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INTRODUCTION 

The two important enabling characteristics of cancer cells 

are uncontrolled proliferation and loss of programmed 

cell death (enhanced survival). These processes are 

tightly controlled by the discrete integration of signaling 

cascades that translate extracellular and intracellular cues 

into specific output responses. The signaling pathways 

are often initiated on binding of ligand to the extracellular 

domain of a receptor. This is followed by recruitment of 

adaptor proteins or kinases that activate an intracellular 

cascading network of protein and lipid intermediaries 

producing a cellular response. Alterations in these 

pathways in cancer cells by mutation, amplification/ 

deletion, chromosomal translocation, over expression, or 

epigenetic silencing lead to constitutive activation or 

suppression of signaling. We will review the major signal 

transduction cascade well known as the receptor tyrosine 

kinase pathway, focussing on their common alterations in 

human cancers and their clinical implications and 

therapeutics. 

Receptor tyrosine kinase signaling  

Receptor tyrosine kinases (RTK) include a family of 

transmembrane cell surface receptors that transduce 

extracellular signals internally in to the cell. These play a 

role in cell growth, survival and/or cellular phenotypes.
1,2

 

Growth factors bind to the extracellular ligand binding 

domain of RTKs and induce dimerization of two receptor 
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monomers, juxtaposing the intracellular tyrosine kinase 

domains of each monomer.
3,4

 This dimerization  results in 

transphosphorylation of tyrosine residues within the 

cytoplasmic domains. They recruit a variety of 

intracellular proteins through Src homology 2 (SH2) 

domains.
5
 Each domain is part of a larger adaptor protein. 

Recruitment of signaling intermediaries to the plasma 

membrane facilitates their interaction with membrane-

bound proteins responsible for stimulating a diverse array 

of downstream pathways. Approximately 20 classes of 

RTKs have been defined based on growth factor 

specificity. 

Epidermal growth factor receptor signaling  

 In 1978, the epidermal growth factor receptor (EGFR) 

was identified as the cell surface binding site for EGF.
6
 

Subsequently tyrosine phosphorylation was identified, 

which had potential implication in oncogenesis.
7,8

 The  

amino acid sequence of EGFR was  homologous to the 

avian erythroblastosis virus erbB oncogene, which 

potentially induces erythroleukemia.
9,10

 The EGFR class 

of RTKs comprises four receptor proteins encoded by 

four genes: EGFR (ERBB1), HER2/neu (ERBB2), HER3 

(ERBB3), and HER4 (ERBB4).  Clinically important 

EGFR ligands include EGF, transforming growth factor 

(TGF)–α and heparin-binding (HB)-EGF among many 

others.
11,12

 However specific ligand for HER2 has not yet 

been identified. HER2 is activated through heterodimer 

formation with other ligand-bound receptors preferably 

with EGFR.
13

 These heterodimers are more stable than 

EGFR homo dimers. They have a longer duration of 

action, a lower rate of endocytosis which slows 

dissociation of EGF from EGFR along with increased 

recycling to the cell surface.
14-16

 

HER2-HER3 hetero dimers possess the most potent 

mitogenic activity among the other combinations.
17 

HER3 

does not have intrinsic kinase activity and preferentially 

forms hetero dimers with HER2.
18

 

EGFR mutations are found in 10% to 50% of non–small 

cell lung cancers. 80% of these are Kinase domain 

deletions (exon 19) and mutations (exon 21).
19,20 

Overexpression of wild-type EGFR due to gene 

amplification is seen  in non– small cell lung, breast, 

gastric, colorectal, and head and neck cancers.
21,22 

HER 

over expression is seen in 30% of breast cancers.
23

 In 

glioblastoma multiforme, the extracellular domain of 

EGFR is deleted expressing a constitutively activated  

truncated mutant protein (EGFRvIII).
24,25

 

Targeted agents include gefitinib and erlotinib, both of 

which are used for the treatment of non-small cell lung 

cancers that harbor activating EGFR kinase mutations.
26 

Cetuximab, binds to the extracellular domain of EGFR 

and competitively inhibits ligand binding, is approved for 

the treatment of colorectal and head and neck cancers.
27-29

 

