPt-) loaded NPs through self-assembly that
could be efficiently internalized by platinum- (Pt-) resistant
LCa cell lines, inducing high levels of tumor toxicity [6].
Therefore, these DACHPt-loaded NPs provide a novel
potent nanocarrier platform for combating multidrug-
resistant LCa.
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Active targeting can be achieved by coupling drugs or
nanocarriers with cell-specific targeting moieties such as
ligands, peptides, antibodies, and aptamers, which can distin-
guish between normal and tumor cells. For instance, Song
and colleagues designed epidermal growth factor- (EGF-)
conjugated core-shell lipid-polymer hybrid NPs (LPNs) to
actively deliver docetaxel (DTX) and resveratrol (RSV) to
tumor cells [36]. The biodegradable EGF-DTX/RSV-NPs
showed synergistic tumor inhibition with minimal off-
target effects, highlighting their promise for LCa treatment.
Nanocarriers based on vitamin E succinate display biocom-
patibility, hydrophobicity, ease of synthesis, and anticancer
activity. On the other hand, hyaluronic acid (HA), a biocom-
patible and biodegradable anionic polysaccharide, permits
active targeting of tumor cell CD44 receptors. To enhance
tumor cell targeting and specific drug release, Song and
coworkers synthesized redox-sensitive NPs from hyaluronic
acid- (HA-) disulfide-vitamin E succinate conjugates that
were loaded with paclitaxel (PTX) [12]. The PTX-loaded
redox-sensitive NPs showed greater cytotoxicity in A549 cells
and A549 mouse xenograft models compared to redox-
insensitive NPs and PTX alone, indicating their potential
for PTX-targeted delivery for LCa treatment.

The clinical application of naringenin (NAR), a flavo-
noid, is limited by its low aqueous solubility, bioavailability,
and stability. These drawbacks could be overcome by
designing polymeric nanoparticles based on biocompatible
and biodegradable polymers. Parashar et al. [102] designed
chitosan- and HA-decorated naringenin poly caprolactone

NPs (NAR-HA@CS-PCL-NPs) that were cytotoxic to A549
cells but had no effect on noncancer cell lines. In vivo, the che-
mopreventive effects of the NAR-HA@CH-PCL-NPs were
shown in urethane-induced LCa rat models. AS1411 is a 26-
base G-rich DNA oligonucleotide that functions as a
nucleolin-binding aptamer overexpressed in a range of cancer
cells [103]. Guo et al. [5] developed amultifunctional nanocar-
rier consisting of methotrexate-loaded fluorescent gold
nanocluster-conjugated chitosan and AS1411 aptamers
(MTX@AuNCs-CS-AS1411), which exhibited significant
anticancer activity in A549 cells and inhibited tumor growth
in BALB/c mice. The codelivery of functionally distinct
anticancer drugs is an efficient strategy to overcome drug
resistance during LCa treatment. To achieve this, Amreddy
et al. [104] synthesized folic acid-conjugated polyamidoamine
(PAMAM) dendrimers to codeliver human antigen R (HuR)
siRNA and cis-diamine platinum to folate receptor-alpha
overexpressing LCa cells. The dendrimers produced greater
therapeutic effects than the individual therapies alone whilst
being nontoxic towards normal lung fibroblasts, which was
attributed to the elevated HuR in LCa cells.

miRNA-29b inhibits DNA methylation in LCa cells by
targeting DNA methyltransferases, further resulting in inhi-
bition of cell proliferation and apoptosis. Its limitations
including off-target effects, degradation, and poor cellular
uptake might be mitigated by a nanocarrier system. MUC1,
a transmembrane protein overexpressed in LCa, aids the
active targeting of drugs to the tumors. Perepelyuk and col-
leagues [105] synthesized mucin1-aptamer miRNA-29b-
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Figure 1: Different types of nanocarriers for drug delivery in cancer therapy.
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Table 1: Nanocarriers for cancer either in the market or in clinical trials.

Commercial name (company) Drug/agent Delivery system Indication Status Ref.

