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Abstract—The rapid deployment of wind and solar energy gen-
eration systems has resulted in a need to better understand,
predict, and manage variable generation. The uncertainty around
wind and solar power forecasts is still viewed by the power indus-
try as being quite high, and many barriers to forecast adoption
by power system operators still remain. In response, the U.S.
Department of Energy has sponsored, in partnership with the
National Oceanic and Atmospheric Administration, public, pri-
vate, and academic organizations, two projects to advance wind
and solar power forecasts. Additionally, several utilities and grid
operators have recognized the value of adopting variable gener-
ation forecasting and have taken great strides to enhance their
usage of forecasting. In parallel, power system markets and oper-
ations are evolving to integrate greater amounts of variable gener-
ation. This paper will discuss the recent trends in wind and solar
power forecasting technologies in the U.S., the role of forecasting in
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an evolving power system framework, and the benefits to intended
forecast users.

Index Terms—Forecasting, large-scale integration, market
design, power-system reliability, renewable energy, solar energy,
variable generation, wind energy.

I. INTRODUCTION

ARIABLE generation poses a challenge to power sys-
tems that traditionally have operated under deterministic
rules. There are a number of variable generation management
and mitigation strategies [1]-[5] and forecasting is generally
seen as low-hanging fruit to facilitate the integration of higher
penetrations of variable generation into existing power sys-
tem architecture [6]. However, the uncertainty and inaccuracy
of variable generation forecasts remain obstacles for users.
As Jones [3] states, “94% of grid operators say that integrat-
ing a significant amount of wind [power] will largely depend
on the accuracy of the wind power forecast.” The greater the
uncertainty between the forecasted and actual values, the less
confident operators will be in relying on forecasts for maintain-
ing system reliability, especially in high-penetration scenarios.
Here, we define high penetration as a threshold of wind and
solar power generation that begins to affect power-system oper-
ations. This level will be different for each system depending
on operational practices, generation mix, inherent flexibility,
and market rules. Not only does the variable nature of the
atmosphere (e.g., wind, temperature, and irradiance) impact the
power output from wind and solar power generators, but it is
also a factor in determining the load, which together account
for the variability that must be balanced by the power system.
Integrating high penetrations of variable generation is
quickly becoming a reality for many utilities, balancing authori-
ties (BA), and Independent System Operators (ISO) throughout
the United States. As of 2012, nine states obtain more than
10% of their electricity from wind energy [7]. Additionally,
with widespread adoption of state renewable portfolio stan-
dards (RPS), reduction in the cost of energy, and growing
concerns about climate change, a rapidly expanding fleet of
utility-scale wind and solar power systems are being incorpo-
rated into the grid. The number of systems above 20 MW is
increasing dramatically, which will affect electric power sys-
tem planning and operations processes. Also, there is increasing
interaction between the distribution and transmission systems
with the advent of roof-top solar, demand-side strategies, elec-
tric vehicles, more affordable storage, distributed generation,
and multimegawatt power plants on distribution feeders.
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Several papers have been published overviewing wind and
solar power forecasting technologies [8]-[17]. This paper is
intended to present recent advancements through large-scale
research programs, including trends in forecast adoption and
market evolution within the U.S. power system.

II. RECENT TECHNOLOGY ADVANCEMENTS

Numerical weather prediction (NWP) is a major component
of wind and solar power forecasting. The National Oceanic
and Atmospheric Administration (NOAA) generates many of
the NWP products used as inputs to the wind and solar power
products created by forecast providers. The U.S. Department of
Energy (DOE) and NOAA both recognize that improvements to
NWP models will benefit renewable energy forecasting appli-
cations, and these agencies have established a Memorandum of
Understanding to further cross-agency collaboration in part to
assess and develop “new methodologies for weather-dependent
and oceanic renewable energy resource forecasting” and “sup-
port advanced forecasting methods...” [18]. Thus DOE, in
partnership with NOAA, has funded two major studies to
advance renewable energy forecasting capabilities. These two
studies, the Wind Forecasting Improvement Project (WFIP)
[19] [20] and the Improving the Accuracy of Solar Forecasting
Project, are intended to make substantial enhancements to
NWP physics, data assimilation, model grid resolution, and
output parameters that will benefit renewable energy applica-
tions. While NWP is typically a foundational input to variable
generation forecasting technologies, the forecast process is
often augmented by complex statistical algorithms and coupled
modeling systems as discussed in the following sections.

