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Acidobacteria represents an underrepresented soil bacterial phylum whose members

are pervasive and copiously distributed across nearly all ecosystems. Acidobacterial

sequences are abundant in soils and represent a significant fraction of soil microbial

community. Being recalcitrant and difficult-to-cultivate under laboratory conditions,

holistic, polyphasic approaches are required to study these refractive bacteria

extensively. Acidobacteria possesses an inventory of genes involved in diverse metabolic

pathways, as evidenced by their pan-genomic profiles. Because of their preponderance

and ubiquity in the soil, speculations have been made regarding their dynamic roles in

vital ecological processes viz., regulation of biogeochemical cycles, decomposition of

biopolymers, exopolysaccharide secretion, and plant growth promotion. These bacteria

are expected to have genes that might help in survival and competitive colonization

in the rhizosphere, leading to the establishment of beneficial relationships with plants.

Exploration of these genetic attributes and more in-depth insights into the belowground

mechanics and dynamics would lead to a better understanding of the functions

and ecological significance of this enigmatic phylum in the soil-plant environment.

This review is an effort to provide a recent update into the diversity of genes in

Acidobacteria useful for characterization, understanding ecological roles, and future

biotechnological perspectives.

Keywords: acidobacteria, biogeochemical cycles, ecological roles, metagenomics, molecular characterization,

plant growth-promoting activities, soil

INTRODUCTION

Prokaryotes, the unseenmajority sustaining life on Earth, are involved in amultitude of interactions
and biogeochemical processes having global ecological relevance, including decomposition,
mineralization, storage, and release of nutrients (Sikorski, 2015). The number of prokaryotes
present in a gram of soil can be between 106 and 109 cells (Bulgarelli et al., 2013). It is apparent from
the above data that there is an abundant density of bacteria in the soil, however, the discrepancy
is that only less than 1% bacteria from natural environments, including soil, could be cultivated
by using conventional culturing techniques (Crits-Christoph et al., 2018; Chaudhary et al.,
2019). A large segment of the microbial community gets consistently overlooked during routine
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microscopic analysis, indicating them to be novel and hitherto
unrecognized with ambiguous physiology and growth
requirements (Youssef et al., 2015). A rational investigation
stemming from the recognition of this discrepancy is the
identification of these refractive bacteria which escape
conventional enrichment and isolation procedures. In
this direction, the 16S rRNA gene, the gold standard for
phylogenetic analysis, proves to be a useful tool for studying
the evolution-based taxonomy of microbial communities from
various econiches (Rosselli et al., 2016). The rare biosphere
comprises of several identified novel bacterial lineages, which
appear to be profoundly branching within the bacterial tree
and remain unaffiliated with any known bacterial phyla and
are termed as candidate phylum (or candidate division)
(Solden et al., 2016).

Molecular studies in the soil revealed the presence of
unseen, hidden, recalcitrant bacteria referred to as difficult-to-
culture, hitherto-unculturable, or yet-to-be cultivated bacteria. In
contrast to standard fast-growing bacteria, these underexplored
bacterial groups remain elusive to conventional microbiological
cultivation techniques, mostly because their optimized growth
conditions are still underexplored. The proportion of such
bacteria exceeds far more than that of the culturable ones.
Among them, Acidobacteria constitutes the most abundant
phylum whose members dominate soil bacterial communities
(Vartoukian et al., 2010; Chaudhary et al., 2019). Data from
16S rRNA gene inventories signify the vastness and breadth
of the phylum with genetic and metabolic diversity (Janssen,
2006). Study of these hitherto-unculturable constituents of
soil microbial population through culture-dependent and -
independent approaches revealed the essence of their bioactivity
and their ecological functions in plant-soil ecosystems (Huber
et al., 2016; Lladó et al., 2018; Elmagzob et al., 2019).
The underexplored phylum Acidobacteria thus provides an
enthralling and seamless source of biological diversity, offering
new avenues for exploitation. Henceforth, the most recent
advances mining the difficult-to-culture soil acidobacterial
diversity for biotechnological advances and comprehensive
understanding of the genetic diversity and ecophysiological
profiles of Acidobacteria in the plant-soil econiche has been
scrupulously presented in this review.

UNDEREXPLORED PHYLUM
ACIDOBACTERIA

Acidobacteria represents an enigmatic phylum with its members
copiously distributed in different ecosystems (Mushinski
et al., 2018). Acidobacteria is ubiquitous in diverse terrestrial
environments ranging from tundra soils to desert soils,
from peatland soils and sediments to grasslands, forests, and
agricultural lands (Janssen, 2006; Eichorst et al., 2018) and
constitute about 5–70% of the soil microbial populace (Huber
et al., 2016). The members are recalcitrant, rendering this
phylum to be feebly understood (Hugenholtz et al., 1998; Huber
et al., 2016). The recalcitrance of most Acidobacteria members
to grow on conventional growth media can be attributed to

their oligotrophic nature or ecological K-strategy (Ward et al.,
2009; Kielak et al., 2016a). Thus, the use of low nutrient media,
modified incubation conditions including elevated CO2, low
pH, prolonged incubation periods, and supplementing growth
media with amendments like antioxidants, rhizosphere extracts,
etc., have led to the isolation of several acidobacterial species
(Stevenson et al., 2004; Sait et al., 2006; da Rocha et al., 2009;
Tanaka et al., 2017).

