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I. Introduction

A. Overview

Extracellular purines (adenosine, ADP, and ATP) and
pyrimidines (UDP and UTP) are important signaling
molecules that mediate diverse biological effects via cell-
surface receptors termed purine receptors. In this re-
view particular emphasis is placed on the discrepancy

between the pharmacological properties of native and
recombinant receptors for these agents.

There are two main families of purine receptors, aden-
osine or P1 receptors, and P2 receptors, recognizing pri-
marily ATP, ADP, UTP, and UDP. Adenosine/P1 recep-
tors have been further subdivided, according to
convergent molecular, biochemical, and pharmacological
evidence into four subtypes, A1, A2A, A2B, and A3, all of
which couple to G proteins. Based on differences in mo-
lecular structure and signal transduction mechanisms,
P2 receptors divide naturally into two families of ligand-
gated ion channels and G protein-coupled receptors
termed P2X and P2Y receptors, respectively; to date

b Abbreviations: ACh, acetylcholine; ADP, adenosine 59-diphos-
phate; AMP, adenosine 59-monophosphate; ANAPP3, arylazidoamin-
opropionyl ATP; Ap3A, P1,P3-diadenosine triphosphate; Ap4A,
P1,P4-diadenosine tetraphosphate; Ap5A, P1,P5-diadenosine penta-
phosphate; Ap6A, P1,P6-diadenosine hexaphosphate; APEC, 2-[(2-
aminoethylamino)carbonylethylphenylethylamino]-59-N-ethylcarbox-
amido adenosine; APNEA, N-[2-(4-aminophenyl) ethyl] adenosine;
ATP, adenosine 59-triphosphate; A3P5P, adenosine-39-phosphate-59-
phosphosulfate; ATPgS, adenosine 59-O-(3-thiotriphosphate); BzATP,
39-O-(4-benzoyl)benzoyl ATP; cAMP, adenosine 39,59-cyclic monophos-
phate; CGRP, calcitonin gene-related peptide; CGS 21680, 2-[p-(2-
carbonyl-ethyl)-phenylethylamino]-59-N-ethylcarboxamidoadenosine;
CHO, chinese hamster ovary; CNS, central nervous system; CPA, N6-
cyclopentyladenosine; DIDS, 4,49-diisothiocyanatostilbene-2,29-
disulfonate; DPCPX, 1,3-dipropyl-8-cyclopentylxanthine; EDRF, endo-
thelium-derived relaxing factor; EDHF, endothelium-derived
hyperpolarizing factor; GRK, G protein-coupled receptor specific kinase;
IB-MECA, N6-(3-iodobenzyl)-59-(N-methylcarbamoyl)adenosine; IP3,
inositol 1,4,5-trisphosphate; KFM 19, (6)-8-(3-oxocyclopentyl)-1,3-
dipropylxanthine; MAPK, mitogen-activated protein kinase; a,b-

meATP, a,b-methylene ATP; b,g-meATP, b,g-methylene ATP; 2Me-
SATP, 2-methylthio ATP; mRNA, messenger RNA; NECA, N-ethylcar-
boxamidoadenosine; NF023, symmetrical 39-urea of 8-(benzami-
do)naphthalene-1,3,5-trisulfonic acid; PKC, protein kinase C; PLA2,
phospholipase A2; PLC, phospholipase C; PLD, phospholipase D; PNS,
peripheral nervous system; PPADS, pyridoxalphosphate-6-azophenyl-
29,49-disulfonic acid; R-PIA, (R)N6-phenylisopropyl adenosine; RNA, ri-
bonucleic acid; SCG, superior cervical ganglion; suramin, 8-(3-benz-
amido-4-methylbenzamido)-naphthalene-1,3,5-trisulfonic acid; 8-SPT,
8-(p-sulfophenyl)theophylline; TM, transmembrane; UDP, uridine 59-
diphosphate; UTP, uridine 59-triphosphate; XAC, xanthine amine con-
gener.
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seven mammalian P2X receptors (P2X1–7) and five
mammalian P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6,
P2Y11) have been cloned, characterized, and accepted as
valid members of the P2 receptor family. As correlates
between cloned and endogenous receptors are estab-
lished, the structural subdivision will replace an earlier
system of subclassification identifying endogenous P2X,
P2Y, P2U, P2T, and P2Z receptors principally according to
their pharmacological profiles. A prominent issue ad-
dressed in this review is the apparent mismatch of phar-
macological data in biological tissue relating to the P2
receptor subtypes classified on the basis of molecular
structure. While it is logically satisfying to base receptor
subclassification on amino acid sequencing where differ-
ences of 30 to 40% are generally regarded as justification
for subtyping, it would seem that differences in sequence
of less than 5% (even single point mutations) can result
in substantial differences in pharmacological profile.
Thus, receptor heterogeneity among species, together
with receptor coexpression and the possible expression
of new receptor subtypes that have not yet been cloned,
complicates interpretation of pharmacological responses
in some tissues. Thus, it will become apparent in the
present review that, at least with the use of currently
available, largely unselective agonists and antagonists,
some response profiles do not fit those expected for the
known P2 receptor subtypes.

