
RECEPTIVITY AND LINEAR STABILITY OF STETSON'S MACH 8 BLUNT CONE 
STABILITY EXPERIMENTS 

Xiaolin Zhong * and Ymbao Ma t 
University of California, Los Angeles, California 90095 

ABSTRACT 

Currently, the mechanisms leading to hypersonic 
boundary layer transition are still poorly understood. 
The transition in the boundary layer depends on the 
receptivity process, which is the process of environmen- 
tal disturbances initially entering the boundary layers 
and generating disturbance waves. The receptivity of 
hypersonic boundary layers to free stream disturbances 
is altered considerably by the presence of bow shocks 
in hypersonic flow fields and by the entropy layers cre- 
ated by the blunt nose. This paper conducts a numer- 
ical simulation study of the receptivity to freestream 
acoustic disturban& waves for Mach 7.99 axisymmet- 
ric flow over a io half-angle blunt cone, and compares 
the numerical results with experimental results by Stet- 
son et al. (1984) and with those obtained from linear 
stability. Both steady and unsteady flow solutions of 
the receptivity problem are obtained by computing the 
full Navier-Stokes equations using a high-order accurate 
shock-fitting finite difference scheme, which can accu- 
rately account for the effects of bow-sho&/free-stream- 
sound interactions on the receptivity process. In addi- 
tion, a normal-mode linear stability analysis is also used 
to study the stability and receptivity properties of the 
boundary layer affected by the entropy layer. The main 
focus of this study is on the excitation of the second 
mode waves in the receptivity process in the presense 
of freestream acoustic waves. One of the major find- 
ings of this study is that, for the case of receptivity to 
fast freestream acoustic waves with a blunt nose, the 
second mode waves are not excited in the early region 
dong the cone surface where the second modes are p r e  
dicted to be unstable by the linear stability analysis. It 
is shown that the delay of the second mode excitation is 
due to the unique stability characteristics of the current 
flow which are affected by the entropy layer produced 
by the nose bluntness. The understanding of such re- 
ceptivity processes may lead to a better understanding 
of nose bluntness effects on hypersonic boundary layer 
transition and the accuracy of the LST analysis. 
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INTRODUCTION 

The prediction of laminar-turbulent transition in hy- 
personic boundary layers is a critical part of the aero- 
dynamic design and control of hypersonic vehicles. De- 
spite extensive studies over several decades, the mecha- 
nisms of hypersonic boundary layer stability and tran- 
sition are still not well understood. Most of our knowl- 
edge of hypersonic boundary layer stability is obtained 
by the linear stability theory (LST) ['I. Mack was the 
first to find that there are higher acoustic instability 
modes in addition to the first-mode instability waves 
in supersonic and hypersonic boundary layers. Among 
them, the second mode becomes the dominant insta- 
bility for hypersonic boundary layers at Mach numbers 
larger than about 4. The existence and dominance of 
the second mode has been observed by experimental 
studies ['*'I. 

The popular e" method for boundary layer transition 
prediction is based on the results of the LST analysis 
with an assumption that the transition is a result of the 
exponential growth of the most unstable normal mode 
waves, which are the second mode waves for hypersonic 
boundary layers. The criteria used in the e" method are 
established based on the total ratio of amplitude growth 
of the most unstable mode computed by the normal- 
mode linear stability analysis. However, the generation 
of the unstable mode and its initial amplitudes, which 
is the subject of a receptivity study, are not considered 
in the LST and e" method. The initial amplitudes of 
the most unstable mode can have a strong effect on 
the transition prediction from the e" method. There- 
fore, it is important to understand the mechanisms and 
characteristics of the receptivity process in hypersonic 
boundary boundary layers. 

Practical hypersonic vehicles have blunt nOseS in or- 
der to reduce thermal loads. It has been generally rec- 
ognized that the bow shock in front of a blunt nose 
has strong ef€ects on the stability and transition of the 
boundary layer behind it (Reshotko 1991). Reshotko 
and Khan (1980) showed that the swallowing of the en- 
tropy layer by a boundary layer has a strong effect on 
the boundary-layer stability. The effects of nose blunt- 
ness and the entropy layer swallowing on hypersonic 
boundary layer transition have been studied in experi- 
ments (Potter & Whitfield 1962). The development of 
the second modes is strongly affected by the entropy 
layer in- the mean flow. Overall, it hac3 been found in 
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stability and transition experiments that slightly blunt- 
ing the nose of a cone can greatly stablize the flow in 
the boundary layer. 

Stetson et al. i41 carried out boundary layer stability 
experiments for an axisymmetric blunt cone at Mach 
7.99 (Fig. 1). The half angle of the cone is 7' and the 
freestream Reynolds number based on the nose radius 
is about 33,449. The total length of the cone is about 
270 nose radii, corresponding to a Reynolds number of 
about 9 millions. The experiments measure detailed 
frequency spectra of the disturbance waves along the 
body surface. The instability waves were found to be 
dominated by second mode instability. There are also 
significant harmonic components of the second modes. 
They also found evidence of entropy layer instability in 
the region outside of the boundary layers for the case 
of a blunt cone with large nose radius. This particular 
experiment has been identified by NATO RTO Working 
Group 10 on Boundary Layer l'kansition as one of the 
best available stability experiments for CFD code val- 
idation. Stability experiments of hypersonic flow over 
similar geometries have also beendone by other authors. 
Demetriades [6ifl did extensive stability experiments on 
hypersonic boundary layers over axisymmetric cones. 
He also presented detailed disturbance spectra in the 
boundary layer and obtained visualization of the lami- 
nar rope waves, which are the signature of the second 
mode waves in the boundary layer. 

Maslov and his colleagues ['*'I reported their recent 
stability experiments on high speed flow. One of the test 
cases has similar geometry and flow conditions as those 
considered in Stetson's 7' blunt cone case. They being 
Mach 5.92 flow over a 7O-half-angle blunt cone. They 
also measured the frequency spectra of the disturbance 
waves in the boundary layer for test cases of instability 
waves induced both by natural disturbances in the wind 
tunnel and by artificial disturbances introduced into the 
boundary layer by high-frequency glow discharge. They 
found that the amplitudes of the second mode distur- 
bances in the blunt cone boundary layer are essentially 
smaller than those in a sharp cone. Specifically, they 
found that in the case of a sharp cone, the disturbance 
waves in the boundary layer at the measurement l e  
cation are dominated by the second mode waves. On 
the other hand, in the case of the blunt cone, there is 
a dramatic difference between the disturbance spectra 
obtained for flow over the blunt and sharp cones. On 
the blunt cone the first mode disturbances have smaller 
amplitudes and the second mode disturbances are prac- 
tically absent. They also found that when the distur- 
bances are induced by artificial disturbances, the ampli- 
fication of the disturbances is similar for both the blunt 
and the sharp cones for the second mode. They con- 
jectured that the considerable difference in the case of 
natural disturbances is caused by different receptivity 
conditions and by the development of the disturbances 
at low Reynolds numbers on the sharp and blunt cones. 

The normal-mode stability characteristics of the 
boundary layer flow over the blunt cone correspond- 
ing to Stetson's experiments have been studied by 
three groups over the years b using linear stability 
analyses [10-131. Malik et al. computed the neutral 
stability curves and compared the growth rates with ex- 
perimental results for the blunt cone case. The steady 
base flow solutions are computed by using parabolized 
Navier-Stokes equations. They found that the effect of 
nose bluntness is to stabilize the flow. They also com- 
pared the growth rates of LST with Stetson's experi- 
mental results at s / R  = 175 surface station. The linear 
stability analyses predicted slightly lower frequency of 
the dominant second mode, but much higher amplifi- 
cation rates than the experimental results at a down- 
stream location of 175 nose radius. Esfanhanian and 
Herbert [''I did similar base flow and LST calculations 
for the same flow by using a very fine grid resolution. 
They only computed and compared the growth rates 
at the s / R  = 175 surface station. Similarly, Kufner 
et al. P% l31 also did extensive LST calculations for the 
same Mach 7.99 flow over the blunt cone. All three 
sets of LST results consistently have much larger growth 
rates than those of the stability experiments at 175 sur- 
face station. A comparison also shows that there are 
only small variations in the growth rates obtained by 
the different authors, with slightly different mean flow 
solutions. It has been speculated that the discrepancy 
between the linear stability results and the experimen- 
tal results are due to the fact that there are significant 
harmonic components at the 175 nose radius station in 
the experimental results. The harmonics are the result 
of nonlinear interaction among the second modes. The 
nonlinear effects are neglected in a linear stability anal- 
ysis. Furthermore, the effects of bow shocks, entropy 
layers, and non-parallel boundary layers are neglected 
in a normal mode stability analysis. The receptivity 
process, which becomes very complex due to hypersonic 
bow shock interaction [14*151, is not considered in the 
linear stability analysis. All these effeds can be taken 
into account in a direct numerical simulation of the full 
Navier-Stokes equations. 

Currently, direct numerical simulations have gradu- 
ally become a powerful research tool in studying hyper- 
sonic boundary receptivity, stability and transition. All 
the effects, which are neglected by the linear stability 
calculations, can be taken into account in a direct nu- 
merical simulation of the full Navier-Stokes equations. 
The direct numerical simulation of hypersonic and su- 
personic boundary layer receptivity have been studied 
in our previous papers [16i1'l. 

Zhong lls*lsl did a numerical simulation study on the 
generation of boundary layer disturbance waves due 
to free stream waves, for a two-dimensional Mach 15 
viscous flow over a parabola. Both steady and un- 
steady flow solutions of tbe receptivity problem are ob- 
tained by computing the full Navier-Stokes equations 
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using a high-order accurate shock-fitting finite differ- 
ence scheme. The effects of bow-shock/free-stream- 
sound interactions on the receptivity process are accu- 
rately taken into account by treating the shock as a dis- 
continuity surface, governed by the Rankine-Hugoniot 
relations. The results show that the disturbance waves 
generated and developed in the hypersonic boundary 
layer contain both the first, second, and third mode 
waves. A parametric study is carried out on the recep- 
tivity characteristics af€ected by different free-stream 
waves, frequencies, nose bluntness characterized by 
Strouhal numbers, Reynolds numbers, Mach numbers, 
and wall cooling. It is found that the receptivity pa- 
rameters decrease when the forcing frequencies or nose 
bluntness increase. 

