
IEEE Transactions on Consumer Electronics, Vol. 54, No. 3, AUGUST 2008 

Contributed Paper 
Manuscript received July 9, 2008                                                   0098 3063/08/$20.00 © 2008 IEEE 

1228 

Dongyoung Seo and Dongkun Shin, Member, IEEE 

 
Abstract — Flash memory has been widely used as a 

storage device for consumer devices. Recently, applications 
using flash memory are becoming complex and diverse. One 
of obstacles to its wide use is the slow write performance of 
flash memory caused by its erase-before-write characteristic. 
To enhance the write performance, FTL (Flash Translation 
Layer) generally uses the flash log-buffer, where data is 
written by the out-of-place scheme. However, current log 
buffer-based FTL schemes show poor performance for 
random write requests due to the block thrashing problem and 
high block associativity. Recently, flash-aware buffer cache 
management schemes are proposed to solve the block 
thrashing problem. However, they cannot also eliminate the 
problem completely. In this paper, we propose a novel flash-
aware buffer cache replacement policy. The technique selects 
the victim page to be evicted from buffer cache considering 
the recent victim page sent to the flash log buffer. Our 
experimental results show that the proposed technique 
reduces the flash I/O execution time by up to 30%1. 
 

Index Terms — flash memory, buffer management, page 
replacement, flash translation layer, embedded storage. 

I. INTRODUCTION 
Since NAND Flash memory has many advantages over 

hard disk drive such as low-power consumption, small size 
and high shock resistance, it has been widely used for mobile 
consumer devices such as MP3 player, digital camera, 
personal digital assistant and cell phone. In the past, the usage 
scenarios of flash memory were simple and regular. For 
example, MP3 player and digital camera used the NAND flash 
memory to read and write only large-sized multimedia files.  

However, recent applications for flash memory are complex 
and diverse. For instance, current convergence of consumer 
devices enables recent cell phones to offer e-mail service and 
full Web browsing. To do that, they should store many 
temporary internet files or small-sized e-mail files on the flash 
memory. Moreover, these applications can be executed 
concurrently thus generating mixed write requests. Recently, 
general purpose systems such as desktop PC are also going to 
use flash memory. For example, hybrid hard disk [1] and on-
board disk cache [2] use the flash memory as a nonvolatile 

 
1  This work was supported by the Korea Research Foundation Grant 

funded by the Korean Government (MOEHRD). (KRF-2007-331-D00358) 
D. Seo is with the Samsung Electronics, Suwon, Korea (e-mail: 

dongyoung.seo@gmail.com).  
D. Shin (corresponding author) is with the School of Information and 

Communication Engineering, Sungkyunkwan University, Suwon, Korea (e-
mail: dongkun@skku.edu).  

cache of hard disk drive. NAND flash-based solid-state disk 
(SSD) is expected to replace hard disk in the near future [3, 4]. 
Such changes on flash memory applications require a more 
efficient management scheme for flash memory. 

Flash memory provides three operations: read, write and 
erase. The read performance of flash memory is high because 
it requires no seek time. However, flash memory has a low 
write performance due to its “erase-before-write” constraint 
which means that a block should be erased before a data is 
written into the block. While the write operation is performed 
by the unit of page, the erase operation should be performed 
by the unit of block which is composed of several pages. For 
example, in the large block NAND flash memory, a page is 2 
KB and a block is 128 KB (64 pages). 

To handle the special features of flash memory, most 
systems use flash translation layer (FTL) which maps the 
logical page address from the file system to the physical page 
address in flash memory devices. The address mapping 
schemes of FTL can be divided into three classes, i.e., block-
level mapping, page-level mapping and hybrid mapping.  

In the block-level mapping, the mapping table maintains the 
mapping information between logical block address and 
physical block address. So, a logical page should be written by 
the in-place scheme, which means a page is written at the 
fixed location of a block determined by the page offset within 
a block. The block-level mapping needs a small-sized 
mapping table. However, even when only a small portion of a 
block should be modified, the specified block should be 
erased and the nonupdated pages as well as the updated page 
should be copied into a new block. This constraint results in a 
high page migration cost thus poor write performance. 

