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Abstract: As a critical molecule in the onset and sustainment of inflammatory response, the receptor
for advanced glycation end products (RAGE) has a variety of ligands, such as advanced glycation
end products (AGEs), S100/calcium granule protein, and high-mobility group protein 1 (HMGB1).
Recently, an increasing number studies have shown that RAGE ligand binding can initiate the
intracellular signal cascade, affect intracellular signal transduction, stimulate the release of cytokines,
and play a vital role in the occurrence and development of immune-related diseases, such as systemic
lupus erythematosus, rheumatoid arthritis, and Alzheimer’s disease. In addition, other RAGE
signaling pathways can play crucial roles in life activities, such as inflammation, apoptosis, autophagy,
and endoplasmic reticulum stress. Therefore, the strategy of targeted intervention in the RAGE
signaling pathway may have significant therapeutic potential, attracting increasing attention. In this
paper, through the systematic induction and analysis of RAGE-related signaling pathways and their
regulatory mechanisms in immune-related diseases, we provide theoretical clues for the follow-up
targeted intervention of RAGE-mediated diseases.

Keywords: advanced glycation end-product receptor; immune; high-mobility group protein 1;
nuclear factor kappa-B

1. Introduction

Receptor for advanced glycation end products (RAGE) was initially considered the
only protein that can bind to advanced glycation end products (AGEs) and regulate some
signal pathways. As a transmembrane receptor, the structure of RAGE is divided into
extracellular, transmembrane, and intracellular segments and exists in vivo as transmem-
brane molecules and soluble molecules [1]. Because of its unique structure and existing
form, RAGE can bind to various ligands, such as S100, calcium/grain, high-mobility group
protein 1 (HMGB1), and amyloid β-protein (Aβ) [2]. Soluble receptor for advanced glyca-
tion end products (sRAGE) does not have a signal transmission function due to its lack of
transmembrane and intracellular segments [3]. sRAGE can competitively bind to RAGE
ligands, thus antagonizing the pathological effects mediated by RAGE [4].

Studies have revealed that high-sugar diets, amyloidosis, oxidative stress, and other
unique environments can significantly induce RAGE expression on the surface of smooth
muscle cells, neurons, and other cells. RAGE participates in critical physiological processes,
such as regression of inflammation, maintenance of cell homeostasis, and postinjury repair
and regeneration [5]. For example, a low concentration of S100B regulates cell proliferation
and differentiation through RAGE under physiological conditions. Under pathological
conditions, the combination of S100B and RAGE stimulates the release of proinflammatory
cytokines, such as TNF-α, and triggers MAPK and NF-κB signals [6]. RAGE has become
a vital regulator of the innate immune response. In the context of chronic inflammation,
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the upregulation of RAGE signals causes pathological changes. Advanced oxidation
protein products (AOPPs) are critical in the development of various skin diseases. A
series of studies has shown that RAGE is the receiver of AOPPs, which also play an
indispensable role in the development of immune diseases, such as psoriasis and systemic
lupus erythematosus [7]. Current research has increased attention on the potential of RAGE
and its ligands to target human-related diseases [8–10]. Many studies have expounded on
the disease diagnostic potential of RAGE and its ligands as biomarkers and used them to
study the pathological progress of diseases and evaluate the severity of conditions [11–13].
However, the regulatory mechanism of RAGE signal transduction and its role in immune-
associated diseases have not been fully elucidated. Therefore, research on the RAGE-
related signaling pathway and its role in immune disorders must be further summarized
and analyzed.

2. RAGE Structure

RAGE consists of extracellular, hydrophobic, transmembrane, and intracellular seg-
ments. The extracellular V-shaped region provides RAGE–ligand binding sites. Intracellular
fragments can bind to various intracellular signal molecules and mediate signal transduc-
tion to cause cascade reactions, including full-length type, truncated C-terminal type, and
truncated N-terminal type. The truncated C-terminal type is endogenous secretory soluble
RAGE (esRAGE), which can be secreted by cells and contains only the extracellular segment.
In contrast, the truncated N-terminal type consists of the transmembrane region and an
intracellular component. Membrane-associated proteases can remove the transmembrane
component of RAGE by hydrolysis, and the released extracellular segment can form soluble
sRAGE with esRAGE. sRAGE can competitively bind to RAGE ligands, but binding to
ligands terminates intracellular signal transduction due to the loss of transmembrane and
intracellular fragments [14] (Figure 1).
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Figure 1. RAGE structural organization. The extracellular domain comprises three domains: V, C1,
and C2. One transmembrane receptor passes through the plasma membrane bilayer, followed by
an intracellular cytoplasmic tail. The extracellular region without a transmembrane receptor and a
cytoplasmic tail is called soluble RAGE (sRAGE).

2.1. RAGE Ligand

RAGE is composed of polymorphic domains (such as V, C1, and C2), gene polymor-
phisms (such as rs1800624 and rs2071288), and isomers (courage and esRAGE) and can
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bind to various endogenous and exogenous ligands [15,16]. Its ligands include AGEs, high-
mobility group protein 1, S100 protein family members, amyloid β peptide, type I collagen,
and type IV collagen. It also provides surface molecules for prions, bacteria, and lym-
phocytes [17–19]. After binding the RAGE ligand to the membrane receptor RAGE, it can
activate RAGE and mediate various signal transduction processes, making RAGE–ligand
binding a complex process.

2.2. AGEs

AGEs can produce brown and specific fluorescent molecules, are not easily degraded
because of their stability to enzymes, and can act as ligands to interact with various cell-
membrane-specific receptors to exert biological effects. Diets high in sugar, aging, and
oxidative stress all increase the AGE levels in the body [20]. Under pathological condi-
tions, AGEs can cause abnormal tissue structure and function, resulting in pathological
cascade changes, which play an essential role in age-related degenerative diseases, such as
Alzheimer’s disease, Parkinson’s disease, and atherosclerotic disease [21]. The combination
of AGEs and RAGE can activate the downstream nuclear factor kappa-B (NF-κB) signaling
pathway and promote the secretion of TNF-α, IL-1β, IL-6, and other cytokines, contributing
to inflammation [22].