Based on the analysis of major 16S rRNA gene sequence
clades, the phylum Acidobacteria is phylogenetically classified
into 26 subdivisions (Barns et al., 2007). Among these, only seven
subdivisions (namely the subdivisions 1, 3, 4, 6, 8, 10, and 23) are
represented by taxonomically described members (Dedysh and
Yilmaz, 2018; Eichorst et al., 2018). Although more than 12,000
distinct phylotypes and more than 6,500 species-level operational
taxonomic units have been reported so far for this predominant
soil bacterial group, yet it is described by only 56 cultivable
species belonging to 28 genera (Overmann et al., 2017; Vieira
et al., 2017; Dedysh and Yilmaz, 2018). All cultured Acidobacteria
members are Gram-negative, non-spore formers, and exhibit
an oligotrophic mode of nutrition (Fierer et al., 2005; George
et al., 2011; Dedysh and Damsté, 2018). Most of the members
are acidophilic chemoheterotrophs growing aerobically under
mesophilic conditions (Dedysh and Damsté, 2018). To study
this phylum, culture-independent approaches have been more
successful rather than culture-dependent approaches. Genomic
studies provided insights into the genetic make-over of about
ten acidobacterial genomes only (Ward et al., 2009; Kielak et al.,
2016a). However, owing to the difficulty in cultivating its
members, the in-depth ecological purview of this enigmatic
phylum has remained evasive. Since information regarding
global distribution patterns and apparent ecological roles of
Acidobacteria is inadequate, microbial ecologists are deeply
engaged to unfurl this obscure phylum.

THE REQUIREMENT FOR HOLISTIC
APPROACHES FOR STUDYING PHYLUM
ACIDOBACTERIA

Acidobacteria phylogenetic diversity, richness, abundance,
ubiquity, especially in soil ecosystems, pin down their
roles in various biogeochemical cycles and broad metabolic
versatility (Naether et al., 2012). Although their presence
and abundance are confirmed through culture-independent
studies but their ecological functions, interrelations with
environmental parameters and interactions with other soil
microbial communities remain obscure. Significant variations
have been encountered during isolation of Acidobacteria
strains belonging to different lineages and getting cultivated
under specific sets of physicochemical conditions or nearly a
narrow range of conditions. This suggests the use of various
strategies for the successful recovery of ecologically different
Acidobacteria groups.

Acidobacteria diversity and dominance is quite pronounced
along with high overall ecological and phylogenetic diversity
in contrast to its low cultivation success due to radically
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different culture laboratory conditions. Although nine
different bacterial phyla viz., Proteobacteria, Acidobacteria,
Actinobacteria, Verrucomicrobia, Bacteroidetes, Chloroflexi,
Planctomycetes, Gemmatimonadetes, and Firmicutes are known
to dominate in soil (Janssen, 2006; da Rocha et al., 2009),
the phylum Acidobacteria represents the most predominant
not-yet-cultured, or difficult-to-culture group of bacteria
(Janssen, 2006; Foesel et al., 2014), occupying a significant
fraction of the soil microbial community. Henceforth,
the determination of their ecophysiological roles becomes
quite imperative to understand their functional status in
complex bacterial communities. Thus, the ecological roles
of Acidobacteria have been studied by analyzing the genetic
components obtained by complete and/or draft whole-genome
sequencing for culturable species and metagenome sequencing
for unculturable species.

16S rRNA ANALYSES AND
METAGENOMICS IN STUDYING
PHYLUM ACIDOBACTERIA

Meta-microbiomic (16S rRNA gene-based) studies analyze
only one specific gene and not the entire genomes of the
community members. The 16S rRNA gene sequences, obtained

from various environments by employing culture-dependent
and culture-independent approaches, provide deeper insights
into the species structure and taxonomic diversity of the
phylum Acidobacteria. Studies focusing on 16S rRNA genes
provide taxonomic status in any bacterial community, while
metagenomics can provide both taxonomic and functional
profiles of the microbiota. Metagenomic DNA extracted from the
environment is often amplified using group or species-specific
primers targeting 16S rRNA genes (Kalam et al., 2017a).
Metagenomics has facilitated in an apt understanding of the
diversity, abundance, genomic make-up, and ecological roles of
acidobacterial members in various ecosystems (Tyson et al., 2004;
Venter et al., 2004; Parsley et al., 2011). To obtain a complete
community structure, 16S rRNA analyses and metagenomics are
often used in conjunction (Figure 1).

During recent years, the sequencing of collective community
genomes employing metagenomics has led to a significant
breakthrough in understanding the enigmatic phylum
Acidobacteria. Subsequent advent and development of several
next-generation sequencing (NGS) platforms further enhanced
the metagenomic sequencing efficiencies. Metagenomic
approaches, however, at few places fail to retrieve genome
scaffolds of sizable length due to soil community complexity,
intricacy, and absence of genomes (Tringe et al., 2005; Kowalchuk
et al., 2007). Recovering genomic information from the soil

FIGURE 1 | 16S rRNA gene sequencing and metagenomics in studying phylum Acidobacteria. Acidobacterial 16S rRNA gene sequences (from culture-dependent

studies) and metagenomic DNA information (from culture-independent studies) obtained from various environments (terrestrial ecosystems including soils and

aquatic or marine ecosystems) are deposited in various public databases. The amalgamation of 16S rRNA analyses and metagenomics provides deeper insights into

the taxonomic and functional diversity of the phylum Acidobacteria. Figure designed using images from pinclipart.com.
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environment requires the use of large insert strategies (Rondon
et al., 2000). Metagenomic DNA being high in molecular weights
requires meticulous isolation strategies along with novel cloning
and screening methods to facilitate the recovery of large DNA
fragments from difficult-to-culture bacterial genomes. Large
genomic fragments might contain intact metabolic pathways.
Acidobacterial genome fragments were successfully recovered
from the environment by using a large metagenomic insert (Liles
et al., 2003). Henceforth, such approaches provide important
platforms for exploring the hidden biotechnological potential of
hitherto uncultured bacteria leading to the discovery of novel
organo-chemical compounds (Daniel, 2004).