In the page-level mapping, the mapping table maintains the 
mapping information between logical page address and 
physical page address. Therefore, a logical page can be 
mapped by the out-of-place scheme, which means a logical 
page can be written to any physical page in a block. If an 
update request is sent for a data which is already written in 
flash memory, FTL writes the new data to a different clean 
page and changes the page-level mapping information. The 
old page is invalidated by marking in the spare field of the 
page. The drawback of page-level mapping is that the 
mapping table size is inevitably large.  

The hybrid mapping uses both page mapping and block 
mapping. In this scheme, all the physical flash memory blocks 
are separated into log blocks and data blocks. The log blocks 
are called log buffer. So, the FTL using hybrid mapping 
scheme is called as a log buffer-based FTL. While the log 

Recently-Evicted-First Buffer Replacement Policy  
for Flash Storage Devices 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on June 08,2010 at 14:56:27 UTC from IEEE Xplore.  Restrictions apply. 



 1229D. Seo and D. Shin: Recently-Evicted-First Buffer Replacement Policy for Flash Storage Devices 

blocks use the page-level mapping and the out-of-place 
scheme, the data blocks are handled by the block-level 
mapping and the in-place scheme.  

For a write request, the hybrid mapping FTL first sends the 
data to a log block invalidating the corresponding old data in 
data block.  If the log blocks are full and there is no empty 
space, one log block is selected as a victim and all the valid 
pages in the log block are migrated into data blocks to make a 
room for on-going write requests. In this step, the log block is 
merged with the data blocks which are associated with it. So, 
this step is called block merge. There are three kinds of block 
merges: full merge, partial merge and switch merge [5]. The 
partial merge and switch merge can be done only when all the 
pages in the victim log block are written by the in-place 
scheme. While the full merge requires many page copies and 
block erases, the partial merge and switch merge invoke low 
page migration costs. The hybrid mapping can reduce the page 
migration cost compared to the block mapping with a small-
sized mapping table. 

To enhance the write performance of flash memory system, 
the overhead invoked by the block merge should be reduced. 
Therefore, most existing log-buffer based FTL schemes aim to 
reduce the number of block merge. However, current FTL 
techniques are mainly focusing on the sequential write pattern 
since they target the multimedia systems such as MP3 player 
and digital camera. However, in the recent flash memory 
devices, multiple processes generate both sequential and 
random write requests concurrently. Therefore, most of 
current FTL techniques will show poor performance since 
random writes incur frequent log block merges. 

Another technique to improve the write performance of 
flash memory is to use the buffer cache. The buffer cache is 
volatile memory located between the file system and the flash 
memory.  The buffer cache can reduce the number of write 
requests sent to the flash memory by merging repeated write 
requests on the same page. The buffer replacement policy of 
buffer cache is an important issue since it determines the flash 
memory write pattern. 

In this paper, we propose a novel buffer replacement policy 
which considers the log buffer in flash memory. The policy is 
called REF (Recently-Evicted-First) since it gives high 
priorities to the pages of the block whose pages are recently 
evicted to the flash log buffer. It is similar to the I/O scheduler 
for hard disk drive in Linux system. The I/O scheduler 
reorders and clusters the write requests to reduce the average 
number of head movement in hard disk [6]. The REF also 
clusters the write requests in buffer cache to reduce the 
number of block merge. The REF policy improves the 
performance of flash memory by 20%-30% compared with the 
LRU (Least-Recently-Used) buffer replacement policy for 
benchmarks. 

The rest of the paper is organized as follows. In Section 2, 
the related works and their drawbacks are introduced. Section 
3 describes the details of REF buffer cache management 
scheme. Section 4 introduces the BP-REF scheme which is an 

extended version of REF. Experimental results are presented 
in Section 5. Section 6 concludes with a summary and future 
works. 

 

II. RELATED WORKS 

A. Log Buffer-Based FTL 
There have been many researches on the log buffer-based 

FTLs. There are two kinds of schemes depending on the block 
association policy as shown in Fig. 1, i.e., 1:1 log block 
mapping (BAST) [5] and 1:N log block mapping (FAST) [7]. 
The block association policy means how many data blocks a 
log block can be used for. In the 1:1 scheme, a log block is 
allocated for only one data block. In Fig. 1(a), there are 5 data 
blocks (B0, B1, B2, B3 and B4) and 2 log blocks (L0 and L1). 
We assume that each block consists of four pages. When the 
update requests on the pages p0 and p4 come, the pages are 
written at the log blocks invalidating the pages in the data 
blocks. (The grey-colored pages are invalid pages.) The log 
blocks L0 and L1 are associated with the data blocks B0 and 
B1 respectively as shown in Fig. 1(a) where the arrow lines 
indicate the block association. The pages p0 and p4 are 
written into their associated log blocks respectively.  

