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Abstract This paper gives an overview of recent advances in the field of non-
probabilistic uncertainty quantification. Both techniques for the forward propaga-
tion and inverse quantification of interval and fuzzy uncertainty are discussed. Also
the modeling of spatial uncertainty in an interval and fuzzy context is discussed.
An in depth discussion of a recently introduced method for the inverse quantifica-
tion of spatial interval uncertainty is provided and its performance is illustrated
using a case studies taken from literature. It is shown that the method enables an
accurate quantification of spatial uncertainty under very low data availability and
with a very limited amount of assumptions on the underlying uncertainty. Finally,
also a conceptual comparison with the class of Bayesian methods for uncertainty
quantification is provided.

Keywords Non-probabilistic analysis · Fuzzy analysis · Inverse methods ·
Uncertainty quantification

1 Introduction

Nowadays, the design of functional components for use in demanding applications
is largely founded on numerical approximations of the sets of differential equations
that describe the physical processes in our everyday life. In this way, the dynamic
and static responses of a complicated structural component to an estimated load
can be predicted long before it has been produced. In the context of designing
structural components, especially the Finite Element method [231] has become
an indispensable part of the toolbox of a modern design engineer, as it proves to
yield high-resolution predictions of the mechanical response of a structure to a
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realistic load situation. In recent years, also extended FE methods have been pro-
posed, including the computation of crack initiation and -propagation [42], various
methods for Computational Flow Dynamics [205] and Isogeometric Analysis [99].
The use of these powerful numerical methods has led to an significant reduction
in time-to-market and product development costs, as nearly all necessary design
optimizations can be performed virtually instead of by means of prototype test-
ing. These optimizations can include for example the minimization of the weight
of the structure while maintaining its structural performance, or to maximize its
reliability. As such, usually less costly prototype testing stages are needed in the
design. Therefore, these numerical design methods are nowadays omnipresent in
an industrial engineering context. Also in an academic context, the interest for
numerical design methods is large, as illustrated by the number of published and
cited papers on these subjects.

However, criticism exists with respect to purely virtual deterministic design op-
timizations. This criticism finds its root in the various sources of non-determinism
that are commonly encountered when designing structural components. First, since
most computations that involve the solution of (sets of) differential equations are
based on numerical approximations, the obtained results diverge inherently from
the true response of the system. This is, for example, caused by the discretization,
truncation, linearization and/or inadequate approximations that are used to dis-
cretize the problem [109]. This issue was also addressed by Albert Einstein (see
opening quote) during one of this lectures on geometry at the Prussian Academy of
Sciences, where he stated that ”As far as the laws of mathematics refer to reality,
they are not certain, and as far as they are certain, they do not refer to reality”.

Moreover, since nature itself is not deterministic, the material properties, mod-
eled geometry of the structure, design loading and boundary conditions that are
used to parametrize and construct the numerical model are also inherently non-
deterministic (see e.g. [67,157,206,111,184] for a thorough discussion). An example
of such natural non-determinism is the unknown process parameter variability dur-
ing the part manufacturing which entails that the final part properties such as the
mechanical strength or final dimensions cannot be determined deterministically
in beforehand. A second example is the lack of knowledge on the exact loading
conditions of the structure, as for example wind or snow loads on a building. Con-
sequently, deterministic studies of the problem are inadequate when a reliable and
economic and ecological design is pursued. Since the inherent non-determinism
is neglected in this way, a large degree of conservatism in the design is needed
to prevent premature failure. Unexpected premature failure of the structure due
to an inadequate design usually entrails significant costs in terms of maintenance,
insurance, legal actions and/or customer compensations, as well as a large damage
to the reputation of the company. The economic impact is especially relevant for
safety-critical applications such as aerospace, automotive, heavy machinery design,
off-shore oil drilling or the nuclear sector, where moreover also irreparable human
or ecological losses can occur upon failure. The necessary over-conservatism in the
design not only impairs the economic cost of producing the component; it also leads
to unnecessary weight gains, which is impermissible in such high-performance sec-
tors. Therefore, during the last decades, numerous research initiatives have been
taken to employ the large availability of computing power for the inclusion of non-
determinism in FE models, rather than further refining the resolution of the used
numerical methods. As such, the effect of various sources of non-determinism can



Recent trends in the modeling and quantification of non-probabilistic uncertainty 3

be incorporated already in early design stages, enhancing the credibility of the
numerical models.

The class of techniques, methods and paradigms that are aimed at providing
a quantitative characterization and/or reduction of non-determinism in numeri-
cal models are usually denoted as Uncertainty Quantification (UQ). Forward UQ
methods start from a non-deterministic description of the model parameters and
try to quantify the corresponding non-determinism in the model responses. This
is for example highly relevant for the estimation of failure probabilities in the con-
text of optimizing the reliability of the design. These methods are also commonly
referred to as uncertainty propagation. Inverse UQ methods on the other hand
are aimed at quantifying the non-determinism in the parameters of a numerical
model, and start from e.g. a high-fidelity model or independent measurement data
of measured system responses. In general, two large philosophies exist for UQ
in FE analyses: the probabilistic and the possibilistic approach. Both approaches
have their own advantages and limitations, which generally can be summarized as:

– Following a probabilistic approach, non-determinism is considered as the like-
lihood that a parameter assumes a certain value within a specified range, and
is depicted as a joint probability density function (JPDF). This JPDF is prop-
agated through the numerical model to infer the likelihood of obtaining a
certain model response [188]. When non-deterministic quantities that are time
or space-dependent are considered, the framework of random fields theory has
already reached a high maturity [201]. Random fields are mostly specified by
the spatial evolution of their first two statistical moments and a covariance
function, which expresses the spatial dependence of the field variable under
the rather strict assumption of statistical homogeneity of the random field.
Application of these methods in practice often proves to be inconvenient due
to the large amount of data necessary for the identification of a JPDF or the
corresponding statistical moments, since this implies that the full joint likeli-
hood for all parameter values should be quantified objectively. In this context,
a review of literature shows that especially in industrial applications, many
authors assume the data to follow a Gaussian distribution. This however can
be a severe misjudgment of the non-deterministic data structure, resulting in
an unrealistic assessment of the non-deterministic model behavior, and con-
sequently, the design quality. Furthermore, these results often come at a very
high computational cost, especially when very small failure probabilities are
considered [49,200]. In case no objective JPDF of the model parameters is
available, this high computational cost is hard to justify.

– Possibilistic approaches such as interval methods consider only the crisp bounds
on the non-deterministic values [132]. Fuzzy number approaches are an exten-
sion to interval methods as they assign a membership function to which all
parameter values belong to a certain interval [90]. Following a possibilistic ap-
proach, the intervals or fuzzy numbers are propagated through the numerical
model using specialized techniques to infer the worst-case responses of the
structural component. However, interval methods are by definition not capa-
ble of defining dependence between different model responses, which might
make them severely over-conservative with respect to the actual uncertainty
in the model responses. As concerns non-deterministic quantities that are time
or space-dependent, the concept of interval fields has been introduced only
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very recently as non-probabilistic counterpart to random fields [130,204,202,
203,180,181]. These concepts alleviate the dependency problem to a large ex-
tent. In general, interval methods relax the need for the identification of a
full probabilistic data description, which may be very cumbersome. Moreover,
less expensive numerical procedures are necessary for the description of the
non-determinism.

As such, it can be understood that both concepts complement each other per-
fectly, with their respective domains of applicability based on the availability of
sufficient objective data and the nature of the processes that underlie the non-
determinism.

However, to have an objective and realistic quantification of the non-determinism
in the structural responses of the numerical design model, the description of the
non-deterministic parameters of the numerical model should be made objectively
and accurately. First, the most appropriate non-deterministic philosophy for de-
scribing the non-determinism should be selected. A lot of literature already deals
with answering this question (see e.g. [49,200,11]). Secondly, the corresponding
description of the non-determinism should be objectively quantified. Some param-
eters, such as plate thicknesses, are rather straightforward to quantify, as they can
directly be measured. Material parameters such as non-isotropic Young’s modulus
or yield strength already pose a larger challenge, as they should be quantified in
a destructive context, based on reference material samples. Finally, other parame-
ters such as connection stiffness or damping coefficients are impossible to measure.
In the two latter cases, indirect inverse UQ methods can provide a solution to al-
leviate the problems associated with a direct quantification approach. As concerns
inverse UQ in a probabilistic sense, the class of Bayesian methods is considered the
standard approach [7,107], even when the non-deterministic model parameters are
described by random fields [185,127]. However, in the context of limited, insuffi-
cient, vague or ambiguous data, the construction of the necessary prior estimation
of the joint probability density function of the non-deterministic parameter values
is subjective. Moreover, this estimate, affects the quantified result to a large extent
when insufficient independent measurement data are available. Moreover, gener-
ally expensive numerical procedures are needed since high-dimensional integrals
need to be approximated numerically in this context. In a possibilistic context,
methods for the inverse UQ of interval and fuzzy uncertainty have only been in-
troduced very recently. Most of these methods are somehow based on a hypercubic
approximation of the result of the interval numerical model, and therefore neglect
possible dependence between the output parameters. As such, they are not capable
of quantifying any dependence between the interval uncertain parameters of the
numerical model, modeled as an interval field.

This paper aims at giving a recent overview of advances in the field of non-
probabilistic techniques for the propagation and quantification of uncertainty. Also
the topic of spatial and multivariate models for non-probabilistic uncertainty will
be discussed. Probabilistic methods are not discussed in detail since the litera-
ture on the subject is already very extensive. For more information, the reader
is referred to the review paper of Stefanou [188]. Furthermore, also an in-depth
discussion on the applicability of probabilistic and non-probabilistic techniques is
provided, expanding the currently available discussions with a treatment of multi-
variate and spatial uncertainty. Finally, a recent development in the field of interval
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field quantification is discussed in detail and a case study is performed using this
technique.

The paper is structured as follows:

– section 2 introduces recent developments in the area of interval and interval
field analysis

– section 3 introduces recent developments in the area of fuzzy and fuzzy field
analysis

– section 4 discusses the application of both probabilistic, interval and fuzzy
approaches for the modeling and simulation of uncertainty in numerical models

– section 5 gives an overview of recently introduced inverse approaches for the
quantification of interval and fuzzy model parameters based on a set of mea-
sured responses

– section 6 discusses a recently introduced method for the quantification of in-
terval field uncertainty based on limited data in detail

– section 7 applies this method to a case study to illustrate its application and
performance

– section 8 compares this novel method with the well-known probabilistic frame-
work of Bayesian analysis

– section 9 lists the most important conclusions of this manuscript

2 Interval and interval field finite element method

In order to perform a structural design computation, usually sets of partial dif-
ferential equations (PDE) have to be solved. The approximative solution of these
PDE’s is usually provided by means of a numerical model M(x), parametrized
by a parameter vector x(r) ∈ X ⊂ R

k with X the set of physically admissible
parameters and k ∈ N. For example, x(r) may contain inertial moments, clamping
stiffness values or constitutive material parameters as a function of a spatial coor-
dinate r ∈ Ω ⊂ R

d over the model domain Ω with dimension d ∈ N. In case M(x)
is constructed following a finite element approach, Ω is discretized by means of a
set of finite elements, yielding d degrees of freedom (DOF). As such the problem
is reduced to the solution of a set of equations.

The model M(x) provides a vector of model responses y(r) ∈ Y ⊂ R
d, with

Y the set of admissible model responses and d ∈ N, through a set of function
operators mi, i = 1, . . . , d, which are defined as:

M(x) : yi(r) = mi(x(r)) i = 1, . . . , d (1)

with mi : R
k 7→ R. Note that the dependence of y does not hold for e.g., structural

dynamics applications. In that case d is the number of computed eigenmodes.

2.1 Interval theory

In an interval context, interval uncertain parameters xI are propagated through
a numerical model m(), in order to infer knowledge on the extrema in the model
responses ỹ = m(xI). Two large groups of techniques are commonly applied, which
are either based on trying to solve the set of interval-valued equations directly using
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interval arithmetical approaches, or are aimed at finding the extreme responses of
the numerical model following a global optimization approach.

The first application of interval arithmetic dates back to Archimedes, who
bounded the approximation of π to lie in the interval [223/71; 22/7]. Modern era
interval computations are based on Moore’s interval arithmetic [146], who was
in the late 1950′s one of the first to apply interval calculus to real problems.
Independently, similar ideas were presented by Warmus [210] and Sunaga [191].
This section provides a concise review of the basic interval arithmetical operations.

An interval or interval scalar is a convex subset of the domain of real numbers
R. By definition, an interval-valued parameter x is indicated using apex I: xI . The
set of possible values within xI is bounded by the upper bound x and lower bound
x of the interval. An interval is closed when both the upper and lower bound are
a member of the interval. The domain of closed real-valued intervals is denoted as
IR. xI ∈ IR is explicitly defined as:

xI = [x, x] = {x ∈ R | x ≤ x ≤ x} (2)

The centre or midpoint of the interval is defined as :

µxI =
x+ x

2
(3)

and the corresponding interval radius is defined as:

∆xI =
x− x

2
(4)

An interval vector is a vector in which each element is an interval:

xI =



















xI1
xI2
...

xIn



















= {x ∈ R
n | xi ∈ xIi } (5)

with xI ∈ IR
n, the domain of closed real-valued interval vectors of size n. Analo-

gously, interval matrices are defined on IR
n×m. By definition, all indices in interval

matrices and vectors are considered to be independent. Hence, an n-dimensional
interval vector describes a hypercube in n-dimensional space. The vertices of this
hypercube are determined by the lower and upper bounds of the interval scalar
entries in the interval vector [132].

When the interval finite element model is solved using an interval arithmeti-
cal approach, standard arithmetic is augmented with definitions fot the addition,
subtraction, multiplication and division of intervals:

xI + yI =
[

x+ y;x+ y
]

(6a)

xI − yI =
[

x− y;x− y
]

(6b)

xI · yI =
[

min
(

xy, xy, xy, xy
)

,max
(

xy, xy, xy, xy
)]

(6c)

xI/yI =

{

xI ·
[

1
y
, 1
y

]

if 0 /∈ yI

undefined if 0 ∈ yI
(6d)
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From the context, it should be clear whether interval arithmetical operations
or regular arithmetical operations are performed. Addition and subtraction oper-
ations directly translate towards interval vectors and interval matrices, provided
that the dimensions of the operands are compatible. Multiplication of interval
matrices is performed analogously to regular matrices, albeit that the component
multiplication is made using eq. 6c and addition using eq. 6a.

If m(x) is continuous function on R, the interval evaluation of the function is
then:

m(xI) =



 inf
x∈xI

(m(x)); sup

x∈xI
(m(x))



 (7)

with inf the infimum and sup the supremum. When the function m() is monoton-
ically increasing, the often costly determination of inf

x∈xI
and sup

x∈xI
can be

replaced by [45]:

m(xI) = [m(x);m(x)] (8)

which becomes:

m(xI) = [m(x);m(x)] (9)

for monotonically decreasing functions. This is the basis for the vertex method.

2.2 Interval finite element analysis

Numerically, the interval FE procedure is equivalent to searching the input space,
defined by a single interval for a model containing one parameter x or an hypercube
for a model containing multiple parameters x, for those parameter realizations that
yield extrema in the output of the model y. The first to describe this problem
was allegedly Bulgakov as early as 1940 [18,19], who described the problem of
estimating a dynamic system response under uncertain-but-bounded parameters.

Consider xI ∈ IR
k as the interval vector containing the k uncertain input pa-

rameters, while m(x) is the numerical deterministic procedure yielding the multi-
dimensional result y ∈ R

d (see also eq. (1)). The interval FE method can then be
expressed as finding the solution set ỹ:

ỹ =
{

y | y = m(x),x ∈ xI
}

(10)

which reads as ”ỹ is the set containing all output vectors y, obtained by performing
a deterministic numerical procedure to all vectors x, contained in xI”. As a point
of attention, note that the result ỹ of an interval FE computation is generally not
expressed as an interval vector. By definition, all entries in an interval vector are
decoupled. However, the underlying differential equations of the model provide
a coupling between all model responses y. Hence, non-physical model response
vectors y are explicitly included in the interval FE result, causing a possibly large
degree of over conservatism. This concept is also visualised in figure 1, where the
d-dimensional uncertain solution set ỹ and its hyper-cubic approximation yI are
shown as a cross-section on two arbitrary output quantities yi and yj . The interval
results can become extremely conservative, as all possible dependency between the
d output quantities in ỹ is neglected. realizations of the output vector which are
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in the hatched area in figure 1 are non-physical, even if they are included within
yI .

In general, ỹ spans a non-convex manifold in R
d. As such, a closed form solution

of ỹ can only be obtained when an explicit analytical solution for y = f(x) exists.
Even in that case, also the dependency phenomenon has to be tackled (see later
in this section). Also, a general numerical solution to this problem is NP-hard.