Trastuzumab binds to the extracellular domain of HER2 

is used in the treatment of breast cancers that display 

HER2 overexpression. Pertuzumab binds to the 

dimerization domain resulting in impaired dimer 

formation.
30

 Lapatinib is used in combination with 

capecitabine in HER2-overexpressing advanced or 

metastatic breast cancer who have progressed on 

trastuzumab and certain classes of chemotherapy.
31

 

Mechanisms of resistance include overexpression of other 

HER kinase family members and/or ligands, phosphatase 

and tensin homolog (PTEN) loss, and the expression of a 

truncated HER2 protein lacking the extracellular antibody 

binding site.
32

 Addition of trastuzumab to chemotherapy 

compared with chemotherapy alone is associated with 

improved overall survival in patients with HER2-

overexpressing esophagogastric cancer.
33

 

Insulin and insulin-like growth factor–1 receptor 

signaling  

The insulin receptor exists as two isoforms.
34

 The IGF1 

receptor (IGF1R) can dimerize with either of the insulin 

receptor isoforms or with itself. The insulin receptor is 

stimulated by insulin or insulin-like growth factor–2 

(IGF2), whereas IGF1R can be activated by either IGF1 

or IGF2.
35,36

 After ligand binding, IGF1R dimerizes and 

undergoes transphosphorylation, leading to activation of 

downstream  RAS-RAF-mitogen-activated protein kinase 

(MAPK) and the PI3K-AKT-mammalian target of 

rapamycin (mTOR) cascades.
37

  

Amplification of the IGF1R gene locus has been 

identified in colon, pancreatic, and lung cancers. 

Sarcomas often have either increased expression of the 

IGF1 and IGF2 ligands or decreased insulin-like growth 

factor binding protein-3 expression (Ewing sarcoma), 

which results in increased IGF1 levels in the tumor 

microenvironment.
38

 Gastrointestinal stromal tumors 

(GISTs) lacking KIT and platelet-derived growth factor 

receptor (PDGFR) mutations also commonly harbor 

IGF1R amplification.
39

 IGF1R overexpression has also 

been observed in up to 44% of breast tumors and may 

mediate resistance to HER2-directed therapies.
40

 

The insulin receptor family members anaplastic 

lymphoma kinase (ALK) and ROS1 were also recently 

implicated in tumorigenesis.
41,42 

In NSCLC, there is 

expression of an EML4- ALK fusion protein in 2% to 5% 

of patients.
43

 Who often exhibit dramatic radiographic 

responses to crizotinib, an inhibitor of the ALK, ROS1, 

and MET tyrosine kinases.
44

 EML-ALK fusions are 

found in a mutually exclusive pattern with EGFR kinase 

domain mutations.
45,46

 

Platelet-derived growth factor receptor signaling  

PDGF signaling implicated in organ development, 

including lung, intestinal epithelial folding and 

glomerular capillary tuft formation. They also promote 

angiogenesis, wound healing, and erythropoiesis.
47 

Four 

isoforms of PDGF have been identified: PDGF-A, -B, -C, 
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and -D.
48

 Its receptor subtype PDGFR-α inhibit 

chemotaxis, whereas PDGFR-β stimulate chemotaxis 

within fibroblasts and smooth muscle cells.
49

 

Excess autocrine secretion of PDGF is noted in 

glioblastoma and sarcomas, while gain-of-function 

mutations that cause constitutive tyrosine kinase 

activation are seen in gastrointestinal stromal tumors.
50 

Translocation of either the PDGF or PDGFR genes are 

found in dermatofibrosarcoma protuberans, chronic 

myelomonocytic leukemia, and hypereosinophilic 

syndrome) and PDGFR gene amplification are seen in 

glioblastoma.
51-54 

PDGFR-α mutations are found in about 

10% of KIT wild-type GISTs. The D842V mutation seen 

in about two thirds of PDGFR-α activating mutation is 

resistant to inhibition by imatinib. Dermatofibrosarcoma 

protuberans shows overexpression of PDGF-β and 

subsequent stimulation of PDGFR signaling. 