A. DOE/NOAA Wind Forecasting Improvement Project

The skill of NWP in predicting winds within the atmospheric
boundary layer is key to the accuracy of wind-power forecasts.
Prior to WFIP’s commencement, forecast errors were on the
order of 10-30% (by energy) for intraday to day-ahead fore-
casts for individual wind plants and 6-18% (by energy) for a
region of aggregated plants [21]. Historically, wind-speed fore-
cast errors of 1-2 m/s were acceptable to most users of NWP
forecasts. However, since wind power is a function of wind
speed cubed, these relatively small errors in wind speed produce
significant wind power forecast errors between turbine cut-in
and rated wind speeds.

One WFIP hypothesis is that having a better representation
of the boundary layer will improve NWP wind-speed predic-
tions, and that this may be accomplished by initializing and bias
correcting with additional ground-based observations including
wind-profiling radars, SODARs, LiDARs, surface flux stations,
and industry-provided meteorological tower and turbine nacelle
data [19]. Another hypothesis of WFIP is that better assimi-
lation and postprocessing methodologies would also produce
better weather forecasts. Additionally, NOAA’s intraday to day-
ahead NWP products are at temporal and spatial scales that are
suboptimal for wind energy applications, so a major aspect of
WFIP is to test and improve an experimental high-resolution
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rapid refresh (HRRR) model, which is using the additional
observations and is updated hourly.

The WFIP forecasts and analyses were performed for two
regions in the U.S., the Midcontinent ISO (MISO, formerly the
Midwest ISO) and the Electric Reliability Council of Texas
(ERCOT), with an emphasis on the short-term (0-6 h) time
frame. The wind power forecasting techniques varied between
the two study regions. The MISO study, led by WindLogics,
uses three different NOAA NWP forecasts, the operational
Rapid Update Cycle (RUC) [replaced by the Rapid Refresh
(RAP)], an experimental RAP (ESRL), and the HRRR, which
were each bias-corrected, run through a machine-learning pro-
cess, and combined with a fourth NWP model, the North
American Model (NAM), to create an ensemble forecast. This
team evaluated the improvements at each step along the forecast
process. The ERCOT study, led by AWS Truepower, used three
NWP models, the Weather Research and Forecasting (WRF)
system [22], the Mesoscale Atmospheric Simulation System
(MASS) [23], and Advanced Regional Prediction System
(ARPS) [24], [25], each with three different configurations, in
addition to the HRRR for a total of ten NWP forecasts. Each
forecast was bias-corrected and weighted to generate an ensem-
ble wind-power forecast. This forecast was then compared
with the baseline ERCOT Short-Term Wind Power Forecast
(STWPF). More details of these forecasting systems can be
found in a paper by Orwig et al. [19] and the respective final
reports [62], [63].

The results demonstrate that methods undertaken to improve
the forecasts have proven successful, particularly for shorter
forecast horizons. Examples of the results are shown in
Fig. 1.

B. DOE/NOAA Improving the Accuracy of Solar Forecasting
Project

Solar power forecasting technologies are relatively less
mature than those for wind power due to lower solar penetra-
tion levels and the difficulty of accurately predicting clouds
in NWP models. Additionally, solar irradiance measurements
are limited, and forecasters often have to rely on satellite data
for verification. It is necessary to derive and predict several
irradiance values including direct normal irradiance (DNI), dif-
fuse irradiance, plane-of-array (POA) irradiance, and global
horizontal irradiance (GHI) from satellite imagery [26]. These
derivations, and predictions thereof, require knowledge of the
aerosol optical depth (for which there are few observations),
cloud heights and densities (which are difficult to derive from
visible satellite imagery), as well as cloud dynamics and other
factors. Also, the more advanced radiative transfer and cloud
microphysics schemes necessary to accurately forecast irradi-
ance dramatically increase the computational expense of the
NWP models.