GENETIC INSIGHTS INTO THE PHYLUM
ACIDOBACTERIA

Since the recovery of the first Acidobacteria member and
subsequent advances in sequencing technologies has provided
a platform to study individual Acidobacteria members at the
genomic level. It is quite unfortunate that the number of
thoroughly studied genomes of this important phylum is very
few, despite their numerical abundance in many environments.
Genomic studies have unveiled the hidden physiological and
metabolic versatility of Acidobacteria members. Comprehensive
studies targeting functional characteristics encoded in
acidobacterial genomes may provide new vistas into ecological
perspectives of phylum Acidobacteria. Ward et al. (2009)
conducted detailed genomic studies for the first time, with
three acidobacterial strains [two from subdivision 1 viz.,
Acidobacterium capsulatum and Candidatus Koribacter versatilis
(strain Ellin 345) and one from subdivision 3 viz., Candidatus
Solibacter usitatus (Ellin 6076)]. Further genomic profiling and
comparative genomic studies (Männistö et al., 2012; Rawat et al.,
2012a; Lee et al., 2015; Eichorst et al., 2018, 2020) provided
more profound insights into the acidobacterial genome and
ecophysiology.

Insights into these genomes reveal large genome size
(up to 10 Mbp) and a higher percentage of paralogous
genes, which might endow the bacterial strains with potential
ecological functions (Challacombe et al., 2011). In the same
breath, Acidobacteria genomes also possess a comprehensive
physiological set of genes that allows them to adapt to
various ecological niches. An overview of the general genomic
features of Acidobacteria members and their overall genetic
and genomic make-up are respectively represented in Table 1

and Figure 2. Data available from published acidobacterial
genome sequences reveal the presence of several genes involved
in regulating carbon, nitrogen, and sulfur cycles, and those
required for degrading different complex polysaccharides.
All cultured Acidobacteria species are reported to produce
exopolysaccharide (EPS); the presence of eps gene clusters in
the genomes further supports this data. The acidobacterial
genomes also contain a substantial proportion of genes encoding
for various transporters, to tide over stress and starvation,
and for the biosynthesis of cellulose, N-acyl-homoserine
lactones, polyketides, siderophores, hopanoids, and mobile

genetic elements (Ward et al., 2009; Kielak et al., 2016a; Crits-
Christoph et al., 2018).

Genes for Carbon Metabolism
Each bacterium carries its enzyme machinery catalyzing the
breakdown of diverse carbohydrates and nitrogen-containing
compounds, which could be used as an identifying characteristic
for differentiating varied bacterial species. Acidobacterial
genomes possess genes encoding enzymes for the degradation
of complex carbohydrate polymers viz., xylan, cellulose,
hemicelluloses, pectin, starch, and chitin; amino acids,
alcohols, and metabolic intermediates (Ward et al., 2009;
Belova et al., 2018). In addition to these, gene modules for
diverse carbohydrate breakdown, utilization, and biosynthesis
within carbohydrate-active enzymes (CAZy) family are
also present (Männistö et al., 2012; Rawat et al., 2012a),
spanning across 131 glycoside hydrolase (GH) families (Gilbert,
2010). Putative chitinases belonging to GH18 and GH19
family were also identified in the genomes of a few select
Acidobacteria (Rawat et al., 2012a). Gene calling and annotation
studies of Acidobacteria Group 1 Acidipila sp. strain EB88
genome indicated that it was rich in glycolytic enzymes
and contained about 85 glycoside hydrolases in 48 families
(Domeignoz-Horta et al., 2019).

The acidobacterial genomes are flexible and novel in their
carbon metabolizing activity. Few select acidobacterial genomes
exhibit anaplerotic CO2 fixation. Strikingly, homologs of
phosphoenolpyruvate carboxylase and isocitrate dehydrogenase
have also been detected across several Acidobacteria genomes
(Lee et al., 2015; Eichorst et al., 2018). Studies suggest a crucial
role of these genes for carbon metabolism in various nutritional
pathways as well as a significant role in desiccation resistance, as
evidenced by the Terriglobus saanensis genome profile (Männistö
et al., 2011). A significant contribution is made by acidobacterial
enzymemachinery in regulating the carbon biogeochemical cycle
(King and Weber, 2007). Since Acidobacteria are endowed with
the potential to degrade polymeric carbonaceous complexes,
they act as decomposers in soil and actively participate in the
cycling of organic matter arising from plants, fungi, and insects
(Dedysh and Damsté, 2018).

Genes for Nitrogen Metabolism
Acidobacteria is well equipped with genes catalyzing the
metabolism of inorganic and organic sources of nitrogen
(Eichorst et al., 2018). They can effectively reduce nitrate, nitrite,
and possibly nitric oxide, as could be evidenced by genomic data,
supporting their active participation in nitrogen nutrient circuits.
Homolog candidate genes for nitrate reductase (nirA) have been
identified in Ellin 345, Geobacter fermentans, and Terriglobus
aquaticum (Rajeev et al., 2015), while those for nitrate transport
(nrtABCD) have also been observed in certain acidobacterial
strains. The presence of genes encoding dinitrogenase (nifD
and nifK) and dinitrogenase reductase (nifH) have also been
reported in one acidobacterial genome (Ward et al., 2009).
However, experimental evidence regarding nitrogen fixation by
Acidobacteria is missing (Kielak et al., 2016a). Insights into the
core genomes provide a wealth of data revealing the presence of
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TABLE 1 | General genomic features of cultured Acidobacteria members with complete genome sequences.