2.3. HMGB1

HMGB1, also known as nerve axon growth factor, is a rich non-histone chromosome
protein that can be used as a transcription factor to regulate the expression of some genes
and can also be used as a proinflammatory factor to cause inflammatory diseases [23]. It
has been reported that in the early stage, the combination of HMGB1 and RAGE can cause
the outward growth of developing embryonic nerve processes, with a binding ability seven
times higher than that of AGEs [24]. Follow-up studies revealed that it can also be secreted
from cells as an intercellular messenger factor. When stimulated, HMGB1 is released from
the cell through the acetylation of lysine residues. Dendritic cells, macrophages, and natural
killer cells can actively secrete HMGB1 [25]. When it is released actively or passively, it can
accumulate white blood cells, trigger the release of inflammatory factors, and stimulate the
inflammatory response [26].

2.4. Members of the S100 Protein Family

The calpain family is a group of calcium-binding functional proteins. It was initially
extracted from the brain of a cow. The S100 protein family is small in relative molecular
weight and composed of two distinct EF hands flanked by hydrophobic regions at either
terminus and separated by a central hinge region. The carboxy-terminal EF hand is usually
referred to as the canonical Ca2+-binding loop and encompasses 12 amino acids. In contrast,
the amino-terminal loop comprises 14 amino acids and has a lower affinity for Ca2+.
It exhibits intracellular and extracellular regulatory activity and participates in various
cellular activities. S100 protein contains 25 members. Theoretically, the interaction between
S100 protein and RAGE is a common feature of the S100 family, but it has been reported
that only some of the members are ligands of RAGE [27]. The identical ligands that interact
with RAGE are S100A4, A6, A7, A11, A12, A13, A15, B, P, and two possible ligands: S100A1
and S100A8/9 [28]. S100B is a small soluble protein that is mainly secreted by astrocytes
in the central nervous system and plays a vital role in transmitter secretion, structure
maintenance, information transmission, energy metabolism, and information transmission.

2.5. Other RAGE Ligands

Other ligands that bind to and interact with RAGE include β-amyloid, collagen I,
and collagen IV [29]. After attaching to extracellular matrix components, such as collagen,
RAGE can regulate the dispersion of lung angiotensin type 1 (AT1) stem cells. In addition,
RAGE binds to soluble Aβ, which promotes oxidative damage, the release of inflammatory
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cytokines, and the formation of central plaques, which aggravates the progression of
Alzheimer’s disease [30].

Owing to its ability to interact with different ligands, RAGE activates a variety of
intracellular signaling pathways, such as p38MAPK, protein kinase B (Akt), extracellular
regulated protein kinases (ERKs), mammalian transparent 1 (mDia1), and Rho GTPase
(Rac1, Cdc42), which activate cascade transcription factors, such as NF-κB, SP-1, signal
transducer and activator of transcription 3, (STAT3), and early growth response protein
1 (EGR-1) [1,31,32]. Due to its participation in many complex pathways, RAGE is a piv-
otal hub in immune diseases such as systemic lupus (SLE), rheumatoid arthritis (RA),
Alzheimer’s disease (AD), and cancer, as well as in physiological processes, such as cellular
aging and autophagy.

3. RAGE Regulates MAPK/NF-κB Signaling Pathway and Its Role in
Immune-Associated Disease

As an essential protein complex, NF-κB can be found in almost all animal cells. It
can affect cell growth, differentiation, and apoptosis by controlling critical physiological
processes, such as DNA transcription and cytokine production. In resting cells, NF-κB
usually binds to its protein inhibitor of NF-κB (IκB). Therefore, it is in a state of inhibition
and does not exert the function of transcriptional activity. After activation, the MAPK
pathway can hydrolyze IκB and dissociate it from NF-κB. The free NF-κB enters the nucleus
to regulate the transcriptional expression of inflammatory factors [33]. The face of RAGE on
the cell membrane is at a low level under normal physiological conditions. When the body’s
inflammatory factors increase, the body is traumatized or suffers from abnormal conditions,
such as diabetes. The content of ligands, such as AGEs and HMGB1, increase, and the
expression of RAGE is upregulated [1]. When RAGE is combined with ligands, it promotes
the downstream phosphorylation of the p38 MAPK protein, thus increasing the expression
of the NF-κB signaling path [34]. NF-κB encourages the expression of inflammatory
factors, such as TNF-α and IL-1β, by regulating the target genes and triggering related
inflammatory and autoimmune responses, resulting in persistent tissue damage [35]. When
NF-κB is activated, it can promote the binding of RAGE to its ligand and further encourage
the continuous expression of cytokines and tissue factors [36] (Figure 2).
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phosphorylates its downstream MAPK and activates NF-κB protein. NF-κB enters the nucleus to
promote the transcriptional expression of inflammatory factors. Abbreviations: AGEs: advanced
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glycation end products; MAPK: mitogen-activated protein kinase; NF-κB: nuclear factor kappa-B;
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Table 1 summarizes the related ligands and mechanisms of the RAGE-MAPK/NF-κB
pathway in SLE, RA, pulmonary fibrosis, and AD.

Table 1. The role of RAGE-related signaling pathways in immune-associated diseases.