Therefore, the exact solution set ỹ can also be approximated by the construc-
tion of an uncertain realization set ỹs. This set is obtained by propagating q
deterministic realizations xF,j(r) of the interval field xI(r):

ỹs =
{

ysj | ysj = m(xF,j(r)),xF,j(r) ∈ xI(r)
}

(11)

with ysj ∈ R
ds , 1, . . . , q a vector containing the d output responses of the jth

deterministic model solution:

ysj = [ys1, ys2, ..., ysd]
T (12)

In practice, the response quantities that constitute ysj depend on the consid-
ered model m. The q realizations should represent the solution set ỹ as closely
as possible. Therefore recent work has been focused on numerical approximative
procedures aiming at finding the smallest conservative convex approximation of ỹ.
In this context, two main strategies are found in literature: global optimization and
interval arithmetic. Global optimization techniques use optimization algorithms to
find the smallest conservative hypercube, whereas interval arithmetic techniques
are fundamentally based on the interval arithmetic of Moore [144,146,145]. Both
strategies are further discussed in detail.

2.2.1 Interval Arithmetic

Interval arithmetic techniques use Moore’s interval calculus [144,146,145], as pre-
sented in section 2.1 for the solution of the interval FE problem, as introduced in
eq. (10). The interval arithmetical approach directly translates the deterministic
numerical procedure to an interval arithmetic equivalent. Basically, this consists
of three steps [132]:

Fig. 1 Illustration of the concept of hyper-cubic approximation yI of the uncertain solution
set ỹ, shown as a cross-section on two arbitrary output quantities yi and yj of the result vector
of the model [59].
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1. the interval-valued parameters xI are translated to interval element stiffness
KI

e and mass matrices MI
e according to general finite element formulations

(in for example an undamped dynamical model)
2. these interval element matrices are assembled into the interval system matrices,
KI and MI for respectively the stiffness and mass matrices

3. these interval system matrices are used to approximate the solution of the
analysis as:

ỹ =
{

y |K ∈KI ,M ∈MI ,y = m(K,M)
}

(13)

with m indicating the specific solution of the FE model (see eq. (1)).

The main advantage of the technique is its numerical efficiency because, as
opposed to the global optimization approaches (see section 2.2.2), no iterative
sampling of the deterministic numerical model is needed for the solution of the
problem. However, an overestimation of the true interval width occurs in general
since intervals cannot track parameter dependencies by definition. This overes-
timation originates from multiple occurrence of the same interval parameter in
the arithmetic operations, and stems directly from the assumption that interval
numbers are independent. This is also referred to as the dependency phenomenon

[148], and can be expressed as:

xI(yI + zI) ≤ (xIyI) + (xIzI) (14)

In practice, the degree of overestimation is proportional to the width of the
intervals xI and yI and the number of uncertain parameters [182]. For a practical
solution of a numerical model, this overestimation of the interval width occurs
both during the interval arithmetical operations that are performed to construct
and assemble the global system matrices, as in the as in the final approxima-
tion of the output of the procedure (i.e the solution phase). Furthermore, when
secondary responses such as stresses are considered, this phenomenon is further
amplified as these quantities dependent on both the interval stiffness matrix and
the computed interval displacement vector [164,182]. Inevitably, this leads to a
serious over-estimation of the interval width of the output parameter, rendering
the technique useless for practical design applications. The main body of research
concerning interval arithmetic is therefore dedicated towards limiting the depen-
dency phenomenon by keeping track of parameter dependencies throughout the
interval arithmetical operations.

A first example of such an improved interval arithmetical technique is the
element-by-element approach by Muhanna and Mullen [148]. In this technique,
all elements in the FE mesh keep their own set of nodes and corresponding de-
gree of freedom (DOF), meaning that a single DOF only corresponds to a single
element, eliminating the interaction between the global stiffness matrix entries of
different element stiffness matrices. The element connectivity is ensured by ap-
plying proper constraining on this full set of DOF. By doing this, an explicit
formulation of the interval output is obtained. An extension to this technique was
proposed by Muhanna and Mullen, replacing the constraining of the DOF by a
penalty matrix, which is used to ensure the connectivity between the separate ele-
ments and acts like a large spring stiffness between the DOF of adjacent elements
[149]. This method was shown to provide sharp bounds on problems containing
axial and bending stiffness for HDOF FE-models, whilst not suffering from the
curse of dimensionality [150].
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Alternatively, Elishakoff and Miglis propose to use parametrized intervals,
where the interval radius is parametrized using trigonometric functions[51]. The
method seems to work well when an analytical inversion of the stiffness matrix
is possible. However, approximative techniques for inverting the stiffness matrix
should be applied for realistic FE models.

An alternative way of keeping track of the dependencies is introduced by Man-
son [118]. He proposes to use affine arithmetic, as earlier proposed by Comba and
Stolfi [30], which is a more versatile extension of interval arithmetic. Affine arith-
metic allows for keeping track of dependencies between operands and sub-formula,
and as such enables the possibility of decreasing the dependency phenomenon. The
principal idea of this method is to represent all k interval parameters using their
affine form:

〈xI〉 = x0 +
k
∑

i=1

xiǫ̂
I
i + xeǫ̂

I
e (15)

with ǫ̂Ii ∈ [−1,+1] unknown symbolic real independent interval variables, which
allow for keeping track of dependency through addition, subtraction and scalar
multiplication. xeǫ̂

I
e is an error term introduced to account for possible non-linear

dependencies [35]. Muscolino and Sofi [153] further extended the ideas of Man-
son and elaborated on the symbolic interval variable, which they denote as extra

unitary interval (EUI). It is defined such that following properties hold:

ǫ̂Ii − ǫ̂Ii = 0 (16a)

ǫ̂Ii × ǫ̂Ii ≡ (ǫ̂Ii )
2 = [0, 1] (16b)

ǫ̂Ii × ǫ̂Ij = [−1,+1] i 6= j (16c)

xiǫ̂
I
i ± yiǫ̂

I
i = (xi ± yi)ǫ̂

I
i (16d)

xiǫ̂
I
i × yiǫ̂

I
i = xiyi(ǫ̂

I
i )

2 = xiyi[0, 1] (16e)

with xi and yi finite numbers associated to the ith EUI, ǫ̂Ii . An interval is converted
into its affine form as:

〈xI〉 =
1

2
(x+ x) +

1

2
(x− x)ǫ̂Ix (17)

where ǫ̂Ix symbolizes the EUI corresponding to the interval variable xI . By associ-
ating an EUI to each interval variable, the dependency can be taken into account
through the computations. Moreover, the over-conservatism in the matrix assem-
bly phase is alleviated as the interval radius of the stiffness ∆K can be written
as as the superposition of the contribution of each separate interval parameter xIi
(see [182] for the proof). The applicability of this so-called improved interval anal-

ysis via extra unitary interval has been demonstrated in the context of interval
perturbation [153], interval arithmetic computations of truss structures [154], Tim-
oshenko beams and Euler-Bernoulli beams subjected to spatial non-determinism
[179,181] or for the computation of natural frequencies of structures containing
interval non-determinism [180].

A practical implementation of the affine arithmetic concept in Finite Element
analysis was first proposed by Degrauwe et al. [35], who presented an algorithm
to effectively solve an affine system of linear equations based on first and higher
order Neumann expansions for the numerical computation of the inverse of a square
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affine matrix. Sofi and Romeo [182] computed the inverse of the interval-valued
stiffness matrix using the Interval Rational Series Expansion [151,152], showing
that the series expansion convergence is independent of the number of DOF in
the FE model m(). Moreover, they illustrated that also the bounds on secondary
variables such as stresses are thus accurately predictable.

Although recently developed Interval Arithmetical techniques are proven to
be able to compute sharp bounds on the interval uncertainty of responses of a
numerical model within reasonable computational cost, their broad application
is still limited. The main reason for this is that these techniques are inherently
intrusive, meaning that they require specifically developed FE code for solving
the numerical model subjected to parametric interval uncertainty. This is a large
drawback, as it hinders the application of these techniques with proven and robust
commercially available FE solvers.

2.2.2 Global optimization approach

The global optimization approach aims at finding the smallest conservative hyper-
cubic approximation yI of ỹ. This approximative hypercube yI is calculated fol-
lowing an optimization approach, where y

i
and yi for each output quantity yi of

the solution interval vector yI are determined by searching the hyper-cubic input
domain, bounded by xI , the interval vector containing the non-determinism in
the input parameters of the numerical model [132]. This optimization problem is
explicitly defined as:

y
i
= min
x∈xI

mi(x) i = 1, ..., d

yi = max
x∈xI

mi(x) i = 1, ..., d
(18)

where yIi = [y
i
; yi] is i

th output quantity in the solution interval vector of the
model and d is the number of output quantities in the model. If this optimiza-
tion is successful (i.e., a global maximum and minimum are found), the smallest
hyper-cubic approximation of ỹ is obtained, as the dependency between the non-
deterministic parameters is implicitly taken into account through the deterministic
numerical computations. This particular property poses a significant advantage
over the standard interval arithmetic approach as it makes global optimization

insusceptible to the dependency phenomenon. Moreover, these methods are com-
pletely non-intrusive, as the steps concerning the uncertainty in the parameters
are completely decoupled from the propagation of their deterministic realizations
y = m(x). This enables the possibility of using them in conjunction with high-
performance, commercial FE codes, which facilitates the application to large-scale
structures containing multiple DOF, as illustrated in e.g. [91,198,93,72,83].

Care should however be taken, as conservatism is not necessarily guaranteed
unless the exact bounds of the (in general non-convex) goal function, defined
in eq. 18 are found. Moreover, the computational cost of finding the solution is
rather unpredictable as the convergence of the optimization procedures generally
is highly problem dependent. However, according to Moens and Hanss [132], the
goal function very often exhibits a smooth behavior with respect to the uncertain
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parameters, facilitating the optimization procedure. As the technique provides ex-
act bounds, global optimization techniques are more and more considered as the
standard technique for solving interval problems. Usually, black box optimiza-
tion routines are used in this context, employing only the input and output of
the deterministic numerical model under consideration. Examples of optimization
algorithms that are applied in this context are directional search [165,167,166],
linear programming [114] or genetic algorithms [140,15,22]. Examples in litera-
ture show the broad applicability, with applications ranging from simple academic
cases such as truss structures to geo-hydrodynamics [202] or the vibration of locally
non-linear structures [20].

Generally, a high computational cost is associated with finding an accurate
solution to the optimization problem posed in eq. (18). This is particularly true in
an engineering design context, where often models that include millions of DOF
or contain non-linearities are considered. Knowing that the number of function
evaluations that are needed in the optimization increases exponentially with the
number of uncertain parameters (this is also referred to as the curse of dimen-

sionality), the computation time for a single model evaluation indeed drastically
influences the total computation time for the solution of the interval model. There-
fore, meta-models are commonly used for the representation of the deterministic
numerical model. A response surface model models the output domain of a deter-
ministic numerical model as a continuous function, based on some samples that
are obtained by propagating a set of input parameters. The main challenge in this
context is to build an accurate response surface model, while limiting the number
of necessary function evaluations. In this context, higher-order polynomial func-
tions [16] can be used to represent the deterministic model behavior, where the
accuracy and complexity are determined by the polynomial degree. More data
points are needed for higher-order polynomial response surface models. Also ra-
dial basis functions [125], sparse grids [112], Artificial Neural Networks [124,65,
160,38], Support Vector Machines [97,230] or Kriging interpolation schemes [120,
84] have been applied in this context. Recently, also interval predictor models [21,
31] have been introduced in this context and illustrated in range of applications
[170,56]. Note that in fact, any surrogate model can be applied in this context.
For a recent treatment on several techniques of surrogate models, the reader is
referred to [190,78].

A highly accurate adaptive response surface method was introduced by De
Munck et al. [33]. Following this method, a Kriging response model is initially
constructed based on a small space filling design (using e.g., Latin Hypercube
sampling). This Kriging model is then iteratively improved by sampling design
points that show the highest Maximum improvement. This measure is based on
the error estimation of the Kriging model with respect to the actual model behav-
ior and assesses which points in the space that is spanned by the interval input
parameters should be sampled to enhance the accuracy of the Kriging model opti-
mally. As such, an accurate meta-model is obtained within limited computational
cost. Other techniques have been introduced in this context by e.g. Crombecq et
al. [32], who uses local linear approximations to assess the local non-linearity of
the model response. In these non-linear zones, a higher sample density is used [177,
199].

In the case when the deterministic model response is monotonic with respect
to the uncertain parameters, the Vertex method, as introduced by Dong and Shah
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[45] is guaranteed to give an exact result for the optimization problem for interval
problems, posed in eq. 18. The vertex method in fact provides a first-order response
surface model approximation of the deterministic model response, as it constructs a
linear interpolation between the model responses ysj , obtained by propagating the

vertices of the hyper-cubic uncertain parameter set xI , and is therefore a special
case of the global optimization approach. This method knows wide application
within the context of interval analysis (see e.g. [165,23,115,1,211,220,163,155]).
Moreover, it provides a convex estimation of the uncertain realization set when
all vertex combinations are considered. However, the accuracy of the technique
degrades rapidly when the model response is non-monotonic due to the limited
number of sample points. Moreover, the computational cost of the vertex method
increases exponentially with the number of uncertain input parameters, as 2k

function evaluations are needed for k interval uncertain parameters.

2.2.3 Perturbation methods

An alternative approach to the vertex methods is obtained by approximating the
deterministic model evaluation around the centre points of the input parameters
by means of a higher-order expansion scheme. This approximation then is used
in the optimization scheme of eq. 18 to find a solution to the numerical model
containing interval non-determinism.

As a regular perturbation approach is only applicable when the interval ranges
on the parameters are sufficiently small or the model is linear, Qiu and Elishakoff
proposed in this context an improved perturbation approach [162]. Specifically,
they propose to divide the interval system matrices into equally spaced subinter-
val system matrices, which are then solved using a perturbation method [162].
However, many deterministic model evaluations are in that case needed to deter-
mine the local sensitivity indices for each subinterval. This also hinders application
of this method for realistic design studies.

In the last 15 years, some work was presented in the context of interval per-
turbation by, among others, McWilliam [126], Chen et al. [24] and Deng et al.
[37]. McWilliam presented a modified perturbation approach, based on first-order
Taylor Series expansions, which in conjunction with a monotonicity assumption
on the numerical model m(), proved to deliver a higher accuracy as compared
to interval perturbation when the radii of the interval uncertain parameters in-
creased [126]. Sim et al., who constructed in this context a first-order Taylor series
approximation at the input parameter interval centre point to describe the effect
of uncertain input parameter variations on mode shapes in a dynamical model
[175]. A modified Taylor series expansion technique was proposed by Wang et
al. [207], who propose to retain also higher order terms in expansion. Finally,
Massa et al. [123,122] introduced the Taylor Expansion with Extra Management
(TEEM) technique to detect possible non-monotonicity in the objective function.
They built a higher-order Taylor series expansion at the input parameter interval
centre points to approximate the deterministic model behavior. Extrema in the
input domain are searched by observing function evaluations in the vertex points,
as well as the local derivatives at those locations. The Taylor expansion is used to
speed up the evaluation of the deterministic model and its derivatives in the ver-
tex points. Recently, many sub-types of perturbation methods for interval analysis
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have been proposed (see e.g., [208,222,209]). However, their accuracy tends to de-
grade quickly when the width of the intervals increases, or when highly non-linear
problems are considered. Latest trends in this context include the application of a
Chebyshev series expansion [105] or dimension-wise approaches [219].

2.2.4 Hybrid approaches

Some advanced interval FE approaches combine both global optimization and in-
terval arithmetic. In this context, Moens and Vandepitte [133] developed such a
hybrid methodology to compute envelope frequency response functions based on
the modal superposition principle. An optimization step is used in the modal anal-
ysis of the structure, whereas the actual modal superposition is done via interval
arithmetic. The approach is also capable of handling damping [131].

2.3 Interval fields

Since intervals are inherently incapable of taking dependency into account, usually
two extreme approaches are employed to model spatial uncertainty in an interval
context. A first method exists in considering one independent interval per indi-
vidual element in the FE model, neglecting all possible dependence throughout
Ω. By neglecting dependence between two adjacent locations in Ω, discontinuous,
and consequently possibly unphysical realizations of the uncertainty throughout
the model are explicitly included in the mathematical representation of the spatial
uncertainty. Moreover, the numerical cost of evaluating the model increases drasti-
cally as many interval uncertain parameters have to be considered in the analysis.
This is particularly problematic for industrially sized FE models containing up to
millions of nodes in their discretization. A second solution to this problem exists in
considering all intervals in Ω completely coupled. Obviously, this poses in general
a serious under-estimation of the spatial complexity of the uncertainty, possibly
leading to strongly over-conservative estimates of the uncertainty in the model
responses.

In an attempt for a more truthful representation of the spatial non-determinism,
Moens et al. introduced the explicit interval field formulation [130] as an interval
counterpart to the probabilistic random field framework for the modeling of spatial
uncertainty under scarce data availability. The next sections describe two novel
methods for performing interval field computations. Note that also other meth-
ods have been introduced, for instance based on local averaging techniques [39,
215]. Finally, a more generic method of defining inter-dependence between multiple
intervals was introduced in [62].

2.3.1 Explicit interval fields

The description of an explicit interval field is based on the superposition of nb ∈
N base functions ψi : Ω 7→ R, scaled by independent interval scalars αI

i . The
base functions ψi describe the spatial nature of the non-deterministic value that
is modelled by the interval field over the model domain, and are unit-less. The
interval scalars αI

i ∈ IR on the other hand quantify the non-determinism of the
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model parameters under consideration. An interval field xI(r) is formally expressed
as:

x
I(r) = µxI +

nb
∑

i=1

ψi(r)α
I
i (19)

When Ω is discretized into k finite elements Ωe ⊂ Ω, the discretized base
functions ψi(r) ∈ R

k interpolate the interval scalars αI
i to dependent intervals for

each element in Ω. As such, it is also clear that, when nb < k, a reduction of the
input space dimension is obtained. Furthermore, since all αI

i remain independent,
commonly applied techniques for the propagation of the uncertainty can be applied
directly.

