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Abstract

Background: Previous studies showed that the combination of an anti-Epidermal growth factor (EGFR) and a MEK-

inhibitor is able to prevent the onset of resistance to anti-EGFR monoclonal antibodies in KRAS-wild type colorectal

cancer (CRC), while the same combination reverts anti-EGFR primary resistance in KRAS mutated CRC cell lines.

However, rapid onset of resistance is a limit to combination therapies in KRAS mutated CRC.

Methods: We generated four different KRAS mutated CRC cell lines resistant to a combination of cetuximab (an anti-

EGFR antibody) and refametinib (a selective MEK-inhibitor) after continuous exposure to increasing concentration of

the drugs. We characterized these resistant cell lines by evaluating the expression and activation status of a panel of

receptor tyrosine kinases (RTKs) and intracellular transducers by immunoblot and qRT-PCR. Oncomine comprehensive

assay and microarray analysis were carried out to investigate new acquired mutations or transcriptomic adaptation,

respectively, in the resistant cell lines. Immunofluorescence assay was used to show the localization of RTKs in resistant

and parental clones.

Results: We found that PI3K-AKT pathway activation acts as an escape mechanism in cell lines with acquired resistance

to combined inhibition of EGFR and MEK. AKT pathway activation is coupled to the activation of multiple RTKs such as

HER2, HER3 and IGF1R, though its pharmacological inhibition is not sufficient to revert the resistant phenotype. PI3K

pathway activation is mediated by autocrine loops and by heterodimerization of multiple receptors.

Conclusions: PI3K activation plays a central role in the acquired resistance to the combination of anti-EGFR and MEK-

inhibitor in KRAS mutated colorectal cancer cell lines. PI3K activation is cooperatively achieved through the activation

of multiple RTKs such as HER2, HER3 and IGF1R.
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Background

Colorectal cancer (CRC) constitutes a global health

problem, ranking as the third most common cancer

worldwide [1]. Most deaths from CRC are from meta-

static disease, which stands as a not curable disease in

most cases. Metastatic CRC (mCRC) characterizes about

25% of patients at the time of diagnosis and about 25–

30% of patients during follow-up after locoregional ther-

apy [2]. Although cure is not achievable in the majority

of mCRC patients, overall survival improved dramatic-

ally in the past three decades thanks to the availability of

several chemotherapeutics and targeted agents [3–5].

Between the targeted agents available for mCRC,

anti-epidermal growth factor receptor (EGFR) monoclo-

nal antibodies (moAbs) such as cetuximab and panitu-

mumab play a prominent role in the therapeutic strategy

by blocking the activation of the EGFR and its down-

stream intracellular signals, the MAPK and the PI3K

pathways [6–8]. However, aberrant activation of down-

stream signaling pathways, especially those that result in

activation of MAPK signaling, such as KRAS, BRAF and

NRAS mutations, results in clinical resistance to

anti-EGFR-based therapy. These activating mutations

can be found either in anti-EGFR agents’ naive cancers

(primary resistance) or as a consequence to the exposure

of the malignancy to such agents (acquired resistance)

