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Fifty years of research have yielded powerful models for the responses of neurons in the 
mammalian early visual system. According to these models, neurons process the 
intensity values in visual images by performing simple arithmetic operations.  

Initial models proposed that these operations are weighted sums, with weights given by 
a neuron’s receptive field. These models explain the basic features of response 
selectivity. They were later extended to explain a number of suppressive effects 
originating within and outside the region of the receptive field. The resulting models rely 
on division. In this division, the receptive field feeds into the numerator, and the 
denominator is provided by a larger, non-classical suppressive field.  

While the receptive field confers to a neuron the basic selectivity for stimulus properties, 
the suppressive field modulates responsiveness. A divisive suppressive field confers to 
neurons in early visual system a number of computational advantages. Recent evidence 
in higher cortical areas suggests that the modulation of divisive suppression is the 
primary means of operation of visual attention.  

In this chapter I summarize research in receptive fields and suppressive fields in lateral 
geniculate nucleus (LGN) and in primary visual cortex (V1). In the following, I refer to a 
“suppressive field” as though this term had wide acceptance. In reality, the concept has 
been proposed only for LGN neurons (Levick et al., 1972), and lies forgotten since 30 
years.  My hope is that it will find wide acceptance to describe responses of both LGN 
and V1 neurons. 

Receptive fields in LGN 

The traditional model for responses of LGN neurons ( A) is based on a center-
surround receptive field (Kuffler, 1953; Rodieck, 1965).  The model takes as input a map 
of stimulus intensities c(x,y,t) that is output by the retina. Neurons operate on this map 
and perform weighted sums, with weights determined by the receptive field: positive in 
ON regions, and negative in OFF regions. Finally, to account for the encoding of 
intracellular signals (which can be negative) into firing rates (which have to be positive), 
the model is endowed with an additional stage following summation. At its simplest, this 
stage performs simple rectification, i.e. it outputs zero for signals below a threshold, and 
is linear above this threshold (Carandini and Ferster, 2000; Granit et al., 1963).  

Figure 1
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Figure 1. Two models of LGN responses. A: Model based on the receptive field. The model includes a 
rectification stage that converts intracellular signals into firing rate. B: Model incorporating a suppressive 
field and divisive gain control.  

To illustrate the behavior of LGN neurons, and compare it to model predictions, I will 
show data from X cells of cat LGN. Most of the arguments, however, could be extended  
to other LGN neurons, including Y cells in cat and M and P cells in monkey. 

The model based on the receptive field explains the basic features of spatial and 
temporal summation in LGN. For example, it explains size and the timing of the 
responses to drifting gratings varying in spatial frequency (Figure 2C) and in temporal 
frequency (Figure 2D) (Cai et al., 1997; Dawis et al., 1984). Similar results, with a similar 
model, have been obtained in retinal ganglion cells (Enroth-Cugell and Robson, 1984; 
Enroth-Cugell et al., 1983). The model can also predict responses to more complex 
stimuli: Full field luminance changes with rich temporal dynamics (Keat et al., 2001), and 
even, to some extent, complex video sequences  (Dan et al., 1996). 
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Figure 2. The receptive field of an LGN neuron explains selectivity for spatial and temporal frequency. A: 
Profile in space (x,y) of the receptive field of an LGN neuron (an X cell in cat LGN), described using the 
model by Cai et al. (1997). B: Profile in space-time (x,t) of the same receptive field. Curves illustrate 
corresponding one-dimensional profiles. C: Responses of the cell to drifting gratings varying in spatial 
frequency. Stimuli were presented in a large window and drifted at 16 Hz. Ordinates report amplitude 
(top) and phase (bottom) of responses measured at the stimulus frequency. Curves are predictions 
based on the receptive field. D: Same, for stimuli varying in temporal frequency tuning (presented at 0.7 
cycles/deg).  From (Mante et al., 2002). 

Suppression in LGN 

In addition to these behaviors, however, LGN neurons also exhibit response properties 
that cannot be explained by a receptive field alone. In particular, there are a number of 
phenomena indicating that the responses are affected by suppression originating both 
within and around the region of the receptive field.  

A first phenomenon of suppression in LGN is contrast saturation, which can be observed 
with a single test drifting grating: As the contrast the grating increases, responses grow 
much less than proportionally (Figure 3A) (Maffei and Fiorentini, 1973; Sclar et al., 
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1990). For example, the responses to 100% contrast are only about twice as large as 
the responses to 10% contrast, not ten times larger as predicted by the linear model 
based on the receptive field. 

A second phenomenon of suppression in LGN is masking, which can be observed by 
measuring responses to the test grating in the presence of a superimposed mask 
grating. Both test and mask provide stimulation to the receptive field, but because their 
temporal frequencies are incommensurate, they elicit responses with different 
periodicities (Bonds, 1989; Victor and Shapley, 1980). By measuring responses 
synchronized to the test, one can ignore the mask's effect in driving the cell, and study 
its effect in suppressing responses. The latter effect is illustrated in Figure 3B,C: the 
mask reduces the responses to the test, and this suppression increases with increasing 
mask contrast (Figure 3B) and mask diameter (Figure 3C).   
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Figure 3. Saturation and suppression in an X-cell in cat LGN. A: Responses to an optimal-sized test 
grating of varying contrast. The window enclosing the grating has diameter slightly larger than the 
receptive field center. Responses (in this panel and the others) are measured at the test frequency (7.8 
Hz). B: Effects of a superimposed orthogonal mask grating, as a function of mask contrast. Mask 
temporal frequency is 12.0 Hz, incommensurate with test temporal frequency. Test contrast is 50% 
(dashed line is response to test alone). C: Same, for different mask diameters. (Bonin et al., 2003b). 