Ma and Zhong['q, studied the mechanisms of the 
receptivity of supersonic boundary layer to freestream 
disturbances by using both direct numerical simulation 
and linear stability theory. Specifically, the receptivity 
of a Mach 4.5 flow over a flat plate to freestream fast 
acoustic waves is studied. The results show that the re- 
ceptivity of the flat plate boundary layer to .freestream 
fast acoustic waves leads to the excitation of both Mack 
modes and a family of stable modes, i.e:, mode I, mode 
11, etc. It is found that the forcing fast acoustic waves 
do not interact directly with the unstable Mack modes. 
Instead, the stable mode I waves play an important role 
in the receptivity process because they interact with 
both the forcing acoustic waves and the unstable Mack- 
mode waves. Through the interactions, the stable mode 
I waves transfer wave energy from the forcing fast acous- 
tic waves to the second Mack-mode waves. The effects 
of incident wave angles, forcing wave frequencies, and 
wall temperature perturbation conditions on the recep 
tivity are studied. The results show that the receptivity 
mechanisms of the second mode are very different from 
those of mode I and mode 11, which lead to very differ- 
ent receptivity properties of these discrete wave modes 
to freestream fast acoustic waves with different incident 
wave angles, frequencies, and different wall boundary 
conditions. 

Because the issue of hypersonic boundary layer stabil- 
ity involves many complex mechanisms, it is necessary 
to conduct validation studies by comparing numerical 
simulation results with those of stability experiments. 
The CFD code validation on hypersonic boundary layer 
transition is one of the subjects of the NATO RTO 
Working Group 10 [5]. The Mach 7.99,7' blunt cone of 
Stetson's experiment is identified by the NATO Work- 
ing Group as one of the best available stability experi- 
ments for code validation. Schneider i51 also prhnted  
some of Stetson's results which were not published b e  
fore and did some LST calculations. In addition, the 
test case of Stetson's blunt cone experiments is also a 
very good case for studying the receptivity and stability 
of the boundary layer affected by the nose bluntness and 
entropy effects. The DNS studies can also shed light on 

the effectiveness and accuracy of the LST analyses for 
hypersonic boundary layers. 

Therefore, we [l91 have been conducting the numeri- 
cal simulation of Stetson's 7' blunt cone in Mach 7.99 
flow for two purposes: 1) to compare numerical results 
with the experimental results, and 2) more importantly, 
to study the detailed receptivity and stability mecha- 
nism by numerical simulations. In a previous paper [''I, 
we have done one case of initial stability calculations 
with seven frequency components in the forcing waves 
in surface blowing and suction. The results showed that 
the wave modes develop into second-mode waves down- 
stream. The dominant wave frequencies agree well with 
experimental results. The eigenfunction of the modes 
obtained by the numerical simulations also agree very 
well with the LST results. The numerical results also 
show the development of second harmonics due to the 
nonlinear interaction among these fundamental waves. 
The receptivity process has not been studied. 

The objective of this paper is to study the receptivity 
to freestream acoustic waves of the 7' half-angle blunt 
cone in Mach 7.99 flow, corres nding to the stability 

lation of the full nonlinear Navier-Stokes equations are 
able to take in to account the nonlinear wave interac- 
tions, the bow shock and entropy layer effects, the wall 
curvature effects, and the non-parallel mean flow effects 
on the stability of the boundary layer. The particular 
test case studied in tbis paper is a Mach 7.99 axisym- 
metric flow over a blunt circular cone with nose radius 
of 0.15 inch at zero angle of attack. Both steady and 
unsteady flow fields between the bow shock and the 
boundary layer are numerically simulated by using a 
high-order shock-fitting scheme to study the wave gen- 
eration in the boundary layer. Whenever possible, the 
results are compared with experimental results. In addi- 
tion, an axisymmetric LST code has also been developed 
to study the linear stability and receptivity properties 
of the boundary layers. The LST results are also used 
to identify and analyze the simulation results. Using 
the comparison of simulation results and experimental 
results, we would like to gain a better understanding of 
the hypersonic boundary layer instability mechanism. 

experiment by Stetson et al. [4YO The numerical simu- 

GOVERNING EQUATIONS AND 
NUMERICAL METHODS 

The stability of axisymmetric laminar hypersonic flow 
over a blunt cone at zero angle of attack is computed 
using a three-dimensional grid. The governing equa- 
tions are briefly presented in this section. Details can be 
found in previous papers for 2-D and 3-D flows [18*ml. 
The governing equations are the unsteady full tbree- 
dimensional Navier-Stokes equations written for the 
computation in the conservation-law form: 
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where superscript "*" represents dimensional variables, 
and 

U* = { p * ,  p*u;,  p*ui ,  p*u:, e * } .  (2) 

The equations of states are p* = p*R*T* and e* = 
p*(c:T' + iu;u;), where the gas constant R* and the 
specific heats c; and C: are assumed to be constants. 
The flux vectors in Eq. (1) are 

where 7; is the viscous stress tensor and q: is heat flux 
vector. The gas is assumed to be thermally and calor- 
ically perfect. The viscosity and heat conductivity c& 
efficients are calculated using Sutherland's law together 
with a constant Prandtl number, Pr. The equations 
are transformed into body-fitted curvilinear computa- 
tional coordinates in a computational domain bounded 
by the bow shock and the body surface. The location 
and the movement of the bow shock is an unknown to 
be solved for along with the flow variables by a shock- 
fitting method described in [21]. The numerical simula- 
tion for the axisymmetric hypersonic flow over a blunt 
cone is camed out using our 3-D fifth-order shock fit- 
ting scheme where the outer grid line is the bow shock. 
The unsteady bow shock shape and shock oscillations 
are solved as part of the computational solution. The 
numerical methods for spatial discretization of the 3- 
D full Navier-Stokes equations are a fifth-order shock- 
fitting scheme in streamwise and wall-normal directions, 
and a Fourier collocation method in the periodic span- 
wise flow direction for the case of a wedge geometry or 
in the azimuthal direction for the case of a cone geom- 
etry. The spatially discretized equations are advanced 
in time using a Runge-Kutta scheme of up to third or- 
der. The numerical methods and computer code have 
been extensive validated and tested in many 2-D and 
3-D viscous flow simulations discussed in our previous 
papers (for example, (211). The validation results are 
not presented in this paper. 

Because the flow field behind the bow shock is not 
uniform, the flow variables are nondimensionalized us- 
ing the freestream conditions as characteristic variables. 
SpecificalIy, we nondimensionalize the velocities with rk- 
spect to the freestream velocity U&, length scales with 
respect to the nose radius r*, density with respect to 
p&, pressure with respect to p&, temperature with re- 

- spect to p,, time with respect to r * / U L ,  vorticity with 

respect to U&/r*,  entropy with respect to 5, wave 
number by l/r*, etc. The dimensionless flow variables 
are denoted by the same dimensional notation but with- 
out the superscript "*". 

FLOW CONDITIONS 

The flow conditions are the same as Stetson's exper- 
iments on a blunt cone, i.e., 

M, = 7.99 
p; = 4 x 106 P a  
y = 1.4 

=750K 
Pr  = 0.72 

Re, = p& u&.r;/p: = 33,449 

The viscosity is computed using the Sutherland's law 
for air. The cone is a 7 O  half angle blunt cone with a 
spherical nose of radius: r: = 3.81 x 10-3m. The total 
length of the cone is L = 1.016m. The corresponding 
Reynolds number at this length is R ~ L  = 8.92 x 10'. 
The body surface is assumed to be a non-slip wall with 
either an isothermal wall with temperature or an 
adiabatic wall. 

The wall surface in the experiment was neither 
isothermal nor adiabatic. In order to access the ef- 
fects of wall temperatures on the boundary-layer stabil- 
ity properties, a number of cases with different isother- 
mal wall temperatures and a case of adiabatic wall are 
considered. So far, we have finished two cases: 

1. An isothermal wall with a constant wall tempera- 
ture of T, = 800 K , 

2. An adiabatic wall. 

Since the previous LST studies were mainly done for the 
case of adiabatic wall, we will mainly present the results 
for the case of adiabatic wall in this paper. The numeri- 
cal solutions are compared with the experimental results 
published by Stetson et al. 14] and some newly compiled 
results by Schneider I51. For steady flow solutions, the 
current Navier-Stokes solutions are also compared with 
the solutions of the thin-layer Navier-Stokes equations 
by Esfahanian and Herbert [11v221. 

The main objective of this paper is to study the recep 
tivity of the second modes and and their harmonics. In 
stability experiments by Stetson et al. 14], the instability 
waves in the boundary layer were generated na turdy  
in a relatively noisy wind tunnel without artificial forc- 
ing disturbances. Stetson et al. ['I showed detailed f i e  
quency spectra of disturbance waves at various surface 
stations. Figure 2 shows the experimental fluctuation 
spectra along the cone surface obtained by Stetson et 
al. The wave spectra of this figure show clearly that 
the instability waves are dominated by twedimensional 
second modes and their harmonics. As the o b e m  
tion station moves downstream, the frequency of the 
dominant second mode reduces and the strength of the 
harmonics increase. At the station of 175 nose radiii 
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the second mode wave is maximum at the frequency of 
about 135 kHz. 

In order to reproduce similar flow conditions in the 
numerical simulations, it is necessary to introduce ini- 
tial forcing waves to excite the instability waves in the 
boundary layer. The forcing waves can originate from 
the freestream or at the wall by surface roughness or 
vibrations. For a receptivity simulation, it is neces- 
sary to impose forcing disturbances in the free stream. 
In Stetson’s experiments, the freestream is dominated 
by acoustic waves generated by the wind tunnel wall. 
Figure 3 shows the freestream disturbance spectra in 
Stetson et al.’s experiments (1984). The middle line 
corresponds to the current test case of freestream unit 
Reynolds number of 2.5 x lo6 per feet. Therefore, as a 
first step, we simulate the stability experiment by im- 
posing freestream acoustic disturbances according the 
freestream fluctuation spectra of the experiments given 
by Fig. 3. In addition, we also introduce the distur- 
bances by the blowing and suction of a narrow surface 
strip in the upstream region of the body surface in or- 
der to compare the growth rates of the second mode. 
Since the wave fields in the experiment contain a wide 
range of second-mode frequencies, we introduce, by sur- 
face blowing and suction, disturbances of a number of 
frequencies near the dominant second mode waves in 
the simulation. The subsequent receptivity and devel- 
opment of the instability waves at these frequencies and 
their harmonics due to nonlinear interactions are com- 
puted by the numerical simulation. 