Acidobacteria species Subdivision Genome

size (bp)

G + C content

(mol%)

No. of coding

sequences

Total no. of

genes

Total protein

coding genes

Total RNA

genes

Pseudogenes References

Acidobacterium capsulatum ATCC 51196 1 4,127,496 60.5 3,502 3,425 3,377 48 0 Ward et al., 2009

Koribacter versatilis Ellin 345 1 5,650,368 58.4 5,239 4,837 4,779 58 2 Ward et al., 2009

Granulicella mallensis MP5ACTX8 1 6,237,577 57.9 NA 4,960 4,907 53 90 Rawat et al., 2012a, 2013

Granulicella tundricola MP5ACTX9 1 5,503,984 60.0 NA 4,757 4,705 52 163 Rawat et al., 2012a, 2014

Terriglobus saanensis SP1PR4 1 5,095,226 57.3 NA 4,333 4,279 54 99 Rawat et al., 2012a,b

Terriglobus albidus ORNL 1 6,405,582 58.5 NA 5,127 5,010 53 64 Podar et al., 2019

Acidobacterium ailaaui PMMR2T 1 3,686,523 57.2 NA 3,184 3,131 53 NA Myers and King, 2016

Bryocella elongata DSM 22489 1 5,669,524 62.0 NA 4,620 4,567 53 NA Pinto et al., 2020

Acidiphilium rosea DSM 103428 1 4,213,726 58.8 NA 3,585 3,531 54 NA Pinto et al., 2020

Occallatibacter sp. AB23 1 6,278,575 59.1 NA 5,429 5,367 62 NA Pinto et al., 2020

Terracidiphilus gabretensis S55T 1 5,351,935 57.3 NA 4,610 4,562 48 NA García-Fraile et al., 2016

Solibacter usitatus Ellin 6076 3 9,965,640 61.9 8,568 8,003 7,940 63 114 Ward et al., 2009

Chloracidobacterium thermophilum 4 3,695,372 61.3 3,054 NA NA NA NA Costas et al., 2012

Chloracidobacterium sp. CP2_5A 4 3,411,091 64.2 NA 3,083 2,969 55 59 Ward et al., 2017

Pyrinomonas methylaliphatogenes K22T 4 3,778,560 59.36 NA 3,244 3,189 55 0 Lee et al., 2015

Luteitalea pratensis HEG_-6_39 6 7,480,314 64.7 NA NA 6,295 NA NA Huang et al., 2016

Holophaga foetida TMBS4T 8 4,127,237 62.95 NA 3,672 3,615 57 76 Anderson et al., 2012

Thermoanaerobaculum aquaticum MP-01T 23 2,660,928 62.7 NA 2,320 2,253 49 18 Losey et al., 2013; Stamps

et al., 2014

NA, not available.
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FIGURE 2 | Genetic diversity of the phylum Acidobacteria. Sequencing of acidobacterial genomes and metagenomes revealed a large repertoire of genes

responsible for regulating diverse physiological and metabolic functions.

putative homologs encoding for extracellular peptidases, which
play significant roles in soils by mobilizing ammonium and
other intermediates of N-cycle (Bach et al., 2001; Eichorst
et al., 2018). Serine endopeptidases are also found to be widely
distributed in most Acidobacteria genomes, indicating their
proteolytic activity in soil (Brankatschk et al., 2011). Homologs
for various extracellular metalloendopeptidases too span across
select Acidobacteria genomes, facilitating them for N-uptake
during mineral scarcity. Recent studies on the draft genome
of Acidobacteria Group 1 Acidipila sp. strain EB88, isolated
from forest soil, indicated that the genome lacked the genes
required for organic acid uptake but was equipped with the
genes essential for amino acid, ammonium, and nitrate uptake
(Domeignoz-Horta et al., 2019).

Genes for Sulfur Metabolism
Chloroacidobacterium thermophilium, a photoheterotrophic
member of Acidobacteria subdivision 4, requires reduced sulfur
for its growth (Tank and Bryant, 2015). Draft metagenome-
assembled genomes of Acidobacteria subdivisions 1 and 3 from
peat soil revealed the presence of putative genes for dissimilatory
sulfur metabolism (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP,
aprBA, qmoABC, supP, hppA, sat) which function under anoxic
conditions (Hausmann et al., 2018). The presence of dsrAB genes
encoding dissimilatory (bi)sulfite reductase suggests the capacity

of some Acidobacteria members to perform dissimilatory
sulfate/sulfite reduction (Huang et al., 2016; Wasmund et al.,
2017; Anantharaman et al., 2018). Certain acidobacterial
genomes also encode the dsrL gene, which is specific to the sulfur
oxidation pathway (Hausmann et al., 2018). The presence of dsrL
is unusual as it is generally found in sulfur oxidizers rather than
in sulfate-reducing microorganisms. However, acidobacterial
genomes lack any other genes involved in oxidative sulfur
metabolism (Hausmann et al., 2018).