A third phenomenon of suppression in LGN is size tuning, which can be observed with a 
drifting grating of increasing size (Figure 4). If the grating has low contrast , increasing its 
size leads to an increase in response followed by a plateau (Figure 4, ○); This is exactly 
the behavior that would be expected on the basis of the cell’s receptive field. If the 
grating has high contrast, however, increasing its size beyond an optimal value leads to 
dramatic decreases in response (Figure 4, ▼); This behavior is not explained by the 
receptive field, which would predict a scaled version of the responses to low contrast. 
LGN neurons, thus, are selective for size (Jones et al., 2000; Jones and Sillito, 1991; 
Walker et al., 1999), but only at high contrast (Bonin et al., 2002; Bonin et al., 2003a; 
Bonin et al., 2003b; Solomon et al., 2002). 
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Figure 4. Selectivity for stimulus size in LGN, and its dependence on grating contrast. Responses of an 
X-cell to drifting gratings varying in size and contrast as indicated. Curves are fits of the divisive model, 
with parameters held fixed as obtained in Figure 3. One parameter, a responsiveness factor, was 
allowed to vary between data sets (Bonin et al., 2003b). 

An initial wave of interest in these suppressive phenomena dates back to the 1960’s. At 
this time it became clear that there are in LGN strong mechanisms of response 
reduction, as enlarging the size of disks used as visual stimuli reduced responses (e.g. 
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Hubel and Wiesel, 1961). Disks and bars (Cleland et al., 1983; Jones and Sillito, 1991; 
Murphy and Sillito, 1987), however, were inadequate stimuli to study this reduction; with 
such stimuli it is not clear if response reduction could be simply explained by the 
antagonistic surround of the receptive field or if it constituted an unexplained 
suppressive phenomenon. Nonetheless, these results led to fruitful studies of 
intrageniculate inhibition (e.g. Singer et al., 1972), and to the description of previously 
unknown suppressive effects (Levick et al., 1972). A key feature of these effects is that 
they can be caused equally by light increases and by light decreases, a behavior 
incompatible with a receptive field acting alone (Levick et al., 1972).  

More recently, there has been renewed interest in suppressive phenomena in LGN. 
Experiments with drifting gratings have made it clear that selectivity for stimulus size and 
other suppressive phenomena arising around the region of the receptive field would not 
be explained by a receptive field alone (Jones et al., 2000; Solomon et al., 2002; Walker 
et al., 1999). Moreover, experiments with sums of gratings (test and mask, Figure 3B,C) 
have allowed one to measure suppression independently of stimulation (Bonin et al., 
2002; Bonin et al., 2003a; Bonin et al., 2003b). We will see shortly that these 
experiments allow the development of a quantitative model of suppression in LGN. 

Suppressive fields in LGN 

To explain the suppressive effects observed in LGN, it helps to go back to an elegant 
paper by Levick, Cleland and Dubin (1972). These authors proposed that neurons in 
LGN have not only a receptive field, but also a suppressive field. The suppressive field is 
superimposed to the receptive field, and, as the term implies, its effect is suppressive. 
The suppressive field differs from the receptive field in two ways. First, it acts by 
modulating the responsiveness of the neuron, not by driving responses (for a distinction 
between driving inputs and modulating inputs to neurons, see Sherman and Guillery, 
1998). Second, it responds to the absolute contrast of visual stimuli, regardless of their 
sign. While for the receptive field reversing the sign of a stimulus from dark to light would 
reverse the sign of the response, for the suppressive field the response is equal in both 
circumstances (Levick et al., 1972).  

Another concept that helps understand suppressive effects is that of mechanisms of gain 
control (Freeman et al., 2002b; Solomon et al., 2002). These mechanisms control 
neuronal responsiveness, or gain, by performing division. In this division the numerator 
is given by the output of the receptive field, and a broader range of signals contributes to 
the denominator. This idea originates in earlier work aimed at explaining responses of 
retinal ganglion cells (Keat et al., 2001; Shapley and Victor, 1978; Victor, 1987) and of 
V1 neurons (Albrecht and Geisler, 1991; Carandini et al., 1999; Cavanaugh et al., 
2002a; Chen et al., 2001; Heeger, 1992; Sceniak et al., 2001).  

