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Porcine epidemic diarrhea coronavirus (PEDV) has significantly damaged America’s pork industry. Here we investigate the re-
ceptor usage and cell entry of PEDV. PEDV recognizes protein receptor aminopeptidase N from pig and human and sugar core-
ceptor N-acetylneuraminic acid. Moreover, PEDV infects cells from pig, human, monkey, and bat. These results support the idea
of bats as an evolutionary origin for PEDV, implicate PEDV as a potential threat to other species, and suggest antiviral strategies
to control its spread.

Porcine epidemic diarrhea coronavirus (PEDV) causes large-
scale outbreaks of diarrhea in pigs and an 80 to 100% fatality

rate in suckling piglets (1–3). Since 2013, PEDV has swept
throughout the United States, wiped out more than 10% of Ame-
rica’s pig population in less than a year, and significantly damaged
the U.S. pork industry (4–6). No vaccine or antiviral drug is cur-
rently available to keep the spread of PEDV in check. PEDV be-
longs to the � genus of the coronavirus family (7, 8), which also
includes porcine transmissible gastroenteritis coronavirus (TGEV),
bat coronavirus 512/2005 (BtCoV/512/2005), and human NL63
coronavirus (HCoV-NL63). Although both PEDV and TGEV in-
fect pigs, PEDV is genetically more closely related to BtCoV/512/
2005 than to TGEV, leading to the hypothesis that PEDV origi-
nated from bats (9).

Receptor binding and cell entry are essential steps in viral in-
fection cycles, critical determinants of viral host range and tro-
pism, and important targets for antiviral interventions. An enve-
lope-anchored spike protein mediates coronavirus entry into
cells. The spike ectodomain consists of a receptor-binding sub-
unit, S1, and a membrane fusion subunit, S2. S1 contains two
domains, an N-terminal domain (S1-NTD) and a C-terminal do-
main (S1-CTD), both of which can potentially function as recep-
tor-binding domains (RBDs) (Fig. 1A) (10, 11). The ability of
coronavirus RBDs to recognize receptor orthologs from different
species is one of the most important determinants of coronavirus
host range and tropism (8, 12–14). HCoV-NL63 S1-CTD recog-
nizes human angiotensin-converting enzyme 2 (ACE2), whereas
TGEV S1-CTD recognizes porcine aminopeptidase N (APN), and its
S1-NTD recognizes two sugar coreceptors, N-acetylneuraminic acid
(Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) (15–18). Us-
age of sugar coreceptors is linked to the enteric tropism of coro-
naviruses (18, 19). It has been shown that PEDV uses porcine APN
as its receptor (20). However, it is not known whether PEDV rec-
ognizes APN from other species or whether it uses sugar corecep-
tors. Addressing these questions will be critical for understanding
the host range, tropism, and evolutionary origin of PEDV, for
evaluating its potential risk to other species, particularly humans,
and for developing effective vaccines and antiviral drugs to curb
the spread of PEDV in pigs and to other species.

To characterize the receptor usage of PEDV, here we identified
the two S1 domains of PEDV based on the sequence similarity
between PEDV and TGEV S1 subunits (Fig. 1B). The S1-NTD and
S1-CTD of PEDV cover residues 19 to 252 and residues 509 to 638,
respectively. However, expression of the two domains individu-
ally gave low yields. Instead, we expressed and purified a longer
fragment (residues 19 to 638) using a previously described proce-
dure (21, 22). This fragment contains both of the S1 domains and
is termed S1-NTD-CTD (Fig. 2A). For comparison studies, we
prepared TGEV S1-NTD-CTD (residues 17 to 675) using the
same procedure. We also expressed and purified human and por-
cine APN as previously described (23, 24). These purified recom-
binant proteins were subsequently used in biochemical studies.

We investigated the receptor binding capabilities of PEDV S1-
NTD-CTD. First, using a dot blot hybridization assay as previ-
ously described (24), we showed that PEDV S1-NTD-CTD binds
both porcine and human APN efficiently (Fig. 2B). Thus, both
porcine and human APN serve as efficient receptors for PEDV. In
contrast, TGEV S1-NTD-CTD binds porcine APN much more
tightly than it binds human APN (Fig. 2B). Second, using the dot
blot hybridization assay as previously described (25, 26), we dem-
onstrated that PEDV S1-NTD-CTD binds bovine and porcine
mucins, both of which contain a mixture of different types of
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sugar (Fig. 2C). Treatment of mucins with neuraminidase re-
moved part of the coated sugars, reducing the binding by PEDV
S1-NTD-CTD. Hence, sugar serves as a coreceptor for PEDV. As a
comparison, TGEV S1-NTD-CTD also binds these mucins. Third,
using a glycan screen array as previously described (26), we iden-
tified Neu5Ac as the type of sugar most favored by PEDV (Fig. 2D;

see also Table S1 in the supplemental material). Taken together,
PEDV uses both porcine and human APNs as its protein receptors
and Neu5Ac as a sugar coreceptor, whereas TGEV uses porcine
APN and sugar, but not human APN, as its receptors.