To achieve significant advances in solar irradiance and power
forecasting, the DOE SunShot program funded the Improving
the Accuracy of Solar Forecasting project, which began in early
2013. This project seeks to develop standardized metrics, base-
lines, and target values to measure forecast accuracy improve-
ment (see Section II-E), and enhance forecasting technologies
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Fig. 1. Forecast errors for (top) current ERCOT STWPF (blue) and WFIP
(red) forecasts for various forecast horizons in ERCOT from October 2011 to
September 2012, and (bottom) raw NWP (blue), bias-corrected NWP (red),
coupled machine learning/NWP (green), and ensemble of coupled machine
learning/NWP forecasts (black) for the aggregate of NextEra wind plants in
MISO from January to September 2012.

while integrating the forecasts into the control room. The two
integrated teams of industry, public, and academic organiza-
tions are led by the National Center for Atmospheric Research
(NCAR) and IBM Research, respectively. This project will be
a collaborative effort, with DOE and NOAA providing a public
platform for incorporating the resulting forecast advancements.
The advancements will include: a new Weather Research and
Forecasting Solar (WRF-Solar) model; an operationalized rapid
update WRF (every 15 min); improved radiative transfer, cloud,
and aerosol physics; incorporation of enhanced NOAA satellite
imagery; and a “big data”-driven machine-learning multiscale
forecasting platform.

Each of the teams will supply quasi-operational forecasts to
their utility and BA partners for 1 year. This will allow for iter-
ative improvement, as well as provide a sufficiently long time
series to perform verification. A lasting impact of this solar-
forecasting project will be wide dissemination of the results
and an integrated evaluation that includes advances in NWP and
statistical learning methods, and metrics to assess the forecast
value.

C. Observation Systems for Very Short-Term Forecasting

Observation systems are another aspect of forecasting that
have recently experienced an evolution in value. Meteorological
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observations devoted to variable generation projects were only
considered useful for resource assessment purposes (and not
economical to maintain once projects were built), but data from
such stations are now integral to the system operations pro-
cess. Several load-serving entities (LSE) and BAs currently
obtain more detailed observational data from devoted networks
and from within wind and solar power plants to augment and
facilitate variable generation forecasts. The Hawaii Electric
Company (HECO), for example, with support from DOE and
the Electric Power Research Institute (EPRI) has strategi-
cally sited remote sensing equipment (multiple SoDARs, a
scanning LiDAR, and a radiometer) to enhance deterministic
and probabilistic forecasts, as well as ramp alerts [27], [28].
Also, Xcel Energy, HECO, and Southern California Edison
(SCE) all require the measurement and provision of various
meteorological parameters within their power-purchase agree-
ments. In addition, all BA/ISOs with centralized forecasting
systems [e.g., MISO, ERCOT, Bonneville Power Authority
(BPA), New York ISO (NYISO), Pennsylvania-New Jersey-
Maryland (PJM), ISO New England (ISONE), and California
ISO (CAISO)] require that some data be provided from vari-
able generation projects. Indeed, the Federal Energy Regulatory
Commission (FERC) Order 764 [29] mandates provision
of such data to BAs who perform centralized wind power
forecasting.

Quantifying the benefit of additional observations can be dif-
ficult and may be quite specific to certain systems or regions.
As mentioned earlier, the WFIP project is quantifying the value
of additional observations for improving initial conditions of
NWP models. The WFIP instrument suite provides informa-
tion about a deep column of the atmosphere and hub-height
data from the wind plants. The results from the MISO region
showed an improvement in forecast accuracy of 2-5% of energy
produced at each plant over the first 6 h of forecasts at most
NextEra wind plants within the study area. The largest improve-
ments were seen in the northern half of the study area, where
the observation networks are very sparse compared to the south-
ern portion of the study area. Additionally, the DOE Improving
the Accuracy of Solar Forecasting project is developing very
short-term forecasts utilizing sky imagers and other ground-
based observations in addition to satellite imagery, which will
be coupled with other intraday and day-ahead forecast systems.
Also, the Sacramento Municipal Utility District (SMUD) has
ongoing research to determine the value and spatial granularity
necessary for producing accurate distributed PV production and
forecast estimates using ground sensor data.