Signal Pathway Ligand Specificity Reaction Diseases References

HMGB1/RAGE-
MAPK/NF-κB

HMGB1, AGEs
Endothelial cells Production of inflammatory

and B-cell-activating factors ↑ SLE
[37]

Immune cells Inflammatory reaction ↑ [38]
Synovial cells Inflammatory factor ↑ RA [39]

S100/RAGE-
MAPK/NF-κB

S100A12 Epithelial cells EMT ↑
Pulmonary fibrosis

[40]

S100A9 Fibroblasts Cell proliferation and secretion
of inflammatory factors ↑ [41]

Aβ/RAGE-
MAPK/NF-κB Aβ Neurons

NFTs ↑
Cell activity ↓

Inflammatory factor ↑
AD [42–44]

Aβ/RAGE-ERS

S100B

BBB
ERS ↑

Permeability of blood–brain
barrier ↑

AD

[45–47]

S100B/RAGE-
MEK/ERK1/2 Neurons

Low concentrations of S100B
protect nerve cells;
very low and high

concentrations of S100B
produce neurotoxicity

[48,49]

3.1. RAGE Regulates MAPK/NF-kB Signaling Pathway and Its Role in Mediating Systemic
Lupus Erythematosus

SLE is an autoimmune disease involving various systems and organs, with diverse and
variable clinical manifestations. The pathogenesis of SLE is complicated. The interaction
between genetic and environmental factors, the production of pathogenic antibodies, and
the deposition of immune complexes (ICs) formed by combining autoantibodies and
antigens are all causes of SLE [50]. HMGB1 binds to Toll-like receptors, such as TRL-
2, TRL4, and RAGE, to regulate the immunoinflammatory response by mediating the
MAPK/NF-κB signal pathway. In addition, it has been found that the immune complex
formed by the combination of HMGB1 and DNA plays a vital role in the pathogenesis of
SLE [51,52]. These findings suggest that HMGB1 plays a crucial role in the occurrence and
development of SLE.

To confirm the above conjecture, some studies have further examined the level of
HMGB1 in SLE patients and animal models. The results showed that the expression level
of HMGB1 in patients and animals increased, and the inflammatory response of related
immune cells increased significantly, which led to the occurrence of SLE [37]. Immune
complexes can activate the expression of RAGE in human endothelial cells, participate
in the response of the HMGB1-RAGE axis in promoting SLE vasculitis, and induce the
production of TNF-α and B-cell-activating factors. Some studies have revealed that plasma
HMGB1 levels in patients with SLE are significantly higher than those in healthy subjects
and positively correlated with the concentration of plasma antinuclear antibody [53]. In
addition, the concentration of AGEs in skin cells and serum, as well as the expression
of RAGE mRNA in peripheral blood monocytes, are significantly increased in patients
with SLE. Immunohistochemical detection revealed almost no expression of RAGE in
normal glomerular cells of normal subjects. However, prominent expression still occurs
in glomeruli patients with SLE [38]. In summary, we can speculate that the possible
mechanism of RAGE involves binding to ligands and activation of transcription factor
NF-κB through the MAPK pathway to enhance inflammatory response and promote SLE.
At present, direct evidence about the involvement of RAGE in SLE is rare, whereas the role
of its ligands in SLE is more prominent; therefore, the mechanism of RAGE in SLE requires
further investigation.
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3.2. The Role of the MAPK/NF-kB Signaling Pathway Regulated by RAGE in Mediating
Rheumatoid Arthritis

RA is characterized by inflammatory synovitis, leading to joint injury and deformity.
Although the formation of RA is not precise, the overexpression of many cytokines is a
significant cause of bone destruction. The cytokines that play a critical role in this process
are interleukin-1β (IL-1β) and TNF-α [54]. Previous studies have confirmed that HMGBl
is highly expressed in the synovium of patients with RA, and anti-HMGB1 antibody can
inhibit the inflammatory response caused by HMGB1, reduce the damage to joint tissue,
and effectively alleviate arthritis caused by HMGB1 [55]. As one of the ligands with the
highest affinity for RAGE, HMGB1 activates NF-κB mainly through an RAS/MAPK kinase
cascade reaction after binding to each other and induces the production of a large number
of cytokines and inflammatory factors [56].

Comparison of the expression of RAGE mRNA, TNF-α, and IL-1β in synovial tissue
of patients with rheumatoid arthritis and osteoarthritis revealed that the concentration of
TNF-α and IL-1β in synovial tissue of the former was higher than that of the latter. There
was a significant positive correlation between the attention of two inflammatory factors
and the expression of RAGE. These results suggest that HMGBl-RAGE can promote the
expression of inflammatory cytokines by activating NF-κB [39]. It can be inferred that
HMGBl-RAGE upregulates the expression of inflammatory factors in RA by activating
NF-κB. In addition, the test revealed that patients positive for serum rheumatoid factor had
lower serum sRAGE levels than patients with RA disease without a rheumatoid factor [57];
a number of studies have corroborated these results [58–60]. Recent studies have revealed
that compared with healthy controls, RA patients have higher serum sRAGE levels, which
is positively correlated with disease activity [61]. This is phenomenon is contrary to the
results reported in previous studies. We speculate that the increase in serum sRAGE levels
is most likely due to the decrease in proinflammatory RAGE–ligand binding when disease
activity is controlled. High levels of sRAGE production and secretion may indicate the
response of compensatory anti-inflammatory mechanisms to tissue damage by acting
as bait receptors and proinflammatory ligands and preventing them from transmitting
harmful signals. This theory further supports the hypothesis that decreased sRAGE levels
in RA patients may increase inflammatory tendencies. In summary, HMGB1/RAGE can
damage joints by regulating the MAPK/NF-κB signal pathway, resulting in RA-related
symptoms. Furthermore, by competitively binding RAGE ligands, sRAGE inhibits the
entry of inflammatory cells into the joint cavity (Figure 3).
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factors. sRAGE can block the ligand–RAGE interaction on the cell surface, reducing the entry of
inflammatory cells into the joint cavity. Abbreviations: RAGE: receptor for advanced glycation end
products; sRAGE: soluble receptor for advanced glycation end products; MAPK: mitogen-activated
protein kinase; NF-κB: nuclear factor kappa-B; IκB: inhibitor of NF-κB; TNF-α: tumor necrosis factor
α; IL-1: interleukin-1; IL-17: interleukin-17.