We have recently advocated a model of LGN responses that joins these disparate 
elements: receptive field, suppressive field, and divisive gain control (Bonin et al., 2002; 
Bonin et al., 2003a; Bonin et al., 2003b). In the model (Figure 1B) processing takes 
place not only in the receptive field, but also, in parallel, in a suppressive field. The 
outputs of receptive field and suppressive field feed into the numerator and denominator 
of a division stage. Before feeding into the denominator, however, the output of the 
suppressive field is added to a constant c50; This sum ensures that even at zero contrast 
the denominator will be larger than zero. Following the intuition of Levick and colleagues 
(1972), and building on research on retinal contrast gain control  (Shapley and Victor, 
1978; Victor, 1987), we define the output of the suppressive field to be a measure of 
local contrast clocal(t), the standard deviation of the contrast map c(x,y,t) in a local region 
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weighted by the suppressive field profile. For stimuli such as gratings and sums of 
gratings, local contrast is simply the square root of the sum of the square contrasts of 
each component grating.  

This model makes excellent predictions of the responses of LGN neurons to gratings 
and sums of gratings (Bonin et al., 2002; 2003a; 2003b). In particular, it predicts the 
behaviors shown in . The model predicts contrast saturation ( A, curve) 
because the denominator is dominated by c50 at low contrast and becomes noticeable at 
high contrast. The model explains masking because mask contrast appears in the 
denominator, reducing the responses to the test. In particular, the model captures how 
suppression increases with increasing mask contrast ( B, curve) and with 
increasing mask diameter ( C, curve). Some of these nonlinear effects had been 
previously explained with divisive models, but each effect was modeled and fitted 
individually (Freeman et al., 2002b; Solomon et al., 2002). Data like those in Figure 3 
indicate that a divisive model can explain them all at once with a fixed set of parameters. 
Once these parameters are found they can be fixed, and used to predict novel data. For 
example, they explain the phenomenon of size tuning illustrated in ). The model 
correctly predicts that (as shown by Solomon et al., 2002 in macaque) cat LGN neurons 
are selective for size only at high contrast. Indeed, at high contrast increasing stimulus 
size provides a powerful signal to the denominator, substantially suppressing the 
responses ( , ▼). At low contrast, instead, signals in the denominator are 
dwarfed by the constant c50, so they do not suppress responses to large stimuli (

, ○).  

Figure 3 Figure 3
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Figure 4
Figure 
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Origins of LGN suppressive fields 

What are the origins of the suppressive field of LGN neurons? These origins certainly 
include retinal mechanisms of contrast gain control (Shapley and Victor, 1981; Shapley 
and Victor, 1978; Victor, 1987). In addition, they might include thalamic circuitry (Kaplan 
et al., 1987; Levick et al., 1972; Singer and Creutzfeldt, 1970; Singer et al., 1972) and 
feedback from primary visual cortex (Alitto and Usrey, 2003; Cudeiro and Sillito, 1996; 
Murphy and Sillito, 1987; Sillito et al., 1993). 

An indication to the origin of suppressive signals lies in their preferences for visual 
attributes. A prime visual attribute in this respect is stimulus orientation, as selectivity for 
this attribute would strongly suggest a cortical origin. However, opinions on the matter 
are not unanimous: Some reports indicate that suppressive signals in LGN are selective 
for orientation (Cudeiro and Sillito, 1996; Sillito et al., 1993), but others suggest the 
opposite (Bonin et al., 2003b; Solomon et al., 2002). Additional visual attributes that 
have been studied include spatial frequency and temporal frequency. Signals 
contributing suppression are particularly responsive to low spatial frequencies and to 
high temporal frequencies. Because V1 neurons barely respond to low spatial 
frequencies (De Valois and De Valois, 1988; Maffei and Fiorentini, 1973) and to high 
temporal frequencies (see Freeman et al., 2002b for references), this finding is 
suggestive of a retinal and/or thalamic origin of the suppressive signals.  

Receptive fields in V1 

We now turn to primary visual cortex. We examine models that are similar to those 
described for LGN (Figure 1), based on receptive fields, suppressive fields, divisive gain 
control and rectification. As in LGN, we find that these models go a long way towards 
explaining visual responses of V1 neurons.  
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Just as in LGN, the simplest model for V1 responses is one in which neurons perform 
weighted sums, with weights determined by the receptive field (Hubel and Wiesel, 1959; 
Movshon et al., 1978b). For V1 simple cells, this model is identical to the one depicted in 

A, with the difference that  the receptive field would typically consist of a number 
of elongated ON and OFF subfields (Jones and Palmer, 1987). For V1 complex cells, 
moreover, the positive outputs of more than one receptive field would be summed 
together to yield an overall response that is insensitive to spatial position and stimulus 
sign (Chance et al., 1999; Emerson et al., 1992; Hubel and Wiesel, 1962; Lau et al., 
2002; Movshon et al., 1978a; Spitzer and Hochstein, 1988; Szulborski and Palmer, 
1990; Touryan et al., 2002). This model based on receptive field and a rectification stage 
explains successfully the basic features of V1 selectivity for stimulus attributes including 
position, spatial frequency, orientation, temporal frequency, and direction of motion 
(reviewed in Carandini et al., 1999; De Valois and De Valois, 1988).  

Figure 1

Suppression in V1 

As with LGN neurons, responses of V1 neurons reveal nonlinearities that require a 
revision of the receptive field model. In particular, these neurons exhibit clear 
phenomena of suppression. 

