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Introduction
The goal of this project is to investigate how visual corti-

cal cells respond to natural stimulation and to study what sort
of signal processing occurs within primary visual cortex. We
postulate that the use of natural image sequences may reveal
aspects of cortical processing that are not evident when using
simpler stimuli such as bars and luminance modulated gratings.
Because the cortex is a nonlinear network, it may not be feasi-
ble to use the neural responses to simple stimuli to predict and
understand cortical cells’ activity under natural stimulus condi-
tions. Furthermore, accumulating evidence suggests that the
surround of the “classical receptive field” of a neuron can mod-
ulate its response in very specific ways (see, Sillito, Grieve,
Jones, Cudeiro, & Davis, 1995; Zipser, Lamme, & Schiller,
1996; Levitt & Lund, 1997; Walker, Ohzawa, & Freeman,
1999; Sceniak, Ringach, Hawken, & Shapley, 1999; Walker,
Ohzawa, & Freeman, 2000; Kapadia, Westheimer, & Gilbert,
2000). It has been proposed that contextual modulation is the
basis for figure and ground segregation (Knierim & van Essen,
1992; Zipser et al., 1996; Sillito et al., 1995), as well as group-
ing and segmentation (Kapadia et al, 2000; Chen, Kasamatsu,

Polat, & Norcia, 2001). It has also been argued that the pat-
tern of contextual interactions observed in V1 is what one
would expect for a grouping network processing natural scenes
(Siegman, Cecchi, Gilbert, & Magnascol, 2001). Thus, it is
becoming increasingly important to understand how V1 neu-
rons respond when their “classical receptive fields” are embed-
ded in a natural surround. 

A first step necessary to attack these questions is to develop
methods to study the structure of a neuron’s receptive field
from its response to natural image sequences. Here we present
a technique that allows one to investigate the input-ouput
relationship of the cell by estimating a family of receptive-field
“kernels” associated with particular “features” of the stimulus.
As a particular case, the proposed method recovers the first-
order kernel of a neuron with respect to the luminance of the
visual stimulus (Marmarelis & Marmarelis, 1978). 

The data set collected in the present study consists of several
movie segments that have been digitized and stored in the com-
puter (the stimulus) and the corresponding responses of neurons
in V1 to these movie clips. Our goal is to understand how neural
activity in each case is influenced by the physical properties of
the image sequences. The complexity of a natural stimulus
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introduces several challenges in the analysis. Most aspects of the
stimulus are no longer under experimental control. Instead of
varying one parameter at a time, as is customary in most experi-
mental designs, a large number of physical properties are chang-
ing simultaneously. Explaining the full response of the cell to the
movie sequences might be a very difficult task; instead, it is
shown that one can readily test if a particular property of the
stimulus influences the firing rate of a cell and to what extent. In
this way, the richness of natural scenes can be exploited to
explore which “features” of the image induce a cell to fire. 

We begin by considering cortical simple cells (Hubel &
Wiesel, 1968; Movshon, Thompson, & Tolhurst, 1978a;
Skottun et al., 1991). Simple cells are thought to provide ori-
ented, spatially bandpass filtering that is one of the essential
early stages in visual processing (DeValois & DeValois, 1988).
A common mathematical model describing the function of sim-
ple cells, under a constant level of contrast gain control, is a lin-
ear operator followed by rectification (Movshon et al., 1978a;
Tolhurst & Dean, 1990; Tolhurst & Heeger, 1997; Carandini,
Heeger, & Movshon, 1997). Numerous studies of V1 simple
cells using bars, spots or gratings have established that their
receptive field structure can be approximated by spatially dis-
crete antagonistic subregions (Hubel & Wiesel, 1968; Movshon
et al., 1978; Andrews & Pollen, 1979, Jones & Palmer, 1987;
Parker & Hawken, 1988). If spatial summation of neural signals
by simple cells is linear, then different stimulus ensembles could
be used to determine the first-order linear receptive field or ker-
nel of these neurons (Victor, 1992). Furthermore, invariance of
the resulting kernel with respect to the stimulus ensemble pro-
vides one way in which the linearity of simple cells could be
tested (Ringach, Sapiro, & Shapley, 1997b). Using this method,
we show that the first-order kernel of simple cells can readily be
recovered from their responses to movie clips. 

One must consider also that visual cortical cells could be
responding to some nonlinear feature of the visual stimulus.
Certainly complex cells respond in a nonlinear manner to
luminance contrast (Hubel and Wiesel, 1968; Movshon et al.,
1978b; Spitzer & Hochstein, 1985; DeValois et al., 1982;
Szulborski & Palmer, 1990). To what other nonlinear features
of the stimulus are V1 cells responding? The concept of a “fea-
ture map” of a stimulus is introduced in this paper as a way of
studying responses of visual neurons to different attributes in
natural image sequences. In essence, the method estimates the
best linear predictor of the cell’s response given a particular
feature map of the stimulus. The initial results indicate that
V1 neurons have a variety of complex responses to natural
images, and that sophisticated image processing might be
occurring in the V1 cortex.