3.3. The Role of the MAPK/NF-kB Signaling Pathway Regulated by RAGE in Pulmonary Fibrosis

When the lungs are injured, immune cells (such as monocytes, macrophages, T cells,
B cells, and NK cells) and some non-immune cells (such as endothelial cells, epidermal cells,
and fibroblasts) secrete a variety of inflammatory, profibrotic cytokines and chemokines,
leading to persistent inflammation in the lungs and accumulation of extracellular matrix, ul-
timately leading to pulmonary fibrosis disease. In the pathogenesis of idiopathic pulmonary
fibrosis, it is indispensable for epithelial cells to form myofibroblasts through epithelial–
mesenchymal transition (EMT) [62]. RAGE was found to be significantly expressed on
the membrane of alveolar macrophages, vascular smooth muscle cells, pulmonary en-
dothelia, and epithelial cells [63,64]. Considerable evidence has shown that the interaction
between RAGE and ligands is essential in pathological processes, such as inflammation
and fibrosis [65,66]. S100A12 is reported to be highly expressed in the lungs of patients
with acute respiratory distress syndrome, which activates pulmonary inflammation and
endothelial cells through the binding of RAGE, leading to an increase in fibrogenic growth
factor and the induction of epithelial–mesenchymal transformation [40,67]. A large amount
of HMGB1 can induce EMT in normal alveolar type II epithelial cells, although it is difficult
for alveolar type II epithelial cells without the RAGE genotype to produce EMT, suggesting
that HMGB1–RAGE–ligand interaction can induce the EMT process of alveolar type II
epithelial cells [68]. Through the stimulation of pulmonary interstitial cells in vitro, it was
found that S100A9 stimulation of fibroblasts can significantly increase the expression of in-
flammatory factors in a dose-dependent manner. Treatment with ERK1/2MAPK inhibitors,
anti-RAGE antibodies, and NF-κB inhibitors significantly downregulates S100A9-induced
fibroblast proliferation and inflammatory cytokine secretion. It was confirmed that S100A9
and RAGE can activate fibroblasts through ERK1/2, MAPK, and NF-κB signaling path-
ways [41]. In summary, S100 protein RAGE can mediate the secretion of inflammatory
factors and promote fibrosis through the MAPK pathway.

MAPK/NF-KB, as the first confirmed RAGE regulatory pathway, is also a classic
inflammatory pathway. Whether AGEs, HMGB1, or S100 protein family members, RAGE
classic ligands can activate the MAPK/NF-KB pathway and promote the occurrence and
development of SLE, RA, pulmonary fibrosis, and other immune diseases.

4. The Role of RAGE-Related Signaling Pathways in Alzheimer’s Disease
4.1. β-Amyloid Protein Regulates the RAGE-Related Signaling Pathway and Its Role in
Alzheimer’s Disease

AD is a neurodegenerative disease characterized by memory impairment, executive
dysfunction, and personality and behavioral changes. In recent years, an increasing number
of studies have found that AD is also an immune-related disease, and the inflammation
caused by the brain immune system can drive the deterioration of AD. However, its patho-
genesis has not been studied. The mainstream theory is that β-secretase and γ-secretase
on the mass membrane are cut sequentially at the N and C ends of the amyloid prebiotic
protein (APP) to form a β-amyloid peptide. The primary forms are Aβ40 and Aβ42 [69].
There are three different soluble forms of Aβ in the brain: haplotype Aβ, Aβ aggregate,
and filamentous Aβ [70]. The proportion of Aβ42 content increases and accumulates in the
patient’s brain to form neurofilaments and Aβ aggregates. Increasing evidence in recent
years shows that Aβ aggregates are the “culprit” of this neurodegenerative disease. The
deposited Aβ aggregates cause neurofibrillary tangles (NFTs) and senile plaques to form
in the brain. In contrast, NFTs and senile plaques can reduce the activity of neurons and
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cause neurotoxic damage, leading to inflammation of the nervous system. Studies have
shown that deposited Aβ aggregates can activate the expression of RAGE. Compared with
non-AD patients, the expression of RAGE in hippocampal neurons, astrocytes, microglia,
and endothelial cells was found to be significantly increased in AD patients [42,71]. In
addition, a series of experiments have shown that Aβ can cause neurotoxicity in mice,
inducing nerve apoptosis, which is enhanced by the coaction of Aβ and RAGE [43].

In experiments, Cuevas and colleagues found that after injecting Aβ into the hip-
pocampus of rats, the expression of RAGE increased [44], and the downstream pathway
protein NF-κB was also activated. Guglielmotto et al. found that two different AGEs can
upregulate the expression of Aβ-secretase BACE1 by binding to RAGE through inhibitor
treatment of neuroblastoma cells differentiated by SK-N-BE [72]. In Neuro-2a cells trans-
fected with RAGE-EGFP, RAGE-Aβ can activate signal transduction pathways, including
p38MAPK, and activate NF-κB and AP-1 proteins and promote the production of inflamma-
tory cytokines IL-6, TNF-α, and macrophage colony-stimulating factor (M-CSF), eventually
leading to an inflammatory response. In summary, the combination of RAGE on the nerve
cell membrane and Aβ can activate NF-κB to mediate the inflammatory response and play
an essential role in developing Alzheimer’s disease (Figure 4).
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Figure 4. RAGE-related signaling pathways in Alzheimer’s disease. After APP is converted to Aβ, on
the one hand, it combines with RAGE to activate the downstream MAPK/NF-κB pathway to release
inflammatory factors and damages nerve cells. On the other hand, Aβ binds to RAGE on the surface
of BBB cells, causing ERS, altering the permeability of the BBB, increasing the concentration of Aβ in
the central nervous system, and aggravating AD-related symptoms. Abbreviations: APP: amyloid
prebiotic protein; Aβ: amyloid β-protein; RAGE: receptor for advanced glycation end products;
GSK-3β: glycogen synthase kinase 3β; PERK: protein kinase R-like endoplasmic reticulum kinase;
eIF2α: eukaryotic translation initiation factor 2α; NOX: nitrogen oxide; NF-κB: nuclear factor kappa-B;
IκB: inhibitor of NF-κB; TNF-α: tumor necrosis factor α; IL-1β: interleukin-1β; IL-6: interleukin-6;
M-CSF: macrophage colony-stimulating factor.
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4.2. RAGE Regulates the Mechanisms Associated with Endoplasmic Reticulum Stress and Its Role
in Alzheimer’s Disease