The solution of the numerical model M containing interval field uncertain
parameters xI(r)xr is aimed at finding those realizations of the interval field that
yield extrema in the set of model responses ỹ(r), obtained by propagating the
interval field:

ỹ(r) =
{

yi(r) | yi(r) = M (xF,j (r)) ;xF,j (r) ∈ x
I(r); i = 1, . . . , q

}

(20)

with q ∈ N the number of propagated realizations of the interval field. ỹ(r) is
obtained using one of the methods discussed in section 2.2.

For practical application, the base functions ψi(r) in (19) should translate ex-
pert knowledge of the analyst on the spatial nature of the uncertainty to a mathe-
matical formulation in an intuitive way, while delivering a realistic representation
of this uncertainty. The definition as such can be based either on knowledge of the
production process or other engineering judgment, but can also be based on direct
[102] or indirect [59,55] measurement data. Two methods for the construction of
ψi(r) were introduced very recently by the authors:

Inverse Distance Weighting interpolation was recently applied by [61] in
the context of interval field modeling. The core idea is to control the com-
plexity of the field realizations by selecting appropriate control point locations
ri inside the model domain Ω. Based on these control point locations, the base
functions ψi(r) are constructed according to:

ψi(r) =
wi(r)

∑nb

j=1 wj(r)
(21)

with wi(r) ∈ Ω and i = 1, . . . , nb:

wi(r) =
1

[d(ri, r)]p
(22)

with p ∈ R
+ and they should be designed as such that they preserve the

independence of αI .
Based on this approach, the number of control points and their location in
Ω directly affect the spatial nature of the interval field realizations. As such,
these parameters can be either tuned by an analyst to represent the actual
spatial uncertainty as closely as possible, or quantified following an inverse
approach using indirect measurement data [59,55]. This technique is mostly
suited for modelling spatial interval uncertainty in case of non-homogeneous,
localised spatial uncertainty, as the definition and construction of the interval
field requires no assumptions on isotropy.
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Local interval field decomposition was introduced by the authors in [101,
100] and starts also from the explicit formulation of the interval field, as in-
troduced in eq. (19). The spatial complexity of the interval field realizations is
limited by imposing an upper bound to their gradients.
Specifically, four global non-deterministic parameters are defined to bound all
realizations xF,j of the interval field xI(r)

µ
x
≤ µxI ≤ µx (23a)

∀r ∈ Ω : xF,j − µxI ≤ sx,max (23b)

∀r ∈ Ω : µxI − xF,j ≥ −sx,max (23c)

−
∂x

∂r

∣

∣

max
≤
∂xF,j

∂r
≤
∂x

∂r

∣

∣

max
(23d)

with sx,max the maximum absolute value of the deviation from the mean value.
In practice, this achieved by defining the base functions ψi(r) as identically
shaped, piecewise second order polynomial functions for each separate element,
which are located at the element midpoints [101,100].
The method provides the analyst with an intuitive tool to model the spatial
dependency of the interval field using a limited set of intuitive parameters.
However, a major disadvantage is computational cost as the dimension of the
space spanned by the uncertain input parameters is equal to the number of ele-
ments in the model. This is particularly problematic in the case of industrially
sized FE models containing up to millions of DOF. Recently, also a method
to construct such base functions from a limited set of measurement data was
introduced very recently [102].

2.3.2 Affine arithmetical interval fields

To extend the concepts of affine arithmetic for modeling dependencies in intervals
to modeling spatial uncertainty, Sofi and coworkers [180,178,181,179] introduced
a dimensionless interval field BI(r) with unit range (i.e. ∆B(x) < 1) in the
definition of the parameter interval field xI(r) via:

xI(r) = µxI

(

1 +BI(r)
)

(24)

which is related to the deviation sIx(r) from the mean function via:

sIx(r) = µxI ·BI(r) (25)

Subsequently, they define a deterministic, symmetric, non-negative, bounded
function ΓB(ri, rj), ri, rj ∈ Ω, based on this dimensionless interval field xI(r)Br
as:

ΓB(ri, rj) = mid
(

BI(ri) ·B
I(rj)

)

(26)

with mid(·) an operator that returns the midpoint of the interval between the
brackets. Note that this function only gives the correct result when extra unitary
intervals, as defined in eq. 16, are used in order to prevent the dependency phe-

nomenon. Sofi and Muscolino argue in [179] that ΓB(ri, rj) can be regarded as a
possibilistic counterpart for the stochastic auto-correlation function that is used
for describing the auto-covariance in a random field [180,178,181,179]. Therefore,
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a Karhunen-Loève-like decomposition is applied to ΓB(ri, rj), where the dimen-
sionless interval function BI(r) is expanded as a N-truncated summation series of
deterministic functions and extra unitary intervals:

BI(r) =
N
∑

i=1

√

λiψi(r)ê
I
i (27)

λi and ψi(r) are respectively the eigenvalues and eigenvectors corresponding to
the solution of following eigenvalue problem:

∫

Ω

ΓB(ri, rj)ψi(ri)dr = λiψi(r) (28)

which is analogous to the homogeneous Fredholm equation of the second kind
that is often encountered in the context of random fields [14], be it that the auto-
correlation function is replaced by ΓB(ri, rj). As such, the interval field is given
as:

xI(r) = µxI

(

1 +
N
∑

i=1

√

λiψi(r)ê
I
i

)

(29)

However, note that by replacing the independent, identically distributed ran-
dom variables in the truncated KL series expansion with interval variables, the
optimal convergence properties of the expansion, as described in [186], are no
longer guaranteed to hold.

3 Fuzzy and fuzzy field finite element method

3.1 Fuzzy numbers and membership functions

The fuzzy number description of uncertain model parameters is based on the
fuzzy set concept, as introduced by Zadeh [224] as a tool to scientifically represent
vague linguistic information, and is a natural extension of the interval concept. An
interval is defined by crisp bounds on themembership of a parameter in the interval
(i.e., the parameter is either a member of the interval or not). A fuzzy set extends
this principle by introducing a membership level, which expresses the degree to
which a parameter is thought to be encapsulated by the bounds of an interval. It
thus provides a gradual transition from the linguistic statement ”the parameter
lies completely outside the interval” to ”the parameter lies completely within the
interval”. The membership of each element x in the domain X with respect to the
fuzzy set x̂ is described by the membership function ηx̂ (x) : X 7→ [0; 1]:

x̂ = {(x, ηx̂ (x)) | x ∈ X; ηx̂ (x) ∈ [0; 1]} (30)

In case ηx̂ (x) = 1 (i.e., the membership level is 1), x is certainly a member of
the fuzzy set x̂. On the contrary, when ηx̂ (x) = 0, x is definitely not a member
of x̂. When 0 < ηx̂ (x) < 1, the membership is uncertain. Different types of mem-
bership functions are applicable for fuzzy analysis, with triangular and Gaussian
membership functions being the most popular. When multiple fuzzy parameters
are considered, a joint membership function ηx̂ (x1, x2, · · · , xk) is defined as:

ηx̂ (x1, x2, · · · , xk) = min (ηx̂1
(x1) , ηx̂2

(x2) , ..., ηx̂k
(xk)) (31)
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Zadeh’s extension principle [226,228,227,225] provides the necessary tools to
find the membership function ηŷ (y) of a fuzzy output quantity ŷ, given k fuzzy
input parameters x̂1,x̂2,...,x̂k of the numerical model that is used to approximate
the solution of the design problem under consideration.

ηŷ (y) =

{

supy (ηx̂ (x1, x2, · · · , xk)) if ∃y = m(x1, x2, ..., xk)

0 otherwise
(32)

Following the extension principle, the solution to a fuzzy arithmetical numerical
model requires a multidimensional optimization scheme, possibly imposing a con-
siderable computational cost. Therefore, other, less costly methods for the solution
of the fuzzy propagation problem have been proposed in recent years. An excellent
and complete overview of the application of fuzzy arithmetic to non-deterministic
numerical simulations is given in the book of Hanss [90].

3.2 Propagation of Fuzzy non-determinism

3.2.1 α-cut method

As concerns the numerical propagation of Fuzzy non-determinism, the α-cut method
provides an extension of interval methods towards solving a numerical model hav-
ing fuzzy uncertain parameters. The membership function ηx̂i

(xi) of the i
th input

parameter is subdivided into Nα equally spaced intervals of width ∆µ = 1
Nα

. This
yields an interval for each membership level ηαj

:

xIi,α = {xi ∈ Xi | ηx̂i
(xi) ≥ α} (33)

with the discrete values of the Nα + 1 intervals equal to:

ηαj
=

j

Nα
, j = 0, · · · , Nα (34)

An α-cut as such contains all elements xi that at least belong to x̂ at least to
the degree α. Subsequently, an interval analysis is performed on these intervals.
According to Moens and Hanss [132], it can be shown that the obtained output
intervals are intersections of the output membership functions at membership level
α, and are therefore an α-cut of the output membership function. The α-cut pro-
cedure therefore provides a discretization of the membership function ηŷi

(yi), of
which the resolution depends on the α-cut discretization of the input membership
functions ηx̂i

(xi). The interval propagation methods that are presented in section
2.2 are then straightforwardly applied to the propagation of each α-cut. A visual-
isation of the technique is given in figure 2, where fuzzy parameters x̂1 and x̂2 are
propagated to two fuzzy responses ŷ1 and ŷ2 following the α-cut procedure. Appli-
cations of the α-cut method for the propagation of fuzzy parametric uncertainty
are given e.g., by [141].
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Fig. 2 Graphical representation of the α-cut procedure, applied to two fuzzy input parameters
x̂1 and x̂2 of a monotonic model m(), for the computation of two fuzzy responses ŷ1 and ŷ2.

3.2.2 Transformation method

The transformation method was introduced by Hanss [87,89,90] as an extension
to the vertex method in the context of propagating fuzzy uncertainty through a
possibly non-monotonic numerical model. A reduced transformation method, gen-
eral transformation method [87] and an extended transformation method [89] have
been introduced. In general, the transformation method provides an efficient nu-
merical procedure for solving the optimization problem that is associated with the
extension principle (eq. (32)).

As a first step, the membership functions ηx̂1
(x1) , ηx̂2

(x2) , · · · , ηx̂k
(xk) of k

fuzzy input parameters x̂1, x̂2, · · · , x̂k are decomposed into Nα intervals xIi,j with
i = 1, · · · , k and j = 0, · · · , Nα at each α-level of the fuzzy variable using eq.
(33). Subsequently, these input intervals xIi,j are transformed into arrays X̂i,j . A
distinction is made, based on the monotonicity of the numerical model m(). In
general, the general form of the transformation method should be used. However,
in case of strict monotonicity, the less computationally intensive reduced form of
the transformation method can be used. The reduced form can also be used when
only one fuzzy parameter is considered. This choice determines the structure of
the transformed arrays X̂i,j .

The reduced transformation method constructs a hyper-cubic approximation
in R

k for each α-cut, and the vertices of this hypercube are propagated through
the deterministic model. This in fact corresponds to applying the vertex method
for each α-cut of the fuzzy parameters. The obtained responses are then recom-
bined into a fuzzy number by assigning the correct α-level to them, while ensuring
convexity of the fuzzy number. The general transformation method on the other
hand is also capable of dealing with non-monotonic models m() by dividing each
α-cut into Nα − j + 1 intervals, where the bounds coincide with the midpoints of
the intervals of the higher α-level. The vertices of these intervals are then combi-
natorially propagated while keeping track of their mutual relation. The resulting
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Fig. 3 Graphical representation of the general transformation method, applied to two fuzzy
input parameters x̂1 and x̂2 of a non-monotonic model m(), for the computation of a fuzzy
response ŷ1.

fuzzy numbers are then analogously obtained as using the reduced transformation
method.

The general transformation method is illustrated in figure 3. This figure shows
two triangular fuzzy numbers x̂1 and x̂2, which are parameters of a non-monotonic
function m(). The subsequent steps for the transformation method are indicated
as the corresponding numbers in the grey boxes. The fuzzy numbers are first
discretized into Nα + 1 intervals xI1,j and xI2,j for j = 0, · · · , Nα. The vertices of
these intervals are then combined in a combinatorial way, which can be visualized
as a rectangular grid in R

2 for each separate α-cut. The general transformation
method is used since m() is non-monotonic. The third step consists of propagating
each vertex in the rectangular grid of each α level through m() to the response
variable y1. In figure 3, this is illustrated as the blue and orange arrows. The
non-monotonicity of m() is evident from the fact that an increase in e.g. x2 first
increases y1 after which the value decreases again. In the fourth step, the output
intervals are recomposed for each membership level. Finally, the fuzzy output
variable ŷ1 is recomposed from the output intervals. In this example, only the steps
for the 0th and 1st membership level (i.e. µ = 0 and µ = 1/Nα) are illustrated.

Additionally to obtaining the fuzzy response variables ŷ of a numerical model
m(), parametrized by fuzzy input variables x̂, both the reduced and general trans-
formation method also provide a degree of influence of each x̂i, i = 1, · · · , k on
each ŷi, i = 1, · · · , d, [87,92]. Since for each fuzzy parameter x̂i, i = 1, · · · , k the
same combinations of values are tested for each α-level, the effect of each fuzzy
parameter is tested independently of all other parameters, enabling the possibility
of determining the extent to which it contributes to the overall uncertainty. The
degree of influence is also referred to as gain factor [88]. Additionally, Hanss and
Klimke show that also the total differential can be used, when the model functions
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m() are available in analytical form, which in most cases leads to similar results
[92].

Note however that
∑Nα

j=1 j
k deterministic function evaluations are needed for a

fuzzy model evaluation, making the general transformation method very demand-
ing when a fine α-level discretization is used in conjunction with a deterministic
model having a high number of fuzzy parameters. When the model m() is strictly
monotonic, this is reduced to 1 + Nα · 2k model evaluations. This however still
proves to be intractable when a high number of fuzzy-valued parameters are con-
sidered in the model due to the exponential scaling of the number of necessary
deterministic model evaluations.

In order to relieve this computational burden, the short transformation method
was introduced by Donders et al. [43,44] as method for reconstructing fuzzy
frequency response functions (FRF) within limited computational burden. The
method is founded on the assumption that sampling deterministic points on a sin-
gle diagonal of the input hypercube (the so-called critical diagonal) is sufficient for
assessing the FRF uncertainty. As such, 1 + 2k + 2 · (Nα − 1) deterministic model
evaluations are needed. However, determining the critical diagonal in the work of
Donders et al. [43,44] follows a procedure where 2k + 1 model evaluations at the
lowest membership level are performed, which still becomes intractable when the
number of parameters becomes too large.

3.3 Fuzzy fields

The concept of interval fields can easily be extended towards fuzzy fields. Consid-
ering the explicit interval field definition, as presented in eq. (19). When the nb

interval scalars αI are replaced by nb fuzzy numbers, a fuzzy field is obtained:

x̂(r) =

nb
∑

i=1

α̂ψ(r) (35)

where ψ(r) can analogously be defined as explained for interval fields and α̂ is
a vector of fuzzy numbers with joint-membership function ηα̂ (α1, α2, . . . , αnb

).
The only applications of fuzzy fields to the knowledge of the authors is in a geo-
hydrodynamic case [203], and more recently in a study towards types of dependence
in fuzzy analysis [75].

4 Application of different concepts for the modeling of
non-determinism

In this section, the applicability of the probabilistic and possibilistic concept for
the forward and inverse quantification of parametric non-determinism is compared
and discussed. First, both philosophies are compared in the context of forward
propagating the non-deterministic parameters through the numerical model (i.e.
quantification of the non-determinism in the model responses as a result of non-
deterministic model parameters). This comparison is made, based on the nature of
the non-determinism, the ability to account for dependence and correlation, and
the design phase in which the methods are applied. Secondly, the application of
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both philosophies for the identification and quantification of uncertainty in the
parameters of the model based on measured system responses, is compared in
terms of necessary data, computational cost and obtained information. Hereto,
first the relevant terminology is repeated.

4.1 Terminology

As mentioned in the introduction, computing a numerical approximation of a set
of differential equations is prone to many sources of non-determinism. Therefore,
an extensive amount of literature has been dedicated to this subject. In litera-
ture, a large number of terms such as error, uncertainty and variability are used
interchangeably, and the link to the underlying nature of the non-determinism is
often rather nebulous. Therefore, before elaborating on the details of the proba-
bilistic and possibilistic frameworks for the representation and quantification of
non-determinism, this section aims at giving a concise but clear overview of the
corresponding terminology that is commonly found in literature. In this section,
the terminology that was proposed by Oberkampf et al. [157] is presented with
the refinements that were made by Moens and Vandepitte [134], as well as the
terminology that was proposed by Elishakoff [48]. Finally, the distinction between
aleatory and epistemic uncertainty is explained, as this has some implications for
inverse UQ methods.