To further understand the receptor usage and also to investi-
gate the cell entry of PEDV, we performed a PEDV spike-mediated
pseudovirus entry (27). Retroviruses pseudotyped with PEDV
spike (i.e., PEDV pseudoviruses) efficiently entered MDCK (ca-
nine kidney) cells exogenously expressing human or porcine APN,
and these entries could be blocked by anti-APN antibody (Fig.
3A). As a control, PEDV pseudoviruses could not enter MDCK
cells not expressing human or porcine APN, consistent with a
previous report that MDCK is nonpermissive to PEDV infection
(20). In contrast, TGEV pseudoviruses efficiently entered MDCK
cells exogenously expressing porcine APN but not those express-
ing human APN. Additionally, PEDV pseudoviruses efficiently
entered both PK-15 (pig kidney) and Huh-7 (human lung) cells
that endogenously express porcine and human APN, respectively
(28, 29), and these entries could be blocked by anti-APN antibody
and mucins (Fig. 3B and C). In contrast, TGEV pseudoviruses
efficiently entered PK-15 cells but not Huh-7 cells. These data
collectively confirmed that human and porcine APN and sugar
serve as receptors for PEDV and play important roles in PEDV
spike-mediated cell entry, whereas porcine APN and sugar, but
not human APN, are receptors for TGEV.

To further examine PEDV entry into host cells, we carried out

FIG 1 PEDV spike protein. (A) Domain structure of PEDV spike. It contains a
receptor-binding S1 subunit, a membrane fusion S2 subunit, a single-pass trans-
membrane anchor (TM), and a short intracellular tail (IC). S1 contains an N-ter-
minal domain (S1-NTD) and a C-terminal domain (S1-CTD). S2 contains the
fusion peptide (FP), heptad repeat 1 (HR1), and heptad repeat 2 (HR2), all of
which are essential structural elements for the membrane fusion process. (B)
Amino acid sequence identities between PEDV spike and the spikes from TGEV,
BtCoV/512/2005, and HCoV-NL63 in different regions. GenBank accession num-
bers are AGO58924.1 for PEDV spike, CAA29175.1 for TGEV spike, ABG47078.1
for BtCoV/512/2005 spike, and AAS58177.1 for HCoV-NL63 spike.

FIG 2 PEDV spike binds porcine APN, human APN, and sugar receptors. (A) SDS-PAGE analysis of recombinant PEDV S1-NTD-CTD and TGEV S1-NTD-
CTD. Both proteins were fused to a C-terminal human IgG1 Fc tag. The gel was stained using Coomassie blue. Numbers at the left are molecular masses (in
kilodaltons). (B) Dot blot hybridization assay showing the interactions between PEDV or TGEV S1-NTD-CTD (with a C-terminal human IgG1 Fc tag) and
porcine APN (pAPN) or human APN (hAPN) (with a C-terminal His6 tag) using a procedure as previously described (24). APN-binding S1-NTD-CTDs were
detected using antibodies against their C-terminal Fc tag and subsequently subjected to enzymatic color reactions. Bovine serum albumin (BSA) was used as a
negative control. (C) Dot blot hybridization assay showing the interactions between PEDV or TGEV S1-NTD-CTD and sugar moieties on mucin-spotted nitrocellulose
membranes using a procedure as previously described (25). Mucin was either mock treated or treated with neuraminidase (New England BioLabs Inc.). Sugar-binding
S1-NTD-CTDs were detected using antibodies against their C-terminal Fc tag and subsequently subjected to enzymatic color reactions. (D) A glycan screen array was
performed to identify the type(s) of sugar most favored by PEDV S1-NTD-CTD (with a C-terminal Fc tag) using a procedure as previously described (26). A glycan
library composed of 609 different natural and synthetic mammalian glycans (see Table S1 in the supplemental material) was screened for PEDV S1-NTD-CTD binding.
Glycan-binding S1-NTD-CTD was detected using antibodies against its C-terminal Fc tag. The readout was described arbitrarily as relative fluorescence units (RFU).
Among these glycans, N-acetylneuraminic acid (Neu5Ac) shows the highest binding affinity for PEDV S1-NTD-CTD.
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live-PEDV infection in the following cell lines: PK-15 (pig kid-
ney), ST (pig testis), Huh-7 (human liver), MRC-5 (human lung),
Vero CCL-81 (monkey kidney), and Tb1-Lu (bat lung) cells. To
this end, PEDV strain Ohio VBS2 was isolated from a piglet in
Ohio, USA, and propagated in Vero CCL-81 cells using a proce-
dure as previously described (30). Vero CCL-81-adapted PEDV
was used to infect each of the above-named cell lines at a multi-
plicity of infection (MOI) of 1.0. The results showed that PEDV
efficiently infects cells from pig, human, monkey, and bat (Fig. 4).