Under normal circumstances, the blood–brain barrier (BBB) can play a protective role
and prevent Aβ in the blood from entering the central nervous system [45,48]. When AD
occurs, the expression of RAGE on cerebral microvessels increases significantly. After
injecting Aβ into the blood of AD model mice, it was found that Aβ was transported to
brain tissue in a process mediated by RAGE. Following anti-RAGE action, the transport
process was blocked. Through an LG-RAGE particular antibody blocking test and ap
radiotracer assay, it was ultimately confirmed that Aβ penetrated the BBB in a process
mediated by RAGE, a specific receptor on the vascular wall [73]. It was found that the
potential mechanism of AD blood–brain barrier destruction is the activation of endoplasmic
reticulum stress (ERS) in a dose-dependent manner [46].

The endoplasmic reticulum is an important location of protein processing in cells and
plays a vital role in the synthesis, folding, assembly, and modification of soluble proteins
and membrane proteins. When exogenous harmful substances disrupt the normal folding
reaction of proteins, many abnormal proteins accumulate in the endoplasmic reticulum,
triggering ERS.

Some studies have revealed that the RAGE-related signaling pathway can activate the
protein kinase R-like endoplasmic reticulum kinase (PERK) pathway in ERS to control the
apoptosis of human endothelial progenitor cells and affect the pathogenesis of cardiovas-
cular disease [74]. PERK is a type I transmembrane protein that exists in the endoplasmic
reticulum. It can phosphorylate the alpha subunit of eukaryotic translation initiation factor
2α (eIF2α) protein kinase. When unfolded or misfolded, proteins accumulate in the cell,
and the immunoglobulin heavy-chain binding protein (BiP) is released from PERK and
phosphorylates eIF2α. After phosphorylation, eIF2α can induce the expression of acti-
vating transcription factor 4 (ATF4), which activates the expression of unfolded protein
response (UPR) target genes and promotes apoptosis [47]. Chen also studied the potential
mechanism of the destruction of the blood–brain barrier in Alzheimer’s disease and found
that Aβ42-induced RAGE activates ERS in a dose-dependent manner [45]. When cells were
transfected with RAGE-siRNA, the endoplasmic reticulum stress markers decreased under
the induction of Aβ42. In summary, Aβ can activate endothelial cell ERS through RAGE
and increase the permeability of the blood–brain barrier. Therefore, the concentration of
Aβ in the central nervous system increases, aggravating the AD condition (Figure 4).

4.3. Regulation of RAGE-Related Signaling Pathway by S100B Protein and Its Role in
Alzheimer’s Disease

S100B is an essential member of the S100 protein family and is highly expressed in
astrocytes. Under the induction of some stimuli, astrocytes can release a certain amount of
S100B [49]. Through immunoblotting, EMSA ultrasonography, and reverse transcriptase-
polymerase chain reaction techniques, experiments have proven that micromolar S100B
can stimulate c-Jun N-terminal kinase (cJNK) phosphorylation by binding to RAGE and
activating nuclear AP-1/cJun in cultured human neural stem cell transcription. In addition,
Western blot, siRNA, and immunofluorescence analyses have shown that phosphorylated
cJNK induced by S100B can promote the formation of NFTs in AD.

Recent studies have revealed that S100B can protect LAN-5 nerve cells at the nanomolecular
level by upregulating antiapoptotic factor Bcl-2 and inhibiting the neurotoxic Aβ25–35 peptide,
which can reduce the level of Bcl-2 [75]. At this concentration, S100B binds to RAGE and
activates the downstream MEK-ERK1/2 pathway to stimulate the expression of survival-related
genes and produce an antiapoptosis effect. After adding the MEK inhibitor, the ability of
S100B to upregulate the expression of Bcl-2 was inhibited, which further confirmed the above
pathway. At high concentrations, for example, due to astrocyte death, damaged astrocyte
leakage, and protein clearance defects, when the intercellular concentration of S100B is expected
to be higher than that of 500 nM, S100B not only does not protect LAN-5 cells from neurotoxicity
from Aβ 25–35 peptide but also exerts neurotoxicity itself, which could further increase the
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neurotoxicity of Aβ 25–35 peptide. Furthermore, S100B was found to overactivate RAGE and
its downstream ERK1/2 pathway, causing oxidative stress and inducing neuronal death. In
summary, varying concentrations of S100B combined with RAGE play an opposite role in AD
by activating different signal pathways. A low concentration of S100B can protect nerve cells,
whereas low and high concentrations of S100B result in neurotoxicity.