Doxil®/Caelyx™ (Schering-
Plough; Ortho Biotech)

Doxorubicin Liposome
Kaposi’s sarcoma; ovarian
cancer; multiple myeloma

Approved [68]

Myocet® (Sopherion;
Cephalon)

Doxorubicin Liposome Metastatic breast cancer Approved [68]

Lipodox® (Sun) Doxorubicin Liposome Ovarian cancer Approved [69]

DaunoXome® (Galen) Daunorubicin Liposome Kaposi’s sarcoma Approved [70]

Marqibo® (Talon;
Merrimack)

Vincristine Liposome
Acute lymphoblastic

leukemia
Approved [68]

Onivyde® (Ipsen) Irinotecan Liposome Pancreatic cancer Approved [71]

Oncaspar® (Enzon) PEG-L-asparaginase
Polymeric

nanoparticles
Acute lymphoblastic

leukemia
Approved [69]

Eligard® (Tolmar) Leuprolide acetate
Polymer (poly(DL-
lactide-co-glycolide))

Prostate cancer Approved [72]

NanoTherm® (MagForce) Iron oxide Iron nanoparticles Brain tumors Approved [73]

Abraxane® (Abraxis;
AstraZeneca)

Paclitaxel
Albumin-bound
nanoparticles

Various cancers Approved [68]

Rexin-G® (Epeius)
Targeting protein marked

phospholipid @ miRNA-122
Retrovector

Osteosarcoma, pancreatic
cancer

Approved [74]

Ontak® (Eisai)
Diphtheria toxin and interleukin

2 bound to liposomes
Protein nanoparticles T-cell lymphoma Approved [75]

Vyxeos (Jazz) Daunorubicin+cytarabine Liposomes Acute myeloid leukemia Approved [76]

Genexol-PM® (Samyang
Biopharm)

Paclitaxel Polymeric micelles Ovarian cancer Phase II [68]

LEP-ETU (NeoPharma) Paclitaxel Liposomes Ovarian, breast, lung cancers Phase I/II [77]

Paclical (Oasmia) Paclitaxel Micelles Ovarian cancer Phase III [78]

OSI-211 (OSI) Lurtotecan Liposomes Lung, ovarian cancer Phase II [79]

SGT-53 (SynerGene) Wild-type p53 gene Liposomes
Solid tumors; glioblastoma;

pancreatic cancer
Phase II [80]

Atragen (Aronex) All-trans-retinoic acid Liposomal
Acute promyelocytic

leukemia
Phase II [79]

Lipoplatin (Regulon) Cisplatin Liposomal Various cancers Phase III [79]

Aurimmune (CytImmune
Sciences)

TNF-α
Colloidal gold
nanoparticles

Solid tumors Phase II [79]

NK012 (Nippon Kayaku)
7-Ethyl-10-

hydroxycamptothecin
Polymeric micelle Advanced solid tumor Phase II [79]

NK105 (Nippon Kayaku) Paclitaxel Micelles Metastatic breast cancer Phase III [81]

PEP02 (Merrimack) Irinotecan Liposomes Advanced solid tumor Phase I [82]

CriPec (Cristal) Docetaxel Polymeric micelles Solid tumor Phase I [76]

CRLX101 (Cerulean) Camptothecin
Cyclodextrin-based

nanoparticles
Non-small-cell lung cancer

Phase II
completed

[75]

ABI-009 (AADi) Rapamycin
Albumin-bound
nanoparticles

Bladder cancer Phase I/II [79]

ThermoDox (Celsion) Doxorubicin
Thermal-sensitive

liposomes
Hepatocellular carcinoma Phase III [83]

CPX-351 (Fred Hutchinson
Research Center)

Cytarabine+daunorubicin Liposomes Acute myeloid leukemia Phase I/II [79]

LiPlaCis (Oncology Venture) Cisplatin Liposomes Various cancers Phase II [71]

PLM60 (CSPC ZhongQi) Mitoxantrone hydrochloride Liposomes
Non-Hodgkin lymphoma;

breast cancer
Phase I/II [84]

MM-302 (Merrimack) Trastuzumab Liposomes Breast cancer Phase I [78]

NBTXR3 (Nanobiotix) Radiotherapy
Hafnium oxide
nanoparticles

Liver cancer Phase I/II [76]
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loaded NPs which exhibited enhanced stability and delivery
of miRNA-29b to LCa tissue in vivo, resulting in inhibited
tumor growth.