First, V1 neurons receive suppression from within the receptive field (reviewed in 
Carandini et al., 1999; Heeger, 1992). Responses can be reduced by adding to a test 
stimulus a mask stimulus that might elicit little if any response when presented alone. An 
example of this phenomenon is cross-orientation suppression (Morrone et al., 1982), 
which is observed by superimposing test bars at one orientation with mask bars at a 
different orientation. Effective masks can have a broad range of orientations, spatial 
frequencies, and temporal frequencies (Allison et al., 2001; Bauman and Bonds, 1991; 
Bonds, 1989; DeAngelis et al., 1992; Freeman et al., 2002b; Morrone et al., 1982). 
Cross-orientation suppression originates in a small central region within the receptive 
field (DeAngelis et al., 1992).  
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Figure 5. Cross-orientation suppression in cat V1. A: Stimuli are plaids obtained by summing orthogonal 
drifting gratings, the test (top row) and the mask (left column). Test and mask have same temporal 
frequency. B: Mean response of a simple cell as a function of test contrast. Symbols correspond to 
mask contrasts, from zero (○) to 50% (▲). Curves indicate fits by the divisive model. Modified from 
(Freeman et al., 2002b). 
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Figure 5

An example of cross-orientation suppression is illustrated in . An optimal test 
grating evokes a large response when presented on its own ( B, ○), whereas an 
orthogonal mask typically evokes no response ( B, leftmost data points). Adding 
the mask to the test, however, substantially reduces responses: The mask shifts the 
curves relating response to test contrast to the right, as if it reduced the test contrast 
seen by the cell ( B). Because the scale of the abscissa is logarithmic, this 
reduction is divisive. Divisive effects of this kind have been measured in V1 of both cat 
(Bonds, 1989; Freeman et al., 2002b) and monkey (Carandini et al., 1997). While a 
similar effect is present in LGN (e.g. B), in most LGN neurons it is weaker than Figure 3
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in V1 (Freeman et al., 2002b). This observation is consistent with the widely held view 
that cross-orientation suppression is a cortical phenomenon, i.e. it is not inherited from 
LGN.  

Second, V1 neurons receive suppression from an area wider than the receptive field 
(reviewed in Fitzpatrick, 2000). Responses often decrease once a stimulus extends 
beyond the receptive field, and can be greatly suppressed by a mask stimulus outside 
the receptive field (Blakemore and Tobin, 1972; Cavanaugh et al., 2002a; Gilbert, 1977; 
Gulyas et al., 1987; Hubel and Wiesel, 1965; Knierim and Van Essen, 1992; Li and Li, 
1994; Maffei and Fiorentini, 1976). The origins of this phenomenon might lie partially in 
LGN, as responses of LGN neurons are themselves subject to it (  and ) 
but the effects in V1 are much stronger (Jones et al., 2000). Crucially, in V1 suppression 
originating from the surround is selective for orientation, being strongest when test and 
mask have the same orientation (Blakemore and Tobin, 1972; DeAngelis et al., 1994), 
and absent when they have orthogonal orientation (DeAngelis et al., 1992). 

Figure 3 Figure 4

An example of surround suppression is illustrated in Figure 6. An optimal grating 
enclosed in a central disk evokes a large response when presented on its own (

B, ○), whereas the same grating enclosed in a surrounding annulus evokes no 
response ( B, leftmost data points). Adding the annulus to the disk substantially 
reduces the responses. This effect is similar to that of cross-orientation suppression 
( B).  

Figure 
6

Figure 6

Figure 6. Surround suppression in cat V1. A: Stimuli are drifting gratings enclosed in a disk (top row) 
and in a mask (left column). B: Mean response of a complex cell as a function of disk contrast. Symbols 
correspond to annulus contrasts, from zero (○) to 50% (▲). Curves indicate fits by the divisive model. 
From (Freeman et al., 2002a). 
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Suppressive fields in V1 

Just as with LGN neurons, suppressive effects in V1 neurons can be explained by a 
suppressive field that operates divisively ( B). Such divisive models of V1 
responses show great promise of explaining suppressive effects, both in the receptive 
field and in the surrounding region (Albrecht and Geisler, 1991; Carandini et al., 1997; 
Carandini et al., 1999; Cavanaugh et al., 2002a; Chen et al., 2001; Heeger, 1992; 
Sceniak et al., 2001). In fact, the divisive model including receptive field and suppressive 
field explains a number of suppression phenomena. 

Figure 1

Figure 1

First, the model explains cross-orientation suppression (Albrecht and Geisler, 1991; 
Carandini et al., 1999; Freeman et al., 2002b; Heeger, 1992). Consider for example the 
data in B. This example involves an orthogonal mask, which provides little drive 
to the receptive field. The mask thus contributes only to the denominator and not to the 
numerator of the division operation ( B), and its effect is to shift rightward the 
curves relating response to test contrast (Heeger, 1992). In a more general situation 
both gratings elicit responses when presented alone, and ctest and cmask play a role both 
in the numerator and in the denominator. In this case, even though the responses are 
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more complicated than a simple rightward shift, a divisive model similar to the one 
presented here predicts them closely (Carandini et al., 1997). 