4.4. The Mechanism of the RAGE-Related Pathway in AD

In addition to its neurotoxicity, which can activate inflammatory factors in nerve cells
through RAGE and induce nerve cell apoptosis, Aβ can also combine with RAGE on the
surface of endothelial cells to cause endoplasmic reticulum stress, which pathologically
increases the permeability of the blood–brain barrier, increases the concentration of Aβ in
the central nervous system, and further aggravates the injury of nerve cells. In addition, a
high concentration of S100B was found to produce certain neurotoxicity in combination
with RAGE. The combination of Aβ and S100B with RAGE shows that RAGE plays an
important role in the occurrence and development of AD.

5. Regulatory Mechanisms of Other RAGE-Related Signaling Pathways

As a multi-ligand receptor, RAGE plays a role in immune inflammatory diseases, such
as systemic lupus erythematosus and rheumatoid arthritis, by regulating the downstream
NF-κB pathway and promoting the occurrence and development of diabetes, cancer, and
aging. The roles of RAGE in nuclear factor E2-related factor 2 (Nrf2) pathway and au-
tophagy are summarized in Table 2 to clarify the mechanism of RAGE in diabetes, cancer,
and aging.

Table 2. Regulatory mechanisms of other RAGE-related signaling pathways and typical diseases involved.

Signal Pathway Ligand Changes in Cell Signaling Typical Disease References

Nrf2/Glo1 AGEs
Upstream

Glo1 catalyzes the conversion
of MGO to lactic acid, AGEs ↓ Diabetes [76]

Nrf2/HO-1 HMGB1 HO-1 inhibits the
desulfurization of HMGB1 Inflammatory diseases [77]

PI3K/AKT
AMPK/mTOR AGEs, Aβ

Downstream

Normal cell: AMPK/mTOR
↑PI3K/AKT ↓ Autophagy ↑
Tumor cell: AMPK/mTOR ↓
PI3K/AKT ↑ Autophagy ↓

Cancer [78–80]

PINK1/Parkin AGEs PINK1/Parkin ↑
Mitochondrial autophagy ↓ Senescence [81]

5.1. The Related Mechanism of Nrf2 Regulating the Expression of RAGE

Nrf2 is a redox regulator that plays a vital role in the physiological process of antioxidant
reactions [82]. Nrf2 binds to its inhibitory cytoplasmic protein Kelch-like epichlorohydrin-related
protein-1 (Keap1). When external stimuli stimulate cells, Nrf2 is dissociated from Keap1 and
transported to the nucleus to bind to ARE, activating the expression of antioxidant enzyme
genes to induce antioxidant stress and reduce inflammatory damage [83].

Nrf2 can regulate the activities of antioxidant enzymes and detoxifying enzymes, such
as glyoxylate 1 (Glo1) [84]. Methyl glyoxal (MGO) is the primary precursor for the forma-
tion of AGEs, and the content of AGEs largely depends on the degree of transformation
of MGO, whereas highly expressed and activated Glo1 can directly inhibit the formation
of AGEs by catalyzing the conversion of MGO to lactic acid [76]. Numerous studies have
shown that Glo1 overexpression can reduce AGE levels in diabetic model animals, inhibit
the AGE–RAGE signaling pathway, and antagonize oxidative stress [85]. Some studies
have shown that after intervention with the traditional Chinese medicine Eucommia ul-
moides, the free Nrf2 content in the kidneys of diabetic mice increased, and the expression
and activity of Glo1 protein increased significantly. In contrast, the expression of RAGE
decreased [86]. AGEs and MGO are reduced considerably, proving that Eucommia ul-
moides can improve the presentation of AGEs by activating the Nrf2-Glo pathway, thereby
reversing kidney damage induced by the AGE–RAGE signaling pathway. In addition,
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experiments have proven that malondialdehyde can increase the levels of Nrf2/HO-1 and
Glo and downregulate and reduce the levels of MGO to inhibit the formation of AGEs,
effectively preventing inflammation and diabetes. The role of the Nrf2/Glo1-RAGE sig-
naling pathway in inflammation, organ damage, and diabetes has attracted considerable
attention [87].

Nrf2/HO-1 can also affect the interaction between HMGB1 and RAGE by inhibiting
the oxidation of HMGB1, thereby regulating RAGE-related pathways. Heme oxygenase
1 (HO-1), a rate-limiting enzyme, plays an essential role in heme metabolism. HO-1 can
protect mammals from inflammation and oxidative damage by inducing the production
of carbon monoxide and biliverdin and their metabolite, bilirubin. Experimental studies
have revealed that HO-1 can regulate the expression of RAGE by inhibiting the secretion of
HMGB1. Extracellular HMGB1 is easily oxidized to form disulfide bonds between adjacent
cysteine molecules 23 and 45 on A-box. Disulfide HMGB1 stimulates the production of
proinflammatory cytokines by binding to RAGE receptors [77]. To antagonize the stimula-
tion of reactive oxygen species (ROS) and other harmful factors, Nrf2 and Keap1 dissociate
and activate downstream HO-1 to inhibit the oxidation of HMGB1 and indirectly regulate
RAGE-related pathways. Kawahara et al. found that Ume extract, a natural triterpenoid
extract from plum fruit, can inhibit the secretion of inflammatory HMGB1 by inducing
the activation of the Nrf2/HO-1 pathway in LPS-stimulated mouse macrophages [88].
Western blotting analysis further confirmed that plum fruit extract can induce Nrf2/HO-1
expression and inhibit macrophage HMGB1 secretion in a concentration-dependent manner.
Therefore, triterpenes can be used as a new drug for the targeted intervention in RAGE and
provide a new “first aid” therapy for septicemia and other systemic inflammatory diseases
caused by its related mechanisms (Figure 5).
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Figure 5. Nrf2 regulates the related pathways of RAGE expression. After being stimulated by
oxidative stress and other stimuli, Nrf2 breaks away from keap1 and deactivates Glo1, which can
reduce the production of AGEs, thereby regulating the level of RAGE expression. Similarly, after
Nrf2 is activated, it can activate its downstream HO-1 to exert its antioxidant effect, inhibit the
oxidation of HMGB1, and regulate the expression of RAGE. Abbreviations: ROS: reactive oxygen
species; Nrf2: nuclear factor E2-related factor 2; Keap1: Kelch-like epichlorohydrin-related protein-1;
Glo1: glyoxylate 1; HO-1: heme oxygenase 1; MGO: methyl glyoxal; AGEs: advanced glycation end
products; HMGB1: high-mobility group protein 1.
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5.2. Related Mechanisms of Autophagy Regulated by RAGE