4.1.1 Variability, uncertainty and error

According to Oberkampf et al. [157], variability, uncertainty and error are respec-
tively defined according to definitions 1 to 3.

Definition 1 Variability is the variation which is inherent to the modeled physical

system or the environment under consideration.

In general, a variable quantity is a quantity that differs between nominally
identical parts or from place to place or time to time within the same realization
of a part. The former is also commonly referred to as inter-variability, whereas
the latter is referred to as intra-variability [171]. Some examples of variability are
manufacturing tolerances, measurable scatter in the mechanical properties of a
material or identifiable randomness in the working conditions of the considered
structure. Elishakoff also refers to this type of non-determinism as randomness

[48].

Definition 2 Uncertainty is defined as a potential deficiency in any phase or
activity of the modeling process that is due to a lack of knowledge.

Uncertainty means that there exists a deterministic value for the model pa-
rameter under consideration, but it is not or insufficiently accurately known. The
word potentially indicates that this deficiency does not necessarily occurs during
the modelling process. In the context of numerical modelling, usually parameter
uncertainty and uncertainty stemming from the modelling approximations that
were used in the idealization of reality are considered in literature (see e.g. [67,157,
206,111,184]). The former is a direct result of uncertainty on the parameters of the
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numerical model. These can be insufficiently characterized material parameters,
naturally varying loading situations or parameters that are hard to quantify such
as damping values in a dynamic model. The latter refers to approximations that
were deliberately made by the analyst to e.g., reduce the model complexity (such
as the discretization of a Finite Element model) or assumptions on the linearity of
the simulated system, or unintended simplifications due to a lack of understanding
[117]. Elishakoff refers to uncertainty as either imprecision or vagueness, when the
non-determinism is respectively caused by a lack of knowledge or an ambiguous
description of the parameter [48]. Examples of the latter are linguistic statements
such as a stiff joint or thin plate.

Definition 3 An error is defined as a recognizable deficiency in any phase of
modeling or simulation that is not due to a lack of knowledge.

The most obvious source of errors are human errors in the modeling process of
the physical system under consideration. Besides, also modeling errors caused by
the mathematical description of the physical system or errors such as rounding,
truncation, incomplete convergence due to the numerical procedure are considered
in this category. Sometimes, errors in the coding of the mathematical model are
also considered as a part of the numerical model uncertainty [109]. This is however
very hard to quantify, and is moreover more a problem of verifying the computer
code [158]. This verification is thoroughly discussed in the Los Alamos report on
model validation and verification [194]. Therefore, modeling errors should not be
taken into consideration in the modelling of the non-determinism.

Moens and Vandepitte [134] made a refinement on the definition of variability
and uncertainty, as they are not necessarily mutually exclusive. A variability can be
expressed as a range of possible values and the likelihood of each value within this
range. In this context, Moens makes a distinction between certain variability and
uncertain variability. An uncertain variability occurs when no or limited statistical
information is available on the range or likelihood of each value within this range
of the variable parameter. This is especially relevant when modeling the non-
determinism as stochastic processes or random fields, as usually a large amount
of statistical information is needed in order to construct an objective and credible
probabilistic description of the variability.

An analogous thought experiment can be made for uncertainties. An invariable

uncertainty has by nature a deterministic value, which cannot be accurately mod-
eled due to a lack of knowledge. Conversely, a variable uncertainty is an uncertain
parameter which exhibits variability.

4.2 Description and propagation of non-determinism

4.2.1 Type of non-determinism

Based on the nature of the non-determinism, the distinction between uncertain
variabilities, certain variabilities and invariable uncertainty that was made in sec-
tion 4.1, is employed. According to Moens and Vandepitte, these should be treated
as follows [134]:
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Certain variability For a certain variability, the probabilistic concept in its fre-

quentist interpretation is highly suited, as available information on the range of
possible values and likelihood of each value within this range can perfectly be de-
scribed using a PDF. However, all necessary information for the construction of
a JPDF, such as the likelihood of, and correlation between all non-deterministic
quantities should be available in order to prevent an inaccurate or unreliable as-
sessment of the non-deterministic model behaviour [134]. Therefore, application
of this theory in practice often proves to be inconvenient, due to the large amount
of data necessary for the identification of a PDF or the corresponding statistical
moments [50].

The interval concept on the other hand only requires a range of possible values.
A conversion from a probabilistic description of a certain variability to an interval
description is therefore straightforward when a bounded PDF is used. In this
case, the likelihood of each value within this range is lost. In the case when an
unbounded PDF (e.g., a Gaussian PDF) is used, realistic bounds should be chosen
by the analyst. Under the assumption that the likelihood in the tails is too low to
be of realistic interest, this is usually obtained by selecting k standard deviations
from the mean, with k usually larger than 3. Note that this introduces subjectivity
in the analysis, as this truncation of the range of possible values that are attributed
to the variable parameter is largely based on the expert knowledge of the analyst.

In the context of Fuzzy analysis of certain variabilities, some methods have been
proposed to derive a fuzzy number membership function (interpreted as plausibility
density function) from a probability density function [29,47,161]. The conversion
is based on the consistency principle, which states that the plausibility of an event
is greater than or equal to its probability.

Hence, even when the complete PDF fX(x) is known, an infinite number of pos-
sibilistic representations exist. Therefore, the conversion from a probability density
function to a fuzzy membership function always introduces subjectivity, based on
the judgment of the analyst, and should only be interpreted in a subjective sense.

Uncertain variability Uncertain variabilities or variable uncertainties can be mod-
eled as well using the frequentist probabilistic framework. However, in order to
obtain a reliable representation of the uncertain variability, the analysis should
be performed using different PDF functions. In theory, all possible PDF func-
tions should be regarded. In practice however, the analyst selects a few prob-
abilistic models based on engineering judgment and expert knowledge on the
non-deterministic quantities [134]. In this context, a review of literature shows
that especially in industrial applications, many authors assume the data to fol-
low a Gaussian distribution [200]. This can be a severe misjudgment of the non-
deterministic data structure, resulting in an unrealistic assessment of the non-
deterministic model behavior, and consequently, the design quality. Alternatively,
also the maximum entropy principle can be used for constructing the PDF func-
tion, as this provides the least informative prior [103,104].

The interval concept on the other hand is perfectly suited for the description of
uncertain variabilities, as no information on the likelihood of each value within the
range of possible values is needed. As such, considerably less objective information
is necessary to construct the interval description of the uncertain variability. How-
ever, when no or insufficient objective information on the actual range of parameter
values is present, subjectivity can also be incorporated by the analyst. This might
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happen in e.g. early design stages, when many decisions on the final geometry
still have to be made, or when dealing with complicated joint connections that are
simplified in the modelling process. In the former case, the interval description as
such corresponds with the range of values that are deemed possible by the ana-
lyst in that specific stage of the design. As the design process continues and more
information on the final geometry becomes available, the interval boundaries are
as such adapted. In the latter case, the interval description is used to account for
the effect of approximations that were used to model the complicated joints. As
such, the boundaries do not change when the design process advances. However,
the subjectivity that is present in the latter estimation can be alleviated by using
indirect measurements and appropriate uncertainty quantification techniques.

Finally, for the analysis of uncertain variability, also hybrid techniques have
been introduced such as imprecise probabilities [68–70,197,9,216,77], fuzzy ran-
domness [141,142,136,139,138,137,12] and methods based on Dempster-Shafer
theory [36,174,159,196,172,2]. Basically, these techniques employ Bayesian sta-
tistical descriptors, intervals or fuzzy sets to describe a class of CDF functions,
lying between two extreme CDF functions that are constructed by superimposing
these non-deterministic descriptions on the first few statistical moments of the
probabilistic description of the uncertain variability. Especially imprecise proba-
bilities currently gain a lot of attention [10]. Also extensions towards imprecise
field descriptions have been proposed recently [40].

Invariable uncertainty The representation of invariable uncertainty using the prob-
abilistic approach in a frequentist interpretation is not recommended. Moens and
Vandepitte state that ”... for an invariable uncertainty the information contained

in the random quantity does not represent the variation of the quantity in the fi-

nal product, since by definition the invariable uncertainties are considered to be

constant...” [134]. This means that representing the lack of knowledge on the
value of an invariable quantity as a variation herein, results in an unrealistic non-
deterministic model behavior, and consequently unreliable and inaccurate model
results. In this context, Teichert [193] also indicates that for the representation of
invariable uncertainty, care should be taken in employing the probabilistic concept.
When the lack of knowledge on the modeled quantity is represented as a PDF, the
variability attributed to that parameter does not represent a physical variability.
Therefore it should also not be interpreted as such. This perfectly coincides with
the Bayesian interpretation of probabilistic non-determinism. Therefore, follow-
ing a Bayesian interpretation, it is possible to describe an invariable uncertain
parameter. However, this description might be highly subjective.

When applying interval or fuzzy methods for the representation of invariable
uncertainty is completely subjective and can only be based on the expert opinion
of the analyst. As such, it should only be interpreted as a subjective estimation of
the model responses. Specifically for fuzzy methods, the α-cut procedure can be
regarded as a large scale sensitivity analysis.

As a final remark, care should be taken when a model is used containing both
variable and uncertain quantities. In that case it is imperative to distinguish be-
tween both interpretations and treat them accordingly in the numerical procedure
as described by Hoffman and Hammonds [95].
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4.2.2 Multivariate and spatial non-determinism

The probabilistic framework for uncertainty representation, be it in a frequentist
or Bayesian interpretation, is highly suited for the description of multivariate non-
deterministic quantities. This is a direct result from the explicit definitions that
are directly available in this framework to describe mutual dependence and co-
variance. Probabilistic methods are also directly applicable in the context of non-
deterministic quantities that do not have constant statistical descriptors in the
time and/or spatial domain through the definition of auto-covariance and auto-
correlation. Since these probabilistic methods for the description of multivariate
and spatial non-determinism already have reached a high degree of maturity, they
are already widely applied in various domains ranging from geotechnical appli-
cations [119,96,41,229], the study of (the effect of) random material properties
[223,128,27] or the evaluation of flow dynamics [213,169]. As such, probabilistic
random fields are often considered as the standard approach to model spatial or
multivariate non-deterministic quantities.

However, some critical remarks have to be made when using the random field
concept for the representation of spatial non-determinism in a practical engineering
context. When the complete covariance function is known (e.g. by fitting it to an
elaborate set of objective measurement data), discretization of the random field is
rather straightforward and can be applied without resorting to series expansions
for the representation of the random field covariance. However, in order to obtain
the complete covariance structure of the random field, data with a high statistical
and spatial resolution are needed. The argumentation for the former prerequisite
is based on the need for an objective estimation of the statistical structure of the
non-determinism, whereas the latter is of specific importance to ensure that the
spatial effect is accurately quantified.

In realistic engineering practice such data are generally not available as the nec-
essary experimental campaign is both time consuming and very costly. Therefore,
the analyst usually has to resort to subjective assumptions on the probabilistic
nature of the spatial non-determinism. First, hypotheses on the non-deterministic
nature of the spatially uncertain parameter considering the most applicable proba-
bility distribution function and spatial isotropy and homogeneity need to be made.
Moreover, the covariance of the random field is usually modeled using a predefined
auto-covariance function. The spatial behavior of this function is largely deter-
mined by the correlation length. The value of this correlation length is in practice
usually chosen subjectively, based on the engineering judgment of the analyst.

The interval framework on the other hand is less suited for the description
of multivariate non-deterministic quantities, as intervals are by definition inde-
pendent. As such, the description of dependence and correlation are not readily
available within the interval framework. Therefore, the pure interval framework
will be over-conservative in this context. Moreover, due to the lack of an inter-
val measure for dependence, the description of spatial interval uncertainty proves
to be a non-trivial task. Application of interval methods has been mainly illus-
trated in low dimension problems (see e.g. [218,129]), but also some more realistic
applications have been introduced so far [64,4,214].

In the context of spatially coupled interval uncertain parameters, the con-
cept of interval fields provides a solution to some extent. However, the interval
field concepts suffer largely from the same problems as their probabilistic coun-
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terparts considering the objective modeling of the spatial nature of the uncertain
phenomenon. As an example, when applying the inverse distance weighting inter-
polation technique, subjectivity is present in the selection of the control points and
the exponent of the distance weighting. Moreover, the application of interval fields
to practical problems is still very scarce in literature (see e.g., [130,202,204,100]).
This is however also partially explained by the relatively recent introduction of
these techniques as compared to the well-established framework of random fields.

4.2.3 Design phase

In an engineering context, the different non-deterministic concepts all have their
own area of application. Specifically, Moens and Vandepitte [134] propose following
distinction:

– In an early design phase, when still selecting the most appropriate concept,
many design questions are still open. Some model properties are only known
vaguely, whereas others are still completely undefined. As such, the non- de-
terminism in the model is mostly caused by uncertainty instead of variability.
Therefore, interval and fuzzy methods are more applicable in this stage. Specif-
ically the fuzzy concept is useful as it gives a measure for the sensitivity of the
design boundaries. Moreover, it is highly suited to handle linguistic variables.

– Then, as the design evolves further, more decisions on the final design are
being made. Therefore, most parameters such as e.g., plate thickness values are
known up to a certain range. Uncertainty is in this context still the predominant
factor, as the lack of knowledge on the final geometry in general still exceeds
the variability that is caused by the production process. Therefore, interval
methods are more applicable.

– Finally, as the design is in its final stage, most numerical studies are performed
in the context of validation and reliability estimation. Therefore, variability is
the most important source of non-determinism. Hence, the probabilistic ap-
proach is in this context best suited.

The different formalisms for the description of non-determinism are highly
complementary, with the transition between the different concepts being gradual.
As such, the final choice of the most appropriate modeling approach should be
made by the analyst, based on the considerations that are given above.

5 Inverse approaches for quantifying interval fields

This section deals with the state-of-the-art in the quantification of interval and
fuzzy uncertainty that is present in a set of model parameters, denoted respectively
xI and x̂, based on measurements of the model responses ỹm. Analogously to the
propagation of fuzzy uncertainty, the identification and quantification of fuzzy
uncertainty is usually performed using interval techniques for each α-level of the
input fuzzy numbers.
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5.1 L2 norm based techniques

Mostly, inverse identification and quantification of both interval and fuzzy uncer-
tainty are based on a squared L2 norm formulation of the difference between a
set of measured responses, obtained by performing repeated experimental tests on
the structure under consideration in close correspondence to the numerical model,
and the prediction of the numerical model that has interval or fuzzy uncertain
parameters. In the remainder, the methods are explained in an interval context,
keeping in mind that they just have to be applied for each membership level in a
fuzzy context. Usually, the identification is performed as a two-step process, where
first the midpoints of the interval (or fuzzy) uncertain parameters are determined
following a deterministic model updating procedure:

min
(

µyI
s
(xI)− µyI

m

)T

W
(

µyI
s
(xI)− µyI

m

)

(36)

where µyI
m
denotes the midpoint (or statistical average) of the measurement vector

set and W is a weighting matrix that can be used to normalise the different terms
in the response vectors. yI

s = m(xI) is the interval result of propagating the
parametric interval uncertainty xI through the numerical model m().

Examples of methods that first use a deterministic updating step in the identifi-
cation and quantification of interval (or fuzzy) uncertainty can be found in e.g. [81,
80,82,66,38]. Sometimes, regularization steps are included to prevent ill-posedness
of the updating problem [3,195].

This deterministic model updating step is then followed by the actual inverse
identification of the interval (of fuzzy) description of the uncertain model param-
eters. The objective that is minimised in this context is expressed as the squared
L2 norm over the difference in interval radii between the intervals on the out-
put parameters of the numerical model and intervals that are fitted around each
measured response [38]:

min
(

∆ys(x
I)−∆ym

)T
W
(

∆ys(x
I)−∆ym

)

(37)

Alternatively two separate squared L2 norm formulations are constructed and
summed, expressing respectively the difference between the upper and lower bounds
of these intervals [173,66,63,17]:

min
(
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m
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W
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)

+

(
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I)− ym

)T
W
(
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(38)

Different optimization algorithms have been proposed in this context. Gabriele
and Valente [74] solved eq. (36) - (38) using an interval Branch & Bound algo-
rithm named Interval Intersection Method, which was first presented by Hansen
et al. [85]. The bounding part of the algorithm is performed by first checking the
inclusion monotonicity of the result of the interval FE computation, as well as
that the interval uncertain measurements are included in the result of the interval
FE model. They also compared the method to (deterministic) sensitivity based
model updating, showing that it is computationally less efficient in a determin-
istic model updating setting [73]. Moreover, practical implementations are only
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shown for interval scalar uncertainty, which was moreover limited to only two pa-
rameters. Alternatively, Fedele et al. [66,217] use adjoint optimization methods in
conjunction with coarse-to-fine regularization [54]. Erdogan and Bakir used in this
context a hybrid combination of a Genetic Algorithm and Particle Swarm based
on a perturbation-based propagation, which was implemented on a distributed
memory parallel cluster [173]. Boulkaibet et al. [17] on the other hand used meta-
heuristic optimizers such as Ant Colony Optimization [46] and Particle Swarm
Optimization [108], leading to a heavy computational burden. Fang et al. [63]
performed the L2 norm minimization by introducing an interval response surface
model. Finally, Deng et al. [38] used radial basis function neural networks as a
surrogate for the identification to limit the computational expense of the inverse
identification.