FORCING WAVE IN RECEPTIVITY 
SIMULATIONS 

The receptivity of a axisymmetric Mach 7.99 bound- 
ary layer to free stream waves for hypersonic flows past 
a 7’ half angle blunt cone at zero angle of attack is con- 
sidered. Free stream disturbances are superimposed on 
a steady mean flow before reaching the bow shock, to 
investigate the process of free stream waves entering the 
boundary layer and inducing boundary-layer waves. As 
a first step, the free stream disturbances are assumed 
to be weak planar fast acoustic waves with wave fronts 
normal to the center line of the body. Other forms of 
freestream disturbances, especially slow acoustic waves 
and 3-D waves, will be studied in a future paper. 

Specifically, we impose simultaneously N indepen- 
dent 2-D planar fast acoustic waves of different frequen- 
cies in the freestream. The amplitudes of each wave fre- 
quency is proportional to the wind tunnel spectra shown 
in Fig. 3. The wave fields are represented by the per- 
turbations of instantaneous flow variables with respect 
to the local steady base flow variables at the same loca- 
tion. For example, instantaneous velocity perturbation 
u’ located at (2 ,  y), at time t ,  is defined as: 

u’(z, Y , t )  = 4 2 ,  Y’t)  - Uk,  Y) ( 5 )  
- -where u(c, y, t )  is the instantaneous velocity component 

obtained by an unsteady numerical simulation of the 
nonlinear Navier-Stokes equations, V ( z ,  y) is the steady 
mean flow velocity obtained by a separate steady flow 
simulation. For weak acoustic waves in the free stream 
before reaching the bow shock, we impose a acoustic 
waves with a total of N frequencies, i.e., the perturba- 
tion of an arbitrary flow variable can be written in the 
following form: 

N 

n 

where 1q’IAn represents the wave amplitude of the 
freestream perturbation of any flow variables at a fre- 
quency 

wn = n wl (n= 1,2,..-,N) (7) 

where wl  is the minimum frequency of the waves. The 
relative amplitude of each wn frequency, An > 0 is de- 
termined by Fig. 3 such that, 

N 
E A :  = 1 
n 

In the equation above, coo is the wave speed in the free 
stream before reaching the shock. The initial phase 
angle, $n, of the forcing acoustic wave at frequency wn 

is determined randomly. The absohte ampIitude of the 
wave group is determined by setting the values of 161. 
For fast acoustic waves in the freestream, perturbation 
amplitudes of nondimensional flow variables satisfy the 
following dispersion relations: 

Fast Acoustic Waves: 
c& = u& +a& 
Ip’lal = IP’laJ7 = I~’loo&J = &o; 

ls’loo = Iv’lw = 0 

where c is a small number representing the relative am- 
plitude of the group of free stream acoustic waves. The 
forcing disturbances contain N wave frequencies which 
are multiples of w1, which are chosen such that the f r e  
quencies cover the dominant second-mode frequencies 
observed in the experiment. 

The flow is characterized by a free stream Mach num- 
ber M, = g, and a Reynolds number defined by 

. The forcing frequency of the free Re, = 
stream acoustic wave is represented by a dimensionleas 
frequency F defined by 

pLU* d’ 
P& 

(9) 
F = lo6 W+V+ - = 106w/Re ,  

iJg 
where F represents the wave frequency with respect to a 
viscous flow scale. We can also define a Strouhal number 
S using the nose radius by 

5 

American Institute of Aeronautics and Astronautics 



where r* is the nose radius. The Strouhal number repre- 
sents the relative nose bluntness in the receptivity prob- 
lem. 

In addition, we also introduce the disturbances by 
blowing and suction in a narrow surface strip in the u p  
stream region of the body surface. Since the wave fields 
in the experiment contain a wide range of second-mode 
frequencies, we introduce, by surface blowing and suc- 
tion, disturbances of a number of frequencies near the 
dominant second mode waves in the simulation. The 
subsequent receptivity and development of the instabil- 
ity waves at these frequencies and their harmonics due 
to nonlinear interactions are computed by the numeri- 
cal simulation. The purpose of such studies is to study 
the excitation and generation of the second mode in the 
boundary layer. The specific formulas for surface blow- 
ing and suction in a narrow upstream range are given 
by the perturbations to the wall normal velocity, i.e., 

where c is a small nondimensional number represent- 
ing forcing disturbance amplitudes. The forcing dis- 
turbances contain a number of wave frequencies which 
are multiples of WO,  which are chosen such that the fre- 
quencies cover the dominant second-mode frequencies 
observed in the experiment. Nonlinear wave interac- 
tions can be studied by increasing the amplitudes of 
the forcing waves. This can be achieved by increasing 
the value of c. 

The numerical simulation for an unsteady hypersonic 
layer stability problem is carried out in two steps. First, 
a steady flow field is computed by advancing the un- 
steady flow solutions to convergence with no distur- 
bances imposed. Second, unsteady viscous flows are 
computed by imposing freestream waves given by Eq. 
(6), or by imposing surface blowing-and-suction at the 
narrow surface strip in addition to the steady flow vari- 
ables according to Eq. (11). 

LINEAR STABILITY ANALYSIS FOR 
AXISYMMETRIC FLOWS 

The instability of hypersonic boundary layer flow over 
the Stetson's 7 O  half-angle blunt cone has been studied 
extensively by using the normal-mode linear sta- 
bility theory. However, previous LST studies have been 
mainly focused on the instability of the most unstable 
first and second-mode waves. In our previous receptiv- 
ity study of Mach 4.5 boundary layer flow [lql it was 
found that a family of other wave modes, which are 
stable in a linear stability analysis, play an important 
role in the receptivity process. They are termed mode 

I, 11, 111, etc. in [I?']. The stable wave modes gener- 
ated by the forcing waves through resonant interactions 
can interact with the instability waves once they are 
generated. In order to understand the receptivity pro- 
cess, it is necessary to understand the characteristics 
of these stable wave modes, in addition to the Mack 
modes. The characteristics of these stable wave modes 
in hypersonic flows with nose bluntness have not been 
studied. Therefore, we will use the LST approach to 
study the wave mode properties of mode I, mode 11, 
etc. in addition to those of the first and second Mack 
modes. In addition, the LST analysis is used to identify 
and analyze the boundary layer eigenmodes generated 
by forcing disturbances in the numerical simulations. 
Therefore, the characteristics of normal modes of the 
&symmetric hypersonic boundary layer are studied by 
the linear stability theory in this paper. 

In the studies of boundary-layer stability, the follow- 
ing Reynolds number, R, based on the length scale of 
boundary-layer thickness is often used: 

where length scde of boundary-layer thickness is de- 
fined as 

where s* is the curvature length along the wall surface 
measuring from the leading edge. Hence, the relation 
between R and local Reynolds number Re, is 

R =  6. 
Formulation of Linear Stability Analysis 

The flow disturbances in the boundary layers of ax- 
isymmetric flows are represented by the perturbations 
of instantaneous flow variables with respect to their lo- 
cal base flow solutions. For example, the instantaneous 
velocity perturbation ut is defined as the linear pertur- 
bation with respect to the local base velocity, ;.e., 

4 Z l  Y, 4, t )  = U(Z, Y, 4, i) - qz t  Y) (15) 

where ii(z,y) is the base flow velocity. In general, in- 
stantaneous flow variables can be written in the follow- 
ing form, 

q = q + q t  (16) 

where q stands for u, v ,  w,  p ,  p, or 2'. The linear stabil- 
ity theory is based on the normal mode analysis under 
a parallel flow assumption. Specifically, the linear fluc- 
tuations of flow variables are decomposed into a normal 
mode form as follows 

, i ( - w t + a r )  - 
Q' = i (Yn) 
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where q(yn) is the complex amplitude of the distur- 
bances, n and s are the coordinates along the wall- 
normal and surface directions respectively, a = a, +iaj , 
is the streamwise complex wave number, and w is the 
circular frequency. Under the parallel flow assumption, 
the linearized governing equations in an axisymmetric 
flow of i in Eq. (17) can be expressed as 

where matrices Ao, Bo, and CO are functions of a, w ,  
R, and the profiles of the steady axisymmetric base flow 
variables. The detailed formulas for these matrices can 
be found in (22). A non-slip condition is used for velocity 
perturbations at the wall. The temperature perturba- 
tion condition at the wall is either the isothermal or the 
adiabatic condition. The boundary-layer disturbances 
are assumed to decay exponentially as yn approaches 
00. The specific boundary conditions used in LST cal- 
culations are 

i i , i j , ~ ~ , f ' + ~  asyn +OO. (19) 

It should be noted that both the adiabatic wall and 
the isothermal wall boundary condition for tempera- 
ture perturbations can be used to close the governing 
equations. The homogeneous governing equations (18) 
with boundary conditions given by Eqs. (19) lead to an 
eigenvalue problem. In a spatial linear stability anal- 
ysis, complex parameter a and complex function C(y) 
are obtained as the eigenvalues and the eigenfunctions of 
the stability equations for a given frequency w .  For the 
spatial problem, w is real, and a is a complex wave num- 
ber where a, and ai represent the spatial wave number 
and growth rate of a wave mode respectively. A lin- 
ear wave mode is unstable when ai is negative for the 
spatial problem. 

Axisymmetric LST Code Validation 

A LST computer code based on multi-domain spec- 
tral method of Malik [23] is developed. Before we carry 
out the linear stability theory to identify instability 
modes, the LST code is validated and compared with 
experimental results and other published LST results. 

Figure 4 compares spatial growth rates for Mach 7.99 
7' half-angle blunt cone with adiabatic wall for base 
flow at surface station s/r  = 175. Both adiabatic and 
isothermal wall boundary conditions for wall tempera- 
ture perturbations are considered in the current study. 
The experimental results of Stetson and other LST re- 
sults are also plotted in the same figure for comparison. 
This figure shows that higher growth rates are obtained 
for an adiabatic wall compared with an isothermal wall 

- boundary condition. The figure also shows that our re- 

sults associated with an isothermal wall boundary con- 
dition compare well with other LST results that use 
the same wall boundary conditions. The differences be- 
tween the current LST results and those of other au- 
thors are mainly due to different mean flow solutions 
used by different LST computations. Again, the linear 
stability theory predicts much higher growth rates than 
the experiments do. Since the DNS simulations of the 
current paper involve minimum simplifications in the 
flow model, the growth rates predicted by full Navier- 
Stokes simulation are expected to shed light on the rea- 
son for the difference in growth rates predicted by LST 
and those observed in experiments. Figure 4 also shows 
that at the surface location of 175 nose radii, the second 
mode instability range is in the range between 100 kHz 
and 170 kHz. The first mode unstable frequency range 
is lower than 100 kHz. 