The 1:1 log block mapping of BAST can invoke frequent 
log block merges. For instance, in Fig. 1, if the write sequence 
“p8, p12, p1, p5, p9, p13” comes, BAST should replace either 
of the two log blocks generating an expensive merge 
operation for every write because there is no log block 
allocated for the target data block. Moreover, every victim log 
block in this example holds only one page when it is replaced; 
the other three pages remain empty. So, the log blocks in 
BAST would show very low space utilization when they are 
replaced from the log buffer. If the write request pattern is 
random, the 1:1 mapping scheme shows poor performance 
since frequent log block merges are inevitable. Such a 
phenomenon where most write requests invoke a block merge 
is called log block thrashing. 

 
Fig. 1.  Log buffer-based FTL schemes. 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on June 08,2010 at 14:56:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Transactions on Consumer Electronics, Vol. 54, No. 3, AUGUST 2008 1230 

To prevent the log block thrashing problem, the 1:N  
mapping scheme of FAST was proposed. In 1:N scheme, a log 
block can be used for multiple data blocks at a time as shown 
in Fig. 1(b). Using the 1:N mapping, we can prevent the log 
block thrashing problem. For the same write sequence “p0, p4, 
p8, p12, p1, p5, p9, p13”, there is no block merge in FAST 
whereas each page write incurs a block merge in BAST. 
However, the problem of 1:N mapping is its high block 
associativity, where the block associativity means how many 
data blocks are associated with a log block. For example, 
when the log block L1 in Fig. 1(b) is replaced from the log 
buffer, 16 page copies (16 pages = 4 blocks × 4 pages) are 
required since the log block L1 is associated with four data 
blocks, B0, B1, B2 and B3. This means that FAST scheme 
requires a large cost per block merge though it invokes a small 
number of block merge. The maximum block associativity is 
same to the number of pages in a block. 

Recently, a special N:N scheme was introduced, where N 
number of log blocks can be used for N number of data blocks. 
Superblock scheme [8] is one example of N:N mapping. The 
N:N scheme is a hybrid form of 1:1 mapping scheme and 1:N 
mapping scheme. So, it also has both the block thrashing 
problem and the high block associativity problem. 

 

B. Flash-Aware Buffer Schemes 
There are several researches on buffer cache management 

scheme aiming to reduce the flash memory write cost. 
Park et al. [9] proposed a clean-first LRU (CFLRU) 

replacement policy which delays the flush of dirty page in the 
buffer cache to reduce the number of write request to the flash 
memory. Jo et al. [10] proposed a flash-aware buffer 
management scheme, called FAB. Using block-level buffer 
replacement which evicts all the pages of a block at a time, it 
reduces the block merge cost. FAB scheme first finds a block 
which has the largest number of pages in the buffer cache. 
Then, all the pages of the block are flushed into the flash 
memory. Kim et al. [11] proposed a BPLRU (Block Padding 
Least Recently Used) buffer management scheme. It also 
evicts all the pages of a victim block like FAB but it 
determines the victim block based on the block-level LRU 
value. In addition, BPLRU writes a whole block into a log 
block by the in-place scheme using the block padding 
technique. Therefore, all log blocks can be merged by the 
switch merge which requires no page migration. 

The log block thrashing and high block associativity 
problems of log buffer-based FTL can be diminished using the 
flash-aware buffer techniques such as FAB and BPLRU. 
Since such techniques flush all the pages of a block into the 
log block at a time, the subsequent page writes do not invoke 
the log block replacement and do not increase the block 
associativity of a log block. 

However, these schemes cannot also avoid the block 
thrashing problem completely. For example, in Fig. 2, there 
are 9 pages in the buffer cache. FAB scheme manages the 

block node list which is a linked list of blocks sorted by their 
recency that means how recently a block is accessed. Each 
block node points the page node list which is a list of pages 
that belong to the corresponding block. When the buffer is full 
and cannot accommodate a new page data, the buffer should 
evict a number of pages. The block which has the largest 
number of pages is selected in FAB. Therefore, the block B4 
is selected. (If more than one block has the same number of 
pages, the block which is not accessed for the longest time is 
selected.) Since two log blocks L0 and L1 have already been 
assigned to the data blocks B0 and B1, the log block merge 
should be performed in the BAST scheme. The subsequent 
block flushes also invoke the block merge as shown in Fig. 2.  