By first introducing a deterministic model updating step in the identification,
the number of parameters that can be identified is ideally maximally equal to the
number of measured responses to ensure uniqueness of the solution. Moreover,
when the responses are highly correlated, even less uncertain parameters can be
identified. This is caused by rank deficiency in the Jacobian (and consequently the
Hessian) matrices of commonly used iterative non-linear optimization algorithms
such as the Gauss-Newton approach [156] when there are more uncertain param-
eters than unique data points. This leads to an infinite number of solutions to the
optimization problem [147]. Minimum norm solutions have been proposed in the
context of a deterministic model updating context [156], alleviating this problem.
However, it is not guaranteed that this minimum norm solution also corresponds
to the physical solution of the problem, as this is merely a mathematical tool to
alleviate the ill-posedness of the problem.

Moreover, the solution of the problem as such becomes very sensitive to small
modeling errors due to an inaccurate inversion of the Hessian [86], when it becomes
near-singular. Finally, as this deterministic model updating procedure precedes the
interval methods, special care should be taken to avoid such problems as to prevent
offsetting the interval variables with respect to their actual value.

5.2 Inverse fuzzy quantification

In the context of fuzzy model updating, Haag et al. [81,80,82] introduced a
methodology that is conceptually different as compared to the minimization of the
L2-norm. Since fuzzy numbers are an extension of interval analysis, the method
can also be used in an interval context. After first deterministically identifying the
midpoints of the fuzzy input parameters x̂, a linear map between the fuzzy input
parameters and fuzzy responses ŷ is constructed. Then, the distance between the
boundaries of the α-cut intervals of x̂ with the identified midpoint is minimized,
while ensuring that the fuzzy FE models still encompasses the spread in the mea-
sured responses ỹm completely. Moreover, they defined a model validity criterion
as a measure for the total uncertainty that is captured by the fuzzy numbers x̂
and ŷ both at the input and output side of the FE model. The computation of this
criterion is based on the concept of relative imprecision [90]. When multiple solu-
tions to the identification procedure exist, the one with the lowest model validity
criterion value should be selected [81,80,82].



30 Matthias Faes, David Moens

5.3 Kriging based approach

In the context of interval uncertainty quantification, Khodaparast et al. propose
a Kriging predictor meta-model [110]. First, they perform a deterministic model
updating procedure (as illustrated in eq. (36)) to identify the interval midpoints.
From this, an initial k-dimensional hypercube is constructed. Then, a deterministic
set of input parameters is identified by means of deterministic model updating
for each separate measurement point and the initial hypercube is adjusted to
firmly circumscribe the set of identified model parameters. The method was also
illustrated using the AIRMOD test structure [76], and was later extended towards
Fuzzy uncertainty quantification [84]. However, in this extension, no measure was
taken to ensure convexity of the resulting fuzzy numbers.

5.4 Concluding remarks

In the context of the inverse quantification of scalar interval uncertainty, recently
important steps have been made. Techniques based on an L2 norm minimization
provide a first step, but some inherent problems are still there as elaborated, es-
pecially in the context of non-uniqueness and ill-posedness of the solution. Some
authors alleviate this problem by including regularization in the optimization prob-
lem.

Furthermore, none of the introduced methods is able to keep track of de-
pendence between the model responses, as they all either explicitly or implicitly
assume a hyper-cubic output domain. Another fundamental issue with this ap-
proach is that by representing the scatter in the responses that are grouped in a
set of measurement data ỹm as an (hyper-cubic) interval vector, the dependency
between these responses is neglected completely as intervals are independent by
definition. As such, physically infeasible combinations of responses are also consid-
ered as belonging to the measurement data set. Moreover, important information
that is captured in the dependency between these responses is lost, whereas it
serves as a possible solution to the non-uniqueness and ill-posedness of the inter-
val quantification. Finally, by performing this hyper-cubic approximation, it is not
possible to quantify coupled interval uncertainty following these methods, e.g., in
the context of interval field modeling.

6 An interval approach for inverse interval field quantification

This section presents a recently introduced method for the quantification of spatial
interval uncertainty based on a limited set of measured responses of the system.
Instead of adapting a hyper-cubic representation of the measurement data and in-
terval finite element model responses, a convex set approach is used that is capable
of maintaining linear dependence between the responses. The general overview of
this procedure is illustrated in figure 4. The following sections will provide a de-
tailed explanation of each step that is shown in this figure. The ideas discussed
here are an overview of methods first presented in [58], [59], [61] and [57].
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Fig. 4 General overview of the methodology

6.1 Steps 1 & 6(ab): Measurement data and convex hulls

The measurement data that are used for the identification are usually obtained
through an experimental procedure where a real-life model is physically tested
repeatedly in close relation to the FE model under consideration. The model re-
sponses, measured on the jth test replica are grouped in the vector ymj ∈ R

dm :

ymj = [ym1, ym2, ..., ymdm
]T (39)

These responses are subsequently used to construct a measurement set ỹm,
which is defined as:

ỹm =
{

ymj | j ∈ 1, ..., t
}

(40)

with the cardinality of ỹm equal to t, the number of conducted physical experi-
ments. For the sake of simplicity but without any further limitation to the validity
of the proposed approach, it is assumed here that the experimental procedure gives
information on the same response quantities which are modeled in the simulation
model. In general, this may not be true and it would imply that a suitable data re-
duction or interpolation technique should be selected for an objective and correct
comparison between measurement and simulation data.

Central to the development of the inverse interval field quantification method
is the representation of the uncertainty in the measurement data set ỹm and the
uncertainty that is represented by the uncertain realization set ỹs, as introduced
in eq. (20) as a convex hull. Indexes m and s indicate that y is considered as
belonging to respectively the measurement data or the result of the interval field
finite element model (simulation). In general, the convex hull of a finite set of
vectors in Euclidean space is defined as the smallest possible convex set, containing
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the vectors in ỹs and it is the intersection of all possible convex sets containing
these vectors. For the realization set, this is explicitly defined as:

ỹ
C
s =







q
∑

j=1

βjysj | (∀j : βj ≥ 0) ∧

q
∑

j=1

βj = 1 ; ysj ∈ ỹs







(41)

where β is a vector of weighting factors, such that all βj are non-negative and sum
to one [13]. In the specific case when ỹs is computed following a global optimization
approach (see also eq. 18), yI , the hyper-cubic approximation of ỹ, and ỹC

s span

the same uncertain solution set. The convex hull ỹC
m of ỹm is similarly calculated

as:

ỹ
C
m =







t
∑

j=1

βjymj | (∀j : βj ≥ 0) ∧
t
∑

j=1

βj = 1







(42)

This concept is illustrated in figure 5, where an interval field xI(r) with nb = 3
input interval scalars is propagated using the transformation method yielding q =
23 = 8 deterministic realizations. The figure shows the cross-section of the convex
hull ỹC

s with the {yi, yj} plane of two different arbitrary model responses.

Fig. 5 Illustration of the convex hull principle on an uncertain simulation set ỹs, obtained
by propagating an interval field xI

F (r) with nb = 3 input dimensions using the transformation

method, leading to 8 realizations of ysj . The convex hull ỹCs has ds dimensions, but only the
cross-section with the {yi, yj} plane of two arbitrary model responses is shown (reproduced
from [59]).

Also the ds-dimensional volume Vs of ỹC
s is computed , as it can intuitively

be interpreted as a measure for the uncertainty that is present in the data, and
hence a generalization of the one-dimensional interval width to higher dimensions.
This estimate of the uncertainty is more accurate than the hyper-cubic volume
since it takes dependence between responses explicitly into account. In general,
the ds-dimensional volume Vs of ỹC

s can be expressed as a ds-dimensional integral
over the region bounded by ỹC

s :

Vs =

∫

· · ·

∫

ỹC

s

dys1 dys2 ... dysds
(43)
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A similar expression exists for the dm-dimensional volume Vm of ỹC
m:

Vm =

∫

· · ·

∫

ỹC

m

dym1 dym2 ... dymdm
(44)

Finally, Minkowski-Weyl’s theorem [212] states that for any polyhedron, there
always exists a duality in its representation (i.e. as a set of vertices (a convex hull)
or as a set of half-spaces (a set of linear inequalities)). As such, ỹC

m and ỹC
s can

be rewritten as a set of linear inequalities:

ỹ
C
s ≡ Asy

T
s − bs ≥ 0 (45a)

ỹ
C
m ≡ Amy

T
m − bm ≥ 0 (45b)

with As ∈ R
hs×ds , Am ∈ R

hm×dm , bs ∈ R
hs , bm ∈ R

hm ,y ∈ R
ds and ym ∈ R

dm .
Apex T denotes the transpose. The variable y is a general vector of responses.
The number of half-spaces hm and hs that are needed to determine ỹC

m and ỹC
s

respectively are given by the Quickhull algorithm, and are dependent on the vec-
tors of measurement data and model responses that are present in these sets.
Specifically, the vertices constituting ỹC

m and ỹC
s are used to construct these sets

of hyperplanes.

6.2 Steps 2-3: Interval field dimension

In the identification and quantification of interval field uncertainty, the first step
is the identification of the interval field dimension (i.e., the order of the interval
field series expansion as introduced in eq. (19)). This discussion is based on the
work presented in [61]. This is also illustrated in figure 4.

The core idea for this identification is that the effective dimension of the convex
hull of the uncertain realization set ỹC

s should be equal to the effective dimension
dr of the convex hull of the measurement data set ỹC

m. The term effective infers that
in general the combination of d system responses does not necessarily represent
a d-dimensional manifold in R

d, e.g. due to a high degree of dependence between
certain responses. The effective dimension dr of the convex hulls is in that case
lower as compared to the space R

d in which they are defined [61].
In order to compute the effective dimension of the measurement data set ỹm,

the covariance matrix Γm of ỹm is computed over the t replica that are measured
for each response in ỹm. These replica are concatenated for each response j in a
vector yt

mj ∈ R
t. Γm is as such defined as:

Γm =











var(yt
m1) cov(yt

m1,y
t
m2) . . . cov(y

t
m1,y

t
mdm

)
cov(yt

m2,y
t
m1) var(yt

m2) . . . cov(yt
m2,y

t
mdm

)
...

. . .
...

cov(yt
mdm

,yt
m1) cov(y

t
m1,y

t
m2) ... var(yt

mdm
)











(46)

The measurement data set is used as a reference, as the effective dimension
of the uncertain realization set ỹs is therefore not objective as it depends on an
initial estimate of the constituting uncertainty. Note that this covariance matrix is
a tool to assess the dependence between model responses, and hence should not be
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interpreted as the effective variability in the full output dimension. Subsequently,
a singular value decomposition of Γm is performed such that:

Γm = ΦmΛmΦ
T
m (47)

with Λ ∈ R
dm×dm the diagonal matrix of the ordered eigenvalues λ1 ≤ λ2 ≤ · · · ≤

λds
of Γm, and Φm ∈ R

dm×dm a matrix containing the orthogonal eigenvectors
φm,j ∈ R

dm , j = 1, ..., dm. Finally, the effective dimension dr of the convex hull

of the measurement data set ỹC
m is then defined such that:

dr
∑

i=1

λm,i

tr(Γm)
≥ 1− ǫ (48)

with tr(Γm) the trace of the covariance matrix, and ǫ the approximation error,
which should be a very small number.

The correct number of base functions nb should then be selected such that
an uncertain realization set ỹs is obtained which has at least the same effective

dimension as the measurement data set. The idea behind this, is that when nb is
increased, the dimension of the hyper-cubic uncertainty on the input parameters
of the deterministic model m() is increased as more independent interval scalars
are considered. Furthermore, since more base functions ψ(r) are considered, the
interval field can have a higher spatial complexity.

In case of a strictly monotonic model m(), nb can be chosen to be equal to
dr. However, when non-monotonicity is present in the numerical model, it is not
assured that the effective dimension that is identified in the model responses is
obtained by following the above explained heuristic. This is caused by the gen-
eral inability of finding the extreme vertices of the convex hull of the uncertain
realization set ỹC

s in polynomial time and approximative techniques should be
applied (see section 2.2). Indeed, when the extreme vertices are not contained in
ỹC
s , the computation of dr might be biased. Furthermore, since non-monotonicity

infers that response vectors that are initially at the boundary of ỹC
s might shift to

its interior when additional basis functions and corresponding interval scalars are
included in the interval field definition, also the quantification of nb might prove
to be cumbersome. This is however highly dependent on the specific properties of
the non-monotonic function, and is therefore not treated in general detail.

6.3 Step 5: Dimension reduction

The numerical computation of the convex hull and the corresponding multi-dimensional
volume is made using the QHULL library, which uses the ”Quickhull” algorithm,
as developed by Barber et al.. This is a generalization of the Quicksort algorithm
to higher dimensions [5]. Care should be taken when computing high dimensional
convex hulls, as the time complexity of the Quickhull computation of a convex
hull is in a worst case scenario equal to:

O

(⌊

v
ds
2

c

⌋

/

⌊

ds
2

⌋

!

)

(49)

with vc the number of vertices of ỹC
s [5]. This means that the computational cost

of the algorithm scales exponentially with the dimension ds of the space R
ds in
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which the uncertain realization ỹ set is defined, and linearly with the number of
vertices. As such, when more responses of the interval FE model are considered for
the identification, the computation time of the convex hull increases drastically.
This is also sometimes referred to as the curse of dimensionality.

However, as already explained in section 6.2, the effective dimension dr of this
convex hulls is in general lower than the dimension of the vector space in which it is
defined. Based on this notion, two reduction methods were recently presented. The
first method retains the physical responses of the measurement data set ỹm and
the uncertain realization set ỹs, and as such delivers a physical space of responses.
This method is denoted the subset selection method and was presented in [59]. The
second method projects the measurement data set and the uncertain realization set
to a lower-dimensional vector space R

dr . Hence, the responses in these sets do not
necessarily represent physical quantities. This method is denoted the projection

method and was first presented in [61].

6.3.1 Subset selection method

The subset selection method reduces the dimension of the vector space in which
the convex hull is defined by selecting those responses that contribute the most to
the uncertainty that is modeled.

Specifically, a reduced result vector consisting of selected output quantities
yr
sj ⊂ ysj with yr

sj ∈ R
dr , ysj ∈ R

ds and dr ≪ ds is constructed as such that
a maximum amount of information on the constituting uncertainty at the input
side of the model is maintained. The reduced uncertain realization set ỹr

s, based
on these reduced result vectors is then defined as:

ỹ
r
s =

{

y
r
sj | yr

sj ⊂ ysj = f(xI(r)),xF,j(r) ∈ x
I(r)

}

(50)

with yr
sj a vector containing the dr selected output responses out of the full-

dimensional output ysj of the deterministic solution of the propagation of the jth

input uncertainty realization, with j ∈ [1, q]:

y
r
sj = [ys1, ys2, .., ysdr

] (51)

A first step in the subset selection procedure is the determination of the di-
mension dr of the vector space R

dr in which ỹr
s has to be defined. In fact, the

number of responses that should be retained is equal to the effective dimension of
either the convex hull of the measurement data set or the convex hull of the result
of the interval field FE analysis. This is caused by the notion that the effective
dimension of both sets should be equal, as the dimension nb of the interval field
xI(r) should be set to ensure this equality (see eq. (46) to (48)). By definition,
the effective dimension of the convex hull is the number of non-zero orientations
in that convex hull (see also 6.2).

The subset that is selected should furthermore be sensitive to changes to the
input intervals of the model. In order to take into account the coupling between
the considered responses, a modified version of the interval sensitivity, as proposed
by Moens & Vandepitte in [135], is employed. In its original form, the interval
sensitivity is defined as :

sil =
∂ryl

∂rxi

(52)



36 Matthias Faes, David Moens

with ryl
and rxi

the interval radius of respectively the lth model response and the
ith interval scalar at the input of the model. This concept is further expanded to
consider the sensitivity of multiple output responses and their dependence w.r.t.
changes in the interval uncertainty at the input side of the model m(). Specifically,
the sensitivity sil of the volume Vr

s,l of the dr-dimensional convex hull ỹr,C
s,l of the

lth candidate reduced uncertain realization set ỹr
s,l with respect to changes in the

interval radius ∆αi of a locally defined interval scalar αi of xI(r) is calculated as:

sil =
∂Vr

s,l

∂∆αi
(53)

In order to facilitate the comparison between different candidate reduced un-
certain realization sets based on the sensitivity, normalized relative interval sensi-
tivities sn,r

il are more relevant, as they give the relative width of the intervals and
are dimensionless. The normalized relative interval sensitivity is defined as:

sn,r
il =

∂Vr
s,l

∂∆αi
·
∆αi

Vs
·
1

sri
(54)

with:

sri =
∑

j

sril =
∑

j

∂Vr
s,l

∂∆αi
·
rαi

Vs
(55)

and sril the non-normalized relative interval sensitivity.