Genes Encoding Transporters
Different acidobacterial strains harbor an array of genes encoding
different ion channels, high-affinity ABC transporters, several
other secretory porters, and transport proteins especially
required for tiding on oligotrophic conditions (Paulsen et al.,
1998; Ward et al., 2009). Genes encoding iron permease FTR1
and FTR2 family proteins and iron transporter genes viz., Mn2+

and Fe2+ transporters are also present in the Acidobacteria
genome. The feoAB gene encoding a high-affinity ferrous
iron transport protein is invariably present in acidobacterial
genomes (Velayudhan et al., 2000). The genome of Terriglobus
saanensis (isolated from the Tundra region) contains abundant
genes involved in carbohydrate metabolism and transport
(Männistö et al., 2011). Few Acidobacteria genomes also
possess multiple copies of genes for siderophore transport
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viz., tonB, exbB, and exbD (Postle and Kadner, 2003;
Llamas and Bitter, 2006; Ward et al., 2009). In addition to
these, pvuE (candidate gene for vibrioferrin transporter)
and feoB (candidate gene for enterobactin transporter) are
also found in some Acidobacteria genomes (Ward et al.,
2009). Acidobacteria members also have genes for the amino
acid-polyamine-organocation (APC) superfamily of transport
proteins along with dicarboxylate/amino-acid: cation symporter
family of secondary transport proteins (Eichorst et al., 2018).

Genes Regulating Cellulose Synthesis
Acidobacterium capsulatum genome contains an operon with a
complete set of genes required for cellulose biosynthesis (Ward
et al., 2009). Bacterial cellulose is associated with an array
of functions facilitating survival in the soil through biofilm
formation, retaining moisture under conditions of stress, thus
promoting aeration, contributing to soil aggregate formation
(Ude et al., 2006; White et al., 2006). Acidobacteria possesses
the remarkable capacity to synthesize cellulose, which would
promote biofilms to get adhered easily to ferric iron-containing
substrates producing biofilm-ferric iron-reducing “bioshrouds”
in acidic environments (Johnson et al., 2008). Cellulose
biosynthesis via bcs operon has been reported in Terriglobus
saanensis as evidenced through genome sequencing data (Rawat
et al., 2012b; de Castro et al., 2013). The genome of Acidipila
sp. strain EB88 contained genes for biosynthesis and export of
capsule and cellulose (Zhang et al., 2018).

Genes for Oxygen and Hydrogen
Utilization
Genomes of particular soil acidobacterial strains possess the
potential to respire oxygen at atmospheric and microoxic levels
due to the presence of affinity oxidases. Thus, such strains possess
an extra selective advantage in the soil microenvironment,
where low oxygen concentrations exist (Morris and Schmidt,
2013; Eichorst et al., 2018). The genome of Acidipila sp. strain
EB88 contains a low-affinity group A heme-copper oxygen
oxidase and five high-affinity cbb3 terminal oxidases that enables
it to grow under both hypoxic and hyperoxic conditions
(Morris and Schmidt, 2013; Domeignoz-Horta et al., 2019). Few
Acidobacteria strains possess hydrogen scavenging property due
to the presence of nickel-iron [NiFe] hydrogenases (Greening
et al., 2015). The occurrence of multiple structural genes (hhyS,
hhyL, hhyE) and maturation genes (hypABCDEF) required for
hydrogenase activity further supports acidobacterial hydrogen
utilization (Eichorst et al., 2018).

Genes Regulating Secondary Metabolite
Biosynthesis
Acidobacteria genomes contain biosynthetic gene clusters that
encode a vast repertoire of polyketide and non-ribosomal
peptide synthases (Crits-Christoph et al., 2018). Additionally,
genes regulating the synthesis of diverse secondary metabolites
and other natural compounds like siderophores, antifungals,
antibiotics, antivirals, antitumor agents, and antinematodal
agents have been reported in Acidobacteria genomes

(Challis, 2005; Ward et al., 2009; Parsley et al., 2011; Hadjithomas
et al., 2015; Crits-Christoph et al., 2018).

Genes Regulating Stress and Starvation
Response
Addiction modules encode various genes, including those
required for plasmid maintenance, and has been documented
in certain Acidobacteria (Ward et al., 2009). During stress or
starvation, the addiction modules operate rapidly and inhibit
DNA and protein synthesis (Kroll et al., 2010). This mechanism
of stress and starvation tolerance in Acidobacteria enables tiding
over environmental oligotrophic nutritional conditions. The
prokaryotic transcriptional regulator sigma factor is commonly
utilized to control the expression of several gene sets in
response to various stresses, including starvation, oxidative stress,
heat stress, and exposure to heavy metals that enables the
microorganisms to adapt to a stressful environment (Rhodius
et al., 2005; Challacombe et al., 2011). The genomes of
Candidatus Solibacter usitatus [Ellin 6076] and Candidatus
Koribacter versatilis [Ellin 345] contain a vast repertoire of
sigma E (σE) homologs (70 and 28 homologs, respectively)
that are induced during starvation and other stress conditions
(Challacombe et al., 2011).

The presence of hydrogenases enables specific acidobacterial
strains to consume atmospheric hydrogen (Greening et al., 2015),
which could be a strategy to overcome starvation (Eichorst
et al., 2018). Certain Acidobacteria members are equipped with
the genes responsible for the dissimilatory reduction of nitrite
to ammonia (nrfHA), which not only provides energy supply
but also aids in the detoxification of nitrosative stress (Rajeev
et al., 2015; Eichorst et al., 2018). A very recent study by
Pinto et al. (2020) reported that carotenoid production by
Occallatibacter sp. (belonging to Acidobacteria subdivision 1)
can confer tolerance to environmental oxidative stress. Thus,
the production of carotenoids and related compounds may offer
competitive benefits to soil Acidobacteria.