 

 
Fig. 2.  Block thrashing under FAB scheme. 

 
Another problem of FAB is that it can evict the recently 

used pages if the corresponding block has the largest number 
of pages in the buffer cache. For example, in Fig. 2, even 
though the blocks B3 and B4 are recently used, the blocks are 
evicted prior to the blocks B1 and B0. If the pages of B3 and 
B4 are updated just after the eviction, the page eviction turns 
out to be useless. This problem results from that the block-
level page eviction is prior to the page recency in selecting a 
victim page in FAB. 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on June 08,2010 at 14:56:27 UTC from IEEE Xplore.  Restrictions apply. 



 1231D. Seo and D. Shin: Recently-Evicted-First Buffer Replacement Policy for Flash Storage Devices 

BPLRU also manages all the pages in buffer cache by the 
block level LRU policy. The block which is not accessed for 
the longest time is selected as a victim block. BPLRU also has 
the block thrashing problem. One difference is that BPLRU 
invokes only switch merges thanks to the block padding. 
However, BPLRU has an opposite problem in handling the 
page recency. If one of pages in a block has a high recency 
(i.e., recently used), other pages in the block also stay in the 
buffer cache even though the pages are not recently used. 
Then, the not-recently-used pages waste the space of buffer 
cache. The block-level management of page recency is a 
critical weak point of FAB and BPLRU. 

In summary, current FTL schemes and current flash-aware 
buffer management schemes can show poor performance for 
random writes due to the block thrashing problem.  

 
III. LOG BUFFER-AWARE BUFFER MANAGEMENT 

A. REF Page Eviction 
The previous buffer management schemes have no 

consideration on the log buffer in the flash memory. If the 
buffer cache selects a victim page to be evicted such that the 
corresponding data block of the victim page is associated with 
the current log blocks, we can avoid the log block thrashing 
and the high block associativity problems. 

The proposed REF scheme has three main features as 
follows:  

 Block-level page eviction: Select victim blocks and evict 
only the pages of the victim blocks from buffer cache to 
reduce the number of block merges or block associativity. 
This is improvement over the LRU replacement policy. 

 Log buffer-aware victim selection: As far as possible, the 
victim blocks are maintained such that they are same to 
the data blocks associated with the log blocks. This is 
improvement over FAB and BPLRU policies. 

 Page-level recency consideration: The victim pages are 
selected among the not-recently-used pages to prevent the 
recently-used pages from being evicted. This is 
improvement over FAB and BPLRU policies. 

 
To select the victim blocks which are associated with the 

log blocks, the REF scheme determines them considering the 
recent page eviction. For instance, assume that a buffer cache 
has the pages p0, p4, p9, p13, p1 and p5 in the LRU order, 
two log buffers has the pages p8 and p12 and the log buffer is 
managed by the BAST scheme as shown in Fig. 3. If we use 
the LRU page replacement policy, the pages are evicted by the 
order of “p0, p4, p9, p13, p1, p5” and 6 number of log block 
merges are invoked. However, if we reorder the page eviction, 
we can reduce the number of block merges. Since the log 
blocks are associated with the data blocks B2 and B3, it is 
better to evict the pages of B2 and B3 first, i.e., p9 and p13. 
So, if the buffer cache flushes the pages by the sequence of 
“p9, p13, p0, p4, p1, p5”, only two number of log block 
merges are required in the BAST scheme. 

For the FAST scheme, the block associativity of each log 
block can be reduced by REF. Fig. 4 shows the changes of log 
blocks after the pages in the buffer cache of Fig. 3 are flushed 
into the flash memory managed by the FAST scheme. In the 
initial log blocks, both the pages p8 and p12 are written at the 
log block L0 when the FAST scheme is used. If the LRU page 
replacement policy is used, both the log blocks L0 and L1 
have the block associativity of 4. However, if REF policy is 
used, the block associativity is reduced to 2 for both log 
blocks. Therefore, we can know that REF scheme can reduce 
the block associativity of log block as well as the number of 
block merges. 