D. Advanced Statistical Methods and Forecasts

Statistical learning and optimization communities have
grown significantly in the last decade as data availability and
computing capabilities have substantially increased. The meth-
ods developed have evolved from foundational, theoretical, and
computational roots and are now applied in a wide variety
of fields including medical, biological, financial, engineering,
security, video gaming, professional sports, and other indus-
tries. In renewable energy, recent developments include cou-
pled systems that combine observations, NWP with improved
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data assimilation schemes, and advanced statistical models
to improve forecast accuracy. These statistical models often
include the use of artificial intelligence algorithms [30]-[36]
and Kalman filtering [37], [38]. In general, these coupled
models take historical and modeled information and optimize
outcomes that “learn” as more information is provided to the
system. These methods often lead to more accurate and pre-
cise forecasts. For example, in WFIP, forecasts generated with
a coupled machine-learning/NWP system perform better over-
all than raw NWP forecasts, as shown in Fig. 1. The usage of
these advanced techniques for forecasting has become much
more acceptable and widespread in recent years.

E. Forecast Uncertainty and Performance Metrics

Currently, there is considerable debate in the industry regard-
ing the best metrics for measuring the accuracy of fore-
casts. Recent research has better characterized forecast errors
[39]-[42], but at present, there is no industry-wide standard
performance metric. Also, work being performed under the
DOE Improving the Accuracy of Solar Forecasting project has
recently proposed a number of new metrics for evaluating solar
power forecasting [43], with an emphasis on capturing the eco-
nomic value of improvements to power system operators. These
new forecasting metrics attempt to distinguish the most impor-
tant improvements to the model, as well as prediction of power.
The end goal is to build a value chain that quantifies the value
of the forecast to the end user.

Statistical metrics are tested to ascertain how well they char-
acterize the observed power production versus the forecasted
power production. Another key component of this effort is to
poll a wide variety of stakeholders and integrating their input
into options tested by the team members. These metrics include
Pearson’s correlation coefficient, normalized RMSE, maximum
absolute error (MaxAE), MAE, mean absolute percentage error
(MAPE), mean bias error (MBE), standard deviation, kurtosis,
skewness, Kolmogorov—Smirnov test Integral (KSI), and the
integrated differences between cumulative distribution func-
tions (OVER). Additionally, the metrics are evaluated as to their
ability to represent the variability of solar power over a variety
of time and geographic scales, and include the kernel density
estimation (KDE). Key metrics for uncertainty quantification
include the standard deviation and the Rényi entropy [41]. Heat
maps and the swinging-door algorithm [44] will be used to
quantify ramps at a variety of scales. Finally, economic metrics
that also account for load forecast error will be used to assess
the need and cost for flexibility reserves.

The sensitivity and performance of each of these metrics
are another challenge that is being investigated using Support
Vector Regression (SVR) and extended Fourier Amplitude
Sensitivity Test (eFAST). The former has gained popularity in
recent years in statistical learning and optimization commu-
nities and is being used to estimate metric performance via
response surfaces that establish relationships between inputs
and outputs. Meanwhile, eFAST is a variance-based sensitiv-
ity analysis approach that evaluates the impact of inputs on the
outcome.

Results of this work, as discussed by Zhang et al. [40],
showed that all of the metrics evaluated were successful in
assessing forecast performance. All metrics were also found to
be sensitive to uniform improvements to forecasts, while kurto-
sis, skewness, and Rényi entropy were also sensitive to ramp
forecast improvements. Further work is underway to define
forecast performance targets for specific utilities, BAs, and
ISOs. Also, metric development and assessment for probabilis-
tic forecasts are still needed.