Methods

Physiology, Optics and Visual Stimulation
Acute experiments were performed on adult Old-World

monkeys (Macaca fascicularis) in compliance with National

Institutes of Health guidelines as described elsewhere (Ringach
et al., 1997a). Natural image sequences were generated by digi-
tally sampling commercially available videotapes in VHS/NTSC
format. A Silicon Graphics R10000 Solid Impact was used to
sample frames at a spatial resolution of 320 � 240 pixels
(6 degrees � 4.5 degrees of visual angle) and at a temporal
rate of 15 Hz. The selected movies included both man-made
and natural landscape scenes. Six segments of 30-s duration
were sampled from eight different movies, making a total of
24 minutes of video. The movies were compressed using
Silicon Graphics’ MVC2 compression scheme (proprietary)
and stored on a disk. The compressed data fitted in
480 megabytes of memory. A Silicon Graphics O2 R5000 com-
puter played back the images during the experiment on a com-
puter screen that measured 34.3 cm wide by 27.4 cm high. The
refresh rate of the monitor was 100 Hz and each movie image
was presented for six consecutive frames. Thus, the effective
playback rate was 16.6 Hz—slightly faster than the sampling
rate. The mean luminance of the display was 56 cd/m2.
Stimulation was monocular to the dominant eye (the other
eye was occluded). Movie clips were effective in evoking
responses from V1 cells; the mean spike rate to natural image
stimulation was ≈10 spikes/s. We think these movie clips have
statistics similar to those used in other studies of natural image
sequences, such as those employed by van Hateren and van
der Schaaf, (1998) who sampled videos from Dutch, British
and German TV broadcasts.

Experimental Protocol
Each cell was stimulated monocularly via the dominant

eye and characterized by measuring its steady-state response to
conventional black/white drifting sinusoidal gratings (the non-
dominant eye was occluded). With this method we measured
basic attributes of the cell, including spatial and temporal fre-
quency tuning, orientation tuning, contrast, and color sensitivi-
ty (Johnson, Hawken, & Shapley, 2001), as well asarea, length,
and width tuning curves. Experiments using natural image
sequences were performed following these standard measure-
ments. Steady-state orientation tuning curves were obtained
using angular steps of 15 degrees or 20 degrees. In a few very
sharply tuned cells, we used steps of 10 degrees. Simple cells are
defined as those neurons whose responses had ratios of first har-
monic to mean response larger than one when stimulated with
a drifting grating having optimal spatio-temporal parameters.
All other cells are defined as being complex. Receptive fields
were located at eccentricities between 1 and 6 degrees.

Analysis
The question that we want to address is how the response

of a neuron depends on the recent history of the movie
sequence. We propose a method that is an extension of one
recently introduced by DiCarlo, Johnson, and Hsiao (1998) to
analyze receptive fields in area 3b of primary somatosensory
cortex in response to random dot patterns (see also the recent
work of Theunissen et al. [2001]). The following terminology
will be used. Let I(x,y,t) denote the value of a pixel at location
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(x,y) and time t. This is normally a three-dimensional vector
representing the values of the red, green and blue components
of the pixel. For the response of the cell we consider the total
number of spikes occurring within a time window �t centered
at time t. This value is denoted by r(t).

Formally, the general problem is to determine how the
response, r(t), depends on the recent history of the visual stim-
ulus s(t) = {I(x,y,t')| t � T < t' < t} where T is the width of the
analysis window. This relationship is fully characterized by the
joint probability of the stimulus and the response P(s,r) (Rieke,
Warland, van Steveninck, & Bialek, 1997).  Due to the high
dimensionality of the stimulus space, however, estimating this
probability distribution is not possible in the given experimen-
tal time. Instead, methods that make specific assumptions about
the relationship between stimulus and response are required.
Here we consider a general class of models described by

(1)

where r– is the mean response rate, �(x,y,t) represents a feature
map sequence, and w(x,y,t) are weights representing a spatio-
temporal kernel of the receptive field. The feature map is a
function (linear or nonlinear) of the input image sequence,
I(x,y,t). Therefore, the cell’s modulation away from its mean
response r– is modeled as a linear spatio-temporal filter acting
on the feature map sequence. The choice of � is limited only
by our intuition about what “features” of the image sequence
the cell at hand may be representing.

For example, one of the feature maps considered below is
the luminance contrast map. The “luminance contrast map” is
defined by 

where L(x,y,t) = wTI(x,y,t) is the luminance of the pixel at
location (x,y) at time t, and L

–
(t) is the mean luminance of the

frame at time t. The luminance of a pixel is obtained by weight-
ing the values of the red, green, and blue guns appropriately
(which is achieved by multiplying with a vector w obtained
from the calibration of the display). As an example of this cal-
culation, we present original color frames from the stimulus in
Figure 1a, and their associated luminance contrast map Figure
1b. With this definition of the feature map, the modulation of
the cell’s response is modeled as a linear function of the lumi-
nance contrast values within its receptive field—a commonly
used model for simple cells.