 

 
Fig. 3.  LRU eviction vs. REF eviction in BAST scheme. 

 

p8
p12
p0
p4

p9
p13
p1
p5

L0 L1

After REF eviction:
p9, p13, p0, p4, p1, p5

p8
p12
p9
p13

p0
p4
p1
p5

L0 L1

p8
p12

L0 L1
After LRU eviction:

p0, p4, p9, p13, p1, p5

Initial log block

 
Fig. 4.  LRU eviction vs. REF eviction in FAST scheme. 

 

B. Victim Block Selection 
To evict only the pages whose corresponding data blocks 

are associated with the log blocks, the buffer manager should 
know the status of log blocks exactly. To do that, the FTL 
should provide an interface inquiring the log block status. 
However, the proposed REF scheme can be implemented 
without changing the current FTLs. Instead of directly 
referring to the status of log blocks, the buffer manager selects 
the victim page using the recent history of buffer eviction. 

Fig. 5 shows the page eviction in REF. Assume that the 
buffer cache can contain 8 pages and each page is sorted in 
the order of LRU. REF maintains the set of victim block (VB). 
REF enforces the buffer cache to evict only the pages of 
victim blocks. The number of VB should be smaller than the 
number of log blocks in flash memory to prevent the log block 
thrashing. In this example, the size of VB is 2 (|VB| = 2). REF 
selects the blocks to be included into VB using the victim 
window (VW) to prevent the recently-used pages from being 
evicted. In this example, the size of VW is 75%. So, the six 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on June 08,2010 at 14:56:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Transactions on Consumer Electronics, Vol. 54, No. 3, AUGUST 2008 1232 

(75% of 8 pages) number of least recently-used pages are 
candidates for the victim page. REF finds two blocks which 
has the largest number of pages within the victim window. 
First, the blocks B2 and B3 are selected as the victim blocks. 
Then, REF composes the victim page list with all the pages 
which are located within the VW and whose corresponding 
block is in the VB. 

 
Fig. 5.  Victim block selection in REF. 

 
If a free space is required in the buffer cache, the least-

recently-used page in the victim page list is evicted. If there is 
a page whose corresponding block is in VB but which is not 
within the victim window, the page may enter the victim 
window after the eviction of other pages. Then, the victim 
page list is updated due to the insertion of a new victim page.  

In Fig. 5, when the new pages p2, p6, p10 and p14 are 
inserted into the buffer cache, the pages p8, p12, p9 and p13 
are evicted in sequence. When there is no page in the victim 
page list because all the victim pages are flushed into the flash 
memory, a new VB should be constructed. By the insertion of 
the pages p2, p6, p10 and p14, the victim blocks are changed 
to B0 and B1 in Fig. 5.  

While FAB and BPLRU evict all the pages of victim block 
at a time, REF evicts the victim pages only by the amount of 
the required free space. Since REF evicts only the pages of the 
predetermined victim blocks, the effect of one-by-one page 
eviction is similar to that of simultaneous victim pages 
eviction. Instead, the one-by-one page eviction can reduce the 
number of buffer cache misses when the update request on the 
victim pages comes, thus reducing the number of write 
requests on flash memory.  

The size of victim window should be selected carefully 
considering the locality of write pattern. If the size of VW is 
too large, recently-used pages are evicted thus increasing the 
miss ratio of buffer cache. If the size of VW is too small, REF 
acts like the original LRU scheme thus invoking the log block 
thrashing. From the experiments using desktop benchmark 
applications, we observed that the proper victim window size 
is about 75% of the total size of buffer cache. 

Fig. 6 compares the behaviors of buffer cache and log 
blocks under LRU, FAB, BPLRU and REF policies using an 
example write sequence. We assumed that the buffer cache 
can contain 3 pages and the two log blocks of flash memory 
are managed by the BAST FTL scheme. For each write 

request sent to the buffer cache, the events on the buffer cache 
and the log buffer of flash memory are shown. At the column 
of Cache, there are I and E events which mean the insertion 
into the buffer cache and the eviction into the flash memory, 
respectively. At the column of Log Block, there are L and M 
events which mean the insertion into the log block and the 
block merge, respectively. The REF scheme generates no 
block merge while LRU, FAB and BPLRU invoke 2 or 3 
number of block merges respectively. 