[9]. In particular, KRAS mutations are present in about

40% of all CRCs at the time of diagnosis and constitute

the main mechanism of primary resistance to anti-EGFR

agents [10]. For this reason, the detection of KRAS mu-

tations, as well as NRAS and BRAF mutations, predicts

a lack of response from anti-EGFR moAbs and is always

required before the therapy is started [3]. However,

though KRAS mutations are found in a wide range of

cancers across nearly all lineages, selective KRAS inhibi-

tors are not yet clinically available [11]. Therefore, re-

search has focused on the inhibition of downstream

effectors of KRAS oncoproteins in the MAPK pathway

[12]. BRAF inhibitors were shown to be ineffective in

treating KRAS-driven CRC because of their lack of ac-

tivity on KRAS-induced BRAF/CRAF dimers [13]. On

the other hand, MEK inhibitors are able to suppress

MAPK activation in KRAS-dependent tumours, but this

effect is transient as it evokes adaptations in MAPK sig-

naling [14]. In particular, MEK inhibition leads to the re-

lieve of MAPK-dependent negative feedback on the

pathway and consequential induction of RTK signaling

[15]. This readaptation requires higher concentration of

MEK inhibitors to achieve therapeutic response, with

great limitation to their clinical use due to poor toler-

ability, and explains the disappointing results in early

clinical studies exploring MEK inhibitors in

KRAS-mutated cancers [16]. Moreover, it was demon-

strated that PI3K activity is a main predictor of

MEK-inhibitor resistance in KRAS-driven colorectal

cancer [17, 18] and that the addition of a selective PI3K

inhibitor could reverse acquired resistance to

MEK-inhibition [19]. Although KRAS is able to directly

activate PI3K signaling by binding to p110-PI3K subunit,

there is increasing evidence that PI3K activation follow-

ing MEK inhibition is correlated to RTK activity, paving

the way to the use of RTK inhibitors in KRAS mutated

CRC [20]. With this respect, two different papers dem-

onstrated that co-targeting of EGFR and MEK over-

comes both acquired and primary resistance to

anti-EGFR agents in CRC cellular models [21, 22]. The

approach of targeting multiple knots on the same signal-

ing pathway, defined vertical suppression, was also

shown to be able to prevent the onset of resistance to

anti-EGFR monoclonal antibodies in CRC by intercept-

ing multiple mechanisms of acquired resistance to such

agents [23]. In the present study we have investigated

the mechanisms that eventually lead to resistance to the

vertical suppression of MAPK pathway through combin-

ation of EGFR and MEK inhibition in a cellular model of

primary resistance to anti-EGFR therapy constituted by

KRAS mutated CRC cell lines.

Materials and methods

Drugs and chemicals

The MEK1/2 inhibitor BAY-869766 (Refametinib) was

kindly provided by Bayer Pharma Italy; the PI3Kα inhibi-

tor GDC-0941 (Pictilisib) and the AKT-inhibitor

GDC-0068 (Ipatasertib) were purchased from Selleck-

chem. Drugs were dissolved in sterile dimethylsulfoxide

(DMSO) at 10 mM stock solution concentration and

stored in aliquots at − 20 °C. Cetuximab, an anti-EGFR

human-mouse chimeric moAb was kindly provided by

Merck Italy, Rome. Working concentrations were diluted

in culture medium just before each experiment.

Cell lines and generation of resistant cell lines

Human HCT116, HCT15, LOVO, SW480 CRC cancer

cell lines were obtained from the American Type Cul-

ture Collection (ATCC) and authenticated by IRCCS

“Azienda Ospedaliera Universitaria San Martino-IST

Istituto Nazionale per la Ricerca sul Cancro, Genova,”

Italy. Cells were grown in RPMI- 1640 (Lonza), supple-

mented with 10% FBS and 1% penicillin/streptomycin, in

a humidified incubator with 5% of carbon dioxide (CO2)

and 95% air at 37 °C and were routinely screened for the

presence of mycoplasma (Mycoplasma Detection Kit;

Roche Diagnostics). Resistant cell lines were generated

by exposing cell culture to increasing concentration of

cetuximab and BAY-879766 at a constant ratio of 1 μg/

ml:1 μmol/l.
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Proliferation assay and combination index

Cell proliferation was analysed by the 3-(4, 5-dimethy

lthiazol-2-yl)-5-(3-carboxymethxyphenyl)-2-(4sulfophe-

nyl)-2H-tetrazolium (MTT) assay. Cell suspensions

(500 μl) containing 2000 viable cells were plated in 48

multi-well plates. After 24 h, cells were treated with

different concentrations of drugs either as single

agents or in combination for 96 h. The IC50 and

Combination index (C.I.) values were determined by

using the Calcusyn program (Biosoft) and plotted in

dose response curves. Results represent the median of the

three experiments, each performed in quadruplicate.

Protein expression analysis

Protein lysates containing equal amount of proteins, mea-

sured by a modified Bradford assay (BIORAD, Hercules,

CA), were subjected to direct Western Blot (WB).

Immuno-complexes were dectected with the enhanced

chemiluminescence kit (ECL plus, Thermo Fisher Scientific,

Rockford, IL). We used the following antibodies from Cell

Signalling (Beverly, MA): anti-EGFR, anti-phospho-EGFR

(Tyr1068), anti-HER2, anti-phospho-HER2 (Tyr1248),

anti-HER3, anti-phospho-HER3 (Tyr1289), anti-IGF1R-

beta, anti-phospho-IGF1R-beta (Tyr1135), anti-p44/42

MAPK, anti-phospho-p44/42MAPK, anti-AKT, anti-phos-

pho-AKT (Ser 473), anti-AXL, anti-c-MET, anti-S6 riboso-

mal protein, anti-phospho-S6 ribosomal protein,

anti-4EBP1, anti-phospho-4EBP1, anti-vimentin, anti-E-

cadherin, anti-Snail. Anti-α-tubulin (internal loading con-

trol) was from Sigma (Sigma-Aldrich, St. Louis, MO). The

following secondary antibodies from Biorad were used: goat

anti-rabbit IgG and rabbit anti-mouse IgG. Each experi-

ment was done in triplicate.