B. Historical Perspective

Extracellular purines and pyrimidines have impor-
tant and diverse effects on many biological processes
including smooth muscle contraction, neurotransmis-
sion, exocrine and endocrine secretion, the immune re-
sponse, inflammation, platelet aggregation, pain, and
modulation of cardiac function. The concept of purines
as extracellular signaling molecules was instigated by
Drury and Szent-Györgyi in 1929, in a comprehensive
report showing that adenosine and adenosine 59-mono-
phosphate (AMP), extracted from heart muscle, have
pronounced biological effects, including heart block, ar-
terial dilatation, lowering of blood pressure, and inhibi-
tion of intestinal contraction. Gillespie, in 1934, drew
attention to the structure-activity relationships of ade-
nine compounds, showing that deamination greatly re-
duces pharmacological activity, and that removal of the
phosphates from the molecule influences not only po-
tency, but also the type of response. Removal of phos-
phates was shown to increase the ability of adenine
compounds to cause vasodilatation and hypotension,
and ATP caused an increase in rabbit and cat blood
pressure that was rarely or never observed with AMP or
adenosine. Furthermore, ATP was shown to be more
potent than AMP and adenosine in causing contraction
of guinea-pig ileum and uterus (Gillespie, 1934). This
was the first indication of different actions of adenosine
and ATP and, by implication, the first indication of the
existence of different purine receptors.

Early investigations into the effects of adenosine and
ATP were made on a variety of tissues, but particularly
the heart and vasculature (Gaddum and Holtz, 1933;
Emmelin and Feldberg, 1948; Folkow, 1949; Green and
Stoner, 1950). Initial studies on the effects of extracel-
lular UTP also focused on its cardiovascular effects
(Hashimoto et al., 1964; Boyd and Forrester, 1968;
Urquilla, 1978; Sakai et al., 1979). Other early lines of
purine research concerned the effects of purines on
platelet aggregation (Born, 1962) and on mast cells
(Cockcroft and Gomperts, 1980). Diverse responses to
extracellular purines and pyrimidines have now been
documented in a wide range of biological systems, from
single cells to whole organisms, and include smooth
muscle contraction, neurotransmission in the peripheral
and central nervous system, exocrine and endocrine se-
cretion, the immune response, inflammation, platelet
aggregation, pain, and modulation of cardiac function
(Burnstock and Kennedy, 1986; Gordon, 1986; Seifert
and Schultz, 1989; Burnstock, 1990; Olsson and Pear-
son, 1990; Ralevic and Burnstock, 1991a; Jacobson et al.,
1992b; Dubyak and el-Moatassim, 1993; Dalziel and
Westfall, 1994; Fredholm, 1995; Burnstock and Wood,
1996; Ongini and Fredholm, 1996; Sebastiâo and Ri-
beiro, 1996).

Insight into the physiological roles of extracellular
purines and pyrimidines comes from studies of their
biological sources and the stimuli for their release. In
this respect, an important line of research stemmed
from studies showing that adenosine is released from
the heart during hypoxia to play an important role in
reactive hyperemia (Berne, 1963; Gerlach et al., 1963).
The general hypothesis of coupling of purine release to
metabolic demands via local regulation of blood flow has
been applied to other tissues and includes the release of
adenine nucleotides, particularly ATP, from skeletal
muscle during contraction (Boyd and Forrester, 1968;
Forrester and Lind, 1969).