A second feature map of interest is given by

(2)

where ∇ = (∂/∂x,∂/∂y). This value represents the absolute
value of the luminance contrast gradient, which is large in
those regions where boundaries are present in the image. Thus,
the result of this computation may be considered an “edge
map’’ (Pratt, 1991). It can be seen that the edge map
(Figure 1c) associated with the original images (Figure 1a)
emphasizes local changes in contrast. This definition of the

“edge map” is insensitive to the local contrast sign of the con-
tour or its orientation. Clearly, the edge map is a nonlinear
operator on the luminance of the images. 

In some situations it is of interest to separate the contribu-
tions of edges at different orientations to the cell’s response.
This may be done by defining an oriented edge map as follows,

(3)

This feature map emphasizes edge boundaries whose orienta-
tions are normal to the selected orientation. For example, the
selection � = 0 accentuates vertical boundaries in the image
(Figure 1d). Similarly, the oriented edge map where � = �/2
emphasizes horizontal boundaries (Figure 1e). This measure is
also insensitive to contrast sign.

Once a feature map �(x,y,t) is selected, we want to find
the optimal spatio-temporal weighting function, or kernel,
w(x,y,t) that predicts the response of the cell in the least
squares sense according to the model in Equation (1). When
the input is white noise stimuli, one computes this kernel by
calculating the mean input before a spike (Lee & Schetzen,
1965; deBoer & Kuyper, 1968). This computation does not
apply to natural images because there are strong spatio-temporal
correlations in the input sequence and resulting feature maps.
The autocorrelation of the input must be taken into account.
To do this, we used a standard technique, recursive least-
squares (RLS), to calculate the optimal kernel. The input to
the algorithm is the feature map sequence and the response of
the cell. The output is the optimal kernel that transforms the
feature map into the response. This is done via a recursive pro-
cedure that refines our guess of the kernel as more and more
data are added to the calculation. At the first step of the cal-
culation, the weights (kernel values) are all set to zero. At the
nth step of the calculation, the old estimate of the kernel, at
step n � 1, is used to predict the response of the cell. The
error between the predicted and true response is used to make
a correction to the weighting function and generate a new
estimate. The correction in the RLS algorithm is computation-
ally complex but basically it is the present input image filtered
so as to correct for image correlation, and is weighted by the
magnitude of the error. It can be shown that the expected
value of the RLS algorithm’s estimate is equal to the true value
of the kernel (Haykin, 1991).

Some of the advantages of the recursive least squares
technique, over standard least squares, are as follows. First, in
contrast to the standard least-squares technique, there is no
need to invert the (very large) correlation matrix of the input
data at any stage in the algorithm. Instead, a recursive esti-
mate of the inverse of the correlation matrix is updated as
new data arrive (Haykin, 1991). This is important when the
condition number of the correlation matrix is high, as is the
case for the application at hand. A high condition number
implies that inverting the matrix is not a numerically stable
process (Golub & van Loan, 1989). Second, the technique is
recursive, so estimates can be updated as new data are collect-
ed. This could help us decide when sufficient data have been

Φ x y t c x y t c x y t, , , , / , , cos ,sin( ) = ∂ ( ) ∂ = ∇ ( ) ⋅ ( )θ θ θ

Φ x y t c x y t, , , ,( ) = ∇ ( )

Φ x y t c x y t
L x y t L t

L t
, , , ,

, ,( ) ≡ ( ) = ( ) − ( )
( )
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T
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=
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gathered on a particular cell as we run the experiment. Third,
slow trends in excitability, due to variations in anesthetic lev-
els and the physiology of the animal can be factored out by a
recursive estimation of the mean values. Fourth, such a tech-
nique could be used in principle to follow changes of the
receptive field with time when the cell is presented with non-
stationary input. Thus, in principle, the technique could allow
the study of adaptation to changes in the statistics of natural
images. A detailed description of the algorithm is provided in
the “Appendix.” 

Results
To test the performance of the algorithm, we first deter-

mined whether the method could recover the classical first-
order kernel in a model V1 cell consisting of a cascade of a
linear receptive field (acting on the luminance contrast of the
input) and a threshold nonlinearity (see Figure 2). 

At each time step, the dot product between the simulated
receptive field and the input image was computed first (the
receptive field was centered on the movie frame). This value is
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(a)

(b)

(c)

(d)

(e)

Figure 1. Examples of feature maps obtained from the original frames in the movie. (a) Three still frames taken from the movie
“Sleeper.” (b) The luminance-contrast maps associated with the original images. Regions in white indicate positive values of contrast,
whereas regions in black indicate negative values. (c) The edge map associated with the original images. Locations where large gradi-
ents in the luminance contrast map are located are emphasized. (d) Oriented edge maps associated with the original images when �
= 0; this choice accentuates oriented boundaries that are near vertical. (e) Oriented edge maps associated with the original images
when � = �/2 this emphasizes oriented edges that are near horizontal.