Genes Regulating Acid Tolerance
Most Acidobacteria members prefer acidic conditions
(3.0–6.5 pH) for their growth (Sait et al., 2006; Ward et al.,
2009). Also, lower pH levels support a higher abundance
of Acidobacteria (Männistö et al., 2007; Lladó et al., 2018).
Microorganisms equipped with acid resistance (AR) systems
are likely to survive in highly acidic conditions (Sun et al.,
2012). Certain moderately acidophilic acidobacterial strains viz.,
A. capsulatum, Ellin 345 (K. versatilis), and Ellin 6076 (S. usitatus)
contain candidate genes in the AR3 (arginine-dependent AR)
system indicating the presence of an acid tolerance system
(Ward et al., 2009; Kielak et al., 2016a). However, the strains
lack the genes involved in other inducible AR systems, viz.,
AR1 (oxidative AR), AR2 (glutamate-dependent AR), and AR4
(lysine-dependent AR).

Genes for Synthesis of Hopanoids
Hopanoids are pentacyclic triterpenoid bacterial membrane
lipids facilitating cell membrane permeability, especially during
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extreme environmental conditions (Damsté et al., 2017).
Genes related to hopanoid biosynthesis (shc gene) have been
detected in Cadidatus “K. versatilis” belonging to subdivision
1 isolated from soil (Joseph et al., 2003). The presence of
C30 hopanoids and bacteriohopane polyols was reported in
multiple Acidobacteria subdivisions, evident from the occurrence
of respective biosynthesis genes (hpnA, hpnG, hpnH) in
acidobacterial genomes (Damsté et al., 2017).

Genes for Exopolysaccharide
Biosynthesis
Genomic mining studies suggest that Acidobacteria belonging to
subdivision 1 can encode EPS biosynthesis genes (Ward et al.,
2009). Additionally, several cultured Acidobacteria species are
known to secrete EPS (Eichorst et al., 2007; Pankratov and
Dedysh, 2010; Whang et al., 2014; Kielak et al., 2017). Gene
prediction, along with functional annotation data, identifies a
gene cluster encoding capsular polysaccharide in the genomes
of three acidobacterial strains isolated from tundra soil.
Granulicella mallensis genome possessed the epsH gene involved
in exopolysaccharide synthesis (Rawat et al., 2012a).

Genes for Acyl-Homoserine Lactones
(AHL)
Quorum sensing molecules, like acyl-homoserine lactones
(AHL), aid in coordinating gene expression in bacterial
populations (Parsek et al., 1999). Genomes of Acidobacteria
contain a considerable fraction of genes encoding for biosynthesis
of N-acyl homoserine lactones (Ward et al., 2009).

Genes for Mobile Genetic Elements
Mobile genetic elements like transposons, bacteriophages,
insertion sequence (IS) elements, and integrative and conjugative
elements (ICEs) present in several Acidobacteria are known to
confer shape and plasticity to the acidobacterial genome. These
elements are speculated to mediate horizontal gene transfer,
aid in the evolution and ecological success of Acidobacteria
(Frost et al., 2005). A recent meta-study by Eichorst et al.
(2018) identified 35 putative prophages across 19 acidobacterial
genomes. Insertion sequence families encoding their mobility
patterns also have been reported to be spanning across
Acidobacteria genomes (Challacombe andKuske, 2012).Multiple
genes encoding mobile elements, including transposases and IS
elements, have been identified in the genome of Candidatus
“Solibacter usitatus” Ellin 6076. Additionally, the genome
also harbors genes encoding phage integrase family proteins
and several other proteins containing a retroviral integrase
catalytic region domain, catalyzing site-specific recombinations
(Challacombe and Kuske, 2012).

EXCAVATING THE ECOLOGICAL ROLES
OF PHYLUM ACIDOBACTERIA IN SOIL

Despite the recent progress in the field of acidobacterial ecology,
there is still a paucity of complete information regarding

their ecophysiological roles. Significant ecological functions
have been reported in forest soil for Acidobacteria members
(García-Fraile et al., 2016; Liu et al., 2016). Acidobacteria
members in plant-soil ecosystems play pivotal ecological roles,
including modulation of biogeochemical cycles and influencing
plant growth. The key findings from relevant studies on soil
Acidobacteria, highlighting their salient genomic features and
ecological roles, are summarized in Table 2. An overview of their
ecological roles in the plant-soil ecosystems is diagrammatically
represented in Figure 3 and is discussed below.

Acidobacteria as “Keystone Taxa” in Soil
Ecosystems
A recent study by Banerjee et al. (2018) has reviewed and re-
defined “keystone taxa” in microbial ecology. Microbial keystone
taxa have been often ascribed as “ecosystem engineers” as they
are the unequivocal drivers of microbial community structure
and function in different ecosystems. Acidobacteria was reported
to be one of the keystone bacterial taxa in soil associated with
the decomposition of soil organic matter (SOM), implying
their significance in carbon turnover (Banerjee et al., 2016).
Computational inferences obtained from analyses of various
terrestrial ecosystems and habitats indicate several subdivisions
of phylum Acidobacteria represent the keystone taxa in
grasslands (subdivision 4), forest or woodlands (subdivision
4), agricultural soils (subdivision 17), and plant-associated
microbiota (subdivisions 1, 3, and 6) (Banerjee et al., 2016,
2018; Jiang et al., 2017; Li et al., 2017). Speculations suggest that

TABLE 2 | Salient genomic features and ecological roles of soil Acidobacteria.