Imatinib is also approved for use in patients with KIT 

mutant GISTs and Philadelphia chromosome–positive 

hematologic cancers.
55

 The KIT RTK is a member of the 

type III RTK family that includes PDGFR and Fms- like 

tyrosine kinase-3 (FLT3).
56,57

 Stem cell factor (SCF) is 

the ligand for KIT.
58-61

 Hot-spot mutations in exons 9 and 

11 of KIT have been identified in  GISTs and 

melanomas.
62-65

 

The FLT3 receptor, a member of the RTK class is 

involved in the development of normal hematopoietic 

cells. Internal tandem duplication within exons 14 and 15 

of the FLT3 gene is found in one third of acute 

myelogenous leukemias (AMLs) associated with a poor 

prognosis.
66

 

Fibroblast growth factor receptor signaling  

Fibroblast growth factors (FGFs) bind to the extracellular 

domain of the FGFRs  inducing FGFR dimerization and 

transphosphorylation of intracellular tyrosine residues 

and activation of multiple downstream signaling proteins 

in the same manner as previously described for other 

RTKs. Unique to the FGFR signaling complex is FGFR 

substrate 2 (FRS2), an adaptor protein that binds to 

specific phosphotyrosines on the intracellular domain  

also serving as a docking site for the Grb2-Sos adaptor 

complex which finally activates the RAS/RAF/MAPK 

pathway. It also activates PI3K/AKT/MTOR pathway by 

a different site specific interaction on docking protein.  

Activating mutations within FGFR3 occur in up to 70% 

of non- muscle invasive bladder cancers and in 15% of 

patients with advanced urothelial tumors.
66,67

 FGFR3 

mutations are commonly located within the extracellular 

domain and promote ligand-independent receptor 

dimerization through formation of an aberrant disulfide 

bridge between two receptor monomers stabilizing and 

activating the downstream complex.
68 

Up to 15% of 

multiple myelomas harbor an intergenic 4;14 

translocation between the FGFR3 gene and the 

immunoglobulin heavy chain locus Approximately 10% 

of diffuse-type gastric cancers display FGFR2 gene 

amplification.
69,70

 Autocrine and paracrine FGF ligand 

secretion has been reported to occur in a subset of 

melanomas and prostate cancers, respectively.
71,72

 

The close structural similarity between these RTKs has 

made development of FGFR selective inhibitors 

challenging. To date, anti-FGFR antibodies have not 

entered clinical testing, although preclinical studies have 

shown promising antitumor effects in urothelial cancer 

(both FGFR3 wild-type and mutant) and t (4;14) express- 

ing multiple myeloma cell lines.
73

 

RET signaling 

The RET (rearranged during transfection) protein is a 

RTK important for the normal development of the kidney 

and the enteric nervous system.
74,75 

RET is expressed 

predominantly on the surface of neural crest tissues, and 

glial-derived neurotrophic factors (GDNFs) serve as  its 

ligands. Intracellular tyrosine residue specificity has sub 

functions like serving as a docking site for the STAT3 

transcription factor, activation of focal adhesion kinase 

promoting cell migration and metastatic spread. 

Additional pathways diverging are MAPK, PI3K/ AKT, 

and phospholipase C-γ pathways which promote cellular 

proliferation and survival.
76

 

Germline RET mutations are the basis for the multiple 

endocrine neoplasia type 2 syndromes who are noted to 

develop familial medullary thyroid carcinomas.
77

 

Sporadic medullary thyroid carcinomas are much more 

common, and up to 60% of such tumors harbor somatic 

mutations in RET. Vandetanib, an oral inhibitor of RET, 

EGFR, and VEGFR, was recently approved by the FDA 

for the treatment of patients with advanced medullary 

thyroid cancer.
78 

Cabozantinib, an oral, multitargeted TKI 

that inhibits RET, VEGFR2, and MNNG HOS 

transforming gene (MET) is being evaluated in  

unresectable, locally advanced, or metastatic medullary 

thyroid carcinoma.
79

 

Vascular endothelial growth factor signaling  

Six vascular endothelial growth factor (VEGF) ligands 

have been identified, VEGF-A, -B, -C, and -D, along 

with placental growth factor 1 and 2.
80

 VEGF-A enhances 

vascular permeability and stimulates endothelial cell 

proliferation, resulting in new blood vessel formation. 