There have been recent key advances in the presentation of
uncertainty information in a manner that is clear and intuitive
to system operators and allows the operators to gain additional
trust in the forecasts. Ensemble and probabilistic forecasting
methods are increasingly used because of their ability to bet-
ter characterize the most likely power production, represent
potential extreme scenarios, and provide a way to quantify
the uncertainty [45]-[49]. The forecasts can be generated by
running a variety of NWP models, running a single NWP
with various physics configurations, or a combination thereof.
They can also be coupled with aforementioned statistical mod-
els and ground-based observations to obtain power production
estimates. The result is any number of power production fore-
cast scenarios that can be blended to produce a “best guess”
deterministic forecast based on the ensemble. Each of the
ensemble members can be evaluated individually or collectively
as well, to assess extreme scenarios, establish confidence inter-
vals, or define probability distribution functions that describe
the likelihood of different scenarios.

This ensemble approach, while providing valuable informa-
tion, can be very computationally intensive. A similar yet more
efficient approach that is emerging can identify analog condi-
tions with a single deterministic forecast and use those to form
an “analog ensemble” [37], [50]. This technique shows promise
for improving upon deterministic forecasts while providing
reliable forecast uncertainty information.

Incorporating easy-to-interpret probabilistic information into
decision-making and energy management processes is one of
the major barriers to the widespread adoption of probabilis-
tic forecasts. ERCOT and HECO, for example, are working
with AWS Truepower to implement a probabilistic ramp alert
system, which is currently used primarily for situational aware-
ness. Similarly, Xcel Energy is working with NCAR on such
implementation. A more detailed discussion of this system
follows in Section III-C.

III. VARIABLE GENERATION FORECAST UTILIZATION
A. Value of Variable Generation Forecasts

The use and benefit of variable generation forecasts varies
for each utility, ISO, and BA, so generalizations are difficult.
Integration studies have historically shown that day-ahead fore-
casts can provide significant cost savings to grid operators
under high-penetration scenarios [1]. On a system-by-system
or intraday basis, it is less clear what the benefits are, broadly
speaking. One of the goals of WFIP was to demonstrate the eco-
nomic benefits of 0—6-h-ahead (HA) wind power forecasts for
two grid operators, MISO and ERCOT. For places like Hawaii,
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where energy and fuel prices are directly correlated, the cost
benefits can be quite significant with increasing fuel prices. As
natural gas prices recover from historic lows, improved accu-
racy of forecasts can provide even more value in terms of
system production cost savings.

It is important to point out that integration studies and WFIP
assume that forecasts are optimally used within power system
operations, which is a necessary assumption in the unit com-
mitment modeling process. In reality, grid operators may not
fully realize the full benefits, as modeled, from wind and solar
power forecasts, much less from improved forecasts. This fore-
cast usage optimization problem arises from barriers to forecast
implementation within energy management systems (EMSs),
and include cultural acceptance, forecast performance verifica-
tion, and the interpretation of uncertainty. Efforts are currently
underway to address these barriers and will be discussed further
in the following sections.

B. Forecast Adoption

More and more LSEs and BAs are investigating and using
variable generation forecasts to optimize their market and sys-
tem operations. Porter and Rogers [51] published a survey of
variable-generation forecast usage in the western U.S. After
interviewing 11 BAs in 2011, they found that most of them use
variable generation forecasts for intraday unit commitment, and
half use them for determining reserve requirements. Most use
wind power forecasts but few are using solar power forecasts
due to the low solar penetration at the time of the survey. The
authors also specify that generalizing forecast usage is difficult
because of each BA’s unique circumstances. For example, one
BA has no load and uses wind forecasts for scheduling hourly
sales, operating reserves, and generation outages, while another
BA exports most of their wind power and uses the forecast for
operational planning and hydropower dispatch.

The extent of forecast usage has also evolved. Porter and
Rogers [51] provide examples of how very simple forecasting
systems were implemented initially, but now more sophisticated
systems are used or being developed. Substantial advancements
on this front have been made since the publication of this
survey.