Autophagy is an essential physiological process that removes damaged proteins
and organelles to achieve cell metabolism and renewal of some organelles. Autophagy
requires a large number of signaling pathways; the signal pathways formed between
phosphatidylinositol-3-hydroxylase (PI3K)/protein kinase B (AKT), AMPK, and mam-
malian target of rapamycin (mTOR) play a crucial role [89–91]. The activated PI3K/AKT
signaling pathway can activate the downstream mTOR pathway to reduce autophagy.
Furthermore, AMP-dependent protein kinase (AMPK) increases the level of autophagy by
inhibiting the expression of the mTOR pathway. In normal cells, RAGE binding to its lig-
ands can reduce the expression level of the PI3K/AKT signaling pathway and activate the
AMPK pathway to promote autophagy. Hou et al. found that AGEs can enhance the expres-
sion of Beclin 1 and LC3 in cardiomyocytes and increase the number of autophagy vacuoles.
However, after pretreatment with RAGE-siRNA, the expression of Beclin 1 and LC3II
in cardiomyocytes exposed to AGEs decreased, and the cell survival rate increased [78].
AGEs can inhibit PI3K/Akt/mTOR pathway expression through RAGE. When RAGE was
specifically inhibited, the expression of PI3K/Akt/mTOR increased, whereas the level of
autophagy decreased after the addition of PI3K inhibitor. This indicates that AGE–RAGE
can regulate autophagy by inhibiting the expression of the PI3K/AKT/mTOR signaling
pathway. SSM et al. found that after specific antibodies blocked RAGE, Aβ induced a
decrease in intracellular calcium, AMPK phosphorylation, and autophagosomes, whereas
overexpression of RAGE prolonged Aβ-induced AMPK phosphorylation and enhanced
the transformation rate of LC3 II, indicating that Aβ-RAGE interaction can amplify the
signal of autophagosome formation [79]. However, in tumor cells, RAGE is overexpressed.
RAGE can activate the PI3K/AKT pathway and reduce the expression of AMPK to in-
hibit autophagy. Li et al. found that RAGE in hepatocellular carcinoma cells promotes
the growth of tumor cells by negatively regulating the AMPK/mTOR signaling pathway,
thereby inhibiting autophagy [80]. A study by Kang et al. also revealed that RAGE on the
surface of pancreatic cancer cells can activate the PI3K/AKT pathway to inhibit autophagy
and promote tumor growth [92]. In recent years, targeted intervention in signal pathways,
such as RAGE-PI3K/AKT/mTOR and RAGE-AMPK/mTOR has provided new ideas for
treating tumor diseases.

RAGE can also regulate mitochondrial autophagy by regulating the PINK1/Parkin
pathway. It has been found that the binding of RAGE to AGEs on the surface of neonatal rat
cardiomyocytes can activate the PINK1/Parkin pathway, and the expression of PINK1 and
Parkin is significantly increased in a concentration-dependent manner. Still, the level of
mitochondrial membrane potential is decreased dramatically, indicating that mitochondria
are damaged [81]. In an attempt to further verify the process of mitochondrial autophagy
induced by aging through RAGE, researchers found that the expression of down-regulated
PINK1 and Parkin decreased in cardiomyocytes treated with mitochondrial autophagy
inhibitor rings, which was consistent with the results of adding RAGE-specific antibodies.
The results show that AGEs interact with RAGE to induce mitochondrial autophagy by
regulating the PINK1/Parkin pathway.

Under normal conditions, RAGE inhibits PI3K/AKT and activates the AMPK/mTOR
pathway to inhibit the regulatory molecule mTOR, promote autophagy, and complete the
important turnover of intracellular substances, whereas overexpressed RAGE activates
PI3K/AKT and inhibits the AMPK/mTOR pathway, inhibiting autophagy and promoting
the growth and reproduction of cancer cells. In summary, RAGE can affect autophagy in
many ways, but its mechanism is complex, so further research is needed to explore the role
of RAGE in the process of autophagy.

6. Targeted Therapies against RAGE for the Management of Immune Diseases

RAGE knockout mice appear to be healthy and develop normally, suggesting that
inhibition of RAGE is a safe therapeutic approach. Extensive studies in mice using various
RAGE inhibitors, mainly excess sRAGE decoys, showed no deleterious effects of RAGE
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inhibition. However, in vivo administration in humans may not be the ideal approach
for treating targeted RAGE. Because sRAGE is a large recombinant protein, producing
therapeutically available levels would be difficult and expensive. In addition, because
sRAGE is a ligand decoy, sRAGE administration prevents ligands from binding to receptors
that share ligands with RAGE. Due to the deficiency of sRAGE, small-molecule inhibitors
targeting the extracellular ligand binding site or, more recently, the intracellular signaling
domain of RAGE have been developed.