Finally, also the dependence between the q realizations of a response within
a candidate yr

sj,l is computed in order to prevent the selection highly dependent
responses. This dependence is in this context computed as the aspect ratio ν of the
convex hull ỹr,C

s,l of that candidate reduced uncertain realization set ỹr
s,l. When

all responses are completely dependent, these responses describe a line in R
dr ,

and the aspect ratio of ỹC
s tends to zero. On the other hand, the aspect ratio will

approach unity when the responses are completely independent. Hence, it can be
regarded as a measure for the dependence. In general, the multidimensional aspect
ratio is calculated as the ratio between the smallest and largest eigenvalue of the
covariance matrix Ξr

c of ỹr
s,l:

νl =
min(Λr

c)

max(Λr
c)

(56)

with Λr
c ∈ R

dr×dr the diagonal matrix containing the ordered dr eigenvalues of
Ξr

c ∈ R
dr×dr , the covariance matrix of ỹr

s,l. Ξ
r
c is calculated similarly to Γ of

ỹs, as shown in equation (46), where instead of the complete result vector ysj ,
the candidate reduced result vectors yr

sj,l are used for the computation of the
covariance matrix Ξr

c .

In order to select the optimal subset, a metric µil combining the sensitivity
of all possible subsets and dependence between the dimensions of these subsets is
calculated for each separate locally defined interval i = 1, ..., k:

µil = |sn,r
il |νl (57)
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with sn,r
il ∈ [−1; 1] and ν ∈ [0; 1]. Since only the magnitude of the sensitivity is

important, the absolute value is considered. The optimal subset exhibits a maxi-
mal value of µil among all candidate reduced uncertain realization sets, yielding
following optimization problem:

l∗ = argmax

(

k
∑

i=1

µil

)

(58)

Intuitively, this means that a subset of responses is searched that is maximally
sensitive to changes in the input intervals, but where the uncertainty is evenly
distributed among the considered responses. The solution of eq. (57) can be ei-
ther be obtained following a brute-force approach when the number of considered
responses is relative low, or in a global optimization approach for larger models.
Following a brute-force approach, the candidate reduced uncertain realization sets
and their convex hull ỹr,C

s,l with corresponding volume Vr
s,l are computed for each

possible dr-dimensional responses yr
sj,l that can be deduced from the result vector

ysj . Based on these combinations, the optimal subset is selected using the subset
selection metric (see eq. (57)). The number of convex hull computations is in that
case:

(

dm
dr

)

=
dm!

dr!(dm − dr)!
(59)

and nb + 1 interval field computations are needed for the estimation of the sensi-
tivities. Alternatively, also adjoint approaches can be used.

6.3.2 Projection method

Also the projection method is based on the concept of effective dimension, as
elaborated in section 6.2. Instead of selecting a subset of responses, the method
projects ỹm and ỹs to a lower dimensional basis B ∈ R

dr , which is constructed us-
ing the orthogonal eigenvectors of the covariance matrix of the measurement data
set, since these data usually provide the most objective information on the un-
certainty at hand. As such, a reduced realization set ỹr

s and reduced measurement
data set ỹr

m are obtained. However, dr can still be prohibitively large when realis-
tic numerical models and/or measurement sets containing numerous responses are
considered. In that case, ỹr

s and ỹr
m are further projected onto lower-dimensional

subspaces B+
i ⊂ B.

As a first step of the reduction, equations (46) to (48) are employed to compute
dr . Then, an orthogonal basis B is constructed in R

dr based on the eigenvectors
φm,j of the covariance matrix corresponding to the dr largest eigenvalues in Λm.
This basis is thus defined as:

B = span{φm,d−dr
, φm,d−dr+1, . . . φm,d} (60)

with φi ∈ R
d. B is oriented according the the dr directions in ỹC

m that show the
largest variance.

For the actual reduction R
d 7→ R

dr , the realizations ysj , j = 1, . . . , q in ỹs are

first concatenated in a matrix Ỹ s ∈ R
d×q:

Ỹ s = [ys1,ys2, . . . ,ysq] (61)
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The measured replica ymj , j = 1..., t are analogously concatenated in a matrix

Ỹ m ∈ R
d×t:

Ỹ m = [ym1,ym2, . . . ,ymt] (62)

Ỹ s and Ỹ m are then projected onto B such that:

Ỹ
r

s =
(

Ỹ
T

s B
)T

= [yr
s1,y

r
s2, . . . ,y

r
sq] (63)

with Ỹ
r

s ∈ R
dr×q for the uncertain realization set, and:

Ỹ
r

m =
(

Ỹ
T

mB
)T

= [yr
m1,y

r
m2, . . . ,y

r
mt] (64)

with Ỹ
r

m ∈ R
dr×t for the measurement data set.

However, when realistic numerical models and measurement data sets contain-
ing thousands of responses are considered, the computation of the convex hulls
ỹC
s and ỹC

m of the reduced sets Ỹ
r

s and Ỹ
r

m still might take prohibitively long as
dr still might be too large for efficient computation due to intricate dependence
structures between these responses. Therefore, it is proposed to further reduce the
dimension of both data sets by further projecting Ỹ

r

m and Ỹ
r

s onto d+r -dimensional
subspaces, where each subspace is defined by a lower-dimensional orthogonal basis
B+
i ⊂ B, i = 1, . . . ,

(dr

d
+
r

)

, constructed as a subset of B, with d+r << dr and
(dr

d
+
r

)

the binomial coefficient. In this way, the time complexity of the computation of
the convex hull becomes

O

(⌊

v
d+r
2

c

⌋

/

⌊

d+r
2

⌋

!×

(

dr
d+r

))

(65)

Therefore, as long as d+r is a very small number, the computational cost of
calculating

(dr

d
+
r

)

d+r dimensional convex hulls reduces drastically with respect to

computing 1 dr dimensional convex hull. This implies that only the d+r − 1 order
interactions between model responses are retained in the analysis, since the higher
order interactions are lost in the projection. Herein, d+r = 1 is the limit case
where only the hyper-cubic approximation of ỹr

s and ỹr
m is retained. This however

does not limit the accuracy of the method as long as d+r ≥ 2, since by considering
the convex hulls over the response sets, all higher-order interactions (i.e., quadratic
interactions and higher) between model responses are already linearised. Therefore,
no further approximations of the dependence structure of both sets is made as
compared to considering only the convex hull.

Then, Ỹ
r

m and Ỹ
r

s are projected onto each d+r dimensional subspace defined by
B+
i ⊂ B. Furthermore, by considering

(dr

d
+
r

)

bases, the projection and computation
of the convex hull has become embarrassingly parallel, as it is has been split in the
computation of

(dr

d
+
r

)

independent low dimensional convex hulls. The ith orthogonal

basis B+
i is defined as:

B+
i = span{φmIi,1

, φmIi,2
, . . . φmI

i,d
+
r

} (66)

with Ii an index set containing the d+r indices for the ith, i = 1, ...,
(dr

d
+
r

)

subspaces

of the vector space by B. The reduced sets Ỹ
r+

s,B
+

i
∈ R

d+

r
×q, i = 1, . . . ,

(dr

d
+
r

)

and
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Ỹ
r+

m,B
+

i
∈ R

d+

r
×t, i = 1, . . . ,

(dr

d
+
r

)

are then obtained by projecting Ỹ
r

m and Ỹ
r

s onto
each of these subspaces:

Ỹ
r+

s,B
+

i
=
(

Ỹ
T

s B
+
i

)T

=
[

y
r

s1,B+

i
,yr

s2,B+

i
, . . . ,yr

sq,B
+

i

]

, i = 1, . . . ,

(

dr
d+r

)

(67a)

Ỹ
r+

m,B
+

i
=
(

Ỹ
T

mB+
i

)T

=
[

y
r

m1,B+

i
,yr

m2,B+

i
, . . . ,yr

mq,B
+

i

]

, i = 1, . . . ,

(

dr
d+r

)

(67b)

Finally, the uncertain realization set ỹr
s,i and measurement data set ỹr

m,i that

are projected onto B+
i , the ith subspace of B, are explicitly defined as:

ỹ
r
s,i =

{

y
r

sj,B
+

i
| j = 1, . . . , q

}

i = 1, . . . ,

(

dr
d+r

)

(68)

ỹ
r
m,i =

{

y
r

mj,B
+

i
| j = 1, . . . , t

}

i = 1, . . . ,

(

dr
d+r

)

(69)

Note that the notation is simplified as compared to eq. (67) for the sake of
clarity. Finally, also ỹC

s,i and ỹ
C
m,i are computed based on ỹs,i and ỹm,i, for each

i = 1, . . . ,
(dr

d
+
r

)

:

ỹ
C
s,i =







t
∑

j=1

βjy
r

sj,B
+

i
| (∀j : βj ≥ 0) ∧

t
∑

j=1

βj = 1 ; yr

sj,B
+

i
∈ ỹr

m,i







(70)

ỹ
C
m,i =







t
∑

j=1

βjy
r

mj,B
+

i
| (∀j : βj ≥ 0) ∧

t
∑

j=1

βj = 1 ; yr

mj,B
+

i
∈ ỹr

m,i







(71)

Also the corresponding multidimensional volumes Vs,i and Vm,i are thus com-
puted. The main advantage of this method over the subset selection method, is
that all measured responses are explicitly taken into account in the identification
procedure, as compared to only a (small) subset of the responses. As such, all
available information is used in the identification and quantification. Evidently,
this also makes the identification more prone to outliers in the data. Therefore,
adequate data pre-processing should be applied prior to performing this reduction
method.

6.4 Step 7: Basis function quantification

In order to accurately quantify the interval field model xI(r) of the spatial uncer-
tainty in the parameters of the numerical modelM, the constituting base functions
ψi(r) have to be quantified objectively. An initial estimation of these basis func-
tions can be based on expert knowledge of the analyst (e.g. from experimental
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data or knowledge on the manufacturing process). However, since available ex-
pert knowledge is in most realistic industrial design cases scarce, ambiguous or
subjective, this initial estimate has to be improved and/or validated based on
experimentally obtained measurement data. This section presents a method to
perform such quantification, and is based on the work presented in [61].

After the identification of the interval field basis dimension, as explained in
section 6.2, the base functions of the interval field expansion (eq. (19)) should be
identified. This as such constitutes the sixth step in the general overview given
in figure 4. For the identification of the base functions ψi, the convex hull of the
uncertain realization set ỹC

s and the convex hull of the measurement data set
ỹC
m are represented as a set of ds-dimensional half-spaces, following Minkowski-

Weyl’s theorem [212] (see eq. (45)). These sets of half-spaces in fact represent the
linear inequalities that describe boundaries of the corresponding convex hull and
they consist of a set of vector-valued functions fs(α

I ,ψ(r)), which depend on the
interval field that is defined on the parameters at the input of M. Considering
only the crisp boundary of ỹC

s yields a set of linear equalities:

fs(α
I ,ψ(r)) = [f1, f2, ..., fhs

]T = Asy
T
s − bs = 0 (72)

with ∀fi, i = 1, ..., hs : Rd 7→ 0. These functions are analogously defined for the
measurement data set:

fm = [f1, f2, ..., fhm
]T = Amy

T
m − bm = 0 (73)

In order to quantify the basis functions ψ∗(r) that govern the spatial nature
of the uncertainty captured by ỹC

m, a squared L2-norm of the difference between
the gradients of the half-spaces that bound ỹC

m and ỹC
s is minimized:

ψ
∗(r) = argmin

(

∥

∥

∥
∇fs

(

α
I ,ψ(r)

)

∣

∣

αI=αI
0

−∇fm

∥

∥

∥

2

2

)

(74)

where the interval field xI(r) can either be evaluated using an initial guess on the
interval scalars, or by using identified interval scalars using the method presented
in section 6.5. In the specific case when the base functions ψ(r) are constructed
using inverse distance weighting (see eq. (21)), the optimization problem reduces
to finding the correct control point locations ri.

As explained in section 2.3, the definition of the basis functions ψ(r) controls
the coupling between these local intervals at the element level. In the following,
it is illustrated how these local intervals at element level impact the gradient
of fs, and hence, how these gradients can aid the quantification of the correct
basis functions. This explanation is based on a two-dimensional system response
{yo, yp}, when considering the propagation of two realizations of xI(r), l1 and l2.
First, the interval field xI(r) is decomposed into its midpoint function µ(xI(r))
and the deviation from this midpoint function ∆xI(r):

xI(r) = µ(xI(r)) +∆xI(r) =

nb
∑

i=1

ψiµαi
+

nb
∑

i=1

ψi∆αi (75)

with µ() the midpoint function of the field and ∆() the radius of the interval. In
order to approximate ∇fh, the responses yo,l1, yo,l2, yp,l1 and yp,l2 are expressed
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as a truncated Taylor series expansion around µ(αi):

yo,l1 = yo(µ(xI(r))) +
k
∑

j=1

∂yo

∂xj
∆xl1

F (r) (76)

with xj , j = 1, · · · , k the value of the jth element in the FE model m() and
∆xl1

F (r) the lth1 realization of the deviation function of the interval field xI(r), as
expressed in eq. (75). Note that a Taylor series expansion is in general not accurate
enough for the actual uncertainty propagation. In this case however, this method
provides an intuitive illustration of the effect of the basis functions on the gradient
of the half-space under consideration and is hence used for explanatory reasons.
For notational efficiency, denote the local sensitivity matrix S ∈ R

ds×k:

S =













∂y1

∂x1

∂y1

∂x2
. . . ∂y1

∂xk
∂y2

∂x1

∂y2

∂x2
. . . ∂y2

∂xk

...
...

. . .
...

∂yds

∂x1

∂yds

∂x2
. . .

∂yds

∂xk













(77)

This matrix describes the sensitivity of each model response yi, i = 1, ..., ds
to changes in the local element value xi, i =, ..., k for each element in Ω. Si

denotes the ith column of the local sensitivity matrix , while with S:i, the i
th row

is considered.
Now consider one half-space equality fh that corresponds to the hth bounding

half-space of ỹC
s . For the considered case, this can be expressed as:

∇fh =
yo,l2 − yo,l1
yp,l2 − yp,l1

(78)

with:

yo,l1 = yo
(

µ
(

xI(r)
))

+
k
∑

j=1

Sjo

nb
∑

i=1

ψi∆α
l1
i (79)

yo,l2 = yo
(

µ
(

xI(r)
))

+
k
∑

j=1

Sjo

nb
∑

i=1

ψi∆α
l2
i (80)

yp,l1 = yn
(

µ
(

xI(r)
))

+

k
∑

j=1

Sjp

nb
∑

i=1

ψi∆α
l1
i (81)

yp,l2 = yp
(

µ
(

xI(r)
))

+
k
∑

j=1

Sjn

nb
∑

i=1

ψi∆α
l2
i (82)

with S ∈ R
ds×k, ψi ∈ R

k×1 and ∆α
l1,2
i ∈ R

1. From these equations, it is seen
how the nb interval scalars and base functions translate to local values for all k
elements in Ω, and are further translated towards a system response. Filling in
these expressions in the expression for the gradient (eq. (78)) and rearranging some
terms yields:

∇f =

∑k
j=1 Sjo

∑nb

i=1ψi∆(αl2
i − αl1

i )
∑k

j=1 Sjp

∑nb

i=1ψi∆(αl2
i − αl1

i )
(83)
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From this equation, it is clear that three terms affect the gradient. First, the
respective elements in the local sensitivity matrix have an important influence, as
they are a measure for how the model translates the local interval uncertainty xI at
element level towards the model responses y. This is a linearization of the general
case, where this propagation is performed by the functions mi() of the numerical
model M. These factors are constant as long as the same model m() is considered
for each propagation of the uncertainty, which is usually the case. Furthermore,
also the relative difference between the scalar values of the realizations of the
interval scalars (i.e., αl2

i and αl1
i ) of the interval field affect ∇f . This term is

however constant since the gradients in eq. (74) are evaluated for a given αI , also
this term is constant. As such, ∇f is only affected by the ψi of the interval field.
Hence, minimizing the discrepancy between the gradients of the half-spaces of ỹC

s

and ỹC
m should allow for their quantification.

It should be noted that the above argumentation for the method only holds
when the model is monotonic. This is caused by the fact that in general, prop-
agating the interval field realizations that are obtained by taking the vertices of
the hyper-cubic set of interval scalars through a non-monotonic model does not
necessarily yield the vertices of the convex hull of the uncertain realization set,
thus complicating the computation of the gradient of the half-spaces considerably.
This however can be solved by using appropriate propagation techniques, keeping
in mind that the obtained gradients can be severely biased when extreme vertices
are missing in ỹC

s . Moreover, it should be noted that in case non-monotonic mod-
els are considered, continuity of the objective function that is introduced in eq.
(74) is no longer guaranteed, as the response vectors ysj that are initially at the

boundaries of ỹC
s can shift to its interior. This leads to a discontinuous change in

the gradients of the convex hull, and consequently eq. (74).

In a generic engineering context, the size t of the measurement data set is
usually limited. This may bias the comparison of the gradients of ỹC

m to the gradi-
ents of the convex hull over the uncertain realization set ỹC

s , especially when the
extreme responses of the structure are not contained in ỹm. In order to overcome
this, a minimum-volume convex polytope is constructed around ỹC

m having the
same number of vertices as ỹC

s , in analogy to the ideas of Elishakoff and Sarlin
presented in [52,53]. The shape of this convex polytope is completely up to the
data, as long as the number of vertices between the two is equal. The principal
idea behind this method is to expand the information that is contained in the
measured responses by taking the topology of the uncertain realization set (in
terms of number of vertices) into consideration, as computed by the numerical
model. This is valid as long as the problem at hand is strictly monotonic with
respect to the physical parameters under consideration. It is worth noting that
the number of vertices present in the uncertain realization set ỹs follows directly
from the computation of the effective dimension dr of the measurement data set
ỹm, as proposed in section 6.2, and is therefore also directly computed using the
measurement data set ỹm, which is an objective estimate. As such, the experimen-
tal burden for the determination of the gradients of the half-spaces bounding ỹC

m

shifts from finding the extreme vertices towards finding a suitable set of extreme
responses that constitute the boundaries of ỹC

m.