Besides the eigenvalues, eigenfunctions of the second 
mode at the same station for w = 0.1934 (127.56 kHz) 
are also compared with Edahanian and Herbert's (''1 
LST results, which are plotted in figure 5.  It shows 
that there is an excellent agreement in the second-mode 
profiles of temperature perturbations. Such agreement 
is also obtained in the comparison of eigenfunctions for 
other variables, which is not shown here. Therefore, 
the LST code for axisymmetric boundary layer flows is 
accurate. These comparisons of eigenvalues and eigen- 
functions with other published LST results show the 
correctness of the LST results obtained by the current 
LST code used in this paper. 

The grid resolution required for accurate LST calcu- 
lations is investigated by grid refinement studies. Figure 
6 compares results obtained by using two sets of grids, 
for the real and imaginary part of T eigenfunctions of 
the second mode from the linear stability theory at the 
s/r = 175 surface location for the frequency of 127.56 
kHz. The two sets of grids are 100 and 200 points acraes 
the boundary layer respectively. The two sets of results 
are almost identical to each other. Therefore, the grid 
resolution of 100 grid points is used in the current study. 
This grid size is enough for good resolution of the prob- 
lem. 

STEADY BASE FLOW SOLUTIONS 

The steady base flow solutions of the Navier-Stokes 
equations for the axisymmetric Mach 7.99 flow over the 
blunt cone are obtained first by advancing the solutions 
to a steady state without forcing waves. The simula- 
tion is carried out by using a multi-zone approach using 
28 zones with a total of 3360 by 121 grid points for 
the axisymmetric flow field from the leading edge to 
the 190 nose radius surface station. The corresponding 
Reynolds number at the 190 nose radius surface station 
is 6.36 x lo6. The results presented in this paper are 
those for the case of adiabatic wall only. Some results 
for the ease of isothermal wall at = 800 K have been 
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presented in a previous paper [lgl. 

Results Comparisons and Validation 

Esfahanian and Herbert [11*22] performed highly accu- 
rate mean flow calculations of the same flow field using 
the thin-layer Navier-Stokes equations and a fine grid 
of 1300 by 100 points. The shock is also computed by 
a shock-fitting scheme. They compared some of their 
mean flow solutions with the available experimental re- 
sults of Stetson. In this paper, we compared our re- 
sults with those of Esfahanian and Herbert [11122] and 
the experimental results. It should be pointed out that 
the full Navier-Stokes equations are used in the current 
study, while Esfahanian and Herbert used the thin-layer 
approximation of the Navier-Stokes equations. Though 
the differences between the two sets of equations should 
be very small in the downstream region, it is expected 
that there may be some noticeable differences in the 
two results in the region near the stagnation streamline, 
where the thin-layer approximation used in Esfahanian 
and Herbert’s studies may not be accurate. 

Figure 7 shows the Mach number contours of the cur- 
rent steady state solution in about 1/3 of of the com- 
putational domain near the leading edge region. In the 
simulation, the bow shock shape is not known in ad- 
vance and is obtained as the solution for the freestream 
computational boundary. The results show that the 
Mach numbers immediately behind the bow shock a p  
proach a constant value of about 7 behind the shock 
at downstream locations. The locations of bow shock 
obtained by Esfahanian and Herbert are also marked 
in the same figure. The shapes of the two bow shocks 
agree very well. Esfahanian and Herbert also showed 
that their bow shock agree very well with Stetson’s ex- 
periments. Therefore, the current results on the bow 
shape are accurate. 

Figure 8 compares the steady pressure distribution 
along the cone surface between the current computa- 
tion, the experimental results obtained by Stetson et 
al [41, and thin-layer Navier-Stokes results obtained by 
Esfahanian and Herbert. There is a discontinuity in 
surface curvature at the junction of the sphere nose and 
cone afterward. The flow experiences an overexpan- 
sion at the junction and goes through a recompression 
along the cone surface afterward. As a result, there is a 
slight adverse pressure gradient at downstream surface 
locations. The figure shows that the surface pressure 
compares very well with the experimental results and 
those of Esfahanian and Herbert. 

Figures 9 shows the surface temperature distributions 
along the cone surface for the current case of adia- 
batic wall. The current Navier-Stokes solutions agree 
very well with those of Esfahanian and Herbert of the 
thin-layer Navier-Stokes solutions. However, both sets 
of independently obtained numerical solutions predict 

- higher surface temperatures than the experimental r e  

sults, which indicate that the cone surface in Stetson’s 
experiments was not perfectly adiabatic. The actual 
surface temperatures are about 10 to 20% lower than 
those of the adiabatic wall. Therefore, it is necessary 
study the effects of wall temperatures on the receptiiity 
and stability of the same flows. For the current study, 
only the case of adiabatic wall is considered. The para- 
metric effects of wall temperatures, as well as other ef- 
fects, will be studied in a future paper. 

The tangential velocity profiles across the boundary 
layer at a surface location of s/r = 94 and 128 are 
shown in Figs. 10 and 11. Current Navier-Stokes re- 
sults are compared with those of Esfahanian and Her- 
bert and the experiments. The experimental measure 
ment could only reach to a certain distance from the 
wall surface because of the size limit of the experimen- 
tal probes. The figures show that the current results 
agree with those obtained by Esfahanian and Herbert’s 
calculations. The velocity magnitudes agree well with 
the experiments in the 00w region outside of the bound- 
ary layer. The computed velocities inside the boundary 
layer are slightly larger than the experimental values. 
The discrepancy may be due to experimen’tal errors or 
other factors. Similarly, the profiles of current pressure 
and temperatures at s/r = 54 station are also compared 
with those of Esfahanian and Herbert in Figs. 12 and 
13. No experimental results are available in these fig- 
ures. Again, current results agree very well with the 
thin-layer Navier-Stokes solutions obtained by Esfaha- 
nian and Herbert. 

Entropy Layer 

The linear stability analysis of the boundary layer 
is carried out using the steady profile obtained by the 
simulation. In the LST calculations, i t  is necessary 
to provide the first and second derivatives of velocity 
and temperature profiles in the wall-normal direction. 
Figures 14 and 15 show the distribution of the second 
derivatives of tangential velocities at two surface loca- 
tions. The curve of the second derivatives in these fig- 
ures have a strong valley near the edge of the boundary 
layer. However, comparing the profiles at these two s t s  
tions, there is evidence that the second derivative curve 
at  the earlier 31.9 station has a second valley outside 
of the boundary layer. This second valley is a result 
of the entropy layer created by the curved bow shock 
in the nose region. The entropy layer has been shown 
to play an important role in the stability and transi- 
tion of hypersonic boundary layers. The entropy layer, 
which is generated at the bow shock in the nose re- 
gion, gradually approaches the wall and merges with 
the boundary layer as it moves downstream. At further 
downstream locations, the entropy layer is completely 
“swallowed” by the boundary layer and the boundary 
layer approaches the same self-similar profile as that of 
a sharp cone. It is interesting to investigate how the 
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entropy layer affects the stability of the boundary layer 
flow over a blunt cone. 

The entropy layer is examined further by comparing 
the steady flow solutions at different stations along the 
cone surface. In this paper, we mainly study the ef- 
fect of the entropy layer on the parameter p(dut/dyn) 
related to the generalized inflection point in the bound- 
ary layer. Lees and Lin [241 showed that the existence 
of a generalized inflection point is a necessary condition 
for inviscid instability in a compressible boundary layer. 

Figure 16 show the contours of p 2  obtained by the 
current simulations. The figure shows that the peaks in 
the contour lines are located initially behind the bow 
shock and outside of the boundary layer. The peaks 
gradually approach the wall and merge with the bound- 
ary layer on the wall. This is a very clear indication 
of the creation of the entropy at the bow shock and 
affecting the steady base flow field. Figures 17 to 20 
plot the profiles of p 2  along the wall-normal direc- 
tion at four surface locations ranging from s / r  = 18.9 
near the leading edge to s/r  = 169.4 far downstream. 
In the region near the leading edge, Fig. 17 shows two 
distinct regions in the p% profile with two separate 
peaks: one inside the bounaary layer and another out- 
side the boundary layer. The second peak is created by 
the entropy layer. For compressible flat plate boundary 
layers, Lees & Lin (1946) showed that the existence of 
a generalized inflection point is a necessary condition 
for inviscid instability. The generalized inflection point 
is located at d(pdu/dy,)/dy = 0. The additional peak 
outside of the boundary layer may be responsible for 
instability waves in the entropy layers. As s increases 
to 31.9 in Fig. 18, the two peaks gradually merge. Fur- 
ther downstream at s / r  = 88.3, the peak outside of 
the boundary layer is totally absorbed by the boundary 
layer. There is only one peak in the profile. Still fur- 
ther downstream at s / r  = 169.4 in Fig. 20, the profile 
becomes essentially the same as thoee without the en- 
tropy layer effects. Therefore, in the current case, the 
entropy layer gradually merges with the boundary layer, 
though it is difficult to define the precise location where 
the entropy layer is swallowed by the boundary layer. 
It is expected that the stability and receptivity char- 
acteristics will be strongly affected by the existence of 
the entropy layer in terms of the mean flow changes and 
disturbance flow due to the new generalized inflection 
point. 