Migration and invasion assay

Transwell chambers (6,5 mm diameter, 8 μm pore size

polycarbonate membrane, Corning) were used to evalu-

ate the migratory and invasion capacity of parental and

resistant cell lines. For the migration assays, 5 × 104 cells

were added into the upper chamber of the insert. For

the invasion assays, 1 × 105 cells were added into the

upper chamber of the insert pre-coated with Matrigel

(BD Bioscience). In both assays, cells were plated in

medium without serum, and medium containing 10%

FBS in the lower chamber served as chemo-attractant.

After incubation for 48 h and 72 h, respectively for the

migration and invasion assays, the cells that did not mi-

grate or invade through the pores were carefully wiped

out with cotton wool. Then the inserts were stained with

crystal violet.

Oncomine comprehensive assay

Samples from HCT116, HCT15 and LOVO parental and

resistant cell lines were analyzed by using a targeted

high-multiplex PCR-based NGS panel (OncoMine Com-

prehensive Assay) coupled with high-throughput se-

quencing using Ion Proton sequencer. DNA (20 ng) was

extracted using QIAamp DNA Mini Kit (Qiagen, Craw-

ley, West Sussex, UK) and RNA (10 ng) was extracted

RNA extraction was performed by the RNeasy Kit (Qia-

gen, Crawley, West Sussex, UK) following manufac-

turer’s instructions and then processed according to

manufacturer’s instruction. The panel screens 143 genes

and is able to detect 148 single-nucleotide variants, 49

insertions or deletions, 40 copy number aberrations and

a subset of gene fusions. The OncoMine Comprehensive

Assay analysis includes: 73 hotspot genes (hotspot cover-

age): ABL1, AKT1, ALK, AR, ARAF, BRAF, BTK, CBL,

CDK4, HEK2, CSF1R, CTNNB1, DDR2, DNMT3A,

EGFR, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FGFR1,

FGFR2, FGFR3, FLT3, FOXL2, GATA2, GNA11, GNAQ,

GNAS, HNF1A, HRAS, IDH1, IDH2, IFITM1, IFITM3,

JAK1, JAK2, JAK3, KDR, KIT, KNSTRN, KRAS, MAGOH,

MAP2K1, MAP2K2, MAPK1, MAX, MED12, MET,

MLH1, MPL, MTOR, MYD88, NFE2L2, NPM1, NRAS,

PAX5, PDGFRA, PIK3CA, PPP2R1A, PTPN11, RAC1,

RAF1, RET, RHEB, RHOA, SF3B1, SMO, SPOP, SRC,

STAT3, U2AF1, XPO1; CDS, 26 full genes: APC, ATM,

BAP1, BRCA1, BRCA2, CDH1, CDKN2A, FBXW7,

GATA3, MSH2, NF1, NF2, NOTCH1, PIK3R1, PTCH1,

PTEN, RB1, SMAD4, SMARCB1, STK11, TET2, TP53,

TSC1, TSC2, VHL, WT1; 49 copy number variations:

ACVRL1, AKT1, APEX1, AR, ATP11B, BCL2L1, BCL9,

BIRC2, BIRC3, CCND1, CCNE1, CD274, CD44, CDK4,

CDK6, CSNK2A1, DCUN1D1, EGFR, ERBB2, FGFR1,

FGFR2, FGFR3, FGFR4, FLT3, GAS6, IGF1R, IL6, KIT,

KRAS, MCL1, MDM2, MDM4, MET, MYC, MYCL,

MYCN, MYO18A, NKX2–1, NKX2–8, PDCD1LG2,

PDGFRA, PIK3CA, PNP, PPARG, RPS6KB1, SOX2,

TERT, TIAF1, ZNF217 and 22 fusion drivers: ALK, RET,

ROS1, NTRK1, ABL1, AKT3, AXL, BRAF, CDK4, EGFR,

ERBB2, ERG, ETV1, ETV4, ETV5, FGFR1, FGFR2,

FGFR3, NTRK3, PDGFRA, PPARG, RAF1.

RNA extraction and analysis

Total RNA was extracted using Trizol reagent (Life

Technologies). The RNA was quantified and analysed

for integrity using Nanodrop (Thermo Scientific, Wil-

mington, DE). Reverse transcriptase reaction was carried

out to convert 1 μg of isolated RNA into cDNA using

SensiFast reverse transcriptase (Bioline) according to the

manifacturer instruction. Expression levels of genes en-

coding for EGFR, HER2, HER3 and IGF1R were ana-

lyzed using Real time quantitative PCR. Gene-specific

primers were designed by using PRIMER EXPRESS soft-

ware (Applied Biosystems). Amplifications were con-

ducted using the SYBR Green PCR Master Mix (Applied

Biosystems). The thermal cycling conditions were
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composed of 50 °C for 2 min (stage 1) followed by a de-

naturation step at 95 °C for 10 min (stage 2) and then 40

cycles at 95 °C for 15 s and 60 °C for 1 min (stage 3). All

samples were run in duplicate, in 25 μL reactions using a

quant studio 7 flex (Applied Biosystems) and relative ex-

pression of genes was determined by normalizing to 18S,

used as internal control gene; to calculate relative gene

expression in value it was used the 2- ΔCt or 2- ΔΔCt

method. Nonspecific signals caused by primer dimers

were excluded by dissociation curve analysis and use of

non-template controls. Exact primer sequences are avail-

able upon request.