Salient features References

Involvement in carbon cycle King and Weber, 2007; Banerjee et al., 2016;

García-Fraile et al., 2016; Belova et al., 2018;

Dedysh and Damsté, 2018

Involvement in nitrogen cycle Ward et al., 2009; Rajeev et al., 2015; Eichorst

et al., 2018

Involvement in sulfur cycle Wasmund et al., 2017; Hausmann et al., 2018

Involvement in plant growth

promotion

Kielak et al., 2016b; Kalam et al., 2017a

Involvement as “keystone taxa” Banerjee et al., 2016; Jiang et al., 2017; Li

et al., 2017; Banerjee et al., 2018

Involvement in soil matrix

formation

Kielak et al., 2016a; Kielak et al., 2017

Establishment of biofilms Ward et al., 2009; Kielak et al., 2016a;

Kielak et al., 2016b

Production of

exopolysaccharides

Ward et al., 2009; Rawat et al., 2012a;

Kielak et al., 2017

Biosynthesis of secondary

metabolites

Ward et al., 2009; Parsley et al., 2011;

Hadjithomas et al., 2015; Damsté et al., 2017;

Crits-Christoph et al., 2018

Tolerance to stress, starvation,

and acidity

Ward et al., 2009; Challacombe et al., 2011;

Morris and Schmidt, 2013; Greening et al.,

2015; Rajeev et al., 2015; Eichorst et al., 2018;

Domeignoz-Horta et al., 2019; Pinto et al.,

2020

Presence of mobile genetic

elements

Frost et al., 2005; Challacombe and Kuske,

2012; Eichorst et al., 2018
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FIGURE 3 | Ecological roles of Acidobacteria members in the soil. Acidobacteria members in the plant-soil ecosystem facilitate modulation of critical biogeochemical

cycles viz., carbon, nitrogen, and sulfur cycles. Exopolysaccharides (produced by almost all cultured members) aid in soil matrix formation and contribute to plant

growth promotion by facilitating water and nutrient uptake by plants. The representatives belonging to Granulicella and Acidocapsa genera exhibit in vitro plant

growth promotion traits in the model plant Arabidopsis thaliana. These acidobacterial strains effectively produced the phytohormone indole-3-acetic acid (IAA) and

siderophores, which significantly enhanced the plant growth parameters (shoot and root biomass). Figure designed using images from pinclipart.com.

these microbial residents exert beneficial effects by selectively
modulating the ecological processes of host ecosystems.
These bacteria offer two crucial ecological services viz., SOM
decomposition, and denitrification, thereby enhancing carbon
stability (Banerjee et al., 2018). Successful manipulation of these
soil dwellers might augment the key ecological process of soil
carbon sequestration. Since Acidobacteria members have been
identified as structural and functional keystones in plant-soil
microbiomes and agroecosystems, they can be exploited to
enhance crop performance and productivity.

Modulation of Biogeochemical Cycles
The gamut of living organisms invariably depends on the
supply of essential elements such as oxygen, hydrogen,
carbon, nitrogen, phosphorus, and sulfur for growth and
survival. In any ecosystem, albeit biogeochemical cycles
or nutrient cycles are regulated by the biotic and abiotic
components of that system, but microorganisms play a
key role in modulating them (Falkowski et al., 2008).
The critical metabolic processes viz., nitrogen metabolism,

carbon fixation, and methane metabolism, sulfur metabolism
operating in microbes effectively control global biogeochemical
cycling.

Genomic studies highlight the carbohydrate utilization
potential exhibited by Acidobacteria members (Ward et al., 2009;
Kielak et al., 2016a). The presence of genes encoding enzymes
for the degradation of complex carbohydrate polymers like
cellulose, hemicellulose, chitin, xylan, and lignin derivatives
signifies their active participation in the carbon circuit
as decomposers in soil (Ward et al., 2009; Wegner and
Liesack, 2017; Banerjee et al., 2018; Belova et al., 2018) and
cycling of organic matter derived from plants, fungi, and
insects (King and Weber, 2007; García-Fraile et al., 2016;
Dedysh and Damsté, 2018).

Soil bacteria convert the inorganic nitrogen to organic
compounds (Canfield et al., 2010), which are, in turn, utilized
by the plants and other microbes. In plant-soil ecosystems,
Acidobacteria communities represent an important microbial
guild, central in nitrogen cycling. Genomic evidence coerces the
crucial role of Acidobacteria in N-cycling in soils (Ward et al.,
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2009). Specialized microorganisms metabolize diverse sulfur
compounds via redox reactions and contribute to driving the
global sulfur cycle (Wasmund et al., 2017). Acidobacteria genome
harbors genes regulating sulfur metabolism that were found to be
expressed in native peat soils and upregulated in diverse anoxic
conditions, indicating their active role in modulation of the
environmental sulfur cycle (Hausmann et al., 2018). Hausmann
et al. (2016) reported that consortia of diverse sulfate-reducing
microorganisms, including Acidobacteria members, drive the
sulfur reduction in peatlands and Acidobacteria members
(Holophaga) responded positively to sulfate stimulation in peat
soil microcosms.

Exopolysaccharide Production
Exopolysaccharides are bacterial polysaccharides synthesized
extracellularly (Nwodo et al., 2012), which play a critical role in
the soil matrix and aggregate formation (Bogino et al., 2013).
EPS plays a significant role in the development of mature
biofilm by acting as bridges between cell surfaces (Bura et al.,
1998). In the rhizosphere zone, EPS production by bacterial
populations contributes toward nutrient and water uptake
by plant roots through modification of the physicochemical
properties of rhizosphere soil (Degens et al., 1994; Kalam
et al., 2017b) and aids in establishing interactions with
the root appendages for successful plant-microbe interactions
(Bianciotto et al., 2001, 2009).

Several cultured Acidobacteria species are known to
secrete EPS (Eichorst et al., 2007; Kielak et al., 2017).
Genomic analyses indicate that Acidobacteria belonging to
subdivision 1 can encode EPS biosynthesis genes (Ward
et al., 2009). These EPSs might protect Acidobacteria,
endowing them the ability to survive for prolonged periods
in soil (Kielak et al., 2017). Recently, the characterization
of EPSs derived from two subdivisions 1 acidobacterial
strain (Granulicella sp.) has indicated them to be possessing
potential environmental, bioremediation, and biotechnological
applications (Kielak et al., 2017). These EPSs could be
used as natural eco-friendly binders and formulants in the
biofertilizer industry.