denoted by y(n) (Figure 2). Next, in an attempt to make the
simulation realistic, y(n) was perturbed by a large amount of
additive Gaussian noise, z(n). The standard deviation of y(n)
and z(n) were equal, i.e., the signal-to-noise ratio was one.
Finally, the resulting signal w(n) = y(n) + z(n) was passed
through a hard rectifier (Figure 2, right). The threshold was set
at a value that caused the model cell to “fire” (i.e., generate a
nonzero output) only 12% of the time. This is equivalent to a
mean response rate of ≈ 2 spikes/s. The output variance was
2.1 spikes/s).2 These numbers are close to the median values for
our data: median response 2.4 spikes/sec and variance
(2.3 spikes/s).2 The movies used in the simulation, and the
length of the data record, were identical to those in the actual
experiment. The simulated receptive field had two symmetric
subfields, one excitatory (indicated in red) and one inhibitory
(indicated in blue), and was defined on a square grid of 17 �
17 pixels representing 0.65 degrees � 0.65 degrees of visual
angle. These parameters were selected to test the proposed
method under stringent conditions: the algorithm had to esti-
mate 289 parameters from very noisy thresholded data in the
presence of highly correlated input signals (the condition num-
ber [Golub & van Loan, 1989]) of the luminance covariance
matrix was ≈3 � 103). The resulting estimate of the receptive
field is very good (Figure 2, lower receptive field): the correlation
coefficient between the true and estimated weights equals 0.88.
Thus, the algorithm can perform very well even in the presence
of strong output nonlinearity and large additive noise levels.

The analysis was then applied to study the structure of
receptive fields in 22 cells of macaque V1. As described in
“Methods,” this was done by having the model predict the
response of the cell at time t + � given the feature map at
time t. A fixed delay of � = 60 ms, which corresponds to the

median time-to-peak in our V1 population (Ringach et al.,
1997a), was used for all cells. Representative results are shown
in Figure 3. Each panel in the figure corresponds to a different
cell and depicts the luminance contrast kernel on the left, and
edge kernel on the right. Regions in red correspond to positive
values of the kernel; those in blue represent negative values.
For comparison, the optimal stimulus orientation obtained
with drifting sinusoidal gratings is shown by the orientation of
the bar on top of the kernels for each cell.

To check even more rigorously whether or not the kernels
recovered with the RLS algorithm characterize the visual func-
tion of the V1 neurons, we mapped the luminance-contrast
kernel in a few V1 simple cells using natural images and a
more conventional reverse correlation technique (Ringach et
al., 1997b). Figure 4a and 4b illustrate the results in two V1
neurons. The receptive field on the left panel corresponds to
the estimate obtained using standard reverse correlation, and
the panel on the right shows the kernel estimated from stimu-
lation with natural image sequences. Both methods provide
similar estimates. In addition, the luminance contrast kernel of
V1 cells obtained from its responses to the movie clips has
often elongated excitatory and inhibitory subfields (Figure 3).
We compared the axis of elongation in the kernels with the
preferred orientation of the cell estimated from the response
tuning as a function of orientation for drifting sinusoidal grat-
ings (Figure 4c). The axis of elongation of the strongest subfield
was determined by calculating the eigenvalues and eigenvec-
tors of the (centered) second order moment matrix of absolute
values of the kernel for that subfield. The direction of the
largest eigenvector provides the axis of elongation, and the
ratio between the largest and the smallest eigenvalue gives the
aspect ratio of the subfield. Figure 4c shows that the axis of
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Receptive Field

Luminance contrast map
Additive Noise

Threshold Nonlinearity

Receptive Field Estimate

Simulated

1

Figure 2. Performance of method on a simulated simple cell. The system consists of a cascade of a spatial linear filter (acting on the
luminance contrast of the input) followed by a hard-step threshold nonlinearity. The signal z(n) represents Gaussian additive noise. The
simulated receptive field had two subfields, one excitatory (in red) and one inhibitory (in blue). The algorithm had to estimate this
receptive field given the input image sequence and the response of the cell, r(n). The result of applying the method is shown below
the image of the simulated receptive field.



elongation in the kernels matches the preferred orientation
estimated from the steady-state orientation-turning curve.

The statistical significance of the kernels was evaluated as
follows. First, to obtain an estimate of the noise in the measure-
ment we calculated the standard deviation of the kernel values
in pixels located away from the receptive field. Then, the ker-
nel was normalized by the standard deviation of the noise. The
result of this calculation is a z-transformed kernel (Zar, 1996).
Figure 5 replots the z-transformed values of some of the kernels
in Figure 3. Here the color map ranges from a z value of –10
(blue) to +10 (red). Thus, the maximum value in this scale
corresponds to a kernel amplitude that is 10 times the standard
deviation of the noise. All kernel features discussed below, both
in the luminance and edge maps, had peak absolute z values
larger than 4. This implies a significance level of p < 7 � 10�5.