Microarray

RNA and DNA extraction were performed as previously

described. Agilent microarray analyses were performed

to assess baseline gene expression profile for HCT116

and LOVO parental cell lines and their resistant clones,

HCT116 CM-R and LOVO CM-R, using a one color la-

beling microarray system. Data were extracted from slide

image using Agilent Feature Extraction software (v.10.5).

The raw data and associated sample information were

loaded and processed by Gene SpringV R 11.53 (Agilent

Technologies, CA). For identification of genes signifi-

cantly altered in resistant cells, total detected entities

were filtered by signal intensity value (upper cut-off

100th and lower cut-off 20th percentile) and flag to re-

move very low signal entities. Data were analyzed using

Student’s t test (p < 0.05) with a Benjamani–Hochberg

multiple test correction to minimize selection of false

positives. Of the significantly differentially expressed

RNA, only those with greater than twofold increase or

twofold decrease as compared to the controls were used

for further analysis. The significance of the association

between the data set and the canonical pathway was

measured in two ways: (i) Ratio of the number of genes

from the dataset that map to the pathway divided by the

total number of genes that map to the canonical path-

way is displayed; (ii) Fisher’s exact test was used to cal-

culate a p value determining the probability that the

association between the genes in the dataset and the ca-

nonical pathway is explained by chance alone.

RNA interference

The small inhibitor RNAs (siRNAs) ErbB2/HER2,

ErbB3/HER3 and IGF1R were from Thermo-Fisher

(Thermo Fisher Scientific, Rockford, IL). The siCON-

TROL Non-targeting Pool (Dharmacon) was used as a

negative (scrambled) control. Cells were transfected with

100 nmol/L siRNAs using Hiperfect reagent (Qiagen)

following manufacturer’s instructions. The day before

transfection, cells were plated in 35mm dishes at 40% of

confluence in medium supplemented with 5% FBS with-

out antibiotics. Cells were harvested 72 h after

transfection. Western blot analysis for target protein ex-

pression was performed as described above.

Indirect immunofluorescence

Parental and resistant cell lines were fixed with 4% para-

formaldehyde for 10 min, permeabilized in 0.5% Triton

X-100 for 10 min and blocked in phosphate-buffered sa-

line buffer (PBS) supplemented with 3% bovine serum

albumin (BSA) for 30 min. After each step, the cells were

rinsed in PBS, incubated for 1 h at room temperature

with primary antibodies anti-EGF Receptor (Cell signal-

ing), anti-HER2 (Cell signaling) followed by incubation

with secondary antibodies Alexa Fluor 488 goat

anti-mouse IgG (ThermoFisher) or Alexa Fluor 532 goat

anti-rabbit IgG (ThermoFisher) for 30 min at RT. Cell

nuclei were stained with 4,6-diamidino-2-phenylindole

(DAPI). Samples were examined under the fluorescence

confocal microscope Zeiss LSM 700 (Zeiss, Oberkochen,

Germany), using a 60x oil immersion objective. Images

were acquired with a 1024 × 1024 pixels resolution.

Statistical analysis

The statistical analyses of in vitro and in vivo data were

carried out using Prism version 4.02 (GraphPad Soft-

ware, Inc). The Student t test was used to evaluate the

statistical significance of the results. All P values repre-

sent two-sided tests of statistical significance with P

value < 0.05.

Results

Establishment and characterization of human KRAS-

mutant CRC cell lines resistant to combined treatment

with cetuximab and refametinib

We first identified the half-maximal inhibitory concen-

tration (IC50) to the combination of the anti-EGFR

moAb cetuximab and the selective MEK1/2 kinase in-

hibitor BAY-879766 (refametinib) used at a fixed ratio in

order to achieve a synergistic effect as previously de-

scribed [22] in a panel of 4 different KRAS-mutated hu-

man CRC cell lines: HCT116, HCT15, LOVO, SW480.