ERCOT currently contracts with AWS Truepower to pro-
duce an hourly wind power forecast, updated each hour for
a rolling 48-h period. Forecasts are provided for individual
wind power plants and for the whole service region. ERCOT
primarily uses these forecasts for its day-ahead and intraday
reliability unit commitment. Historical forecast errors from the
previous month and same month of the previous year are one of
the parameters used to determine nonspinning reserve require-
ments. In addition, the plant level forecasts are shared with
the plant’s scheduling agent so that the forecasts can be used
in the decision-making processes. Aggregate wind power fore-
casts are also available on ERCOT’s website for public access.
Like many others, ERCOT has not yet invested in a centralized
solar power forecast due to the relatively low penetration of
solar plants in their system.
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SCE has developed and been using different types of fore-
casts since the mid-1980s. SCE uses variable-generation fore-
casting in many aspects of the trading and energy operations
timeline. These uses include situational awareness informa-
tion, short- and long-term planning, trading position inputs,
transmission position inputs, short-term position inputs, and
after-the-fact data for analysis. All these uses filter down to
more granular processing of the information depending on the
particular needs of each group.

SMUD is taking measures to adopt solar power forecast-
ing, as well as to provide feedback to forecast providers on
areas of desired improvement. Throughout 2013, they have
been working with four commercial solar power forecasters,
Clean Power Research, Garrad Hassan, Green Power Labs,
and AWS Truepower, to validate their forecast performance
using an extensive network of 74 solar monitoring devices
and 8 utility-scale PV systems. SMUD is evaluating spatial
forecast accuracy and approaches to enhance temporal granu-
larity and accuracy relative to predicting variability. SMUD is
actively working with NCAR’s team on the DOE-funded solar
forecasting project to enhance forecast accuracy and appropri-
ately value it. SMUD has incorporated solar forecasts into its
Energy Trading platform to improve generator dispatch and
procurement decisions.

Xcel Energy contracted with NCAR to develop a wind power
forecasting system that has been licensed to Global Weather
Corporation, and incorporated into Xcel Energy’s operations
[52], [53]. Xcel is also collaborating on solar power forecasts,
both for their commercial sites and distributed solar systems.

HECO, in partnership with AWS Truepower and EPRI, has
developed a real-time Solar and Wind Integrated Forecasting
Tool (SWIFT) that is augmented by strategically sited remote
sensing systems [54], [55]. SWIFT provides a short-term (6HA)
forecast for wind and solar, updated every 15 min and a 48HA
forecast for dispatch purposes. The probabilistic forecast also
provides ramp alert statistics and probability of exceedance
statistics to operators with an indication of how variable the
wind or solar production is expected to be and to plan con-
ventional generators accordingly. SWIFT is available through
a web interface that provides a geographic view of the observed
production by plant and substation-level forecasted production,
wind vectors at 80 m, and the irradiance over the operational
area (Fig. 2). SWIFT is being integrated into the real-time
EMS environment as part of the High-Penetration PV Initiative
(HiP-PV) in collaboration with the SMUD under the California
Public Utility Commission (CPUC) California Solar Initiative
[27] and DOE SunShot Program.

Other current efforts underway include the DOE SunShot
SUNRISE project with HECO, San Diego Gas & Electric
(SDG&E), CAISO, and SMUD to incorporate distributed and
utility-scale solar forecasts into their EMS and Distribution
Management Systems (DMS) [56]; and the Pacific Northwest
National Laboratory (PNNL) project with the California Energy
Commission (CEC), CAISO, AREVA, and the University of
Washington to integrate wind power forecasts and their uncer-
tainty into the AREVA and CAISO EMS [57].
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Fig. 2. SWIFT short-term wind forecasting screenshot with observations,
forecast, ramp rate, and probability information.

C. Ramp Alert Systems

With higher penetrations of renewables on the grid, some
LSEs and ISOs are implementing ramp alert systems. For
example, ERCOT has contracted with AWS Truepower to
develop and implement the ERCOT Large Ramp Alert System
(ELRAS). ELRAS is a probabilistic ramp forecast updated
every 15 min showing the likelihood of a ramp of a certain
magnitude occurring within a range of time frames. Although
ELRAS is not directly used by the commitment or dispatch
applications at this time due to its probabilistic framework, the
tool can significantly increase the level of situational awareness
available to the operator by helping them to better gauge the
level of risk that exists in the system. This risk can then be
managed by taking into consideration additional factors, such
as potential changes in energy consumption, reserves that can
be deployed, and additional generators that may be available for
commitment. As stochastic unit commitment and other related
tools continue to evolve, there may be additional opportunities
for the use of probabilistic forecast information.