In the kernels mapped using natural image sequences, we
observed simple cells that had structure in both the luminance

contrast map and in the edge kernel map (Figure 3a,3c,3e, and
3f). Similarly, some complex cells also exhibited structure in
their luminance contrast kernels (Figure 3b,3d,3g, and 3h, left
panel), whereas others did not (Figure 3i-3l, left panel).
Another salient feature of the data is that all cells, both simple
and complex, showed spatial structure in their edge kernels.
The structure of the kernels for a direction selective simple
cell in layer 6 illustrates how this method of analysis can
reveal complexities in the organization of a receptive field
(Figure 3a). It can be seen that the luminance contrast kernel
shows two elongated subfields; one excitatory and one
inhibitory (Figure 3a, left panel). The preferred orientation of
the cell, as measured with drifting sinusoidal gratings, is shown
at the top right of Figure 3a and closely matches the lumi-
nance-contrast kernel’s orientation.

The spatial structure observed in the kernel associated
with the edge map was unexpected (Figure 3a, right panel).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

6, 1.5 (S), 2.2 deg

4Cα, 0.5 (C), 0.6 deg

6, 1.5 (S), 2.8 deg

6, 0.14 (C), 2.8 deg

2+3, 1.8 (S), 0.6 deg

6, 1.4 (S), 1.2 deg

6, 0.1 (C), 1.6 deg

4B, 0.3 (C), 1.2 deg

6, 0.1 (C), 2.2 deg

2+3, 0.3 (C), 1.6 deg

4B, 0.2 (C), 1.6 deg

2+3, 0.25 (C), 1.6 deg

Figure 3. Analysis of receptive field structure using natural image stimulation. Each panel in this figure shows the estimated luminance
contrast kernel (on the left) and the edge kernel (on the right) for several V1 cells. Additional information is displayed on top of each
panel: the cell’s laminar location, the ratio between the first-harmonic component and the mean of the response (F1/F0) for the optimal
sinusoidal grating stimulus followed by the classification of the cell as simple (F1/F0 > 1) or complex (F1/F0 ≤ 1) the angular size repre-
sented by one side of the 17 � 17 grid, and the preferred orientation of the cell as measured with conventional drifting gratings. The
orientation of the bar corresponds to the orientation of the grating that generated the best response. In (l ) the bar was omitted
because the cell was not well tuned. In most cases we observe that the preferred orientation of the cell closely matches the axis of
elongation of the estimated receptive fields. Each kernel was normalized independently so that its maximum absolute value was one.
This makes optimal use of the pseudo-color map which ranges from –1 (blue) to +1 (red).



This kernel displays primarily two slightly elongated subfields.
One field is excitatory, indicating that high values of lumi-
nance contrast gradients in that region induced the cell to
respond more. The second subfield is inhibitory; it indicates
that image boundaries in that region, independent of their
contrast sign, suppressed the response of the cell. The cell’s
preferred direction of motion, as determined with drifting grat-
ings, was from the excitatory toward the inhibitory subfield.
Notice also that the edge kernel appears to be slightly dis-

placed with respect to the center of the luminance-contrast
kernel and has a somewhat greater spatial extent. A weaker
suppressive region, located to the left of the excitatory region,
may also be seen. The spatial structure seen in the edge kernel
reveals the presence of a contrast independent (nonlinear) sig-
nal that modulates the response of this simple cell.

The result obtained in a complex cell from layer 4C is
shown in Figure 3b. A luminance contrast kernel with two
parallel subfields of opposite signature in the luminance contrast
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Figure 4. (a,b) Comparison of receptive fields mapped with natural image sequences (right panel) and with subspace reverse correla-
tion (left panel) for two V1 cells. (c) Scatter plot of the cell preferred orientation as measured with steady-state drifting gratings (x-axis)
versus the angle of elongation of the strongest subfield in the kernels for the cells in Figure 3 (a-k). Open squares represent the elon-
gation of subfields in the luminance contrast kernel and open circles represent the elongation for the edge map kernels. Cases where
the ‘aspect ratio’ of the subfield defined by the ratio between the largest and smallest eigenvalues of the (centered) second order
moment matrix was less than 1.2 were ignored. A small aspect ratio could result because of noise in the kernels (such as Figure 3i,
left panel) or because the subfield was round (such as Figure 3l, right panel).

(a) (f)

(h) (l)

6, 1.5 (S), 2.2 deg 6, 1.4 (S), 1.2 deg

4B, 0.3 (C), 1.2 deg 2+3, 0.25 (C), 1.6 deg

-10 +100

z-value

Figure 5. Evaluating the statistical significance of kernel features. The figure shows the z-transformed values of some of the kernels
depicted in Figure 3. All features described in the text had peak absolute z values larger than 4.



kernel was detected (Figure 3b, left panel). The preferred ori-
entation of the cell as determined with drifting sinusoidal grat-
ings matches the axis of elongation of the subfields. The edge
kernel has a single excitatory subfield centered at the same
location as the excitatory subfield of the luminance-contrast
kernel but extending further in space (Figure 3b, right panel).
We observed several cases in which cells (both simple and
complex) showed two subfields of opposite signs in the lumi-
nance-contrast kernel and a single excitatory subfield in the
edge kernel (Figure 3c,3e, and 3f).