An emerging area in lung cancer treatment is the inha-
lation delivery of NPs to improve tumor targeting. Inhaled
Dox NPs exhibit lower cardiac side effects compared to
the same standard dose of Dox after intratracheal adminis-
tration, and paclitaxel-polyglutamic acid conjugates have
been shown to be well tolerated by mice following intratra-
cheal administration [106]. Studies in this area also highlight
how lipid-based NPs display higher tumor accumulation and
remain resident in the lungs for longer time periods postin-
halation delivery. These and other inhalation-based nanocar-
riers hold promise for the effective delivery of anticancer
agents specifically to lung tumors in the future.

Recent advancements in pharmaceutical nanotechnology
have enabled formulation scientists to design surface-
engineered smart NP system for highly localized delivery of
chemotherapeutic agents in cancerous tissues. A recent study
reported PLGA-based dual-functionalized NP surface engi-
neered with epidermal growth factor receptor (EGFR)
aptamer for targeted delivery of homoharringtonine to lung
cancer. The NPs were capable of delivering and releasing
their loaded drug selectively to lung cancer cells due to their
receptor recognition ability and responsiveness to glutathi-
one present in the microenvironment of lung cancer [107].

3.1.2. Targeting Colon Cancer. Colon cancer is among the
most common cancer types [108]. Patients with localized
colon cancer typically receive surgery as the frontline treat-
ment, and chemotherapy regimens are typically administered
after surgery for ~6 months but their effectiveness remains
limited. As the enhanced expression of CD98, a transmem-
brane glycoprotein, is a characteristic of the apical membranes
of colon cancer cells, it is now established as a therapeutic
target for drug delivery to colon tumors. To target this recep-
tor, Xiao and colleagues [13] synthesized CD98-siRNA and

camptothecin-loaded PEGylated Fab′-NPs embedded in a
hydrogel for colon targeting. The efficacy of the dual system
was highlighted in mouse models of orthotropic colon tumors
in which the therapeutic efficacy was higher than NPs contain-
ing a single drug due to higher drug internalization into the
tumor cells.

A number of miRNAs display anticolon cancer activity
in vitro, but their in vivo applications are limited by
degradation in biofluids and limited cellular uptake. miR-
204-5p is significantly downregulated in colorectal cancer
tissues compared with normal tissues. Using a surface-

functionalizing technique, Zheng and colleagues [19]
synthesized poly(D,L-lactide-co-glycolide)/poly(L-lactide)-
block-poly(ethylene glycol)-folate polymer NPs that were
loaded with miR-204-5p and demonstrated their anticancer
effects on colon cancer cells and xenograft colon tumor
models in vivo. This study highlighted the NP system as a
novel option for miRNA delivery to colon cancer cells in an
in vivo setting.

Galectins are galactoside-binding proteins overexpressed
in colorectal cancer and are involved in regulating its devel-
opment, progression, and metastasis. In addition, they
display high affinity for sugars such as galactose and lactose.
Liu and colleagues [30] developed 5-fluorouracil-loaded
mesoporous silica NP-based galactosylated chitosans as
galectin-recognition materials for colon cancer-specific drug
delivery. The NPs displayed a high loading capacity,
sustained release, and increased cytotoxicity to human colon
cancer cells compared to free 5-fluorouracil in vitro, demon-
strating the efficacy of the inorganic-organic nanocomposite.
Similarly, Jiang and coworkers prepared HA-conjugated
mesoporous silica NPs loaded with 5-fluorouracil and
demonstrated their cytotoxicity to colon cancer cells [109].
HA on the surface of NPs targeted the CD44 receptors over-
expressed in the cancer cells.

Biotin is capable of targeted binding to biotin receptors
overexpressed on the surfaces of colon cancer cells. So,
Lin et al. [110] developed poly(ethylene glycol) and
biotin-modified Dox-loaded silica NPs. Dox release from
the NPs was redox-sensitive, and its tumor accumulation
was potentiated in both HCT116 cells and tumor-bearing
mice, enhancing its anticancer efficacy. In another study,
the effects of silymarin (SLM), previously limited as an anti-
cancer agent due to its low bioavailability, were enhanced
using nanostructured SLM encapsulated in micelles. These
NPs inhibited colon cancer cell growth and enhanced their
apoptotic and necrotic indexes, with no effects on healthy
colon cells [33].