However, the corresponding experimental campaign should be performed care-
fully, as a lack of extreme responses might severely bias the gradients, and con-
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sequently, the identification. To quote the famous statistical Ronal Fisher [71]
(1938): ”To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to say
what the experiment died of.”. Although the term statistician is not entirely appli-
cable in the context of interval non-determinism, the core idea behind this quote
is still valid as it stresses the importance of a close collaboration between ex-
perimentalists and analysts. Indeed, an accurate identification of the spatial in-
terval uncertainty calls for an intelligently designed experimental campaign (e.g.,
according to a Design Of Experiments approach) in order to obtain sufficient ex-
perimental responses. As such, an accurate estimate of the spatial topology of the
interval field can be obtained. The exact design of such experimental campaign
is evidently highly case-dependent, and should be performed with utmost care,
based on some expert knowledge. Furthermore, it should be stresses that as com-
pared to quantifying random field uncertainty, obtaining some extreme responses
in an intelligently designed test campaign should prove to be less cumbersome as
compared to experimentally obtaining an entire auto-covariance function.

6.5 Step 8: Interval scalar quantification

As a final step, also the interval scalars αI in eq. (19) are quantified. The presented
method can equally be applied for the identification and quantification of scalar
interval uncertainty, contained in an interval vector xI ∈ IR

k, with k the number of
parameters in the model. The methods presented in this section are first introduced
in [59] and [60].

Identification of αI ∈ IR
nb , the interval vector that is used for the construction

of an interval field xI(r), as shown in eq. (19), is obtained through the minimization
of a cost function δ(αI), which expresses the discrepancy between the uncertain
realization set ỹs of the IFE simulation and the measurement set ỹm. The con-
struction of δ(αI) is based on the geometrical properties of shape and size of both
hulls ỹC

m and ỹC
s and it contains three terms.

First, the difference between the multidimensional volumes Vm and Vs of the
respective hulls is computed, as this is a measure for the amount of uncertainty
captured by the convex hull. Also the multidimensional volume Vo of the intersec-
tion ỹo of ỹC

m and ỹC
s is taken into account. The intersection between ỹC

m and ỹC
s

is formally defined as:

ỹo = ỹ
C
s ∩ ỹC

m (84)

and can be computed as the set of all yj complying with both sets of linear
inequalities:

ỹo =
{

yj | Aoy
T
j − bTo ≤ 0 ∧ yj ∈ R

d
}

(85)

with Ao ∈ R
(hm+hs)×d:

Ao = [Am;As]
T (86)

and bo ∈ R
(hm+hs):

bo = [bm; bs]
T (87)

Finally, the objective function δ(αI) should contain a desirable descent direc-
tion for the specific case when the intersection between ỹC

s and ỹC
m is empty (i.e.,
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ỹo = ∅), as the applied optimization algorithm would otherwise get trapped in a
local minimum of the optimization function δ. This condition may occur when the
analyst’s initial knowledge on the input parameters of the FE model has a large
bias with respect to the actual uncertainty in the model. In this specific case,
there is no descent direction for the optimization algorithm that ensures overlap
between ỹC

s and ỹC
m. Therefore, also the squared L2 norm of the difference between

cm and cs is incorporated in the discrepancy metric. cm and cs are defined as the
geometrical center of gravity of ỹs and ỹm:

cm =
1

t

t
∑

j=1

ymj

cs =
1

q

q
∑

j=1

ysj

(88)

Combining these three elements, δ(αI) is constructed according to:

δ(αI) =
(

∆V2
m + wo∆V2

o +∆c2
)

(89)

with:

∆Vm = 1−
Vs(α

I)

Vm
(90a)

∆Vo = 1−
Vo(α

I)

Vm
(90b)

∆c =
∥

∥

∥
cm − cs(α

I)
∥

∥

∥

2
(90c)

and wo a weighting factor. This weighting factor is of specific importance when
the measurement data set is very small, or when insufficient samples are located
on the boundaries of ỹC

m. In that case, more weight in the optimization is given to
maximizing the overlap between the uncertain realization set and the measurement
data set, to ensure that all measurement points are included in the identified
interval field. As such, this part of δ(αI) acts as a barrier function, penalizing a
lack of overlap. Finally, αI,∗, the interval vector containing the identified interval
scalars is finally computed as:

α
I,∗ = argmin δ(αI) (91)

Due to the general non-linearity of δ(αI), the minimization is performed follow-
ing an iterative optimization procedure. Specifically, the sequential quadratic pro-
gramming (SQP) algorithm is employed for this reason [156]. It is an iterative
optimization algorithm that optimizes the non-linear objective function by mini-
mizing a series of quadratic approximations of δ(αI). During each iteration of the
SQP algorithm, ỹC

s , Vs, Vo and cs are computed using eq. (11) - eq. (88) in order
to obtain δ(αI).

In case the projection method is used to reduce the computational cost of the
quantification procedure, the identification of the multivariate interval uncertainty
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at the input parameters of the model is obtained by incorporating this reduction
into eq. (89), which yields:

δ(αI
i ) =

(dr

d
+
r
)

∑

i=1

(

∆V2
m,i + wo ·∆V2

o,i +∆c2i

)

(92)

with:

∆Vm,i = 1−
Vs,i(αI

i )

Vm,i
(93a)

∆Vo,i = 1−
Vo,i(αI

i )

Vm,i
(93b)

∆ci =
∥

∥cm,i − cs,i(αI
i )
∥

∥

2
(93c)

where cs,i and cm,i are the centers of gravity of respectively ỹC
s,i and ỹ

C
m,i. Note

that for notational simplicity, the subscript B+
i is simplified to i.

7 Illustration: pressure vessel

This case study applies the method that is presented in section 6 to a quasi-
static model where the FE model responses are the nodal displacements. In this
case study, it is assumed that all responses in the model domain are measurable
without noise at the exact locations of the nodes of the FE model. Evidently, this
is not true in realistic experimental cases. Nonetheless, the case study serves as a
good illustration of the full interval field quantification procedure. This case study
was first presented in [61].

7.0.1 Deterministic model

The methods are applied to an axisymmetric finite element model of a cast pressure
vessel with spatially uncertain Young’s modulus. It is assumed that the distribution
of Young’s modulus is continuous over the model domain, and that this uncertainty
stems from heterogeneity in the post-casting cooling time. The model is discretized
using 208 axisymmetric triangular elements with 6 nodes (CTRIAX6), yielding 954
degrees of freedom. Axissymmetric constraints are applied to the nodes at the top
and bottom of the geometry. A uniform pressure load P of 50 MPa is applied to
the model, and the model is solved for the nodal displacements ux and uy. The
geometry of the pressure vessel, together with the finite element discretization and
boundary conditions, is illustrated in figure 6, with the x-axis being the symmetry
axis.

For illustrative purposes, but without loss of generality, it is considered that
all responses are measurable at the exact nodal locations of the FE model. Should
this not be the case, then the same non-measured responses should be omitted
from the uncertain realization set.

For benchmarking purposes, measurement data are numerically generated by
means of Monte Carlo sampling from a predefined interval field. The base func-
tions of the interval field are constructed using inverse distance weighting inter-
polation (see also eq. (21)), with the control points located at the r1 = 67th
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Fig. 6 Model discretization and boundary conditions. (reproduced from [61])

and r2 = 134th element of the model, corresponding to different cross-sectional
areas of the cast part. These locations are also indicated in figure 6. The corre-
sponding interval scalars are chosen to be respectively α1 = [200; 220] GPa and
α2 = [200; 210] GPa. Four measurement data sets are constructed, containing re-
spectively 4∗, 50, 100 and 250, and the performance of the presented interval field
identification is tested with respect to these measurement sets. Specifically, the set
containing 4 specimens is constructed by propagating the vertices of the known
interval field, yielding the exact gradients of the bounding half-spaces.

7.0.2 Steps 2-3: Interval field dimension

The first step in the quantification procedure is the quantification of the number of
base functions (i.e. interval field dimension) of the underlying interval field xI(r).
This quantity should be selected such that the propagation of the interval field
yields an uncertain realization set ỹs with the same effective dimension of the
uncertainty that is captured in the measurement data set.

Figure 7 shows the approximation error ǫ, as defined in eq. (48), when a mea-
surement set ỹm ∈ R

954 consisting of either 50, 100 or 250 replicas is represented in
a dr dimensional vector space (i.e., when the effective dimension is approximated
as dr). Since the considered model is strictly monotonic, it can be deduced from
this figure that nb = 2 for all measurement data sets, as the approximation error
ǫ < 1 · 10−06. This analysis also indicates that the identification of the dimension
of the interval field that underlies the measurement data set is robust against the
measurement data set size.

7.0.3 Step 5: Uncertain realization set model reduction

The FE model consists of 954 degrees of freedom, rendering a computation of
ỹC
m and ỹC

s computationally intractable, taking into account the computational
complexity presented in eq. (49). In this case study, the projection method, as pre-
sented in section 6.3.2 is applied to project ỹm and ỹs onto a lower-dimensional
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Fig. 7 Approximation error ǫ, as defined in eq. (48), when a measurement set ỹm ∈ R
954

consisting of either 50, 100 or 250 replicas is represented in a dr dimensional vector space
(reproduced after [61]).

orthogonal basis with dr = 2 using eq. (60) - (64). This follows from the compu-
tation of the effective dimension of ỹm, as illustrated in figure 7. Figure 8 shows
these reduced measurement data sets, together with their respective convex hull
ỹC
m and minimum volume quadrilateral for all datasets ỹm. The latter is included

to account for measurement data scarcity, as explained in section 6.4.

7.0.4 Step 7: Base function identification

The quantification of the correct basis functions for the interval field series expan-
sion (eq. (19)) is obtained by solving the minimization problem introduced in eq.
(74) using an integer implementation of the genetic algorithm (GA) with a pop-
ulation size of 10 specimens and a cross-over fraction of 0.75. The GA is deemed
to be converged after 20 stalling generations. This optimization problem is solved
for all considered data sets.

The results of the converged optimization are shown in table 1 for the four
considered data sets. As may be noted, a perfect identification is only achieved
when the extreme realizations are included in ỹm, as is the case for the data set
with 4 replica. Since the 4 replica correspond to the extreme vertices of the interval
field, the estimation of the gradients is exact. Also in the other cases, a good
approximation of the underlying base functions ψi(r) is obtained, as clearly control
points in the close vicinity of the correct ones were selected. This is furthermore
illustrated in figure 9.

7.0.5 Step 8: Interval scalar quantification

A final step of this illustrative example consists of identifying the interval scalars
of the interval field. Also here, the identification is performed using the three data
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Fig. 8 Reduced measurement data sets, together with their respective convex hull ỹCm and
minimum volume polytope for all datasets ỹm, projected onto the dr = 2-dimensional orthog-
onal basis B.

Table 1 Result of the identification in terms of identified set of base functions (denoted by the
location of their corresponding locally defined interval) and global minimum of the objective
function (eq. (74)) as a function of |ỹm|. The control points of the goal base functions are
illustrated in yellow.

|ỹm| Identified set error
50 r1, r2 = {74, 142} 0.0013
100 r1, r2 = {66, 124} 4.26 · 10−05

250 r1, r2 = {67, 133} 8.22 · 10−05

4∗ r1, r2 = {67, 134} 0

Fig. 9 Element locations of the elements where control points were placed for the construction
of the base functions ψi of the interval field xI(r) that was used to construct ỹm ({67, 164}),
as well as the identified control points (reproduced from [61]).

sets consisting of 50, 100 and 250 samples, based on the quantified basis functions.
Also, an interval scalar quantification is performed on a dataset containing 250
samples, but with basis functions that are based on an expert guess. For this case,
it is assumed that an expert estates that the control points of the interval field are
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located as r1, r2 = {10, 60} (i.e.,the middle element in the second row of elements
(counting from the bottom) and the middle element one row under the correct
base functions). This corresponds to one reasonable estimate and one estimate
that is comparably far off.

This quantification is obtained by solving the optimization problem introduced
in (89) using a sequential quadratic programming algorithm [156]. The initial
estimate for this optimization problem is arbitrarily set as α1 = [120; 150] GPa
and α2 = [120; 150] GPa, which is completely disjunct with respect to the interval
scalars that were used to construct the measurement data set. For a more rigorous
study to the influence of the initial estimate on the optimization problem, the
reader is referred to [59].

The results of the converged optimization are shown in table 2. As concerns
those cases where the identified basis functions are used, an accurate quantifica-
tion is obtained. The quality of the quantification is also rather insensitive to the
size of the data set. However, the case where an expert estimate is used for the
basis functions, the quantified intervals are very wide even though the same con-
vergence criterion was used for the optimization solver. This is explained by the
notion that these basis functions map the globally defined interval scalars to local
intervals at the element level. Consequently, when this mapping is not correct,
the dependence between these local intervals is biased with respect to reality, and
the model responses will not conform to the measurement data. Note that the
minimum of eq. (89) is obtained by encompassing all measurement data when wo

is set sufficiently large. Since the projection method takes all response data into
account by projecting it onto a lower-dimensional basis, the minimum can only
be obtained with very wide intervals when the global to local map of the interval
uncertainty is incorrect. Conversely, when the subset selection method is used for
the reduction of the dimension of the data sets, the intervals will be quantified
such that ỹs encompasses only the corresponding subset of measured responses.
Hence, this estimate will in general not be conservative for the entire interval field
when the global to local mapping provided by the basis functions is incorrect.

Table 2 Results of the identification for the three measurement data sets, where the interval
scalars are located at the control points of the identified base functions, as well as as the result
of the identification of the interval scalars located at the control points of base functions that
are constructed on expert knowledge of the analyst (indicated as 250eb).

| ỹm | Initial Estimate Identified scalars iterations
50 α1 = [120; 150] GPa α1 = [200.05; 220.78] GPa 22

α2 = [120; 150] GPa α2 = [200.11; 209.59] GPa

100 α1 = [120; 150] GPa α1 = [199.34; 220.55] GPa 30
α2 = [120; 150] GPa α2 = [199.81; 209.87] GPa

250 α1 = [120; 150] GPa α1 = [200.06; 219.86] GPa 31
α2 = [120; 150] GPa α2 = [200.08; 209.85] GPa

250eb α1 = [120; 150] GPa α1 = [158.51; 241.46] GPa 23
α2 = [120; 150] GPa α2 = [179.04; 249.29] GPa
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7.0.6 Concluding remarks

This case study illustrates that theoretically, the presented method is equally ap-
plicable to quasi-static FE models, and that also in this context highly accurate
results can be obtained. However, three major issues are neglected in this con-
text. First, it was assumed that all nodal displacements were measurable, whereas
in practice, considerably more responses throughout Ω are obtained when for in-
stance full field strain measurement techniques such as Digital Image Correlation
[116] are applied. Secondly, it was also assumed that all measured responses were
obtained at a location in Ω that corresponds perfectly with the location of a node
of the FE model. Finally, all noise effects were omitted. Evidently, this does not
correspond to a realistic case study, and further refinements of the method need
to be made.

However, still some interesting novel insights were provided by this case study.
First, it is shown that an exact identification is obtained within reasonable compu-
tational cost when the extreme vertices are present in the measurement data set.
However, this is in reality intractable. Therefore, these are extrapolated from the
other responses on the boundaries of the measurement data set and the effective
dimension of the set. Using this extrapolation, it is shown that an accurate identifi-
cation of the base functions is obtained, even when these vertices are not obtained
in the measurement data set. However, the accuracy of the identification strongly
depends on the number of responses on the boundary, and degenerates when insuf-
ficient responses on the boundary of ỹC

m are obtained. Moreover, the effect of using
one incorrect basis function on the identified interval field is also illustrated. It is
shown that when the interval scalar identification is performed using the projec-
tion method for reducing the dimension of the result vectors, the interval bounds
become over-conservative in order to completely capture the measurement data.
It should be noted that this over-conservatism only occurs in conjunction with the
projection method, as all model responses are projected onto a lower-dimensional
basis. Indeed, when a subset of responses is selected in this context, the interval
scalars are quantified such that they provide an accurate uncertain realization set
for those responses only. This set is not necessarily conservative at all for the entire
interval field.

8 Inverse approaches in engineering design

Direct comparison of probabilistic (Bayesian) methods and interval/fuzzy concepts
for the identification and quantification of multivariate uncertainty is a non-trivial
task due to the inherently different philosophy that both techniques are based
on. Interval methods are based on the idea that the true value of the uncertain
parameter is located between two crisp boundaries, without making inference on
the likelihood of each value within that interval. As such, interval UQ methods
approach the problem from the outside, as they usually provide the analyst with
the extreme bounds between which the uncertain parameter is deemed to lie.
Bayesian methods on the other hand start from assigning a degree of plausibility
to each value of these uncertain parameters within a range and updating this
likelihood based on independent data as to infer the most plausible parameter
values. As such, Bayesian methods approach the uncertainty from the inside by



Recent trends in the modeling and quantification of non-probabilistic uncertainty 51

searching the most probable point, and specifying how the probability decreases
away from this point.