In some cases, it appears that selectivity for orientation is
conferred to the neuron by a contrast-insensitive signal. The
luminance contrast kernel obtained from an “on”-center cell
in layer 6 appears isotropic in space (Figure 3g, left panel).
The edge kernel, on the other hand, is slightly elongated
(Figure 3g, right panel). The axis of elongation corresponds
well with the preferred orientation as measured with drifting
gratings. The neuron was well tuned for orientation; its tuning
curve had a half-bandwidth at half-height of 25 degrees. One
would not expect this cell to be orientation tuned based on
the measurement of the luminance-contrast kernel alone. 

In Figure 3h we present the result from an “off-center” cell
in layer 4B. Notice that the excitatory field in the edge kernel

is slightly displaced in space with respect to the luminance
contrast kernel.

The structure of the edge kernel reveals information about
the organization of the receptive field in complex cells that do
not have measurable luminance contrast kernels. A subset of
complex cells showed weak or no spatial structure in their
luminance contrast kernels (Figure 3i-3l). The kernels estimat-
ed with respect to the edge map, on the other hand, have
obvious spatial structure in them. Figure 3i illustrates the
analysis of a direction selective complex cell in layer 6. The
preferred direction of movement, as determined with drifting
gratings, was from the excitatory towards the smaller inhibito-
ry subfield (Figure 3i, right panel). Other cells in this group
had a single excitatory field in their edge kernels. In some
cases, the field was elongated and matched the preferred orien-
tation of the cell (Figure 3j and 3k, right panel); other cells
had nearly circular fields (Figure 3l, right panel). 

Finally, the effect of oriented image boundaries on the
response of the cell can be studied by estimating spatial kernels
with respect to the “oriented edge map.” Figure 6 shows exam-
ples from three complex cells. In each case four different ker-
nels are depicted. In left to right order they are the luminance
contrast kernel, the edge kernel, the oriented-edge kernel
when the angle � was selected to emphasize edges with orien-
tations similar to the preferred orientation of cell, and the ori-
ented-edge kernel when the angle � was selected to accentuate
boundaries at the orthogonal orientation. 

The edge kernel in Figure 6a indicates the presence of
three subfields: a small central excitatory subfield flanked by
two elongated inhibitory subfields. The kernels estimated with
respect to the oriented edge maps show that the central excita-
tory mechanism arises from boundaries having the same orien-
tation as the one preferred by the cell. The inhibitory subfields,
in contrast, result from boundaries orthogonal to the preferred
orientation. This means that in these regions of space, edges
perpendicular to the optimal orientation for the cell suppress
its response. This could be a manifestation of cross-orientation
inhibition (Morrone, Burr, & Maffei, 1982). Thus, such analy-
sis of responses to natural images may provide a way to under-
stand how the spatial arrangements of oriented edge segments
influence the response of the cell.

In other complex cells, the kernels calculated with respect
to the edge map and the oriented-edge map for the preferred
orientation are similar and show a single excitatory region
(Figure 6b and 6c). In contrast, the orthogonal edge maps
appear to be more diffuse and peak in different spatial loca-
tions. One may conjecture that such receptive field structures
may underlie the enhanced responses of cells to orientation
contrast (Knierim & van Essen, 1992; Sillito et al., 1995). 

Discussion
The experimental results indicate that natural images

can be used successfully to probe the visual properties of neu-
rons. This method proved to be successful in obtaining the
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(c) 2+3, 0.2 (C), 1.3 deg

(b) 4B, 0.2 (C), 1.6 deg

(a) 6, 0.01 (C), 2.5 deg

Figure 6. The use of oriented edge maps to analyze the contri-
bution of different orientations to the cell’s response. Each
panel in this figure shows four kernels. In left to right order they
represent: the luminance contrast kernel, the edge kernel, the
oriented-edge kernel when the angle � was selected to empha-
size edges with orientations similar to the preferred orientation
of cell, and the oriented-edge kernel when the angle � was
selected to accentuate boundaries at the orthogonal orienta-
tion. These are all complex cells, and have weak structure in
their luminance contrast kernels.



two-dimensional first-order kernel, or luminance-contrast fea-
ture map, in all simple cells (Figure 3). The orientation of the
luminance feature map was consistent with the orientation
tuning measured with grating stimuli (Figure 4c), cells showed
parallel antagonistic subregions, and different spatial scales
were evident among the population. In a couple of simple cells
we compared the kernels obtained via stimulation with natural
image sequences with those measured using subspace reverse
correlation (Ringach et al., 1997b) and the results were simi-
lar. These findings, together with the simulation results, sug-
gest that the proposed method works as expected.