Curcumin has been extensively shown to have anticancer
properties, but its use is restricted by poor absorption, degra-
dation, and rapid metabolism. In an interesting study by
Alkhader and colleagues [111], curcumin was encapsulated
into a chitosan-pectinate NP system (CUR-CS-PEC-NPs)
to enhance its colon targeting ability. The NPs significantly
enhanced the oral bioavailability of curcumin due to its pro-
tection from gastric degradation by pectin. These findings
highlight the potential of the CUR-CS-PEC-NPs for oral
delivery during colon cancer treatment and pave the way
for the development of similar carriers to improve the tumor

Table 1: Continued.

Commercial name (company) Drug/agent Delivery system Indication Status Ref.

Onco-TCS (Inex) Vincristine Liposomes Non-Hodgkin’s lymphoma Phase I/II [79]

Aroplatin (Antigenics) Cisplatin analog Liposomes Colorectal cancer Phase I/II [79]

EndoTAG-I (SynCore
Biotechnology)

Paclitaxel Liposomes Breast, pancreatic cancers Phase II [79]

Nektar-102 (Nektar) Irinotecan PEGylated liposome Breast, colorectal cancers Phase III [79]

NKTR-105 (Nektar) Docetaxel PEG-docetaxel Solid tumor Phase I [85]
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targeting of natural anticancer compounds. In another study,
pH-responsive xylan-curcumin prodrug NPs were synthe-
sized for improving curcumin anticancer efficacy against
colon cancer. The synthesized NPs were capable of releasing
their loaded drug at acidic pH owing to their pH-responsive
nature and increased the drug efficacy against human colon
cancer cells as compared to pure drug [112]. A recent study
has reported novel xylan-SS-curcumin redox-sensitive
prodrug NPs for codelivery of curcumin and 5-fluorouracil
against human colorectal cancer cells. Novel NPs were capa-
ble of increasing anticancer activity of their loaded drugs,
showing them promising drug delivery systems for improved

cancer therapy [113]. Another similar study reported xylan-
5-fluorouracil-1-acetic acid conjugates for colon cancer
targeted therapy. Results revealed polymeric conjugates
improved the drug anticancer efficacy against human colon
cancer [114]. The same research groupalso reported improved
anticancer activity for 5-fluorouracil against human colon
cancer cells upon delivery in amphiphilic xylan-stearic acid-
based NPs [115].

Colchicine is a natural alkaloid prodrug and acts as anti-
mitotic anticancer agent; however, its cytotoxicity is a chal-
lenge for its effective anticancer efficacy. A recent study
reported mesoporous silica NP surface functionalized with

Tumor cells

Nanocarriers surface functionalized
with targeting moieties

Receptors overexpressed
on tumor cells

Stimulus responsive
nanocarriers

Blood vessels

Figure 3: Schematic representation of active anticancer drug targeting through nanocarriers.

Normal tissue endothelial cells

Tumor cells

Long circulating nanocarriers

Small nanocarriers

Positively charged nanocarriers

Angiogenic vessels

Defective vasculature
of tumor tissues

Blood vessel

Figure 2: Schematic representation of passive anticancer drug targeting through nanocarriers.
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phosphonate groups and decorated with folic acid
chitosan-glycine complex for colchicine effective delivery
against colon cancer cells [116]. Enhanced anticancer
activity of colchicine-laded NPs was proposed to be due
to intrinsic apoptosis achieved via increased antimitotic
activity. Another recent study reported targeted delivery
of 5-fluorouracil (5Fu) and perfluorocarbon for effective
treatment of colon cancer through epidermal growth factor-
(EGF-) functionalized PLGA NPs. The functionalized NPs
were capable of selective localization of both the drugs into
colon cancer cells and inhibited tumor growth through their
ability of recognizing specific receptors present on colon
cancer cells [117].