VEGFRs are receptor tyrosine kinases that possess an 

extracellular domain with seven immunoglobulin-like 

regions, a transmembrane domain, and an intracellular 

tyrosine kinase domain.VEGF-A, VEGF-B, and placental 

growth factor all bind VEGFR1, but the exact role of 

VEGFR1 in tumor angiogenesis has yet to be fully 

elucidated. Evidence shows that it can act as a decoy 

receptor that prevents ligand-mediated stimulation of 

VEGFR2.VEGFR2 is considered the primary receptor 

through which VEGF exerts its angiogenic effects.
81
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Bevacizumab, by binding to free VEGF and blocking its 

association with VEGFR, has been approved in 

combination with chemotherapy in metastatic colorectal 

and nonsqua-mous NSCLCs.
82,83

 It has also clinically 

documented activity in  glioblastoma and metastatic renal 

cell carcinoma.
84,85

 Sorafenib and sunitinib are 

multitargeted TKIs with nanomolar potency for 

VEGFR2. Sunitinib is used in the treatment of metastatic 

renal cell carcinoma, GISTs, and pancreatic 

neuroendocrine tumors.
86 

Sorafenib has been approved 

for the treatment of liver and renal cell cancers.
87,88

 

Pazopanib is approved for the initial treatment of 

metastatic renal cell carcinoma and in cytokine-pretreated 

patients,  while axitinib is approved in the second-line 

setting after failure of prior systemic therapy.
89,90

  

Resistance mechanisms include the activation of 

redundant signaling pathways that promote angiogenesis, 

the recruitment by tumors of bone marrow derived 

endothelial proenitor cells, increased pericyte density 

around existing blood vessels that enhances vascular 

growth and survival, and the ability of tumor cells to 

invade surrounding stroma to co-opt additional blood 

supply.
91

  

Hepatocyte growth factor receptor signaling  

The hepatocyte growth factor receptor (HGFR or MET) 

is encoded by the MET gene.
92

 Upon binding of 

hepatocyte growth factor (HGF) to the extracellular 

portion of MET, receptor dimerization occurs, followed 

by transphosphorylation.  Adaptor proteins like  GRB2 

and GAB1 promotes the activation of the MAPK and 

PI3K/AKT signaling pathways.
93

 MET can also activate 

CDC42 and p21-activated kinase, concerned with 

regulation of cytoskeletal proteins , integrin expression 

and activation finally controlling cell migration. 

EGFR activation can stimulate MET signaling, and 

resistance to EGFR inhibitors in some lung cancers is 

known to occur due to MET gene amplification.
94

 

Germline mutations of MET are found in hereditary 

papillary renal cell carcinomas.  MET overexpression is 

observed in sporadic papillary cancers, as well as 

collecting duct carcinomas.
95

 MET amplification is 

associated with a worse prognosis in lung and gastric 

cancers, and expression of MET and HGF are 

unfavorable prognostic biomarkers in liver, kidney, 

colorectal, and gastric cancers.
96 

Studies suggest an 

improvement in progression-free survival with the 

addition of anti-MET antibodies to an EGFR inhibitor in 

patients whose tumors display MET overexpression.
97

  

CONCLUSION 

We know that mutational and epigenetic alterations 

induce constitutive activation of a wide array of signaling 

pathways in human tumors. Since major drug 

development efforts are presently being focused on the 

development of targeted inhibitors of oncogene-activated 

signaling pathways, a detailed understanding of these 

normal physiological pathways along with their 

dysregulation in cancer will be required of both basic 

cancer researchers and practicing clinical oncologists for 

betterment of mankind suffering. Hence with this 

requirement in mind we have written this article to 

highlight some of the most important signal transduction 

pathways i.e. receptor tyrosine signaling pathways. 
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