Second, the model explains surround suppression (Cavanaugh et al., 2002a; Chen et 
al., 2001; Sceniak et al., 2001; Schwartz and Simoncelli, 2001; Solomon et al., 2002). 
This behavior is illustrated in B (curves). Because the annulus stimulates only 
the fringes of the receptive field, it gives little contribution to the numerator. Nonetheless, 
it does contribute to the denominator, because it stimulates the suppressive field 
extensively.  

Figure 6

Figure 6

The model also accounts for a number of additional phenomena that, just as cross-
orientation suppression and surround suppression, would not be explained by the 
receptive field alone.  

One of these phenomena is contrast saturation (Albrecht and Geisler, 1991; Heeger, 
1992): At high contrasts responses grow much less than proportionally with contrast 
( B, ○, B, ○, A, ■). The model explains this behavior (curves) 
because as contrast increases the output of the suppressive field goes beyond the 
constant c50 and divides the output of the receptive field by a progressively larger 
number. Without the suppressive field, the output of the model would have grown 
proportionally with contrast once above threshold.  

Figure 5 Figure 7

Figure 7

Figure 7. Responses to disks and annuli in a complex cell in cat V1. An optimal drifting grating is 
enclosed in a disk and an abutting annulus. Disk and annulus are abutting and centered on the 
receptive field. Their contrast and relative size are varied. Curves are predictions of the divisive model. 
A: Dependence of response on disk contrast for 4 annulus contrasts (disk diameter = 3 deg). B: 
Dependence of response on disk diameter for 4 disk contrasts (annulus contrast = 0). The disk was 
centered 0.7 deg away from the center of the receptive field, so for small diameters responses grow with 
disk diameter particularly steeply. The model was fitted to 180 responses obtained in a three-
dimensional space of disk contrast, annulus contrast and disk diameter, not just to the few illustrated 
here. Bonin, Mante and Carandini, unpublished data. 

Another of these otherwise unexplained phenomena is the selectivity for stimulus size 
that is observed at high contrast (Cavanaugh et al., 2002a; Kapadia et al., 1999; Sceniak 
et al., 2001; Sceniak et al., 1999). We have already seen this behavior in LGN neurons 
(Figure 4), and noted how it is explained by the divisive suppressive field. In V1 neurons, 
however, selectivity for size can be much more pronounced than in LGN (Jones et al., 
2000). An example of this behavior is illustrated in B, for a V1 neuron that is 
practically silenced by stimuli that extend beyond a critical size. For this neuron, 
selectivity for size appears to be present at all contrasts, but in more typical examples it 
is present only at high contrast, with the preferred size becoming smaller at higher 
contrasts (as in the LGN neuron of Figure 4). As we have already noted, the divisive 
model explains this behavior: Responses grow with size until the denominator becomes 
equal to the numerator. Then responses decrease. At higher contrasts, this point of 
equality—the preferred size—is achieved with smaller stimuli.  
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These considerations suggest that commonly used methods are likely to lead to severe 
underestimation of receptive field size. Receptive field size is commonly estimated with 
high contrast stimuli. Because they engage the suppressive field, these stimuli make the 
receptive field appear smaller than it really is. To come close to mapping the receptive 
field faithfully, one would want to use small, low contrast stimuli. However, these stimuli 
elicit responses that are below threshold for spike generation, so they also lead to an 
underestimation of receptive field size. Only by considering the contribution of the 
suppressive field can one correctly estimate the size to the receptive field.  

Underestimation of receptive field size might contribute to an explanation for phenomena 
of response enhancement resulting from remote stimulation. Indeed, there are numerous 
reports that regions surrounding the center of the receptive field can enhance responses 
(Allman et al., 1985; Kapadia et al., 1995; Nelson and Frost, 1985; Sillito et al., 1995) or 
cause a combination of suppression and enhancement (Jones et al., 2001; Kapadia et 
al., 1999; Kapadia et al., 2000; Levitt and Lund, 1996; Polat et al., 1998; Sceniak et al., 
1999). These reports might become easier to understand if one considers that receptive 
field size is commonly 3 times larger than estimated with simple forms of stimulation 
(Cavanaugh et al., 2002a), so that these studies might have underestimated the area 
over which V1 neurons summate their inputs. 

Indeed, the suppressive field explains many properties of surround suppression and 
enhancement, from the preference shown by surround enhancement for collinear stimuli 
(Polat et al., 1998), to the dependence of suppression effects on mask contrast (e.g. 
Levitt and Lund, 1996). The model might not explain complicated aspects of surround 
stimulation exhibited by some cells (e.g. Jones et al., 2002; Sillito et al., 1995), but such 
phenomena are not shared by a majority of cells (Cavanaugh et al., 2002b).  

Finally, a contribution to response enhancement observed with remote stimulation might 
lie in dis-inhibition, i.e. the effect of suppressing the responses of mechanisms that 
would otherwise cause suppression (Jones et al., 2002; Walker et al., 2002). This effect 
is not captured by our model as it stands ( B), because in the model the 
suppressive field’s response cannot in turn be suppressed. A feedback implementation 
of the model, in which the very same mechanisms that compute the suppressive field 
suppress each other (e.g. Carandini et al., 1997), would likely capture these effects.  