6.1. TTP488 and Derivatives

TTP488 is an orally available small-molecule inhibitor of RAGE. It is also known as PF-
04494700 or azeliragon, and its chemical name is 3-[4-[2-butyl-1-[4-(4-chlorophenoxy)phenyl]
imidazol-4-yl]phenoxy]-N,N-diethylpropan-1-amine [93]. Although most preclinical studies
on RAGE have focused on diabetic complications, cardiovascular disease, and cancer, most
clinical trial work on TTP488 has been conducted in AD cohorts [93,94]. TTP488 inhibits the
binding of multiple RAGE ligands, including AGEs, HMGB1, S100B, and Aβ. In a mouse
AD model, TTP488 administration was found to inhibit inflammatory signaling, neuronal
Aβ accumulation, and neurocognitive function [93,94]. In 2007, a large 18-month phase II
trial assigned 399 subjects with mild-to-moderate AD (NCT00566397) to low-dose, high-
dose, or placebo groups. The study was terminated at 6 months because the high-dose group
showed worsening cognitive measures. However, a follow-up analysis of the low-dose
group showed clinical benefit in slowing cognitive decline [95].

Various groups have developed new TTP488 derivatives by modifying the imidazole
ring, the hydrophobic side groups, and the aromatic core. Most studies testing derivatives
of TTP488 have been performed in preclinical models of AD, and inhibition of disease was
observed [96,97]. None of these derivatives have progressed to human clinical studies to date.

6.2. FPS-ZM1

Deane et al. screened a library of 5000 small molecules to generate a new class of
RAGE inhibitors for their ability to inhibit RAGE-Aβ interactions. A compound called
FPS-ZM1 blocked inflammatory signaling in the mouse brain, reduced Aβ accumulation,
and improved cognitive performance. Importantly, FPS-ZM1 caused no toxic side effects in
mice, even at doses of up to 500 mg/kg [98].

FPS-ZM1 has been explored in other mouse models of neuropathology. FPS-ZM1 was
found to reduce brain inflammation and Aβ production and improved cognitive function
in a rat model of neuroinflammation with AGEs injected into the hippocampus [99]. In
primary cultured rat microglia, FPS-ZM1 was found to inhibit AGE-induced inflammation
and reactive oxygen species [100,101]. Recently, studies have demonstrated that small-
molecule inhibitors of RAGE, including FPS-ZM1, can inhibit cancer progression and
metastasis. In vitro studies with highly metastatic breast cancer cells revealed that FPS-
ZM1 abrogated the excess invasion caused by RAGE. No effect was observed in terms of
cell viability with FPS-ZM1, suggesting that inhibiting RAGE with FPS-ZM1 affects its
migratory and invasive properties [102].

6.3. Other Inhibitors

Chondroitin sulfate and heparan sulfate strongly bind to RAGE and suppress lung
colonization by tumor cells. Polysulfide hyaluronan GlycoMira-1111 (GM-1111) was found
to inhibit interactions between RAGE and CML, HMGB1, and S100B and exhibited anti-
inflammatory activity [103,104]. S100-derived peptide (ELKVLMEKEL) was found to
compete for the RAGE site required to bind ligands, such as S100P, S100A4, and HMGB1,
and reduced RAGE-mediated NF-κB activation, inflammation, tumor growth, and metasta-
sis in different cancer cells [105]. In addition, peptides derived from the COOH-terminal
motif of HMGB1 were also found to bind RAGE, inhibit the interaction between RAGE
and HMGB1, and effectively suppress the pulmonary metastasis and invasion of tumor
cells [106].
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Critical issues remain to be addressed with respect to understanding RAGE-targeting
therapy and the long-term impact of RAGE blockade in humans. Future investigations are
required to improve understanding of the characteristics of efficient RAGE inhibitors to
develop a significant understanding of the impact of RAGE blockage.

7. Conclusions

According to current research, the role of RAGE in immune diseases is complex, and
it can bind to various ligands to play a role in many diseases. As a multimatching body on
the cell surface, RAGE can regulate multiple signaling pathways and participate in various
physiological and biochemical reactions when combined with the mating body, thus playing
an essential role the development various immune-related diseases. In addition, RAGE is
involved in a variety of signal pathways. For example, the Nrf2/RAGE signaling pathway
is critical in diabetes, septicemia, and other diseases. Autophagy regulated by RAGE plays
a vital role in cancer and postinjury repair and can be used as a target to monitor the
occurrence and development of cancer. There are many types of RAGE-related signaling
pathways, and their regulatory mechanisms are relatively complex, playing a vital role in
many diseases. Probing of RAGE-related signal pathways can provide new ideas to clarify
disease occurrence and development processes and provide new targets for diagnosis and
treatment of diseases. Therefore, there is much to be explored and clarified with respect to
the RAGE-related signaling pathway and its mechanism in various conditions.
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Abbreviations

Receptor for advanced glycation end products RAGE
Advanced glycation end products AGEs
High-mobility group protein 1 HMGB1
Amyloid β-protein Aβ

Soluble receptor for advanced glycation end products sRAGE
Endogenous secretory soluble RAGE esRAGE
Nuclear factor kappa-B NF-κB
Mitogen-activated protein kinase MAPK
Systemic lupus SLE
Rheumatoid arthritis RA
Epithelial–mesenchymal transition EMT
Alzheimer’s disease AD
Amyloid prebiotic protein APP
Neurofibrillary tangles NFTs
Macrophage colony-stimulating factor M-CSF
Blood–brain barrier BBB
Endoplasmic reticulum stress ERS
Protein kinase R-like endoplasmic reticulum kinase PERK
Eukaryotic translation initiation factor 2α eIF2α
Binding protein BiP
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C Jun N-terminal kinase cJNK
Activating transcription factor 4 ATF4
Nuclear factor E2-related factor 2 Nrf2
Kelch-like epichlorohydrin-related protein-1 Keap1
Glyoxylate 1 Glo1
Methyl glyoxal MGO
Heme oxygenase 1 HO-1
Reactive oxygen species ROS
Phosphatidylinositol-3-hydroxylase PI3K
Protein kinase B AKT
Mammalian target of rapamycin mTOR
AMP-dependent protein kinase AMPK
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