 

 
Fig. 6.  Comparison among LRU, FAB, BPLRU and REF. (2 log blocks, 4 
pages per a block, 3 page-sized buffer cache, VW= 100%, |VB| = 2) 

 
IV. BLOCK PADDING REF 

We also propose the block padding REF (BP-REF) which 
uses the block padding technique in addition to REF. BPLRU 
shows a good performance using the block padding technique. 
However, the block padding technique can invoke a large 
overhead cost since it reads the nonupdated pages from the 
data block into the buffer cache in order to write a complete 
block in a log block. For example, in Fig. 6, when the write 
request on p5 comes, BPLRU writes the pages p1, p2 and p3 
(underlined) as well as the victim page p0.  

Actually, if the block padding is used, all the pages in a log 
block are written by the in-place scheme. So, BPLRU makes 
the hybrid mapping FTL to act like the block-level mapping 
FTL. Therefore, it inherently has the overhead of block-level 
mapping. Especially, when only small portion of a block is 
frequently updated (hot data), most of cold pages in a block 
should be copied frequently though they are unchanged. When 
the size of buffer cache is small, this problem is more critical 
since even hot pages cannot stay for a long time in buffer 
cache. 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on June 08,2010 at 14:56:27 UTC from IEEE Xplore.  Restrictions apply. 



 1233D. Seo and D. Shin: Recently-Evicted-First Buffer Replacement Policy for Flash Storage Devices 

To reduce the block padding overhead, BP-REF performs 
the block padding technique selectively. Only when the 
number of victim pages of a victim block is larger than a 
threshold value, called block padding threshold, it performs 
the block padding to reduce the overhead. For example, 
when the block padding threshold is 80% and the buffer 
cache has more than 80% of the total page number of a 
block, BP-REF reads the rest 20% of the block from the 
flash memory and evicts the complete block to the log buffer. 
The proper value of block padding threshold depends on the 
storage access pattern and the FTL technique as will be 
shown in Section V.  

Fig. 7 shows the example behavior of BP-REF. The 
selected victim blocks are B1 and B2. When the pages of B1 
are evicted, BP-REF uses the block padding. So, it reads the 
pages p14 and p15 into the buffer cache and evicts all the 
pages of B1 at a time to the log block L0. This prevents the 
pages of B2 from being written into the log block L0 thus 
enabling FTL to do the switch merge. 

 

 
Fig. 7.  Block padding in BP-REF. 

 
When the number of victim pages of a victim block is small, 

it is better not to perform the block padding. Note that REF 
updates the victim page list when a new page enters the victim 
window. So, it is better to wait the write requests on other 
pages of the victim block instead of padding a large number of 
pages. In Fig. 7, the eviction of B2 does not incur the block 
padding. If the pages p18 and p19 of B2 are inserted into the 
victim window after the eviction of B1, we can write the up-
to-date pages into the log block L1. Especially under the 
FAST scheme, BP-REF improves the performance 
significantly over REF since it reduces the block associativity 
of log blocks. 

V. EXPERIMENTS 
We evaluated the performance of REF using simulation. We 

collected the disk I/O traces executing several Windows desktop 
applications under the NTFS file system and used the traces as 
inputs of the simulation. We used three benchmark programs: 
Internet Explorer which generates many small-sized temporary 
files, MS-Office install application which writes both small- and 
large-sized office files, and JPEG file copy application which 
copies total 2GB of JPEG files, where each file size is 
500~600KB. While Internet Explorer generates highly random 
write requests, MS-Office install application and JPEG copy 
application generate both sequential writes and random writes 
because they update the metadata of NTFS file system. So, there 
are many random writes which are interposed between sequential 
writes. The reason why we selected the desktop applications as 
benchmarks is that current consumer devices begin to offer these 
applications as a result of convergence. Table 1 shows important 
parameters used in the simulation. The page size, the block size 
and the timing values of flash memory are based on the 
specification of large block NAND flash memory.  

TABLE I 
SIMULATION PARAMETERS 

Page size 2 KB 
Block size 128 KB (64 pages) 
Log buffer 8 blocks 

Structural 
parameter 

Buffer cache 16 MB 
Page read 0.01 ms 
Page write 0.2 ms 

Timing 
Parameters 

(flash memory) Block erase 2 ms 

We compared the performances of LRU, FAB, and BPLRU 
schemes with that of REF scheme. For the REF scheme, we 
evaluated the performance varying the size of victim window 
(VW) with the fixed VB value of 8 and varying the number of 
victim blocks (VB) with the fixed VW value of 75%.  