Some, but not all, complex cells showed luminance-con-
trast kernels, indicating that such neurons did receive excitatory
input from “first-order” neural mechanisms. Thus, the analysis of
the responses to the movie sequences verifies that they can be
used to give us a two-dimensional spatial map of the receptive
field. Of course, the results shown here are only a snapshot at a
single time frame. The method can be extended to provide the
full spatio-temporal kernel by having the input to the algorithm
represent a recent spatio-temporal volume of the feature map
sequence. This would require the estimates of more parameters
and, as a consequence, more data to obtain a reliable answer.

Using the new method, we were able to demonstrate con-
trast invariant edge kernels in both simple and complex cells.
Contrast invariant edge kernels in simple cells have not been
previously described. The model cell described in Figure 2 did
not show suppressive regions in the edge kernel in response to
stimulation with the movie sequences. In some conditions, the
model receptive field in Figure 2 did predict a single excitatory
region in the edge map kernel, centered between the two sub-
fields of the luminance contrast kernel. Therefore, we can con-
clude that an oriented linear filter with a threshold predicts
most of the luminance and part of the edge kernel in V1 simple
cells, but does not predict both the position of some excitatory
regions and the suppressive regions. The analysis of complex
cell kernels into orientation specific edge response indicates
that while the excitatory region arises from the preferred orien-
tation of the cell (as measured by gratings), some of the antago-
nistic regions arise from orthogonal orientations (Figure 4a).
We believe that this nonlinear suppression represents a novel
feature of the receptive field organization whose spatial extent
and orientation tuning have not been previously characterized.

The method proposed here allows for the calculation of
the neuron’s kernels with respect to different feature maps,
such as a luminance map and the “edge” map (Figure 3). We
noted a number of cases where the neural response was corre-
lated with both maps. In principle, such a result could be sim-
ply due to the fact that the maps themselves are correlated. A
principled way to deal with correlated feature maps is dictated
by linear regression theory. If “main effects” are found with
respect to two different feature maps, �1 and �2, a next step
would be to build a compound model by defining a new feature
map that represents the concatenation of �1 and �2, � = [�1
�2], and run the same algorithm which will compute new ker-
nels with respect to these two maps taking into account any
possible cross-correlations. If the feature maps are approxi-

mately orthogonal (i.e., uncorrelated), the resulting kernels are
clearly the same as those obtained by doing a regression on
each feature map individually. This is the case in this study, as
the maximal cross-covariance between the luminance-contrast
and “edge” map was very small, 0.04, meaning that the maps
are nearly orthogonal. As a consequence, estimating the maps
separately is justified in our case. We note that the responses
of cells to image attributes other than luminance contrast is
consistent with previous data showing that cortical cells may
respond to image boundaries that are not defined by lumi-
nance cues alone, such as illusory contours (Grosof, Hawken,
& Shapley, 1993) and second order motion (Mareschal &
Baker, 1999). Thus, we do not believe this phenomenon arises
only when using natural image stimulation.

We envision similar techniques to the “feature map”
approach proposed here as potential tools in psychophysical
research. In the response classification images method (Beard &
Ahumada, 1998), the noise is uncorrelated in space. To be able
to use correlated noise (such as bandpass filtered white noise),
averaging of the noise samples is not the right calculation to
estimate the kernel (or classification image). Instead, the aver-
age classification images should be premultiplied by the inverse
of the noise cross-correlation matrix, as is effectively done by
the algorithm in this study. Also, multiple features (besides the
luminance of the images) may mediate performance in a partic-
ular psychophysical task. The technique described here could
allow the investigator to explore such dependencies.

It is unknown at present if the kernels obtained using nat-
ural image stimulation are identical to or different from kernels
derived from other stimulus ensembles, such as bars, spots of
light, or sinusoidal gratings (Ringach et al., 1997b). The data
we have collected so far indicate that mapping receptive fields
with subspace reverse correlation (which uses spatial grating
stimuli) and with natural image sequences yields similar results
(Figure 4). A detailed comparison, however, requires a larger
data set than the one we now have. It is also unknown if other
feature maps, involving more elaborate two-dimensional fea-
tures, such as corners and junctions, would be better correlated
with the responses of some neurons. We plan to exploit the
method to address these interesting questions in future work. 

It will also be important in the future to address some of
the weaknesses of the technique. In the present experiments
we presented only one trial per movie segment. In part, this
was due to the fact that it was unknown in these initial experi-
ments using natural image stimulation, how much data would
be required to estimate the receptive fields. Because the firing
rates are relatively low, it is difficult to obtain from such data
sets reliable estimates of the instantaneous firing rate of the
neuron as well as the noise in its response. This is unfortunate,
as these numbers are required to calculate the amount of
response variance explained by each of the kernels. To do so, it
will be necessary to measure a number of repeats for each trial.
Another weakness of the present approach is that the linear
model in equation (1) is not entirely satisfactory as it ignores
nonlinear operations that we know are present in simple cells
of V1, such a cortical gain control (Carandini et al., 1997).
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Identifying nonlinear models from the responses of neurons to
natural stimulation is one area for future research. 