Over the last several years, SCE has worked with many
public, private, and academic organizations to develop ramp
forecasting capabilities to be used as early warning and/or
equipment deployment tools. Recent changes in market design
in California, and perhaps even more so in other regions,
may change the requirements and need for short-term ramp
awareness.

D. Distributed Solar Power Forecasting

Distributed solar power has been increasing rapidly in some
service areas, which has resulted in greater uncertainty in the
load forecasts. For example, on a clear day in HECO, the load
can be offset by 30% or more by behind-the-meter PV sys-
tems during certain times of the day [27]. SMUD and SCE
have also observed load peak shaving. To provide more visibil-
ity to the value and variability of distributed resources, HECO
recently made the Renewable Watch (REWatch) tool available
for staff and the general public (Fig. 3). REWatch displays the
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amount of renewable generation and its impact on the system
load. Additional details can be found on the HECO Company
website (http://www.heco.com).

There is an increasing need to improve load forecasting capa-
bilities that better incorporate distributed generation. Integrated
solar forecasting has been an important component of the
HECO efforts, demonstrated in recent SWIFT capabilities [54],
[55] and scenario-based studies such as the Hawaii Solar
Integration Study (HSIS) sponsored by DOE’s SunShot ini-
tiative and the University of Hawaii’s Hawaii Natural Energy
Institute (HNEI) [58]. HECO and SMUD will continue to incor-
porate distributed solar forecasting and support EMS integra-
tion as part of the CPUC California Solar Initiative-sponsored
HiP-PV Initiative [59]. Other utilities such as Xcel Energy are
similarly working toward estimating the impact of distributed
solar energy on their load and distribution system.

E. Power System Architecture and Forecasting

Utilities, ISOs, and BAs are beginning to recognize and take
advantage of relationships between forecast error and forecast
horizons, and between the magnitude of output variability and
the length of the dispatch period. Several ISOs now integrate
large amounts of wind power into their systems with little to no
impact on operating costs or system reliability. Shorter dispatch
intervals that incorporate both actual and forecast generation
data, produced as close to the dispatch time as possible, are
components to these successes. Dispatching generation (both
conventional and variable) more dynamically can help mitigate
the impacts of variable generation. Fig. 4 demonstrates how
reducing the schedule interval by 50% affects the magnitude
of the schedule error due to variability.

For example, MISO now requires most wind power plants
to submit updated schedules every 5 min, enabling them to
dispatch generation that accounts for variations in wind gen-
eration on 5-min intervals. A similar approach has also been
taken by ERCOT with its transition to 5-min real-time dis-
patch in late 2010. Real-time wind power plant capabilities
are updated every couple of seconds based on conditions at
the wind site. Information about the conventional generation
plants is also updated with the same frequency. This process
ensures that dispatch systems will always have current informa-
tion regardless of when the dispatch solution is being executed.
This approach has helped the system operator keep increases in
reserves very modest despite continuing to see an increase in
variable generation resources.

Enabling more dynamic dispatch capabilities takes advan-
tage of the implicit nature of wind energy and weather, just as
other scheduling practices, such as start-up costs and minimum
run times, are used to reflect the implicit characteristics of
thermal generators and fuel sources. Because wind power is
relatively consistent over a period of up to 10—15 min, a persis-
tence forecast at any given node will yield a small error relative
to the overall generation of the system. Experiences in regions
such as MISO and ERCOT that combine short-interval dispatch
with very short-range forecasts (within 10 min of power flow)
show that wind power plants can be fully incorporated into the
real-time market. Once this happens, wind generators also have
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Below Are Descriptions of What is Currently Displayed:
Net System Load: System Load Served By Hawaiian Electric Company.