Fig. 8 shows the total execution times under several schemes. 
The execution times are normalized by the result when LRU 
buffer scheme and BAST FTL scheme are used. The total 
execution time means the time consumed in accessing flash 
memory. BPLRU shows poor performance for Internet Explorer 
trace. This is because the block padding overhead is large when 
the write pattern is significantly random. FAB shows poor 
performances for MS-Office install and JPEG copy applications. 
This is because FAB scheme ignores the recency of page thus 
sends the write requests on hot pages to the flash memory 
frequently. FAB is even worse than the LRU scheme.  

The performances of REF are different depending on the 
sizes of VW and VB. When the size of VW is 75% and the 
number of VB is 3, the performance of REF is generally best. In 
Fig. 8(a), especially for the BAST scheme, the performance of 
REF is better as the number of VB is smaller. This is because 
the block thrashing is minimized. However, in the FAST 
scheme, the performances are similar when |VB| ≤ 8 (the 
number of log blocks). REF improves the execution times by 
20~30% over other schemes. 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on June 08,2010 at 14:56:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Transactions on Consumer Electronics, Vol. 54, No. 3, AUGUST 2008 1234 

0.6

0.7

0.8

0.9

1.0

1.1

VW

25% 50% 75% 100%

|VB|
1 3 5 8 10 25 50

LRU FAB BPLRU REF (|VB|= 8) REF  (VW=75%)

BAST FAST

(a) Internet Explorer  

 

 
Fig. 8.  Comparisons of normalized execution times. 

 
We also observed the behavior of FTL. Fig. 9 compares the 

numbers of block merges under several schemes. REF reduces 
especially the number of full merges compared to LRU and FAB 
schemes. BPLRU invokes only the switch merge. However, it 
requires a significant number of page copies. 

Fig. 10 shows the numbers of page read, page write and block 
erase in flash memory. REF reduces both the numbers of reads and 
writes compared with LRU, FAB and BPLRU. Although BPLRU 
generates smaller numbers of block erase than REF, it requires 
large numbers of page read and write due to the block padding. 

Finally, we evaluated the improvement of BP-REF over REF. 
Fig. 11 shows the execution times under BP-REF scheme 
normalized by those under REF scheme. We observed the 
performance gain of BP-REF over REF changing the block 
padding threshold. If the threshold is 100%, BP-REF is same to 
REF. If the threshold is 0%, BP-REF always performs the block 
padding. The performance gains of BP-REF are best when the 
threshold values are 10% and 40% in the BAST scheme and the 

FAST scheme, respectively. The performance gains are more 
significant for the FAST scheme compared to the BAST scheme. 
This is because the block padding eliminates the full merges which 
invoke high costs in the FAST scheme. As the threshold value is 
small, the number of switch merges increases and the numbers of 
full merges and partial merges decrease. From this result, we can 
know that the block padding threshold should be determined 
carefully considering the write pattern and the FTL scheme. 
 

0

2000

4000

6000

8000

10000

full merge partial merge switch merge

VW

25% 50% 75% 100%

|VB|
1 3 5 8 10 25 50

LRU FAB BPLRU REF (|VB|= 8) REF  (VW=75%)

(a) BAST  

0

2000

4000

6000

8000

10000

VW

25% 50% 75% 100%

|VB|
1 3 5 8 10 25 50

LRU FAB BPLRU REF (|VB|= 8) REF  (VW=75%)

full merge partial merge switch merge

(b) FAST  
Fig. 9.  Comparisons of merge count (Internet Explorer). 

 
VI. CONCLUSION 

We have presented a flash-aware page eviction technique 
called REF to solve the problems of log buffer-based FTLs 
and current flash-aware buffer management schemes. REF 
enforces the buffer cache to evict only the pages of the victim 
block. The victim block remains unchanged as far as possible 
to reduce the block thrashing and the block associativity. 
While FAB shows even worse performance than the LRU 
scheme depending on the input trace, REF shows better 
performances than LRU, FAB and BPLRU for all benchmarks. 
We also proposed the BP-REF scheme which performs block 
padding as well as flash-aware page eviction. Unlike the 
BPLRU scheme, the proposed BP-REF scheme does the block 
padding selectively to reduce the block padding overhead.  
The proposed REF scheme can be further improved in several 
directions. For example, a dynamic adaptation technique is 
required, which adjusts the sizes of victim window and victim 
block observing the I/O pattern at run time. The block padding 
threshold also should be adjusted based on the I/O pattern. 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on June 08,2010 at 14:56:27 UTC from IEEE Xplore.  Restrictions apply. 