Theoretical studies have argued that a critical component
in understanding how the brain processes sensory information is
to investigate the statistical properties of the signals encoun-
tered in the natural environment (Field, 1987; Tolhurst,
Tadmor, & Chao, 1992; Olshausen & Field, 1996; Olshausen &
Field, 1997; Dong & Atick, 1996; Bell & Sejnowski, 1997; van
Hateren, 1998). A complementary line of research is to explore
how the cortex processes this particular ensemble of signals. The
use of natural stimuli to study the physiology of the visual sys-
tem has up to now been limited (van Hateren, 1987; Dan,
Atick, & Reid, 1996; Baddeley et al., 1997; Gallant, Connor, &
van Essen, 1998). Here we showed, for the first time that it is
experimentally feasible to measure the receptive field structure
of visual neurons from their responses to natural image
sequences. This methodology may pave the way to evaluating
the similarities and differences in visual cortical processing when
the cortex is faced with stimulus ensembles of varying complexi-
ty. The method may also generalize the classification image
technique so that correlated noise and multiple feature maps
can be used in the study of human psychophysical performance.

Appendix A
In this paper we restrict the analysis and attempt to predict-

the response at time t + � from the feature map at time t. The
response at time t + � was defined as the total number of spikes
in the segment. We picked a window width of �t = 60 ms and
used a fixed delay � = 60 ms (this is the average delay in our
population of V1 cells (Ringach et al., 1997a). The central por-
tion of the feature map was subsampled on a square grid of 17 �
17. The visual area represented by this grid was varied from cell
to cell to make sure it covered their receptive fields. These data
were arranged in a column data vector, u(t), having 289 entries.

A variant of the recursive least-squares (RLS) algorithm
was implemented in Matlab (Mathworks, Natick, MA) to
process the data. The analysis was run on an SGI Onyx 2. The
algorithm is described in Table 13.2 in Haykin (1991).
Essentially, it consists of two main steps: forward prediction
and adaptation. The forward prediction stage is when the pres-
ent estimate of the kernel is used to predict the neuron’s
response and errors in prediction are computed. The adapta-
tion step is when the kernel estimate is updated with a correc-
tion factor to bring the estimate closer to the true kernel. It is
in the computation of the correction factor that the correla-
tions in the image statistics enter the algorithm. The mathe-
matical derivation of the algorithm can be found in Haykin
(1991). Pseudo code follows:

Here, the variables have been discretized in space and
time: I(i,j,n) represents the image at location (i,j) for the n-th
stimulus frame in the movie sequence and similarly for the
other variables. The variable w(n) is an N � 1 vector repre-
senting the estimate of the weights at time step n. When we
begin the process we have no data, so we set the initial value

of w to zero (line 1). N is the total number of parameters to be
estimated. In our case we have N = 289 parameters. P(n) is an
N � N matrix representing a recursive estimate of the inverse
of the correlation matrix, and 	 = 0.00001 is a small number.
Two modifications were done to the standard RLS algorithm.
First, we added a recursive estimate of the mean response of
the cell 
 that is subtracted from the response r(n) at each
step (lines 8 and 9). This is done to factor out slow trends in
the excitability of the neuron, as we are only interested in
explaining departures in the response of the cell from its mean.
The forgetting factor � = 0.99 corresponds to a time constant
of ≈6 s. A second modification is the spatial smoothing of the
estimated coefficients in lines 18 and 19. The standard RLS
algorithm does not include any knowledge about the spatial
relationship between the different coordinates. Here, we chose
to smooth the estimates with a 3 � 3 pixel Gaussian kernel
every Q = 450 frames (equivalent to 30 s of video). The
smoothing kernel had a time-varying width given by �(n) =
0.4 + 5Q/n pixels. Our simulations indicated that adding this
sort of “annealing” smoothing step increases the convergence
rate of the algorithm.

There are important convergence results of the RLS algo-
rithm that are worth mentioning here (Haykin, 1991). First, the
estimate of w is expected to converge on the mean. In other
words, the estimation of the receptive field is unbiased. Second,
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Figure 7. Pseudo-code of a modified RLS algorithm used to
compute the optimal linear kernels in this study.



the variance of the prediction error converges to the variance of
the noise in the system, i.e., under the assumption that the
response of the neuron is contaminated by independent noise,
the variance of the response prediction and the true response are
equal. Thus, we are guaranteed that the model in Equation (1)
will match both the mean and variance of the neural response.

One way to experimentally investigate the convergence of
the algorithm when the true value of w is unknown (such as
when we apply the algorithm to real data) consists in calculat-
ing the relative change in the norm of w after Q steps of the
RLS algorithm:

(4)

The magnitude of changes in w will never decrease
beyond a lower bound set by the noise in the system. Thus, we
expect �w(n) to decrease and asymptote at some finite value.
At this point we considered the algorithm to have converged
on the mean. After this time the values of w(n) may be aver-
aged to yield more accurate estimates. In the population of
cells studied the algorithm converged, on average, after
15 minutes of video. Finally, in those cases where the calcula-
tion of the feature map required an estimate of the gradient,
Sobel operators were used (Pratt, 1991).
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