Gross system load: Net system load + Load Served By Behind the Meter PV.

West oahu solar Irradiance: Solar Irradiance [W/m*2] Measured in West Oahu.
South Oshu Solar Irradiance: Solar irradiance [W/m*2] Measured in South Oahu.
Central Oahu Solar Irradiance: Solar Irradiance [W/mA2] Measured In Central Oahu.
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Fig. 3. Screenshot of HECO’s REWatch display. Note the load ramps (light blue) in upper left chart due to behind-the-meter PV.
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Fig. 4. Plot illustrating how schedule error of variable generation (or load) is a
strong function of scheduling interval [60] (Courtesy: Kirby [61]).

more incentive to fully participate in the day-ahead or other
intraday markets (if available). Market integration also provides
virtual traders with the possibility to apply foresight of expected
generation and load conditions to arbitrage opportunities. Thus,
full market participation increases the value of wind power fore-
casts to utilities, market participants, and traders in these other
timeframes and aids price convergence between day-ahead and
real-time markets, which implies a more efficient and reliable
market system. Further, this migration of value upstream from
system operation necessitates improvements in both forecast
skill and effective forecast communication.

Solar power, on the other hand, exhibits significant ramps and
variability, even for behind-the-meter distributed roof-top sys-
tems for whole neighborhoods, within a 10—15 min period due
to cloud shadowing. Therefore, persistence forecasts are much

less reliable and additional aggregation, very short-term fore-
casts, or other mechanisms may be needed to reduce scheduling
error. As noted earlier in this paper, research is ongoing into the
use of instruments such as sky imagers and satellite imagery for
very short-term solar forecasting systems. As with wind gener-
ation, geographic diversity will smooth some of the variability
observed in the solar power output in many circumstances but
not others (e.g., Hawaii).

The topic of market design is contentious at best. However,
many systems are evolving to accommodate new generation
sources. This evolution includes decision gates, closure times,
and operating intervals that are more aligned with time periods
that allow for a more efficient and reliable system based on the
available generation mix and load requirements. Nodal markets,
where each node has its own energy price, with frequent dis-
patch make it relatively easy to incorporate variable generation,
and include NYISO, ISONE, MISO, ERCOT, and PJM. Zonal
markets, where the energy prices are set over a large region,
may have less transparency around the causes and locations
of transmission congestion. However, these regions, such as in
the European Union, may find reductions in scheduling error
through aggregating portfolios of wind and solar energy offers
into hourly markets or other methods. In the end, each system
has its own unique way to manage variable generation. Ideally,
mechanisms used should optimize system efficiency and relia-
bility, and variable generation forecasting will continue to play
arole in achieving this optimization.

IV. CONCLUDING REMARKS

Variable generation forecasting has seen major advancement
in its science and application over the last several years. It is
now a key component to the integration of large penetrations
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of wind (and eventually solar) power for many utilities, ISOs,
and BAs. The forecasts and improvements thereof provide sub-
stantial economic and reliability benefits, in practice and in
theory (i.e., power system modeling and simulation). However,
there continue to be a number of barriers to the full adop-
tion of variable generation forecasts in decision-making and
energy management processes, thereby reducing the economic
benefits realized. These barriers include cultural acceptance,
forecast performance and verification, interpretation of uncer-
tainty, and integration into EMSs, all of which are currently
being addressed through various research efforts, as discussed
in this paper.

In parallel to the advancement of variable generation fore-
casts, the power system operational architecture is evolving
such that many systems now have real-time or near real-time
markets or scheduling, where wind power is more reliably fore-
casted, and cost-effective now-casting solutions are available
for solar power forecasts.

In conclusion, the value of variable generation forecasting
is very system-dependent. Some systems will find more bene-
fit from short-term intraday forecasts, while other systems will
obtain greater value in day-ahead or ramp-alert systems. There
are a variety of approaches and solutions that each LSE or
BA can use to tailor the way they utilize variable-generation
forecasting to efficiently and reliably integrate those generation
resources into their systems.
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