 1235D. Seo and D. Shin: Recently-Evicted-First Buffer Replacement Policy for Flash Storage Devices 

 

 

 
Fig. 10.  Comparisons of the number of NAND operations (Internet 
Explorer). 

 

 
Fig. 11.  Normalized execution times under BP-REF varying the block 
padding threshold (Internet Explorer).  

REFERENCES 
[1] Y.-J. Kim, S.-J. Lee, K. Zhang, and J. Kim, “I/O Performance 

optimization techniques for hybrid hard disk-based mobile 
consumer devices,” IEEE Transactions on Consumer Electronics, 
vol. 53, no. 4, pp. 1469–1476, 2007. 

[2] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and K. Grimsrud, 
“Intel Turbo Memory: Nonvolatile disk caches in the storage 
hierarchy of mainstream computer systems,” ACM Transactions on 
Storage, vol. 4, no. 2, 2008. 

[3] Y. H. Bae, “Design of a high performance flash memory-based 
solid state disk,” Journal of Korean Institute of Information 
Scientists and Engineers, vol. 25, no. 6, 2007. 

[4] J.-U. Kang, J. S. Kim, C. Park, H. Park, and J. Lee, “A 
multichannel architecture for high-performance NAND flash-
based storage system,” Journal of Systems Architecture, vol. 53, 
no. 9, pp. 644–658, 2007. 

[5] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space-
efficient flash translation layer for compact flash systems,” IEEE 
Transactions on Consumer Electronics, vol. 48, no. 2, pp. 366–
375, 2002. 

[6] D. P. Bovet and M. Cesati, “Understanding the Linux Kernel,” 
O’Reilly, 2006. 

[7] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. 
Song, “A log buffer-based flash translation layer using fully-
associative sector translation,” ACM Transactions on Embedded 
Computing Systems, vol. 6, no. 3, 2007. 

[8] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A superblock-based 
flash translation layer for nand flash memory,” Proc. of 
International Conference on Embedded Software, pp. 161–170, 
2006. 

[9] S.-Y. Park, D. Jung, J.-U. Kang, J.-S. Kim, and J. Lee, “CFLRU: a 
replacement algorithm for flash memory,” Proc. of International 
Conference on Compilers, Architecture and Synthesis for 
Embedded Systems, pp. 234–241, 2006. 

[10] H. Jo, J.-U. Kang, S.-Y. Park, J.-S. Kim, and J. Lee, “FAB: Flash-
aware buffer management policy for portable media players,” 
IEEE Transactions on Consumer Electronics, vol. 48, no. 2, pp. 
485–493, 2006. 

[11] H. Kim and S. Ahn, “BPLRU: A buffer management scheme for 
improving random writes in flash storage,” Proc. of 6th USENIX 
Conference on File and Storage Technologies (FAST), pp. 239–
252, 2008. 

 
 
 Dongyoung Seo received the B.S. degree in computer 
engineering from Yeungnam University, Korea in 2003. 
Since 2003, he is an engineer of Samsung Electronics 
Co., Korea. He is also currently a Master student in the 
School of Information and Communication Engineering, 
Sungkyunkwan University. His research interests include 
embedded software, file systems and flash memory. 

 
 

 
Dongkun Shin (M’08) received the B.S. degree in 
computer science and statistics, the M.S. degree in 
computer science, and the Ph.D. degree in computer 
science and engineering from Seoul National University, 
Korea, in 1994, 2000 and 2004, respectively. He is 
currently an Assistant Professor in the School of 
Information and Communication Engineering, 

Sungkyunkwan University (SKKU). Before joining SKKU in 2007, he was a 
senior engineer of Samsung Electronics Co., Korea. His research interests 
include embedded software, low-power systems, computer architecture, and 
multimedia and real-time systems. 
 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on June 08,2010 at 14:56:27 UTC from IEEE Xplore.  Restrictions apply. 