3.1.3. Targeting Cervical Cancer. Cervical cancer accounts for
~3% of new cancer cases and the fourth most frequent cancer
in women [1]. Several studies highlighted how NPs improve
the activity of known anticancer drugs and natural products
and enhance their efficacy against cervical cancer cell lines
in vitro. However, in vivo studies on the effectiveness of these
NPs remain limited. Silver NPs display antimicrobial, anti-
inflammatory, and anticancer activities. Al-Sheddi and
coworkers [118] synthesized silver NPs using aqueous
extracts of the plant Nepeta deflersiana and demonstrated
their anticancer activity in HeLa cells through their ability
to enhance ROS, lipid peroxidation, and subG1 cell cycle
arrest. Yuan and colleagues investigated the synergistic
effects of camptothecin, an inhibitor of topoisomerase with
potent anticancer activity, and silver NPs on cultured human
cervical cancer (HeLa cells) [15]. This combination was
beneficial in the treatment of cervical cancer by altering the
mitochondrial membrane permeability, increasing ROS
formation, and activating caspases 9, 6, and 3. Hence, the
combination of NPs and anticancer agents represents as a
promising strategy in cancer research.

Regarding other nanomaterials, Luo and coworkers
produced biotin-modified polylactic-co-glycolic acid NPs
and demonstrated their ability to improve the antiprolifera-
tive effects of 15,16-dihydrotanshinone I in HeLa cells by
decreasing intracellular ROS generation [31]. Transferrin
has been extensively employed as a cancer cell-targeting
molecule since transferrin receptor is overexpressed on
cancer cells relative to normal cells. Boondireke and col-
leagues [119] enhanced the cytotoxicity of monomyristin,
a monoacylglycerol from saw palmetto palm, in HeLa cells
through its encapsulation into dextran-covered polylactide
NPs conjugated to transferrin. Encapsulation and transfer-
rin receptor targeting synergistically improved the water
solubility and anticancer efficacy of monomyristin.

Cisplatin (CDDP) is an effective anticancer drug, but its
lack of selectivity to cervical cancer tissue has limited its
use. Therefore, Cheng and colleagues incorporated CDDP
into fluorescein PEG amine grafted-aldehyde HA (Cy5.5-
PEG-g-A-HA) NPs to increase its selectivity for cervical can-
cer through tumoral acidic pH response [120]. Although HA
is used as a targeting agent in nanocarriers, a major fraction
might accumulate in the liver and might be cleared rapidly.
The application of aldehyde HA (A-HA) in this study seems
to have mitigated this issue. The experiments revealed

favourable CDDP biocompatibility and cervical tumor tar-
geting, with the NPs able to internalize and induce tumor cell
apoptosis. Fluorescent imaging in vivo revealed high levels of
CDDP-Cy5.5-PEG-g-A-HA accumulation at the cervical
tumor site, thus demonstrating improved CDDP targeting.

A recent study reported development of pH-sensitive
lipid polymer conjugate NP surface decorated with folic acid
for targeted delivery of paclitaxel and carboplatin to cervical
cancer. The dual-functionalized NPs resulted in higher cel-
lular uptake of the loaded drugs in cervical cancer cells
and tumor inhibition via pH-responsive drug release and
receptor recognition [121]. Similarly, another recent study
reported multifunctional layer-by-layer controlled released
mesoporous CaCO3 NPs for doxorubicin delivery to cervi-
cal cancer cells. The intelligent NPs were constructed with
chitosan and sodium alginate as alternative materials, folic
acid as cancer cell targeting ligand, and layer-by-layer as
pH-responsive approach. Cervical cancer cell-targeted deliv-
ery of doxorubicin was achieved in a controlled manner via
pH responsiveness and receptor recognition [122]. Another
recent study reported a novel bioinspired NP strategy for
simultaneous delivery of paclitaxel and siRNA for effective
treatment of cervical malignancies. Biomimetic dual-drug
delivery system was designed through camouflaging HeLa
cell membrane on PLGA NPs loaded with paclitaxel and
siRNA. The innovative biomimetic dual-drug delivery sys-
tem increased the drug selective tumor localization through
immune escaping ability. As a result, almost 83% cervical
tumor volume inhibition was achieved without side effects
in major organs [123].