Bayesian methods are widely applied in various domains ranging from eco-
nomics and finance [94,106], marketing [168], over biology [98], to artificial intelli-
gence [113] and structural mechanics [6,8,121,26,25,221], and applications range
from small-scale problems to large-scale problems [143,160]. Also their application
to the quantification of random fields has been illustrated numerous times [34,28,
187]. Interval methods for inverse UQ on the other hand are introduced only very
recently, and their application is mainly limited to purely numerical or small-scale
problems.

8.1 Obtained information

When applying Bayesian techniques, a full description of the joint degree of plau-
sibility of each parameter over a range is obtained. However, in order to obtain an
objective result, a sufficiently accurate prior estimate of the uncertainty is needed
in conjunction with sufficient experimental data. When only scarce experimental
data are available, as is usually the case in realistic experimental cases, the prior
distribution influences the obtained quantification to a large extent. The obtained
results are in this case highly subjective, which limits their credibility. This effect
is further amplified when the prior is highly biased with respect to the actual
parameter values [189].

In order to obtain a more objective prior, techniques such as the maximum
entropy principle [79,103,104,183] have been introduced, alleviating this subjec-
tivity. However, objective in a certain sense and based on a solid mathematical
foundation, it is not guaranteed that the maximum entropy principle also yields the
physically most probable point. For example, when only information on the range
of the non-deterministic parameter is available, the maximum entropy principle
yields the uniform distribution as being most appropriate as this distribution has
the highest information entropy given the available data. However, with only infor-
mation on the range, there is no guarantee that each point between the predefined
bounds is equally probable. Therefore, while being objective (i.e., independent on
estimates of the analyst), the obtained distribution does not correspond to reality.
This small-scale example illustrates indeed that this approach is only guaranteed
to give a truthful estimation when sufficient data are available to effectively assess
the accuracy of the estimated probability distribution.

Interval quantification methods on the other hand deliver crisp bounds between
which the uncertain parameter is believed to lie. The main advantage hereof is that
each dataset can be uniquely described by an interval. Therefore, this method is
inherently objective as no subjective estimates and approximations on the under-
lying probabilistic nature of the non-determinism are made to steer the quantifi-
cation process. As long as the measurement data are obtained in an optimised way
(i.e., such that they completely capture the needed scatter in the responses that
results from the uncertainty that is studied), interval methods moreover provide
sufficient information for worst-case analyses. However, it is not possible to assess
the reliability of the designed structure using purely interval-based methods.
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8.2 Multivariate uncertain parameters and responses

As Bayesian methods are founded on the elaborate probabilistic theory, they are
inherently capable of identifying jointly non-deterministic parameters. This is usu-
ally attained by defining a joint plausibility function, which is inferred analogously
as to a univariate identification problem. It should be noted that the definition
of the prior distribution could prove in this context more challenging. Bayesian
methods are also easily extendible towards the identification and quantification of
key random field parameters such as the statistical moments and/or correlation
length, albeit in the Bayesian interpretation of uncertainty. As such, a degree of
plausibility is obtained for these parameters.

Intervals are by definition not capable of describing dependency between dif-
ferent variables. As such, the identified non-determinism is inherently decoupled
as well, and thus no information on the dependence is obtainable. The recent de-
velopments discussed in this paper remediate this shortcoming of the paradigm.
Interval fields allow for modeling spatial uncertainty in an interval context, and
the discussed quantification method allows for their inverse quantification.

8.3 Computational cost

When no asymptotic approximations of the posterior are attainable in the Bayesian
framework, computationally expensive Markov Chain Monte Carlo procedures are
needed for its construction. As convergence of these chains in general needs nu-
merous forward propagations to full convergence, MCMC in conjunction with re-
alistic FE models proves to be very computationally demanding. Therefore, often
surrogate models are employed, which introduce additional uncertainty if applied
improperly. The computational burden is further aggravated by the fact that most
MCMC algorithms are very hard or impossible to code in parallel. Finally, the im-
plementation of such Bayesian identification schemes using MCMC proves to be a
non-trivial task.

Interval models on the other hand prove to be less computationally inten-
sive as their probabilistic counterparts. This is particularly true when interval
arithmetical approaches are employed for the propagation of the interval FE prob-
lem. Also in the context of applying global optimization approaches, a reasonable
computational cost is obtained when Newton-type optimisers are applied. When
combinatorial methods such as the vertex or transformation method are applied,
an exponential scaling of the computational cost is obtained with respect to the
number of uncertain parameters. Moreover, in the state-of-the-art of inverse identi-
fication and quantification of interval uncertain model parameters, also some meta-
heuristic optimization techniques such as Particle Swarm, Genetic algorithms and
Ant Colony optimization are applied. These techniques increase the computational
burden heavily as they usually need thousands of interval model evaluations for
convergence.
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8.4 Measurement data uncertainty

Both techniques may suffer from uncertainty in the measurement data, as often
(aleatory) variability is present due to random measurement errors. Therefore mea-
surement system noise is present, as well as biased results due to systematic devia-
tions of the measurement devices due to insufficient calibration. Usually, the order
of magnitude of this non-determinism is considerably lower as compared to the one
attributed to the numerical model, as long as necessary measurement standards are
taken into account and the measurement instruments are properly calibrated. This
can be asserted by determining the repeatability and reproducibility of the mea-
surement system [192,67]. This noise is only problematic when the stability of the
minimization of the L2 norm error that is commonly used in classical probabilistic
or interval uncertainty quantification is not ensured due to near rank-deficiency
of the corresponding sensitivity matrices (see also section 5). Bayesian techniques
are expected to be more robust to these phenomena, as the prior information that
is incorporated into the analysis serves as some sort of regularization [176].

8.5 Type of the non-determinism

When considering the identification and quantification of non-deterministic val-
ues, an analyst is mostly confronted with either uncertain variability or invariable
uncertainty. Both techniques are, apart from the above considerations, equally ap-
plicable for the identification and quantification of such non-determinism. Their
applicability for invariable uncertainty is straightforward, as the Bayesian method
provides a plausibility for a range of possible values for this uncertainty, whereas
the interval methods provide the analyst with crisp bounds in between which the
uncertainty is deemed to be located. As concerns uncertain variability, Bayesian
methods should be applied to obtain a plausibility corresponding to the hyper-
parameters of some hypothesized distributions. Interval methods on the other
hand provide also in this context the analyst with crisp bounds for the uncertain
variable parameter.

9 Conclusions

This paper discusses non-probabilistic concepts for the forward and inverse quan-
tification of parametric model uncertainty. A survey of interval, fuzzy and convex
set approaches is presented both for the modeling and propagation of spatial un-
certainty is also provided. Recent advances in interval fields are also discussed.
These methods provide a tool to allow for the modeling of spatial uncertainty de-
spite the fact that intervals are independent by definition. Several techniques are
discussed and their advantages and drawbacks highlighted. The interval method
on the one hand requires very few data points to already provide an analyst with
a crisp and objective estimate of the constituting uncertainty. The fuzzy method
on the other hand requires the definition of a membership function, which is in-
herently subjective. Therefore, this class of methods is more regarded either as a
subjective tool to transparently incorporate expert knowledge into the design, or
as an excellent means to assess the sensitivity of the model to the crisp interval
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boundaries. Also a comparison with probabilistic methods is briefly recalled and
extended towards the modeling of multi-variate and spatial uncertainty.

Furthermore, a recent survey of inverse methods for non-probabilistic uncer-
tainty quantification is given. The core idea of these methods is to use a set of
measured responses to infer the bounds on the uncertainty that is present in the
model parameters. The first step in all these methods is the hyper-cubic approx-
imation of the measurement data set, followed by an iterative optimization ap-
proach that maps the hyper-cubic result of the interval finite element computa-
tion to the hyper-cube of measured data. However, this hyper-cubic representation
omits all information on the dependence between these model responses. In this
paper, it is discussed how this prevents the quantification of spatial interval un-
certainty at the input side of the model, but also gives rise to possible problems
with non-uniqueness and ill-posedness of the corresponding optimization problem.

Finally, a very recent development in the context of interval field quantifica-
tion is presented in full detail. The method starts is based on the computation
of the convex hull of the uncertain output set, which originates from propagating
the input interval field through the interval FE solver on the one hand, and the
calculation of the convex hull of the measurement data on the other hand. The
quantification of the interval field at the input side of the model is then obtained
by minimizing some well-defined objective functions that describe the discrepancy
between both convex hulls. Also two methods to reduce the computational cost
that is associated with the computation of the convex hulls are discussed in detail.
Two case studies are also highlighted: A case study concerning a quasi-static ax-
isymmetric model of a cast pressure vessel is included to illustrate the method. In
this case study, numerically generated measurement data are used to illustrate the
performance of the interval field identification and quantification method in the
context of quasi-static FE models. To limit the computational cost, the projection
method is used to project the set of measurement data and the prediction of the
numerical model onto a lower-dimensional basis. It is illustrated that an accurate
identification of the base functions is attainable, as long as sufficient extreme re-
sponses are enclosed in the measurement data set. The accuracy however degrades
when insufficient responses are available. Also, when already one base function for
the construction of the interval field is selected inaccurately, the obtained results
become quickly very conservative. Both issues stress the need for both an intelli-
gently designed experimental campaign as for identifying the base functions from
the measurement data instead of constructing them using expert knowledge.

Finally, also a conceptual comparison with Bayesian methods is given in this
paper. This comparison highlights the complementary nature of both approaches.
More research is however needed to address specific questions such as to objectify
the selection of the most appropriate method given a dataset.
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77. Graf, W., Götz, M., Kaliske, M.: Analysis of dynamical processes un-
der consideration of polymorphic uncertainty. Structural Safety 52, 194
– 201 (2015). DOI https://doi.org/10.1016/j.strusafe.2014.09.003. URL
http://www.sciencedirect.com/science/article/pii/S0167473014000861. Engineering
Analyses with Vague and Imprecise Information

78. Gratiet, L.L., Marelli, S., Sudret, B.: Metamodel-based sensitivity analysis: polynomial
chaos expansions and gaussian processes. Handbook of Uncertainty Quantification pp.
1–37 (2016)

79. Gull, S.F.: Bayesian inductive inference and maximum entropy, pp. 53–74. Springer
(1988)
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142. Möller, B., Graf, W., Beer, M.: Safety assessment of structures in view of fuzzy random-
ness. Computers & Structures 81(15), 1567–1582 (2003)

143. Monelli, D., Mai, P.: Bayesian inference of kinematic earthquake rupture parameters
through fitting of strong motion data. Geophysical Journal International 173(1), 220–
232 (2008)

144. Moore, R.E.: Interval arithmetic and automatic error analysis in digital computing. Ph.D.
thesis, Stanford University, Department of Mathematics (1962)

145. Moore, R.E.: Methods and applications of interval analysis. SIAM (1979)
146. Moore, R.T.: Interval Analysis, vol. 4. Prentice Hall, Englewood Cliffs (1966). DOI

10.1016/0016-0032(67)90590-X
147. Mottershead, J., Friswell, M.: Model updating in structural dynamics: a survey. Journal

of sound and vibration 167(2), 347–375 (1993)
148. Muhanna, R.L., Mullen, R.L.: Uncertanty in mechanics problems- interval based ap-

proach. Journal of engineering mechanics 127(6), 557–566 (2001)
149. Muhanna, R.L., Mullen, R.L., Zhang, H.: Penalty-Based Solution for the Interval Finite-

Element Methods. Journal of Engineering Mechanics 131(October), 1102–1112 (2005).
DOI 10.1061/(ASCE)0733-9399(2005)131:10(1102)

150. Mullen, R.L.M.H.Z.R.L.: Combined axial and bending stiffness in interval finite-element
methods. Journal of Structural Engineering 133(12), 1700–1709 (2007). DOI
10.1061/(ASCE)0733-9445(2007)133:12(1700)

151. Muscolino, G., Santoro, R., Sofi, A.: Explicit sensitivities of the response of discretized
structures under stationary random processes. Probabilistic Engineering Mechanics 35,
82–95 (2014)

152. Muscolino, G., Santoro, R., Sofi, A.: Explicit reliability sensitivities of linear structures
with interval uncertainties under stationary stochastic excitation. Structural Safety 52,
219–232 (2015)

153. Muscolino, G., Sofi, A.: Stochastic analysis of structures with uncertain-but-bounded
parameters via improved interval analysis. Probabilistic Engineering Mechanics 28, 152–
163 (2012). DOI 10.1016/j.probengmech.2011.08.011



62 Matthias Faes, David Moens

154. Muscolino, G., Sofi, A.: Bounds for the stationary stochastic response of truss struc-
tures with uncertain-but-bounded parameters. Mechanical Systems and Signal Process-
ing 37(1), 163–181 (2013)
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187. Sraj, I., Mâıtre, O.P.L., Knio, O.M., Hoteit, I.: Coordinate transformation and polynomial
chaos for the bayesian inference of a gaussian process with parametrized prior covariance
function. Computer Methods in Applied Mechanics and Engineering 298, 205 – 228
(2016). DOI https://doi.org/10.1016/j.cma.2015.10.002

188. Stefanou, G.: The stochastic finite element method: Past, present and future. Computer
Methods in Applied Mechanics and Engineering 198(9-12), 1031–1051 (2009). DOI
10.1016/j.cma.2008.11.007

189. Stein, M., Beer, M., Kreinovich, V.: Bayesian approach for inconsistent information.
Information sciences 245, 96–111 (2013)

190. Sudret, B.: Meta-models for structural reliability and uncertainty quantification. arXiv
preprint arXiv:1203.2062 (2012)

191. Sunaga, T.: Theory of an interval algebra and its application to numerical analysis. Japan
Journal of Industrial and Applied Mathematics 26(2), 125–143 (1958)

192. Taylor, B.N., Kuyatt, C.E.: Guidelines for evaluating and expressing the uncertainty of
NIST measurement results. US Department of Commerce, Technology Administration,
National Institute of Standards and Technology Gaithersburg, MD (1994)

193. Teichert, W.H.: Reasons for Uncertainty and their Consequence. In: Proceedings of the
23rd International Conference on Noise and Vibration Engineering, ISMA, pp. 961–966.
Leuven (1998)

194. Thacker, B.H., Doebling, S.W., Hemez, F.M., Anderson, M.C., Pepin, J.E., Rodriguez,
E.A.: Concepts of model verification and validation. Tech. rep., Los Alamos National
Lab., Los Alamos, NM (US) (2004)

195. Titurus, B., Friswell, M.: Regularization in model updating. International Journal for
numerical methods in engineering 75(4), 440–478 (2008)

196. Tonon, F., Bernardini, A.: A random set approach to the optimization of uncertain struc-
tures. Computers & structures 68(6), 583–600 (1998)

197. Troffaes, M., Destercke, S.: Probability boxes on totally preordered spaces for multivariate
modelling. International Journal of Approximate Reasoning 52(6), 767–791 (2011). DOI
10.1016/j.ijar.2011.02.001

198. Turrin, S., Hanss, M., Selvadurai, A.: An approach to uncertainty analysis of rockfall
simulation. CMES: Computer Modeling in Engineering & Sciences 52(3), 237–258 (2009)



64 Matthias Faes, David Moens

199. Van Der Herten, J., Deschrijver, D., Dhaene, T.: Fuzzy local linear approximation-based
sequential design. In: Computational Intelligence for Engineering Solutions (CIES), 2014
IEEE Symposium on, pp. 17–21. IEEE (2014)

200. Vandepitte, D., Moens, D.: Quantification of uncertain and variable model parameters in
non-deterministic analysis. In: IUTAM Symposium on the Vibration Analysis of Struc-
tures with Uncertainties, vol. 27, pp. 15–28. Saint Petersburg (2011). DOI 10.1007/978-
94-007-0289-9

201. Vanmarcke, E.H., Grigoriu, M.: Stochastic Finite Element Analysis of Simple Beams.
Journal of Engineering Mechanics 109(5), 1203–1214 (1983). DOI 10.1061/(ASCE)0733-
9399(1983)109:5(1203)

202. Verhaeghe, W., Desmet, W., Vandepitte, D., Joris, I., Seuntjens, P., Moens, D.: Applica-
tion of interval fields for uncertainty modeling in a geohydrological case. In: ECCOMAS
Thematic Conference - COMPDYN 2011: 3rd International Conference on Computa-
tional Methods in Structural Dynamics and Earthquake Engineering: An IACM Special
Interest Conference, Programme. Corfu, Greece (2011)

203. Verhaeghe, W., Desmet, W., Vandepitte, D., Joris, I., Seuntjens, P., Moens, D.: Appli-
cation of interval fields for uncertainty modeling in a geohydrological case. In: Compu-
tational Methods in Stochastic Dynamics, pp. 131–147. Springer (2013)

204. Verhaeghe, W., Desmet, W., Vandepitte, D., Moens, D.: Uncertainty assessment in ran-
dom field representations: An interval approach. In: Annual Conference of the North
American Fuzzy Information Processing Society - NAFIPS, pp. 1–6. El Paso, TX (2011).
DOI 10.1109/NAFIPS.2011.5752048

205. Versteeg, H.K., Malalasekera, W.: An introduction to computational fluid dynamics: the
finite volume method. Pearson Education (2007)
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