Acidobacterial genome profiling validates the presence of
cellulose synthesis genes along with related accessory proteins.
Studies postulate several Acidobacteria members to possess
the capability to establish biofilms, exhibit resistance toward
desiccation, and aid in the formation of soil aggregates
(Kielak et al., 2016a). However, physiological data confirming
actual EPS production by Acidobacteria and validating their
ecophysiological roles remains obscure.

Acidobacteria as Plant Growth
Promoting Rhizobacteria (PGPR)
Plant root microbiome harbors beneficial microbes, which
offer an eco-friendly alternative to improve plant growth and
protect against phytopathogens (Bulgarelli et al., 2013; Philippot
et al., 2013). Plant growth promoting rhizobacteria (PGPR)
have been defined as free-living soil bacteria dwelling in the
rhizosphere and endowed with the potential to stimulate plant

growth and crop yield (Dutta and Podile, 2010; Sayyed et al.,
2019; Zope et al., 2019). A plethora of reviews exhaustively
documents almost all aspects of PGPR (Ahmad et al., 2008;
Lugtenberg and Kamilova, 2009; Etesami et al., 2015; Parray
et al., 2016; Backer et al., 2018). PGPR, through their direct
and indirect effects, can bring about substantial plant growth
promotion (PGP). They act directly by facilitating nitrogen
absorption and assimilation, mineral solubilization, production
of phytohormones (Ahmad et al., 2008; Parray et al., 2016;
Shaikh et al., 2018; Kalam et al., 2020). Indirectly, PGPR,
through their biocontrol mechanisms, produce siderophores
(Wani et al., 2016; Sayyed et al., 2019), lytic enzymes
(Jadhav et al., 2020a,b), antibiotics (Vinay et al., 2016; Reshma
et al., 2018; Kenawy et al., 2019), 1-aminocyclopropane-1-
carboxylic acid (ACC) (Glick, 2014; Goswami et al., 2016;
Sagar et al., 2020), guarding host plants against pathogens
(Shaikh et al., 2018).

Several studies reported Acidobacteria to be avid rhizosphere
colonizers (Lee et al., 2008; da Rocha et al., 2010, 2013). The
first evidence for PGP by Acidobacteria subdivision 1 members
was provided by Kielak et al. (2016b). Their experiments
confirmed interactions between three acidobacterial strains
belonging to the genera Granulicella and Acidicapsa and the
host plant Arabidopsis thaliana. Determination of in vitro PGP
traits provided evidence that all the test strains were active
producers of phytohormones IAA and siderophore. There was
a significant increase in root growth parameters, although
shoot biomass variations were non-significant in comparison
to the controls. All three strains were able to adhere to
roots, form a biofilm, and grow along the root surface.
The pioneering study provided the first time with a direct
confirmation regarding the Acidobacteria-plant interactions and
PGP by Acidobacteria members. Acidobacteria subdivision 1
member dominates among other subdivisions, followed by
subdivisions 4, 3, 8, and 23. Their preponderance in the
soil environment in comparison with other subdivisions and
their genetic profiles surmise their active roles in plant-soil
ecosystems. Also, analysis of biosynthetic gene pathways from
few publicly available genomes of soil-inhabiting acidobacterial
isolates suggests the presence of genes linked to the production
of secondary metabolites involved in plant growth (Parsley et al.,
2011; Hadjithomas et al., 2015).

The diversity and composition analysis of broomcorn
millet rhizosphere using 16S rDNA sequencing indicated
Acidobacteria to be a core bacterial component among
rhizobacterial assemblages, comprising 10.7% of the total
operational taxonomic units (OTUs) obtained (Na et al., 2019).
In another interesting study, Kalam et al. (2017a) explored
the effects of three PGPR strains viz., Sphingobacterium sp.,
Variovorax sp., and Roseomonas sp. on crop rhizospheric
population densities of acidobacterial members. They reported
that the equivalent cell numbers of Acidobacteria members
gradually increased over time with a simultaneous increase
in plant growth promotion by PGPR inocula. The study
speculated the existence of beneficial interactions between
the triad of difficult-to-culture bacteria, PGPR, and host
plants. Additional experiments in plant-soil ecosystems are
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still required for unveiling the exact ecological roles of
rhizospheric Acidobacteria members.

CONCLUSION

Soil represents a luxurious pool of microorganisms, including
the shadow biosphere dwellers, the difficult-to-culture bacteria
which might be strategic sources for novel and successful
biotechnological products. Acidobacteria is an important
and among the most abundant difficult-to-culture phylum
harboring the soil ecosystem. Acidobacteria plays significant
ecological roles, as evidenced through their active participation
in key carbon, nitrogen, and sulfur biogeochemical circuits.
At the same time, the production of EPS further strengthens
their ecophysiological functions in establishing plant-soil
beneficial interactions. Since this divergent phylum predominates
rhizosphere microbial communities, these bacteria might be
a significant component of the crop’s natural environment.
Initiatives for manipulating crop rhizosphere with acidobacterial
populations to increase plant growth in laboratory and
greenhouse studies could be considered to be future challenges
and thrust areas for research. The correlation and information
presented in this review might prove to be relevant for
future modeling of experiments to expose the potential
biotechnological roles of Acidobacteria members and exploit

them as prospective alternatives to agrochemicals, facilitating
sustainable agriculture.
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