Figure 1

Origins of V1 suppressive fields 

Given that LGN neurons exhibit a suppressive field, the origin of V1 suppressive fields is 
likely to lie at least partially in LGN. Mechanisms of suppression in V1, however, appear 
to be stronger than in LGN (e.g. Bonds, 1989; Freeman et al., 2002b; Jones et al., 2000; 
Sclar et al., 1990). Moreover, there are clear differences between suppressive fields in 
LGN and V1.  

A first difference between suppressive fields in LGN and V1 is that the extent of the latter 
depends on stimulus orientation. For stimuli that are orthogonal to the preferred 
orientation of a V1 neuron, the suppressive field is small, smaller than the receptive field. 
For stimuli parallel to the preferred orientation of the neuron, the suppressive field is 
large, and extends well beyond the receptive field. Indeed, suppressive signals 
originating in a small central region within the receptive field weigh all orientations 
equally (DeAngelis et al., 1992), whereas those from the surrounding region weigh 
orientations close to the neuron’s preferred more than others (Blakemore and Tobin, 
1972; DeAngelis et al., 1994; Li and Li, 1994). The peak strength of the suppressive 
field, however, should not depend on orientation: a small mask elicits about equal 
suppression at all orientations (DeAngelis et al., 1992).  
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A second difference between suppressive fields in V1 and in LGN lies in the spatial 
configuration. Suppressive fields in LGN are well described by a Gaussian envelope 
concentric to the receptive field (Bonin, Mante and Carandini, unpublished results). 
Suppressive fields of V1 neurons, instead, are asymmetric, and contain clear “hot spots” 
not necessarily concentric with the receptive field (Cavanaugh et al., 2002b; DeAngelis 
et al., 1994; Walker et al., 1999). 

In summary, the suppressive field of V1 neurons is likely to be inherited from LGN only 
in part. Mechanisms that could contribute to suppression within V1 include feedback 
connections from within V1 (e.g. Carandini et al., 1997) or from higher cortical areas 
(e.g. Angelucci et al., 2002; Levitt and Lund, 2002). 

Cross-orientation
suppression

Surround
suppression

A B

 
Figure 8. Interpretation of suppression phenomena in V1 in terms of intracortical inhibition. A: Cross-
orientation suppression might be explained by inhibition between from V1 neurons with overlapping 
receptive fields and different preferred orientations. B: Surround suppression might be explained by 
inhibition from V1 neurons with displaced receptive fields and similar preferred orientations. Modified 
from (Durand et al., 2003).  

Figure 8

Figure 8

Figure 8

In fact, the very first interpretation of suppression phenomena in V1 has been based on 
intracortical inhibition ( ). According to this view, cross-orientation suppression 
would be explained by inhibition between from V1 neurons with overlapping receptive 
fields and different preferred orientations ( A). Likewise, surround suppression 
might be explained by inhibition from V1 neurons with displaced receptive fields and 
similar preferred orientations ( B). This intracortical explanation of suppression 
has been criticized (Freeman et al., 2002b), but is ingrained in current thinking about 
suppressive phenomena. Indeed, cross-orientation suppression was initially termed 
“cross-orientation inhibition” (Morrone et al., 1982). 

Limitations of current models 

While they promise to explain a large variety of phenomena both within and around the 
receptive field, current models based on suppressive fields and divisive gain control are 
limited in a number of ways.  

First, current models are typically defined to account for suppressive effects individually. 
For example, a model designed to predict suppression within the receptive field is not 
specified to predict selectivity for size, and vice versa. Even when models are used to fit 
more than one data set from a given neuron, their parameters are usually not held fixed. 
It is thus hard to establish if a single model can explain a wide array of behaviors.  

This limitation can be addressed by constraining a model with a set of measurements 
(as we did in Figure 3) and then freezing the parameters to test responses to other 
stimuli (as we did in ). Or it can be addressed by acquiring large data sets and 
fitting a model to the whole data set at once (as we did in Figure 7, where responses to 
most of the180 stimuli are not shown for reasons of space).  

Figure 4

Second, current models are defined only for simple, spatially localized or homogeneous, 
repetitive visual stimuli. Simplified visual stimuli such as bars, gratings and sums of two 
gratings were invaluable in allowing the development of much of our knowledge on the 
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early visual system. They were designed to isolate particular response mechanisms and 
not engage others, and to simplify (or just enable) data analysis. Thus, an essential 
question about current models of LGN and V1 remains open: Can they predict 
responses to the complex, rapidly varying visual scenes that occur outside the 
laboratory?  

Addressing this limitation is not trivial. Visual stimuli encountered outside the laboratory 
tend to violate two important constraints. First, complex stimuli don’t necessarily have 
constant mean luminance. Current models take as input a map of contrast that is output 
by the retina as a result of processes of light adaptation (reviewed in Shapley and 
Enroth-Cugell, 1984; Walraven et al., 1990). In simple stimuli such as gratings and 
plaids, mean luminance is constant so the retina is in an approximately constant state of 
adaptation, and light adaptation can be effectively ignored (Troy et al., 1999; Troy and 
Enroth-Cugell, 1993). In more complex stimuli, however, mean luminance can vary in 
space or in time, often abruptly. One must then ask: How fast is the computation of 
contrast? How is it influenced by luminances in recent past and local space? Second, 
complex stimuli are not necessarily constant for a few seconds. Divisive models of LGN 
and V1 are defined only for temporally stationary stimuli. In particular, the dynamics of 
the suppressive field contributing to the denominator have been only partially 
characterized.  