3.1.4. Targeting Breast Cancer. Breast cancer (BCa) is the sec-
ond most frequent cancer and the leading cause of death in
women globally [1]. Although photothermal therapy (PTT)
is considered an attractive anticancer strategy, PTT-treated
cancer cells may attain thermoresistance due to the upregula-
tion of heat shock proteins (HSPs), mainly HSP70. Hence,
inhibiting upregulated HSP70 may diminish the resistance
of tumor cells to PTT. Quercetin, a dietary flavonoid, is not
only a HSP70 inhibitor but also a protein kinase B and
caspase 3 inhibitor. On the other hand, a cell membrane-
camouflaged system bestows NPs with powerful advantages.
In this context, Zhao and colleagues produced macrophage
membrane- (M-) camouflaged quercetin- (QE-) loaded hol-
low bismuth selenide NPs (M@BS-QE NPs) as a novel BCa
therapeutic [17]. The M@BS-QE NPs remained resident in
the circulation for longer time periods and enhanced BCa
tumor drug accumulation through their ability to evade the
immune system. A combination of macrophage membranes,
quercetin, and bismuth-based NPs promoted active target-
ing, sensitized the tumor cells to phototherapy, and inhibited
tumor invasiveness and metastasis. Actin cytoskeletal
remodelling is highly correlated with tumor metastasis. Qin
and colleagues designed novel small-sized fullerenol NPs that
caused cytotoxicity in migratory BCa cells. The NPs could
disturb actin cytoskeleton reorganization and dynamics in
cancer cells and inhibited metastasis of aggressive BCa [124].

Dhanapal and Balaraman Ravindrran synthesized chito-
san- and PLA-coated nanocarriers for piceatannol, a
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polyphenol with anticancer activity [24]. The degradation of
chitosan was inhibited by combining it with the polymer
PLA. These polymeric NPs provided a continuous release
of the entrapped piceatannol, leading to higher cytotoxic effi-
cacy for BCa and other cancer cell lines via mitochondria-
dependent pathways.

Kong et al. developed docetaxel- (DTX-) loaded cholic
acid-functionalized AS1411 aptamer-polydopamine-poly(ε-
caprolactone-ran-lactide) (CA(PCL-ran-PLA)) NPs which
displayed potent in vitro and in vivo cytotoxicity in combina-
tion with photothermal treatment for BCa therapy [125].
With excellent biocompatibility and reduced side effects,
these NPs appear promising for the synergistic chemo-
photothermal strategy of BCa. Shafiei-Irannejad et al. estab-
lished that metformin, a biguanide antidiabetic drug,
enhances the sensitivity of Dox-resistant BCa cells to Dox
via inhibition of P-gp activity [126]. They synthesized biode-
gradable poly(lactide-co-glycolide)-D-α-tocopheryl PEG
1000 succinate NPs encapsulating Dox and metformin,
which displayed efficacy towards inactivation of resistant
BCa cells [127]. Therefore, codelivery of Dox and metformin
by polymeric NPs might be a promising approach to over-
come MDR in BCa treatment.

Zeolitic imidazolate framework-8 (ZIF-8) is the most
frequently employed MOF for pH-responsive drug release,
due to its porosity, sensitivity, and superior drug-loading
capacity. Tian et al. fabricated fluorescein-ZIF-8/graphene
oxide nanocrystals with acidic pH-responsive release of
fluorescein [128]. These nanocrystals inactivated breast
cancer 4T1 cells with high efficacy due to photothermal effect
under near-infrared light. Chen and colleagues developed
ATP-responsive Dox-loaded aptamer-gated nano-MOFs,
which induced 40% and 55% cell death, respectively, within
5 days in MDA-MB-231 BCa cells [129]. They also reported
a Dox-loaded ATP/Mg2+-responsive Zr-MOF which dis-
played selective cytotoxicity against MDA-MB-231 cells
[130]. Due to overexpression of ATP in cancer cells, the apta-
mer targets the nucleolin receptor sites, leading to enhanced
cell permeation of nano-MOFs.