RECEPTIVITY T O  FREESTREAM 
ACOUSTIC WAVES 

Having obtained the steady solution, the receptiv- 
ity of Stetson’s Mach 7.99 flow over the blunt cone to 
freestream acoustic waves is simulated by solving the 
full Navier-Stokes equations. The forcing waves are 
free-stream planar fast acoustic waves with 15 frequen- 

- cies. Boundary-layer receptivity to free-stream acous- 

Table 1: Acoustic wave components in the freestream. 

n fi (kHz) Fn An &, (radian) 
1 14.92 9.035 0.7692 2.4635(-6) 
2 29.84 
3 44.77 
4 59.68 
5 74.61 
6 84.53 , 

7 104.5 
8 119.4 
9 134.3 
10 149.2 
11 164.1 
12 179.1 
13 194.0 
14 208.9 
15 223.8 

18.07 
27.11 
36.14 
45.18 
54.21 
63.25 
72.28 
81.31 
90.35 
99.39 
108.4 
117.5 
126.5 
135.5 - 

0.4162 
0.2827 
0.2065 
0.1707 
0.1406 
0.1132 

0.1081 
9.7164(-2) 

9.0781(-2) 
7.7722(-2) 
5.8428(-2) 
5.0729(-2) 
7.6987(-2) 
5.7108(-2) 

0.1600 
2.2149 
4.1903 
6.0510 
5.2671 
2.1070 
5.7511 
5.0005 
5.2319 
2.1679 
5.4738 
0.5649 
5.5812 
4.4043 

tic disturbances is studied for. axisymmetric hypersonic. 
flow over the 7 O  half-angle blunt cone. The unsteady 
flow solutions are obtained by imposing acoustic distur- 
bances on the steady flow solutions in the free stream. 
The subsequent interaction of the disturbances with the 
shock and the receptivity of the boundary layer over the 
parabola are computed by using the full Navier-Stokes 
equations. 

In the current test case presented in this paper, the 
freestream acoustic waves contain 15 frequencies with 
the lowest frequency of fi = 14.922kHr correspondipg 
to dimensionless frequency of = 9.04. The effects of 
entropy layer and nose bluntness on the receptivity are 
studied by simulation of the full Navier-Stokes equa- 
tions. The wave modes are identified and the growth 
rates and wave spectra are compared with LST anal- 
ysis and eventually with Stetson’s experiments. The 
wave amplitudes in the freestream are set according to 
the experimental freestream wave spectra reported by 
Stetson as shown in Fig. 3. The phase angles of the 
waves in &. (6) are chosen randomly. Specifically, the 
wave frequencies, amplitudes, and phase angles used in 
the current receptivity simulation are given in Table 1. 
The overall wave amplitude is E = 6.2578 x with 
15 frequencies (N = 15). 

The unsteady calculations are carried out until the 130- 

lutions reach a periodic state in time. Temporal Fourier 
analysis is carried out on local perturbations of un- 
steady flow variables after a time periodic state has been 
reached. The Fourier transform for the real disturbance 
functions lead to: 

N 

n=O 

where nwl is the frequency of the n-th wave mode,- 
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q’(x, y, 1 )  represents any perturbation variables, and 
Iqn(x, y)l and 4, (E, y) are real variables representing the 
local perturbation amplitude and phase angle of the n- 
th wave mode. These variables indicate the amplitude 
of local disturbances and the local phase angle with re- 
spect to the forcing waves in the freestream. For per- 
turbations in the boundary layer near the body surface, 
we can define a local growth rate Qr and a local wave 
number ai of the perturbation fields by, 

where the derivatives are taken along a grid line parallel 
to the body surface. 

Although the mean flow has an adiabatic wall with 
a zero temperature gradient on the wall, it has been 
argued that the temperature perturbations should be 
set to zero because of the relatively high frequencies 
of the second mode. In our simulations, however, a 
wide range of frequencies are simultaneously imposed 
in the freestream. It is likely that the actual tempera- 
ture perturbations may be some where between the two 
extreme of LT‘/t3yn = 0 and T’ = 0. Therefore, we sim- 
ulate both cases of different temperature perturbations 
conditions on the wall with the same mean flow. It is 
found that the stability and receptivity characteristics 
are very similar for both cases. In this section, we will 
first present the results of the test case of LT‘/ayn = 0 
boundary condition, followed by the results of same re- 
ceptivity simulation using the T’ = 0 boundary condi- 
tion. 

CASE I. = 0 BOUNDARY CONDITION 

The results presented here are those for the case of 
zero gradient temperature perturbation boundary con- 
ditions. The steady base flow has an adiabatic wall. 
The unsteady flow solutions are obtained by imposing 
freestream disturbances according to Table 1 and &. 
(6), containing 15 frequencies. 

Simulation Results 

Figure 21 shows the development of wave amplitudes 
of pressure perturbations in the boundary layer as func- 
tions of x/r. The lines represent 15 different frequencies 
off = nfi , where f; = 14.922kHz and n = 1,2, - .  . ,15. 
The relative amplitudes in the freestream of each fre- 
quency is set to be proportional to that given by Fig. 2 
of Stetson’s experiments as shown in Table 1. The figure 
shows the development of wave modes induced by the 
freestream forcing waves. However, there is no apparent 
presence of the unsteady second mode in the main com- 
putational region. This is an unexpected result because 
in the frequency range covered by the current simula- 
tion, the  LST analysis has shown that the second mode 

is unstable starting from the region near zjr = 90 for 
frequency at 149.2 kHz (n = 10). On the other hand, as 
shown in Fig. 2, Stetson’s experiments also showed that 
the disturbances waves are not dominated by the second 
mode until it reaches the region much downstream at 
212 surface station. Therefore, the simulation results 
are consistent with the experimental results shown in 
Fig. 2 that the second mode is not dominant in earlier 
surface stations. The growth rates predicted by LST 
are substantially higher than those obtained by experi- 
ments. The frequency of the mast unstable second mode 
predicted by LST is approximately in the range of 130 
kHz (around n = 9 in Fig. 21). However, Fig. 21 shows 
that the wave amplitudes for the frequency of 134 kHZ 
(n = 9) have no clear unstable growth as it is expected 
for the unstable second mode. Also in Fig. 21, the d i e  
turbances of n = 3 and n = 4 are growing along the 
surface. But we will show later that these are not the 
Mack modes. They are the stable mode I waves which 
are induced by the forcing acoustic waves through res- 
onant interactions. 

In order to examine the development of wave ampli- 
tudes of each frequency more clearly, the wave ampli- 
tude spectra for surface presure perturbations obtained 
by the numerical simuIation are shown in Figs. 22 to 
25 for several surface stations. Figure 22 shows the fre- 
quency spectrum of the pressure perturbations on the 
cone surface at the surface location of 18.9 nose radii. 
The subsequent figures show the development of wave 
spectra at downstream surface locations. The frequency 
spectrum at the surface location of 130 nose radii, plot- 
ted in Figure 24 shows that the unstable second mode 
is not apparent in the numerical solutions. As the flow 
develops further downstream at the s = 175.4 station, 
the frequency of n = 10 at 149.2 kHz shows signs of 
initial development of unstable second mode as shown 
in Fig. 25. 

Since there is an indication of the development of the 
second mode in Fig. 25, the amplitudes of pressure per- 
turbations along the cone surface for this frequency are 
plotted in Fig. 26. The figure shows there are wave 
modulations of multiple waves as the waves propagate 
downstream along the surface. The figure shows that 
the wave amplitudes increase starting from the surface 
station around c/r = 140. However, the second mode 
is predicted to be unstable at this frequency starting 
from z/r M 90. Therefore, the excitation of the sec- 
ond mode does not coincide with the beginning of the 
unstable region predicted by LST. The development of 
the wave modes can also be seen from the temperature 
disturbance contours shown in Fig. 27. The tempera- 
ture perturbation contours of the second mode have a 
so called “rope” like wave structure at the edge of the 
boundary layer [‘I. Figure 27 shows that at the lower 
figure around the 175 surface station, the wave struc- 
ture for this frequency is clearly that of the second mode 
as demonstrated by the rope like wave structure. At the- 
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earlier surface station around z / r  = 120, the structure 
is not the same as that of the second mode. It is shown 
by the LST analysis in a later section that the stable 
mode I is dominant in the early region of the boundary 
layer in the receptivity process. 

The profiles of the amplitudes of v perturbations 
along the wall-normal direction at four surface locations 
between 46.0 and 175.4 nose radii are shown in Figs. 28 
to 31. The figures show the gradual evolution of the 
wave structure as flow moves from the early region near 
the leading edge to downstream surface stations. The 
wave structure at the 175.4 nose radii grid station is sim- 
ilar to that of a second mode. But the wave structures 
at the earlier stations are those of the stable mode I. 
We will use LST to identify the wave structures at both 
the upstream and the downstream stations. 

To summarize, the results show a complex develop 
ment of wave modes induced by freestream acoustic 
waves. The second mode does not develop in the region 
where LST predicts unstable second modes to be domi- 
nant. Though we are doing further simulations to follow 
the wave development at further downstream locations, 
the results that have been obtained so far demonstrate 
that the second modes are excited at a later location 
than predicted by the LST analysis. This delay may 
be caused by the entropy layer effects in the mean flow. 
The understanding of such receptivity processes may 
explain the fact that the nose bluntness stablizes hy- 
personic boundary layer flows. Therefore it is necessary 
to identify the wave modes in the boundary layer in 
the receptivity process and to identify the cause of the 
delay in the development of the second mode waves. 
The detailed LST analysis results are presented in the 
following sections. 

Boundary-Layer Wave Mode Characteristics 

In our previous studies using the linear stability the- 
ory, for boundary-layer wave mode characteristics of su- 
personic flow over a flat plate[l7], it was found that 
the distribution of phase velocities of boundary-layer 
wave modes is a function of the product of the local 
Reynolds number (R) and frequency (F). Almost the 
same distributions of phase velocities us R * F for differ- 
ent boundary-layer wave modes are obtained when F is 
changed while R is fixed, or when R is changed while F 
is fixed. 

A similar LST study is carried out for hypersonic 
boundary-layer flow over the blunt cone. Figure 32 
shows the spectra of eigenvalues for w = 0.1934 at sta- 
tion s / r  = 175. The relative positions of mode I and the 
second mode in the spectra are highlighted by circles. 
When w increases little by little, the relative positions of 
mode I and the second mode will gradually change. We 
can track the position of each mode and obtain their 
trajectory. The dotted line in Fig. 32 represents the 

- trajectory of mode I when w changes from low to high. 

It shows that mode I starts from continuous spectra 
on the left of the spectra, and passes across another 
continuous spectra in the middle with increasing w .  In 
the same way, we can find the trajectory of the second 
mode and mode 11. Here, mode I and mode I1 are in fact 
“multipleviscous solutions” by Mack [25] and by Eibler 
and Bestek [261. The non-dimensional phase velocity of 
each normal mode can be calculated as 

W 
a = - .  