Notably, two of these cell lines, also carry PIK3CA mu-

tations, respectively H1047R for HCT116 and E545K for

HCT15. Cell lines were subsequently cultured under

continuous exposure to increasing concentration of the

two drugs for 6–9 months, until the emergence of

cetuximab-MEK-inhibitor-resistant (CM-R) subclones.

IC50 for the drug combination is increased in the resist-

ant clones between 17 and 190-fold (Fig. 1a). An evident

modification of cellular morphology is associated to the

acquired resistance to cetuximab and refametinib (Fig.

1b). Protein expression of different epithelial and mesen-

chymal markers also changes between parental and re-

sistant clones (Fig. 1c). In particular, AXL levels – a

marker related to epithelial-mesenchymal transition –are
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Fig. 1 (See legend on next page.)
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strongly decreased in the resistant cell lines, while

c-MET levels decrease either in the mature (145 kDa,

lower band) or in the precursor form (pre-c-MET, 190

kDa, upper band) respectively in LOVO and SW480 re-

sistant cell lines, suggesting different underlying mecha-

nisms. On the other hand, though E-cadherin – a

common epithelial marker – is strongly increased both

in HCT116 and in HCT15 cell lines, the mesenchymal

marker Snail is decreased only in HCT116 resistant cell

lines, while it shows a clear increase in HCT15, LOVO

and SW480 resistant cell lines. Migration capability at

48 h is homogenously decreased across the 4 resistant

clones when compared to parental cell lines (Fig. 1d).

Moreover, the invasion ability of the resistant clones is

significantly decreased, as evidenced by the Matrigel in-

vasion assay (Fig. 1e). To further characterize the resist-

ant phenotype in the established cell lines, we also

performed OncoMine Comprehensive Assay that is able

to identify a wide range of common genetic alterations

in form of single-nucleotide variants, insertions or dele-

tions, copy number aberrations and a gene fusion. This

assay revealed no new genetic events and no significant

difference in mutational frequency in the resistant cell

lines, compared to parental cell lines (Table 1).

Emergence of AKT pathway activation upon vertical

suppression of EGFR and MEK in human KRAS-mutant

CRC cell lines

In order to assess the mechanisms responsible for the on-

set of resistance to the vertical suppression of the EGFR/

MAPK pathway, intracellular signaling molecules were

studied using immunoblot assay. The activation of PI3K/

AKT pathway and their downstream effectors S6RP and

4eBP1 is a consistent event across the resistant clones

(Fig. 2a). To this purpose, selective PI3Kα and AKT1/2 in-

hibition were obtained with, respectively, pictilisib

(GDC-0941) and ipatasertib (GDC-0068). With the excep-

tion of HCT15, whose known PIK3CA E545K mutation

predicts a better response to AKT-inhibitors, no signifi-

cant difference in sensitivity to PI3K/AKT inhibitors were

observed between resistant and parental cell lines (Fig.

2b). Nevertheless, PI3K/AKT pathway blockade using

pictilisib is able to revert resistance to EGFR and MEK

combined inhibition, inducing a shift in cellular mortality,

when used in combination with cetuximab and refameti-

nib according to IC50 ratio, as described in the

Chou-Talalay model [24] (Fig. 2c). Combination index

analysis indicates that pictilisib is synergistic when used

with cetuximab and refametinib, as shown in Fig. 2d.

Role of receptor tyrosine kinases (RTK) upregulation and

transcriptional adaptation in resistant cell lines

To investigate the putative mechanism of activation

of PI3K axis in our model, receptor tyrosine kinases

expression and activation status were studied using

quantitative real-time PCR and immunoblot, respect-

ively (Fig. 3a-b). Upregulation of HER family recep-

tors and IGF1R is a common event in resistant

clones, albeit with several differences. In particular,

EGFR, HER2, HER3 and IGF1R result transcription-

ally upregulated in HCT116 and SW480 resistant

clones compared to parental cell lines, while no major

differences are evident in HCT15 resistant cell lines

(Fig. 3a). Western blot analysis showed an increased

phosphorylation of EGFR, HER2, HER3 and IGF1R,

which is particularly evident in HCT116 CM-R (Fig.

3b). Moreover, we analyzed baseline microarray gene

expression of parental HCT116 and LOVO cell lines

as compared to resistant clones, with the aim to iden-

tify genes or pathway related with the resistant

phenotype. In this respect, we found 1755 and 658

genes upregulated and downregulated respectively in

HCT116 CM-R cell line and 1177 and 625 genes up-

regulated and downregulated in LOVO CM-R cell line

(t-test, p < 0,05) (data not shown). Among the upreg-

ulated genes, there was a consistent genetic dysregu-

lation in genes involved in EGFR/ErbB, insulin and

MAPK signaling pathways (Table 2).