A recent study reported multiwalled carbon nanotubes
decorated with glycopolymers conjugated with folic acid for
targeted delivery of doxorubicin for effective breast cancer
therapy. Doxorubicin was selectively delivered to breast
cancer cells through dual targeting of glucose transporter
protein and folic acid receptors in breast cancer cells
[131]. Another recent study reported methotrexate-loaded
silica-coated gold NP system surface functionalized with
folic acid for combined chemo-phototherapy of breast
cancer. The nano system increased the effects of combined
chemo-phototherapy selectively in breast cancer cells due
to its selective delivery via folic acid receptor recognition
overexpressed on the surfaces of those cancer cells [132].
Furthermore, another recent study reported dual targeting
polymeric NPs for selective delivery of paclitaxel for the
treatment of bone metastatic breast cancer. The NPs were
decorated with folic acid and alendronate-modified D-α-
tocopheryl polyethylene glycol succinate for achieving dual
drug targeting. The novel system showed binding affinity
for hydroxyapatite followed by receptor-mediated internal-

ization, thus showing greater therapeutic effects for the
drug against bone metastatic cancer through inhibition of
tumor growth and increasing survival rate [133].

4. Conclusion and Future Perspectives

Chemotherapy is preferred for effective treatment of various
types of cancer due to its noninvasive nature and killing of
cancerous cells. However, optimum clinical efficacy of
chemotherapeutics cannot be achieved due to their unique
physicochemical properties and lack of target selectivity. As
a result, minimum anticancer efficacy is achieved at the cost
of massive contamination of the rest of the body, thus leading
to severe off-target side effects. Furthermore, the tumor
microenvironment also presents various obstacles due to its
abnormal pathophysiology. Due to their small size and
modulated physicochemical properties, nanocarriers are
now established as materials that can be increasingly utilized
in cancer therapeutics. In particular, stimuli-responsive and
surface-engineered targeted nanocarriers that release their
payloads at the tumor site are of particular interest to cancer
therapy. Recent advances in the field of pharmaceutical
nanotechnology have led formulation scientists to develop
smart nanocarrier-based targeted delivery systems for effec-
tive treatment and management of lung, colon, cervical,
and breast cancers. Published reports show that various types
of nanocarriers including liposomes, lipid, metal and
polymeric NPs and micelles, nano-MOFs, and carbon
nanotubes have been effectively used for targeted delivery
of chemotherapeutic agents for lung, colon, cervical, and
breast cancer treatment. Various types of surface-
functionalized nanocarriers such as high redox status, acidic
pH, or hypoxia-responsive NPs have also been reported for
overcoming the barriers of the tumor microenvironment
and selective localization of anticancer drugs in lung, colon,
cervical, and breast tumors. Recently, several nanodrugs have
received FDA approval, and many more are in clinical trials.
Most of the presently approved nanodrugs are based on
approved conventional drugs and simple NPs.

However, the lack of standard protocols for nanocarrier
and nanodrug characterization toxicity, physical, chemical,
and biological instability, disease heterogeneity, and irregular
in vivo behaviour of NPs frequently restrict the efforts of
researchers, thus leading to NP failure in late-phase clinical
trials. To prevent their failure in clinical trials, it is crucial
to understand the cancer heterogeneity and inherent proper-
ties of NPs so they can be effectively modulated for increasing
their stability and biocompatibility and uniform in vivo
behaviour. Similarly, research in nanomedicine for lung,
colon, cervical, and breast cancer treatment is mostly focused
on material and formulation investigations which represent
the preliminary stages. Data for their potential applications
as therapeutics needs to be acquired only from animal
studies, and multidisciplinary approaches should be
adopted. With the global trend towards precision medicine,
the future for a multicentered strategy of nanocarrier tech-
nology appears promising. Furthermore, regularity proce-
dures also remain as major obstacles; thus, an easy and
integrated approval procedure approach should be designed.
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Nevertheless, nanodrug platforms are incorporating a broad
range of NP types and becoming more complex. The research
occurring in this arena predicts the availability of numerous
new nanodrugs for clinical use in the future. Intelligent
NP systems capable of simultaneous targeted chemother-
apy, disease monitoring, and diagnosis can also be pre-
dicted from the current advancements being made in this
area. Although many challenges complicate nanodrug
development, it may only be a matter of time until these
agents offer unique solutions for unmet clinical needs.
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