It is worth noting that whereas pseudovirus entry is determined by
receptor recognition and cell entry, the infection efficiency of live
PEDV in cell culture is determined not only by receptor recogni-
tion and cell entry but also by postentry factors, such as viral
replication and release (31).

PEDV is a highly pathogenic and lethal pig coronavirus. This
study investigated how PEDV recognizes host receptors from dif-
ferent species and how it infects cells from different species. First,
we verified that PEDV recognizes porcine APN and infects pig

FIG 3 PEDV spike-mediated pseudovirus entry into host cells. PEDV spike- and TGEV spike-pseudotyped retroviruses were produced and used to infect cells
using a procedure as previously described (27). Trypsin was not included in the pseudovirus entry assay. The cells being infected were MDCK cells exogenously
expressing human APN (hAPN), porcine APN (pAPN), or an empty vector (A), PK-15 cells (B), and Huh-7 cells (C). For antibody inhibition, cells were
preincubated with 20 �g/ml anti-human APN antibody (Santa Cruz Biotechnology) for 1 h at 37°C before pseudovirus infection. For mucin inhibition, PEDV
spike- or TGEV spike-pseudotyped retroviruses were preincubated with 500 �g/ml porcine or bovine mucin before they were used to infect cells. The
pseudovirus entry efficiency was characterized as luciferase activity accompanying the entry. Error bars indicate standard errors of the means (SEM) (n � 4).

FIG 4 PEDV infections in cell culture. PEDV strain Ohio VBS2 was used to infect different cell lines at an MOI of 1.0 using a procedure as previously described
(30). Trypsin (5 �g/ml) was included in the cell culture medium to facilitate live-PEDV infections. Twenty-four hours postinoculation, cells were fixed with 4.0%
(vol/vol) paraformaldehyde and 0.2% (vol/vol) glutaraldehyde. PEDV was detected with fluorescein isothiocyanate (FITC)-labeled mouse anti-PEDV N protein
antibody and observed under a fluorescence microscope.
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cells. Second, for the first time to our knowledge, we showed that
PEDV recognizes a sugar coreceptor, Neu5Ac, which explains the
enteric tropism of PEDV. Because TGEV also recognizes porcine
APN and Neu5Ac, PEDV and TGEV are evolutionarily closely
related despite the relatively low sequence similarity in their spikes
(Fig. 1B). Third, we demonstrated that PEDV infects bat cells,
providing evidence that PEDV originated from bats. Finally, un-
like TGEV, which does not use human APN as its receptor, PEDV
recognizes human APN and infects human cells. Thus, neither
receptor recognition nor other host cellular factors (e.g., cellular
restrictions of viral replication) pose a hurdle for PEDV to infect
humans. It remains to be seen whether systemic factors (e.g., the
host immune system) can prevent or clear in a timely manner
PEDV infections in humans. Nevertheless, these results suggest
that PEDV may be a potential threat to other species, including
humans. Overall, our study provides insight into the host range,
tropism, and evolution of PEDV.

Our study also has implications for the development of antivi-
ral strategies against PEDV. The S1-NTD-CTD fragment as iden-
tified in this study may serve as a subunit vaccine candidate.
Monoclonal antibodies against S1-NTD-CTD may serve as im-
munotherapeutic agents to block PEDV attachment to both the
APN receptor and the sugar coreceptor. In addition, sugar or
sugar analogues may serve as antiviral drugs to block PEDV at-
tachment to its sugar coreceptor. The development of these anti-
viral strategies is urgent because of the damaging impact that
PEDV exerts on the U.S. pork industry and the potential threat
that PEDV poses to other species.
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