Finally, transient knock-down of HER2 and IGF1R,

commonly associated to PI3K/AKT pathway activation

[25], showed to decrease the activation levels of both

AKT and MAPK in the resistant cell lines, while HER3

knockdown is not sufficient to suppress the activation of

AKT and MAPK (Fig. 3c).

(See figure on previous page.)

Fig. 1 Establishment and characterization of cetuximab-MEKi-resistant (CM-RES) human colorectal cancer cell lines. a, sensitivity of parental and resistant

cell clones to the combination of cetuximab and the MEK-inhibitor BAY-86-9766 (refametinib) at fixed ratio 1 μg/ml:1 μmol/L after 96-h treatment,

evaluated for proliferation by MTT assay, as described in the Materials and Methods. All the results are average ± SD of 3 independent experiments, each

done in triplicate. The table summarizes the values of the IC50 and the relative fold-change in resistant versus parental cell lines. *: p< 0.05. b, morphologic

changes in resistant cell lines compared to parental cell lines. Magnification 200X, reference bar: 20 μm. c, western blot analysis of protein involved in

epithelial-mesenchymal transition in baseline condition. d, Transwell migration assay at 48 h of parental cells compared to resistant clones. Bars indicate

fold-change ± SD compared to parental control. Each assay was performed in triplicate. Magnification: 10X. ***: p< 0.001. e, Transwell matrigel invasion

assay at 72 h of parental cells compared to resistant clones. Bars indicate fold-change ± SD compared to parental control. Each assay was performed in

triplicate. Magnification: 10X. ***: p< 0.001
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Mechanisms of activation of RTK in resistant cell lines

With the aim to figure out the mechanism of activation

of RTKs in resistant cell lines compared to parental cell

lines, the role of ligands and receptor interaction was ex-

plored. To this respect, microarray analysis showed that,

beside the upregulation of the receptors, ligands upregu-

lation is also evident in our model. In particular, TGFα

transcription is doubled in both cell lines analyzed, while

epiregulin and amphiregulin result upregulated by 4 and

almost 5-fold, respectively, in LOVO CM-R and

HCT116 CM-R (Table 2). Moreover, we performed in-

direct immunofluorescence, in order to analyze the dis-

tribution of RTKs in our resistant cell lines. In

particular, in HCT116 CM-R line, the distribution of

EGFR and HER2 is prevalent on the cell membrane,

where their co-localization is evident at multiple focal

planes, as confirmed by z-stacking of the images (Fig. 4).

Discussion

Understanding the molecular mechanisms that lead to

resistance to anticancer therapies is critical in order to

develop more effective therapies. KRAS mutations play a

prominent role in the landscape of anti-EGFR therapy

primary and acquired resistance and still constitute an

unmet therapeutic need, since no specific treatment is

currently available to the relevant subgroup of mCRC

patients that carry these mutations [3]. After the initial

enthusiasm brought by the availability of several MEK

inhibitors, it was promptly shown that MEK inhibition

alone is not capable to suppress MAPK pathway in

RAS-mutated cancers and that co-targeting of upstream

receptors might be a way to avoid pathway reactivation

[26]. Two seminal studies published in 2014 [21, 22]

have shown that vertical suppression by combined

blockade of EGFR and MEK is able to overcome primary

and acquired resistance to anti-EGFR agents, including

the case of KRAS mutations. Both studies conclude that,

although significant and sustained, the response to verti-

cal suppression of the EGFR/MAPK pathway is only

transient and thus limited by the onset of acquired re-

sistance. In agreement with these findings, in the present

work we have generated 4 different human

KRAS-mutated CRC cell lines resistant to the combin-

ation of the anti-EGFR cetuximab and the

MEK-inhibitor refametinib. These resistant clones ex-

hibit different morphological characteristics compared to

parental cell lines, but do not show new genetic alter-

ations underlying resistance onset. Activation of AKT

and its downstream effectors is a consistent feature

across the four different cell lines considered in this

work, though pharmacologic inhibition of either PI3Kα

or AKT1/2 using pictilisib and ipatasertib, respectively,

is able to revert the resistance phenotype in our model.