Mechanisms of suppression 

The divisive models, which I so strongly advocate, have the virtue and the fault of being 
abstract: With the exception of the rectification stage, which is related to spike threshold, 
their components do not map directly into biophysical mechanisms. In essence, these 
are models of the neural computations performed on images, not of the biophysical 
implementations of such computations. A compact description of computations 
performed by a neuron can then in turn guide research on the underlying biophysics. 

For example, one may wonder how neurons or networks can perform an arithmetical 
division. There are at least two mechanisms that would yield division: shunting inhibition 
(Carandini and Heeger, 1994) and synaptic depression (Carandini et al., 2002). I will 
now describe these mechanisms, but it should be kept in mind that additional 
mechanisms could be at play. For example, it is possible to obtain divisive effects from 
subtractive inhibition from neurons whose responses grow steeply with contrast (Somers 
et al., 1998). 

Firing rate Receptive
field

Suppressive
field

Rectification

 
Figure 9. Divisive model based on conductance increases. The response of the receptive field is input to 
a simplified model of the cell membrane, a circuit composed of a resistor and a capacitor in parallel. The 
signals from the suppressive field control the conductance of the resistor. A rectification stage encodes 
the resulting signals into firing rate. Modified from (Carandini and Heeger, 1994; Carandini et al., 1997). 

A first proposal for how division might be implemented in V1 was based on membrane 
conductance (Figure 9). We proposed that cells suppress each other’s response through 
shunting inhibition, i.e. by increasing each other's conductance (Carandini and Heeger, 
1994; Carandini et al., 1997). We argued that increasing conductance divides the 
contrast that is effectively seen by a neuron. Initially, this proposal has been criticized on 
the grounds that an increase in conductance per se does not necessarily have a divisive 
effect on firing rates (Holt and Koch, 1997). Recently, however, our view has been 
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supported by the discovery of a role for membrane potential noise: Increased inhibition 
would increase both conductance and noise, and the overall effect would be divisive 
(Chance et al., 2002).  

We tested this model with intracellular in vivo measurements (Anderson et al., 2000), 
and found its predictions to be only partially correct. To explain cross-orientation 
suppression, we expected that conductance would increase markedly with contrast, and 
that it would not depend on orientation (Carandini et al., 1997). In a few neurons 
conductance did increase markedly, by about 300% (see also Borg-Graham et al., 1998; 
Hirsch et al., 1998; Martinez et al., 2002). Conductance increases of this magnitude, 
however, were only obtained with stimuli of optimal orientation, and not in all cells. If our 
measurements are correct (we might have been blind to conductance increases 
occurring in the dendrites), our proposal of conductance increases to explain cross-
orientation suppression and other divisive effects will need to be revised or refined.  

In fact, we recently argued that cross-orientation suppression does not result from 
intracortical inhibition at all (Freeman et al., 2002b). The view that cross-orientation 
suppression originates from inhibition is widely held (Allison et al., 2001; Bauman and 
Bonds, 1991; Bonds, 1989; DeAngelis et al., 1992; Heeger, 1992; Morrone et al., 1982; 
Sengpiel et al., 1998; Sengpiel and Blakemore, 1994; Sengpiel et al., 1995; Walker et 
al., 1998). However, the signals underlying cross-orientation suppression exhibit visual 
preferences that are hardly consistent with an intracortical origin: (1) suppression can be 
elicited by masks that barely evoke cortical responses, such as gratings drifting faster 
than about 20 Hz (Freeman et al., 2002b); (2) unlike responses of V1 neurons, signals 
responsible for suppression are immune to pattern adaptation, the substantial reduction 
in V1 responses that follows prolonged stimulation (Freeman et al., 2002b). These 
observations suggest that to explain cross-orientation suppression  the signals providing 
input to the denominator in the divisive model should originate in LGN and not in cortex.  

We searched for another mechanism that causes division, one that would carry signals 
from LGN to the denominator of V1 neurons. We found a promising candidate in 
synaptic depression (Carandini et al., 2002; Freeman et al., 2002b).  