Qr 

Figure 33 shows phase velocities of three discrete modes, 
i.e., mode I, mode I1 and the Mack modes, chang- 
ing with frequencies at the station s/r = 175. The 
phase velocities of the fast acoustic wave (1 + l/Mm), 
entropy/vorticity wave (l), and slow acoustic wave 
(1 - l/Mm) are also shown in the figure for comparison. 
Both mode I and mode I1 originate with an initial phase 
velocity of the fast acoustic wave (1 + l / M m ) .  Before 
these two modes become distinct modes, their eigen- 
values merge with the continuous spectra. After these 
two wave modes appear, their phase velocities decrease 
gradually with increasing w.  It’s obvious that it is d i s  
continuous for the distributions of phase velocities us w 
for both mode I and mode 11. In Fig. 32, the trajectory 
of mode I passes across continuous spectra in the mid- 
dle. In fact, mode I merges with this continuous spectra. 
Later, another eigenvalue from this continuous spectra 
becomes discrete mode I. Therefore, there is a gap in 
the phase velocity curve of mode I. With increasing w ,  
the phase velocity of mode I continues to decrease and 
passes across the phase velocity curve of Mack modes. 
At the intersection point (w = 0.1825), mode I gets 
synchronized with the second mode, where both modes 
have very similar profiles of eigenfunctions. A very sim- 
ilar phenomena happens to mode I1 at a larger w ,  which 
is also shown in Fig. 33. 

The growth rates (ai) of different notmal modes are 
plotted in Fig. 34. While the growth rates of Mack 
modes are continuous, there are two gaps in the growth 
rate curves for mode I and mode 11. It shows that both 
mode I and mode I1 are stable modes. Mack modes are 
slightly unstable in the range of w between 0.0485 and 
0.117. The Mack mode in this range is the conventional 
first mode. In the range of w between 0.171 and 0.243, 
the unstable Mack modes are the conventional second 
mode. In this range, the growth rates of the second 
mode change dramatically. 

Although mode I is stable, it was found that the 
stable mode I waves play an important role in the re- 
ceptivity process because they interact with both the 
forcin acoustic waves and the unstable Msck-mode 
wavesq’q. Through the interactions, the stable mode I 
waves transfer wave energy from the forcing fast acous- 
tic waves to the second Mack-mode waves. 

It should be pointed out that the discontinuous na- 
ture of mode I and mode I1 shown in Fig. 33 is unique to 
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the current Mach 7.99 flow over a blunt cone. No such 
phenomena have been observed in our previous studies 
of supersonic boundary layer over a flat plate [lq. We 
have also been computing similar stability characteris- 
tics of planar 2-D Mach 8 flow over a 5.3' half angle 
sharp wedge (no nose bluntness). Figure 35 shows the 
distribution of phase velocities of normal modes with 
different frequencies for Mach 8 flow over the sharp 
wedge with the same freestream flow conditions. The 
figure shows that as w increases, there is no discon- 
tinuity in the phase velocity of mode I and mode I1 
when they intersect with the Mack modes. Therefore, 
it is conjectured that the nose bluntness introduced new 
characteristics in the wave phase speeds. As shown by 
Ma and Zhong [lq, the excitation of the second mode is 
a result of the resonant interactions between the mode 
I and the freestream forcing waves. The induced mode 
I then interacts with the second mode when they reach 
the same wave speed and frequency. The discontinuity 
in the phase velocity in the mode I may lead to no direct 
interaction of mode I and the second mode. If it is true, 
there is no excitation of the second mode for the case 
of blunt cone even when the second mode is predicted 
by LST to be unstable. 

Comparison with LST and Wave Mode Identification 

In this section, the linear stability theory is used to 
identify different wave modes induced by fast acoustic 
waves. Phase velocities and structures of boundary- 
layer disturbances from computation of numerical sim- 
ulations are compared with corresponding values from 
eigenvalues and eigenfunctions of the linear stability 
theory at the same frequency. Here, typical frequencies 
with n = 8,lO and 15 are chosen for the comparison. 
The evolution of pressure perturbations on the wall due 
to freestream disturbances at these three frequencies are 
redrawn in Fig. 36. At each frequency, the phase veloc- 
ities of different wave modes are tracked from upstream 
to downstream by the linear stability theory. The wave 
structures of mode I at n = 8, the second mode at 
n = 10 and mode I1 at n = 15 from numerical simula- 
tions are compared with those from the linear stability 
theory at their respective locations. 

The phase velocities of the induced boundary-layer 
disturbances from numerical simulations are calculated 
based on pressure perturbations on the wall surface by 
using temporal Fourier analysis according to the follow- 
ing formula: 

(24) 

(25) 

where 4,, is phase angle at n-th frequency from tem- 
poral Fourier analysis. The values calculated by using 
Eqs. (24) and (23) correspond to the streamwise wave 
number (or) and phase velocity (u) of a single wave if 

the numerical solutions are dominated by a single d i e  
crete wave mode in a local region. If the numerical 
solutions contain a mixture of two or more wave modes, 
the values of streamwise wave number and phase veloc- 
ity demonstrate the result of modulation of these mixed 
wave modes. 

Figure 37 shows the distribution of the phase veloc- 
ities of boundary-layer disturbances at frequency with 
n = 8 (119.4 kHz) from the simulation. The phase ve- 
locities of the Mack modes and modes I from the linear 
stability theory are also plotted in the same figure for 
comparison with the numerical solutions. Similar to r e  
sults shown in Fig. 33, there is a gap in the phase veloc- 
ity curve of mode I waves from the linear stability theory 
for the current Mach 7.99 flow over a blunt cone. The 
figure shows that phase velocities of the induced waves 
are close to those of mode I waves in the region z < 66, 
which indicates that mode I waves are generated inside 
the boundary layer in this region. To confirm this con- 
clusion, profiles of induced disturbances in the numer- 
ical simulation at z = 39.3 are compared with mode I 
from the linear stability theory. For the purpose of com- 
parison, boundary-layer disturbances are normalized by 
pressure perturbation on the wall at respective station 
of comparison. Figures 38 and 39 compare profiles of 
temperature and velocity disturbances between the lin- 
ear stability theory and simulation. It shows that the 
structure of induced disturbances from the numerical 
simulations matches the structure of mode I wave from 
the linear stability theory very well. Such agreement 
also exists in the comparison of other variables, which 
are not shown here to avoid redundancy. Therefore, 
the boundary-layer disturbances at this station contain 
dominant mode I waves. 

Figure 40 presents the growth rates of normal modes 
at frequency with n = 8 from the linear stability theory. 
It shows that mode I wavea are always stable, which is in 
contradiction with the growth of mode I waves shown in 
Fig. 36. This contradiction can be explained from the 
phase velocity curve of mode I shown in Fig. 37. In fact, 
the phase velocities of mode I waves are very close to 
those of fast acoustic waves near the leading edge. As a 
result, mode 1 waves are generated near the leading edge 
region. Though mode I is predicted to be always stable 
by the linear stability theory, there exists a resonant 
interaction between mode I waves inside the boundary 
layer and fast acoustic waves outside the boundary layer 
in the region upstream. Therefore, mode I waves are 
strongly amplified before they reach the peak amplitude 
at 2 = 39.3 (see Fig. 36). The phase velocities of mode 
I waves decrease during the propagation downstream. 
When phase velocities of mode I wavea decrease to a 
certain value and there is no more resonant interaction 
between mode I waves and acoustic waves, mode I waves 
decay due to their inherent stable properties after they 
reach the peak amplitude at z = 39.3. With the de- 
cay of mode I waves, modulation between mode I wavea 
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with acoustic waves and other waves leads to the oscil- 
lation in phase velocities in downstream, which is also 
shown in Fig. 37. At the beginning, this kind of oscilla- 
tion is around the phase velocities of mode I, when the 
component of mode I waves included in boundary-layer 
disturbances is relatively strong. In the region down- 
stream (z > 150), this kind of oscillation is around the 
phase velocity of fast acoustic waves, which indicates 
the relative dominance of fast acoustic waves included 
in boundary-layer disturbances. 

A similar analysis is carried out for the frequency with 
n = 10 (149.2 kHz). Figure 41 compares phase veloc- 
ities of boundary-layer disturbances at frequency with 
n = 10 from the simulation with the phase velocities 
of the Mack modes and modes I from the linear stabil- 
ity theory. Again, in the region upstream (z < 36), the 
phase velocities of boundary-layer disturbances induced 
by fast acoustic waves are close to those of mode I waves 
from the linear stability theory in upstream region. In 
addition, it was found (not shown here) that the struc- 
ture of boundary-layer disturbances from the simula- 
tion can match those of mode I waves from the linear 
stability theory. There is strong oscillation in phase 
velocity curve due to the modulation between mode I 
waves and other waves, such as fast acoustic waves, af- 
ter mode I waves are no longer dominant in the region 
with z > 36. Due to the stable property of mode I 
waves, the amplitude of mode I waves gradually decay 
when mode I waves propagate downstream. Before they 
die out, mode I waves get synchronized with the second 
Mack mode. The synchronization point between mode 
I and the second mode at a frequency with n = 10 is 
located at w = 0.1808 (z = 117.28), which is very close 
to that shown in Fig. 33 with w = 0.1825 at the station 
s/r = 175 (or I = 172). At the synchronization point, 
both mode I and the second Mack mode have very simi- 
lar profiles of eigenfunctions. As a result, mode I waves 
convert to the second-mode waves. 

The growth rates of boundary-layer normal modes at 
frequency with n = 10 from the linear stability theory 
are shown in Fig. 42. Again, it shows that mode I waves 
are always stable. For Mack modes, the second-mode 
Branch I neutral point is located at z = 97.47. They 
become unstable in the region after t > 97.47. In addi- 
tion, the growth rates of the second-mode waves reach 
peak value ai = -0.00452 at E = 142.54. In other 
words, the second mode is most unstable and should 
be strongly amplified at this location. However, there 
are no amplified second-mode waves at frequency with 
n = 10 shown in Fig. 36 between z = 90 and z = 115. 
On the contrary, the amplitude of boundary-layer dis- 
turbances gradually decays at this frequency. This can 
be explained from phase velocity curves shown in Fig. 
41. The second-mode waves are converted from mode 
1 waves at the synchronization point between mode I 
and the second mode, which is located at z = 117.28. 
Therefore, the second-mode waves only appear after 

x = 117.28 in this case. This is the reason why there 
are no amplified second-mode waves at frequency with 
n = 10 shown in Fig. 36 between z = 90 and z = 115. 
After the generation of the second-mode waves, the 
boundary-layer disturbances are strongly amplified re- 
sulting from the unstable property of the second mode 
in the downstream region z > 117.28, which is obvi- 
ously shown in Fig. 36. The structures of induced 
second-mode waves at z = 177 are compared with the 
eigenfunctions of the second mode from the linear sta- 
bility theory, which are shown in Fig. 43 for tempera- 
ture and 44 for streamwise velocity, respectively. Again, 
there is good agreement in wave structure of the second 
mode between the numerical simulation and the linear 
stability theory. The visible difference in the compari- 
son is because there are other wave components, such 
as fast acoustic waves, included in the boundary-layer 
disturbances besides the second-mode waves from the 
numerical simulation. 