Nevertheless, PI3K/AKT axis constitutes the principal

survival pathway in the resistant cell lines, as combin-

ation of pictilisib with cetuximab and refametinib re-

stores the sensitivity to the vertical suppression to the

levels of parental cell lines, irrespectively of the PIK3CA

mutational status, and is significantly synergistic as evi-

denced by the combination index analysis. This

phenomenon is probably underpinned by a wide tran-

scriptional rearrangement in these cell clones that allows

for a rapid switch towards the PI3K/AKT pathway only

when EGFR/MAPK pathway is fully suppressed, as a

consequence of prolonged MAPK suppression and

c-myc persistent deregulation, as suggested in another

publication on breast cancer [27]. Previous studies have

showed how, in KRAS-mutant CRC, PI3K activation is

mediated by RTK signaling, despite KRAS being capable

of cross-activating PI3K [20, 28, 29], for this reason we

investigated the status of multiple receptors. Among the

upregulated and activated receptors in our system,

EGFR, HER2, HER3 and IGF1R are the ones able to acti-

vate effectively PI3K signaling. In fact, both HER2 and

IGF1R knockdown is associated to decreased AKT and

MAPK phosphorylation, demonstrating that they are ac-

tually responsible for both PI3K/AKT and MAPK path-

way activation. On the other hand, even if HER3

Table 1 Oncomine Comprehensive Assay

Name DNA RNA

MUT CNV Fusion

HCT116 CTNNB1: p.S45del (c.133_135delTCT) (52,1%); PIK3CA: p.H1047R (c.3140A > G) (45,8%) NOTCH1: p.D1609_R1633del25
(c.4826_4900del75) (33,3%); KRAS: p.G13D (c.38G > A) (53,2%)

– –

HCT116
CM-R

CTNNB1: p.S45del (c.133_135delTCT) (41%); PIK3CA: p.H1047R (c.3140A > G) (43%) NOTCH1: p.D1609_R1633del25
(c.4826_4900del75) (32%); KRAS: p.G13D (c.38G > A) (49%)

– –

HCT 15 PIK3CA: p.E545K (c.1633G > A) (100%); KRAS: p. p.G13D (c.38G > A) (52,4%); TP53: p.S241F (c.722C > T) (49,2%) – –

HCT15
CM-R

PIK3CA: p.E545K (c.1633G > A) (100%); KRAS: p. p.G13D (c.38G > A) (51%); TP53: p.S241F (c.722C > T) (48%) – –

LoVo FBXW7: p.R505C (c.1513C > T) (45%); KRAS: p. p.G13D (c.38G > A) (69%); – –

LoVo CM-R FBXW7: p.R505C (c.1513C > T) (49,6%); KRAS: p. p.G13D (c.38G > A) (78%); – –

The analysis of 148 single nucleotide variants, 49 copy number variations and 22 fusion drivers was negative for new genetic events in resistant vs parental

cell lines
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upregulation and activation are clearly evidenced, its

knockdown is not able to suppress the activation of

PI3K/AKT and MAPK pathways; in this context it can

be postulated that in the absence of HER3, HER2 het-

erodimerization with EGFR, as clearly shown in our sys-

tem (Fig. 4), is able to compensate the activation of the

downstream PI3K and MAPK pathways. Moreover,

microarray data evidence how not only RTKs but also li-

gands in the HER family pathway are upregulated in the

resistant cell lines analyzed, suggesting the existence of

feedback mechanisms that lead to autocrine loops and

sustain the activation of different RTKs, as previously ev-

idenced by other authors in different models [30, 31].

The transcriptional rearrangement that is ultimately

responsible for RTK-PI3K axis activation also involves

cellular shape and motility. In our model, cell lines that

become resistant to the combination of anti-EGFR and

MEK-inhibitor display increased epithelial features when

compared to parental cell lines. Although resistance to

therapy is commonly associated to the more aggressive

mesenchymal phenotype, it was previously demonstrated

that the unbalance between RAS/MAPK and PI3K/AKT

signaling in favor of the latter decreases the EMT poten-

tial in cancer cells, even in presence of EMT inductors

such as Snail [32]. This might be the cause of the dis-

crepancy between resistance to therapy and a more

prominent epithelial phenotype in resistant clones. In

fact, on the functional level, resistant clones show a

(See figure on previous page.)

Fig. 2 Intracellular pathways and selective inhibition of PI3K/AKT axis. a, western blot analysis of intracellular transducers and their phosphorylation

status at baseline conditions in parental versus resistant cell lines; AKT and its downstream effectors S6RP and 4EBP1 result activated preferentially in

CM-RES clones. Tubulin was used for normalization of protein extract content. b, sensitivity of parental and resistant cell clones to treatment with the

selective PI3Kα inhibitor pictilisib (GDC-0941) or the selective AKT1/2 inhibitor ipatasertib (GDC-0068) after 96-h treatment (range 0,05–10 μmol/L)

evaluated for proliferation by MTT assay, as described in the Materials and Methods. All the results are average ± SD of 3 independent experiments,

each done in triplicate. *: p < 0.05. c, combination of cetuximab and refametinib (BAY-86-9766), used at the fixed ratio 1 μg/ml:1 μmol/L, with pictilisib

(GDC-0941), used at the IC50 ratio, as described in the Chou-Talalay model of synergism. Values on the X-axis refer to cetuximab and refametinib.