Depression is a promising candidate because a single depressing synapse displays both 
saturation and divisive suppression (F A). Consider the responses to injection of 
a sinusoidal current; Depression causes a substantial saturation in response amplitude 
(F A, ●) (Abbott et al., 1997; Kayser et al., 2001; Tsodyks and Markram, 1997). 
Adding noise to the injected current (F A, ○) increases synaptic depression. The 
noise partially suppresses the responses to the sinusoidal current; This suppression is 
divisive (F A, ○, rightward shift on the logarithmic scale), as if the noise had 
divided the amplitudes of the injected sinusoidal current (Carandini et al., 2002).  
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To explore the degree to which depression can explain visual properties of V1 neurons, 
we included it in a classical model of a simple cell (Hubel and Wiesel, 1962). In the 
model, orientation selectivity (F D,E) is determined by the spatial pattern of LGN 
inputs, with ON and OFF subregions of the receptive field (F B) being driven by 
excitation from ON-center and OFF-center LGN neurons (Alonso et al., 2001; Reid and 
Alonso, 1995) (F C). Excitation by ON-center neurons is matched by inhibition by 
OFF-center neurons, and vice versa (reviewed in Hirsch, 2003). Synaptic depression, in 
turn, produces cross-orientation suppression: The response to the plaid (F F) is 
smaller than the response to test alone (F D). The model correctly predicts that 
the effects of suppression are divisive: Increasing mask contrast shifts to the right curves 
relating response to test contrast (F G). This behavior resembles that shown by 
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real V1 neurons (Figure 5C). We have studied model predictions for a variety of stimuli, 
and we have found them to capture a wide variety of effects (Carandini et al., 2002).  
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Figure 10. Modeling suppression with synaptic depression. A: Saturation and suppression in a model 
depressing synapse. A 2 Hz sinusoidal test current is injected into the presynaptic neuron, and the 
response is measured by the 2 Hz component of the postsynaptic potential (●). This response is 
reduced (○) when a mask current (white noise) is added to the test current. B-G: Cross-orientation 
suppression explained by thalamocortical synaptic depression. B: Receptive field of a model V1 neuron. 
C: Receptive fields of 3 model LGN neurons. D-F: Firing rate in response to gratings and plaids drifting 
at 4 Hz. Average response to a stimulus cycle. Stimuli are a vertical grating (D), a horizontal grating (E), 
and the plaid obtained by summing the two (F). Dashed curve is response to plaid in the absence of 
synaptic depression. G: First harmonic (4 Hz) of firing rate as a function of test contrast, for different 
mask contrasts. From (Carandini et al., 2002; Freeman et al., 2002b). 

Synaptic depression would not explain suppression originating from outside the 
receptive field. In fact, even though both suppression within and around the receptive 
field are explained by a divisive model, they might not share a single biophysical 
mechanism. For one, these two forms of suppression have very distinct visual 
preferences. For example, cross-orientation suppression can be obtained with masks of 
all orientations (DeAngelis et al., 1992), whereas surround suppression is strongest 
when the mask has the preferred orientation of the neuron (DeAngelis et al., 1994). So it 
is possible that the two forms of suppression originate from distinct biophysical 
mechanisms (Carandini et al., 2002; Sengpiel et al., 1998).  

Advantages of suppression 

In summary, even though their biophysical implementation is not clear, divisive models 
including a suppressive field represent a major improvement over models based on the 
receptive field alone. These models have the potential to explain a wide variety of 
suppressive phenomena.  

We expect these phenomena to play an important role in responses to complex visual 
scenes. We have seen that a model that ignored suppression would fare badly in 
predicting responses, both in LGN (Figure 3 and Figure 4) and in V1 (Figure 5, Figure 6, 
and Figure 7). It is hard to imagine that it would fare much better in predicting responses 
to more natural stimuli. Indeed, in natural images similar stimuli arise often, as the 
overlap of different orientations is extremely common (Schwartz and Simoncelli, 2001).  

This brings us to a final question: What are the advantages conferred by a divisive 
suppressive field? It is hard to answer to this question, because we know little of how 
signals in LGN and V1 are used by subsequent stages of visual processing to yield 
sensation and perception. As a result, we know little of how any computation in LGN and 
V1 can be advantageous to later stages. There are, nonetheless, a few suggestions that 
have been made and might be of relevance. 

A first suggestion is that a divisive suppressive field would be needed to compress the 
range of responses without compromising the basic output of the receptive field (Heeger, 
1992). In particular, a divisive suppressive field maintains a desirable property of 
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receptive field outputs: That the ratio of the outputs of two neurons is largely 
independent of stimulus contrast  (Heeger, 1992). 

A second suggestion relies on a principle of optimality that has been suggested for 
neurons of the cerebral cortex: That they should strive to maintain statistical 
independence in their responses (Barlow and Földiák, 1989). It has been argued that 
divisive suppression of the kind shown by V1 neurons would maximize this 
independence (Schwartz and Simoncelli, 2001). If this is the case, evidence for divisive 
suppression being active already at the level of retina and LGN would suggest that the 
principles of statistical independence inform the responses of these subcortical 
structures as well. 

Finally, and perhaps most interestingly to the readers of this volume, the mechanisms of 
divisive suppression might serve also in an eminently cognitive process, the deployment 
of visual attention. Considerable recent evidence suggests that visual attention 
enhances neuronal responses by changing neuronal gain (e.g. Fallah and Reynolds, 
2001; Reynolds and Desimone, 2003; Reynolds et al., 2000) (Maunsell, this volume). It 
is thus conceivable that suppression and attention might engage the same mechanisms, 
one to obtain division, the other to obtain multiplication.  

My hope is that the concept of divisive suppressive field that has evolved from research 
in the visual responses of LGN and V1 neurons will prove useful to understand this and 
other more cognitive effects of neural responses to visual stimuli.  
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