At frequency with n = 15, the LST results of growth 
rates in Fig. 45 show that all normal modes are sta- 
ble. The stable property of the second mode at this 
frequency is in agreement with the LST results of Ma- 
lik et al. [lo]. The phase velocities of boundary-layer 
disturbances at frequency with n = 15 from the simula- 
tion are compared with the phase velocities of the Mack 
modes, modes I and mode I1 from the linear stability 
theory, which is plotted in Fig. 46. Once again, it shows 
that mode I waves are generated and amplified due to 
the resonant interaction between mode I waves and fast 
acoustic waves in the region upstream (z < 9.5), where 
the structure of boundary-layer disturbances from the 
simulation can match those of mode I waves from the 
linear stability theory. The modulation between mode 
I waves and other waves, such as fast acoustic waves, 
lead to strong oscillations in the phase velocity curve 
during the decay of mode I waves. Because the second 
mode is stable, there it3 no amplified second mode at 
frequency with n = 15 shown in Fig. 36. However, 
there is another wave mode which is strongly amplied 
during propagation downstream after z > 50. Figure 
46 shows that this wave mode is mode 11. Although 
mode I1 waves are predicted to be stable by the linear 
stability theory, they are strongly amplified due to the 
resonant interaction between mode I1 waves and fast 
acoustic waves because their phase velocities are very 
close to each other. The structures of mode I1 waves at 
z = 149 from numerical Simulation are compared with 
those from the linear stability theory at the same loca- 
tion, which is presented in Fig. 47 and 48. There is 
very good agreement in the comparison except visible 
difference outside the boundary layer due to acoustic 
waves in the simulation. 

To summarize the LST analysis of the simulation re- 
sults, it is clear that the synchronization location be 
tween mode I and the second mode plays an important 
role in the receptivity of the second Mack mode in the 
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boundary layer. In the current flow over a blunt cone, 
the synchronization location is located downstream of 
the branch I neutral stability location of the second 
mode. As a result, there are no noticeable second mode 
components in the region before the synchronization lo- 
cation even though the second is linearly unstable there. 
Therefore mode I plays a very important role in the re- 
ceptivity process. In addition, the current flow over a 
blunt cone also has a discontinuous phase velocity as 
the waves propagate downstream. Such discontinuities 
in the phase velocity curves may also contribute to the 
lack of second mode excitation. These factors lead to 
much lower levels of second mode excitation in hyper- 
sonic boundary layers over a blunt cone. 

CASE 11. TI = 0 BOUNDARY CONDITION 

As discussed earlier, the receptivity using the zero 
temperature perturbation boundary condition is also 
simulated for the same flow conditions as Case I. Again, 
the steady base flow has an adiabatic wall, but the tem- 
perature disturbances have a TI = 0 boundary condi- 
tion. Again, the unsteady flow solutions are obtained by 
imposing freestream disturbances according to Table 1 
and Eq. (6), containing 15 frequencies. The results show 
that the wave fields of Case I and Case I1 are very sim- 
ilar with the delayed development of the second mode. 
Therefore, only the main results are presented here. 

Figure 49 shows the development of wave amplitudes 
of pressure perturbations in the boundary layer as func- 
tions of z / r .  The figure shows the development of wave 
modes induced by the freestream forcing waves. Again, 
there is no apparent presence of the unstable second 
mode in the main computational region. In order to see 
the development of wave amplitudes of each frequency 
more clearly, the wave amplitude spectra for surface 
pressure perturbations obtained by the numerical simu- 
lation are shown in Fig. 50 for the 88.3 surface station. 
This figure shows that the unstable second mode is not 
apparent in the numerical solutions. 

Similar to Case I, in order to examine the develop 
ment of the wave modes for the case of 149.2 kHz more 
clearly, Fig. 51 shows the amplitudes of pressure per- 
turbations along the cone surface for this frequency. 
The figure shows there are wave modulation of mul- 
tiple waves as the waves propagate downstream along 
the surface. The wave amplitudes decrease along the 
surface as the wave propagates downstream. It is ex- 
pected that the second mode will be generated further 
downstream. Again, the excitation of the second mode 
does not coincide with the beginning of the unstable 
region predicted by LST. The development of the wave 
modes can also be seen from the temperature distur- 
bance contours shown in Fig. 52. At this early surface 
station around z / r  = 90, the structure is not that of 
the second mode, but that of stable mode I. 

CASE 111. SURFACE BLOWING AND 
SUCTION 

One possible explanation for the delay of the develop 
ment of the second mode by freestream acoustic waves 
is that the receptivity of the second mode is altered, 
or suppressed, by the entropy layer effects in the blunt 
cone flow field. In this section we demonstrate that the 
unstable second mode can develop in the boundary layer 
once it is excited in the region predicted by LST to be 
unstable. One way to directly excite the second mode 
wave is to use surface blowing and suction in a narrow 
surface region upstream of the second mode region. 

Therefore, we conduct the simulation of Case 111 with 
no freestream disturbances, but with surface blowing 
and suction in a small region near the z/s = 105 sta- 
tion. There is no clearly dominant second mode in the 
case of freestream acoustic waves. The amplitudes of 
the forcing waves are determined by the parameter c in 
Eq. (11) with the same 15 frequencies shown in Table 1. 
The dominant second mode waves observed by experi- 
ments and also predicted by the linear stability analysis 
is around 140 kHz. The relative nondimensional ampli- 
tudes of these amplitudes are chosen to be the same by 
setting A, to 1, while their phase angles 4, are ran- 
domly chosen. For the results presented in this paper, 
c = 0.0005, which produces pressure perturbation at the 
blowing and suction strip at the level of approximately 
3.8% of the pressure behind the shock a t  the same grid 
station. 

Simulation Results 

Figure 53 shows the distribution of the pressure per- 
turbation amplitudes for 15 fundamental frequencies 
(shown in Table 1) along the body surface. This fig- 
ure shows the development of the second mode induced 
by surface blowing and suction. The figure shows that 
at the end of the blowing and suction region, the fre- 
quency of 149.2 kHz show the strongest growth. This 
frequency is consistent with the LST prediction. 

The total perturbations of the flow variables in the 
unsteady flow field is a combination of all wave modes 
developed in the boundary layer. Figures 54 show the 
contours for the instantaneous temperature and pres- 
sure perturbations for the most unstable 149.2 kHz fie- 
quency (n  = 10) after the flow field reaches a time peri- 
odic state. The instantaneous contours show the devel- 
opment of typical second mode instability waves in the 
boundary layer on the surface. The shape of the second- 
mode waves at the edge demonstrate the sha e of the 
“rope-like” waves observed in experiments r2$ Figure 
55 shows the contours for the instantaneous perturba- 
tion p’ of 149.2 kHz. In addition to the typical second- 
mode wave developing in the boundary layer, there are 
also some components of acoustic Mach wave outside of 
the boundary layer. These acoustic waves are induced 
at the blowing and suction strip and propagate along 
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the Mach lines in the flow field. Again, the waves are 
dominated by the most amplified second mode waves in 
the boundary layer. 

Figure 56 shows the frequency spectra of surface pres- 
sure perturbation amplitudes at the 130.9 surface loca- 
tions downstream of the blowing and suction strip. The 
figures show that the wave amplitudes of different fre- 
quencies. The amplitudes of fundamental mode n = 10 
at 149.2 kHz are most amplified. 

The profiles of the amplitudes of v perturbations 
along the wall-normal direction at the surface location 
of 130.9 nose radii in Fig. 57. The figure shows the wave 
structure of a second mode in the boundary layer. 

Comparison with LST and Wave Mode Identification 

According to our previous very clean 
second-mode waves can be obtained by blowing and suc- 
tion from the wall. From Fig. 53, the boundary-layer 
disturbances a t  frequency with n = 10 are most ampli- 
fied, so this frequency is picked out to compare with the 
LST analysis. 

The phase velocities and growth rates of the induced 
boundary-layer disturbances at frequency with n = 10 
at 149.2 kHz from numerical simulations are calculated 
based on pressure perturbations on the wall surface by 
using temporal Fourier analysis. Figure 58 compares 
the phase velocities of the induced boundary-layer dis- 
turbances from blowing and suction with those of the 
second mode from the linear stability theory. There is 
good agreement in the region with z > 120. The differ- 
ence in the region with z < 120 is due to the effect of 
initial transient of the forcing waves from blowing and 
suction. 

The growth rates of the induced second mode from 
blowing and suction is also compared with that from the 
linear stability theory, which is shown in Fig. 59. There 
is a large difference in the growth rates obtained from 
the simulation results and LST results. Further studies 
will be required to explain this difference. However, 
there is very good agreement in the comparison of the 
second-mode structures between the simulation results 
and LST results, as shown in Figs. 60 and 61. 

SUMMARY AND CONCLUSIONS 

In this paper, we have studied the receptivity of Mach 
8 flow over a 7’ half-angle blunt cone, corresponding 
to Stetson’s experiments. Both the steady base flow 
solutions and three cases of unsteady flow solutions have 
been obtained and studied. The main conclusions are: 

1. The current steady flow solutions agree very 
well with those computed by Esfanhanian and 
Herbert and compare well with experimental re- 
sults on surface pressures and tangential velocities 
out side of the boundary layer. The mean flow SD. 

lutions also demonstrate the effects of the entropy . -  

layer on the steady flow field. 