Cetuximab:Refametinib:Pictilisib ratios are, respectively: 16 μg/ml:16 μmol/L:1 μmol/L for HCT116 CM-R, 150 μg/ml:150 μmol/L:1 μmol/L for HCT15 CM-R,

2 μg/ml:2 μmol/L:1 μmol/L for LOVO CM-R, 2 μg/ml:2 μmol/L:1 μmol/L for SW480 CM-R. d, Combination index (C.I.) analysis of the combination

between cetuximab, refametinib and pictilisib in the resistant cell lines at different Effective Doses (EDs). CI < 1 indicates synergism, while CI < 0.5

indicates strong synergism

Fig. 3 Receptor tyrosine kinase (RTK) expression. a, quantitative RT-PCR on transmembrane receptors in HCT116, SW480 and HCT15 resistant cells

compared with parental cell clones. Bars indicate fold-change compared to parental control. ***: p < 0.001. b, western blot analysis of RTKs and

their phosphorylation status at baseline conditions in parental versus resistant cell lines. Tubulin was used for normalization of protein extract

content. c, western blot analysis at 72 h after silencing of IGF1R, HER2 or HER3, showing the level of phosphorylation of the downstream effectors

AKT and MAPK. Tubulin was used for normalization of protein extract content
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decreased migration and invasion potential. Finally, the

model depicted in Fig. 5 illustrates how different mecha-

nisms cooperatively converge on PI3K/AKT pathway ac-

tivation when EGFR/MAPK pathway is inhibited:

upregulation and activation of different receptors of the

HER family and IGF1R, increased heterodimerization of

these receptors, upregulation of HER and IGF family

ligands.

Conclusions

The data presented in this work increase our under-

standing of the molecular mechanisms that lead to ac-

quired resistance to targeted therapies in CRC. We have

shown how transcriptional adaptation is ultimately re-

sponsible for PI3K activation upon vertical suppression

of the EGFR/MAPK pathway through the upregulation

and cooperative activation of different RTKs in a

Table 2 Significant upregulated genes in resistant cell lines

HCT116 CM-R vs HCT116 LOVO CM-R vs LOVO

Gene Name Gene
Symbol

Fold
change

Gene Name Gene
Symbol

Fold
change

Neurofibromin 1 NF1 7,860,121 Insulin-like growth factor binding protein 7 IGFBP7 786,601

Erb-b2 receptor tyrosine kinase 3 ERBB3 6,631,199 Insulin receptor substrate 2 IRS2 7,395,454

Epidermal growth factor receptor EGFR 5,149,977 Amphiregulin AREG 4,963,224

E-cadherin CDH1 3,811,482 Epidermal growth factor receptor EGFR 455,673

Erbb2 interacting protein ERBB2IP 3,587,709 Epiregulin EREG 4,104,191

Insulin induced gene 2 INSIG2 3,514,022 Insulin induced gene 1 INSIG1 3,779,914

Insulin induced gene 1 INSIG1 2,569,083 Insulin induced gene 2 INSIG2 3,444,767

Erb-b2 receptor tyrosine kinase 2 ERBB2 2,387,238 Vimentin VIM 290,101

Mitogen-activated protein kinase kinase kinase
10

MAP3K10 2,319,185 E-cadherin CDH1 2,866,793

V-akt murine thymoma viral oncogene
homolog 2

AKT2 2,270,916 V-akt murine thymoma viral oncogene
homolog 3

AKT3 2,849,459

Transforming growth factor alpha TGFA 2,015,933 Transforming growth factor alpha TGFA 2,341,766

Insulin receptor substrate 2 IRS2 2,009,206 ERBB receptor feedback inhibitor 1 ERRFI1 2,141,185

Microarray analysis on HCT116 and LOVO resistant vs parental cell lines show recurrent upregulations of genes involved in HER, Insulin and AKT signaling

Fig. 4 Heterodimerization of RTK. Indirect immunofluorescence for EGFR (green) and HER2 (red) and their merge with DAPI in HCT116 vs HCT116

CM-R; z-stacking analysis reveals co-localization (yellow dots) of the two receptors on cell membranes at multiple focal planes electively in

HCT116 CM-R cells
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preclinical model of KRAS-mutated colorectal cancer.

This data, taken together, explain why vertical suppres-

sion of EGFR/MAPK pathway has only a transient effect

in KRAS-driven colorectal cancers and stimulate new re-

search on the best treatment approach for this aggressive

cancer type, encouraging further evaluation of novel

combination strategies including PI3K inhibitors.
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