2. The receptivity of the Stetson’s Mach 7.99 flow over 
the blunt cone to freestream fast acoustic waves is 
simulated by solving the full Navier-Stokes equa- 
tions. The simulation results show a complex de- 
velopment of wave modes induced by freestream 
acoustic waves. The second mode does not develop 
in the region where LST predicts dominant unsta- 
ble second modes. The second modes are excited 
at a later location than predicted by the LST anal- 
ysis. This delay is unique for the current flow over 
a blunt cone. It may be caused by the entropy layer 
effects in the mean flow. The understanding of such 
receptivity processes may explain the fact that the 
nose bluntness stablizes hypersonic boundary layer 
flows. Therefore the results of LST calculations are 
used to identify the wave modes in the boundary 
layer in the receptivity process and to study the 
cause of the delay of the development of the sec- 
ond mode waves. 

3. The wave structures obtalined from the simulations 
are compared with those obtained from the LST for 
mode I, mode 11, and the second mode. Very good 
agreement was obtained. The wave modes induced 
by the freestream acoustic waves are mode I near 
the nose, as it  propagate downstream, second mode 
or mode I1 are excited due to the mechanism of res- 
onant interactions between different wave modes. 

4. The LST analysis shows that the synchronization 
location between mode I and the second mode plays 
an important role in the receptivity of the second 
Mack mode in the boundary layer. In the current 
flow over a blunt cone, the synchronization loca- 
tion is located downstream of the branch l neutral 
stability location of the second mode. As a results, 
there are no noticeable second mode components in 
the region before the synchronization location even 
though the second mode is linearly unstable there. 
Therefore mode I plays a very important role in the 
receptivity process, and leads to the lack of excita- 
tion of the second mode in the current flow over a 
blunt cone. 

5. In addition, the current flow over a blunt cone also 
has a discontinuous phase velocity as the waves 
propagate downstream. Such discontinuities in the 
phase velocity curves may also contribute to the 
lack of second mode excitation. These factors lead 
to the much lower levels of second mode excita- 
tions in hypersonic boundary layers over a blunt 
cone. On the other hand, our previous studies on 
Mach 4.5 flow over a flat plate and Mach 8 flow 
over a sharp wedge show do not show similar char- 
acteristics of the mode I structure and the second 
mode is strongly excited by the freestream waves. - 
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6. When the disturbances are excited by surface 
blowing-and-suction, the second mode waves are 
generated directly. The wave mode structures 
agree very well with those of the second mode pre- 
dicted by LST. However, the growth rate predicted 
by LST is much larger than those obtained by nu- 
merical simulations. 

7. Further and more extensive parametric studies are 
currently under way by the authors to study the re- 
ceptivity mechanisms in the blunt cone flow fields. 
The most important aspects of future studies in- 
clude: receptivity to freestream slow acoustic waves 
and other types of waves, 3-D wave effects, wall 
temperature effects, and nonlinear effects, etc. 
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Figure 1: The 7' blunt cone of Stetson's (1984) Mach 
7.99 stability experiment. 

w a  
Figure 2: Experimental fluctuation spectra along the 
cone surface obtained by Stetson et al. (1984), where 
s / r  = Re,/3.35 x lo4. 

W 

Figure 3: F'reestream disturbance spectra in Stetson et 
al.'s experiments (1984). 

Figure 4: Comparison of disturbance growth rates pre- 
dicted by LST and experiments at s / r  = 175 ( z / r  = 
172). 
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Figure 5: Comparison of the second mode 2'' eigen- 
functions from LST with s / r  = 175,w = 0.1934 (127.56 
kHz) . 

Figure 6: The second mode T eigenfunctions from LST 
using two sets of grids with s / r  = 175,w = 0.1934 
(127.56 kHz). 
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Figure 7: Mach number contours for steady Mach 7.99 
flow with an adiabatic wall. 

I . 
Figure 8: Steady pressure along the cone surface. 

Figure 10: Steady tangential velocity profiles along the 
wall-normal direction at the surface location of 94 nose 
radii. 

Figure 11: Steady tangential velocity profiles along the 
wall-normal direction at the surface location of 128 nose 
radii. 
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Figure 12: Pressure profiles at station s/r = 54. The 
results are compared with those Of Esfahanian and Her- 
bert (1991). 

Figure 9: Steady temperature along the cone surface. 
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Figure 13: Temperature profiles at station s/r = 54. 
The results are compared with those of Esfahanian and 
Herbert (1991). 
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Figure 14: Second derivative of steady tangential veloc- 
ity profiles along the wall-normal direction at the sur- 
face location of 31.9 nose radii. 
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Figure 16: Contours of p 2 ,  which is affected by the 
entropy layer. 
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Figure 17: The profile of pe along the wall-normal 
direction at the surface location of 18.9 nose radii. 

Figure 15: Second derivative of steady tangential veloc- 
ity profiles along the wall-normal direction at the sur- 
face location of 88.3 nose radii. 

Figure 18: The profile of pg along the wall-normal 
direction at the surface location of 31.9 nose radii. 
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Figure 19: The profile of pz along the wall-normal 
direction at the surface location of 88.3 nose radii. 
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Figure 20: The profile of pe along the wall-normal 
direction at  the surface location of 169.4 nose radii. 
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Figure 21: Amplitudes of pressure perturbations on the 
cone surface vs. z / r .  The lines represent 15 different 
frequencies of f = nf i ,  where fi = 14.922kHz and 
n =  1,2,..-,15. 
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Figure 22: The frequency spectrum of the pressure per- 
turbations on the cone surface at the surface location 
of 18.9 nose radii. 

Figure 23: The frequency spectrum of the prwure per- 
turbations on the cone surface at the surface location 
of 88.3 nose radii. 
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Figure 25: The frequency spectrum of the pressure per- 
turbations on the cone surface at the surface location 
of 175.4 nose radii. 
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Figure 27: Contours of real part of temperature pertur- 
bation in two sections of the flow field for the frequency 
off  = 149.2kHr (n = 10) 

Figure 26: Amplitudes of pressure perturbations on the 
cone surface vs. t / r  for the frequency off’ = 149.2kHx 
(n  = 10). 

Figure 28: Profile of the amplitudes of u perturbations 
along the wdl-normal direction at the surface location 
of 46.0 ncme radii. 
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Figure 29: Profile of the amplitudes of u perturbations 
along the wall-normal direction at the surface location 
of 88.3 nose radii. 
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Figure 32: Spectra of eigenvalues with w = 0.1934 
(127.56 kHz), s/r = 175 (z/r = 172) and trajectory 
of mode I when the values of w increase. 

Figure 33: The distribution of phase velocities of normal 
modes with different frequencies at the station s/r = 
~ - =  

Figure 30: Profile of the amplitudes of w perturbations 
along the wall-normal direction at the surface location 

110. of 130.9 nose radii. 
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Figure 34: The distribution of growth rates of normal 
with different fqUacies at the station #I,. = Figure 31: Profile of 10'1 along the wall-normal direction 

(s/r = 175.4). 175. 
. -  
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Figure 35: The distribution of phase velocities of normal 
modes with different frequencies for Mach 8 flow over 
5 . 3 O  half angle sharp wedge with the same freestream 
flow conditions. 
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Figure 36: Amplitudes of pressure perturbations on the 
cone surface vs. z / r  at frequencies with n = 8,10,15. 

Figure 37: Comparison of phase velocities on the cone 
surface with phase velocities of boundary-layer normal 

- modes at frequencies with n = 8. 

Figure 38: Comparison of wave structures with T eigen- 
functions of mode I from the LST with n = 8, z = 39.3. 

Figure 39: Comparison of wave structures with u eigen- 
functions of mode I from the LST with n = 8, z = 39.3. 

Figure 40: Distributions of growth rates of boundary- 
layer normal modes with n = 8. 
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Figure 41: Comparison of phase velocities on the cone 
surface with phase velocities of boundary-layer normal 
modes at frequencies with n = 10. 

Figure 44: Comparison of wave structures with u eigen- 
functions of the second mode from the LST with n = 10, 
2 = 177. 

Figure 42: Distributions of growth rates of boundary- 
layer normal modes with n = 10. 
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Figure 43: Cornparison of wave structures with T eigen- 
functions of the second mode from the LST with n = 10, 
2 = 177. 
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Figure 45: Distributions of growth rates of boundary- 
layer normal modes with n = 15. 
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Figure 46: Comparison of phase velocities $n the cone 
surface with phase velocities of boundary-layer normal 
modes at frequencies with n = 15. 
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Figure 47: Comparison of wave structures with T eigen- 
functions of mode I1 from the LST with n = 15, 
x = 149. 

Figure 50: Frequency spectrum of the surface pressure 
perturbations (s/r  = 88.3), for the case of isothermal 
disturbance boundary condition. 

Figure 48: Comparison of wave structures with u eigen- 
functions of the second mode from the LST with n = 15, 
z = 149. 
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Figure 51: Amplitudes of surface pressure perturbations 
vs. z / t  (f' = 149.2kHz, n = 10) for the case of isother- 
mal disturbance boundary condition. 
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Figure 49: Amplitudes of surface pressure perturbations 
vs. t /r  for the case of isothermal disturbance boundary 

- condition. 

Figure 52: Contours of real part of temperature per- 
turbations (f' = 149.2kHz, n = 10) for the case of 
isothermal disturbance boundary condition. 
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Figure 53: Amplitudes of surface pressure perturbations 
vs. z / r  for the case of blowing-and-suction. The lines 
represent 15 different frequencies o f f  = nf1. 

Figure 56: Frequency spectrum of the pressure per- 
turbations on the cone surface (s / r  = 130.9) for the 
blowing-and-suction case. 
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Figure 54: Contours of real part of temperature per- 
turbation (r = 149.2kHz, n = 10) for the case of 
blowing-and-suction . blowing-and-suction c m .  

Figure 57: Profile of v perturbation amplitudes along 
the wall-normal direction (s / r  = 130.9, n = 10) for the 
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Figure 55: Contours of real part of pressure pertur- 
bation in a section of the flow field (f' = 149.2kHz, 
n = 10) for the blowing-and-suction case. 

Figure 58: Comparison of phase velocities on the cone 
surface with phase velocities of the second mode at fre- 
quency with n = 10. - -  
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Figure 59: Comparison of growth rates of the second 
mode at frequency with n = 10. 

Figure 60: Comparison of wave structures with T eigen- 
functions of the second mode from the LST with n = 10, 
x = 130. 

Figure 61: Comparison of wave structures with u eigen- 
functions of the second mode from the LST with n = 10, 

. z = 130. 

28 

American Institute of Aeronautics and Astronautics 