Reports of ATP release from sensory nerves in the
rabbit ear (Holton and Holton, 1953; Holton, 1959) were
the first in a major line of research concerned with
purines as neurotransmitters. ATP was detected in the
venous perfusate following antidromic stimulation of the
rabbit auricular nerve to elicit vasodilatation of the ear
capillary bed, and both antidromic vasodilatation and
vasodilatation to arterial infusion of ATP (but not that to
other agents) were blocked by cholinesterase inhibitors
(Holton and Holton, 1953; Holton, 1959). It is now
known that ATP is an important neurotransmitter or
cotransmitter and adenosine an important neuromodu-
lator in both the peripheral and central nervous systems
(see Stone, 1991; Burnstock, 1990; Edwards and Gibb,
1993; Fredholm, 1995). There are also hints that ade-
nine dinucleotides may play neurotransmitter or neuro-
modulator roles in the central nervous system (Pintor
and Miras-Portugal, 1995b).
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Adrenal chromaffin granules (Cena and Rojas, 1990),
platelets (Born and Kratzer, 1984; Gordon, 1986), mast
cells (Osipchuk and Cahalan, 1992), erythrocytes (For-
rester, 1990; Ellsworth et al., 1995), basophilic leuko-
cytes (Osipchuk and Cahalan, 1992), cardiac myocytes
(Forrester, 1990), fibroblasts (Grierson and Meldolesi,
1995b), and endothelial (Ralevic et al., 1991a, 1991c,
1995b; Bodin et al., 1992) and epithelial cells (Enomoto
et al., 1994; Ferguson et al., 1997) are important sources
of purines that can be released under physiological and
pathophysiological conditions, which may act on the pu-
rine receptors associated with these or neighboring cells.
Adenine dinucleotides are released from secretory gan-
ules of thrombocytes, chromaffin cells and neurons, and
may represent a novel class of signaling molecules
(Hoyle, 1990; Ogilvie, 1992; Ogilvie et al., 1996). Not
enough is known about the sources and release of pyri-
midines, which limits our understanding of the role
played by the widely distributed receptors that are ac-
tivated by pyrimidines. However, steps toward resolving
this are being made with the demonstration that UTP is
released by physiologically relevant stimuli from cul-
tured endothelial, epithelial, and astrocytoma cells
(Enomoto et al., 1994; Saiag et al., 1995; Lazarowski et
al., 1997a).

Purines and pyrimidines mediate their effects by in-
teractions with distinct cell-surface receptors. Early
pharmacological evidence for the existence of adenosine
receptors has been provided by specific antagonism by
methylxanthines of adenosine-mediated accumulation
of adenosine 39,59-cyclic monophosphate (cAMP) in rat
brain slices (Sattin and Rall, 1970). “Purinergic” recep-
tors were first formally recognized by Burnstock in 1978,
when he proposed that these can be divided into two
classes termed “P1-purinoceptors”, at which adenosine is
the principal natural ligand, and “P2-purinoceptors”,
recognizing ATP and ADP (Burnstock, 1978). This divi-
sion was based on several criteria, namely the relative
potencies of ATP, ADP, AMP, and adenosine, selective
antagonism of the effects of adenosine by methylxan-
thines, activation of adenylate cyclase by adenosine, and
stimulation of prostaglandin synthesis by ATP and ADP.

This major division remains a fundamental part of pu-
rine receptor classification, although adenosine/P1 and
P2 receptors are now characterized primarily according
to their distinct molecular structures, supported by evi-
dence of distinct effector systems, pharmacological pro-
files, and tissue distributions. In addition, receptors for
pyrimidines are now included within the P2 receptor
family (table 1) (Fredholm et al., 1994, 1996). Note that
it has been recommended that “P1 receptor” and “P2
receptor” replace the “P1/P2-purinoceptor” terminology
(Fredholm et al., 1996). The terms “adenosine receptor”
and “P1 receptor” are synonymous.

Adenosine/P1 receptors are further divided into four
subtypes, A1, A2A, A2B, and A3, on the basis of their
distinct molecular structures and show distinct tissue
distributions and pharmacological profiles. All couple to
G proteins.

P2 receptors were shown to be ligand-gated cation
channels (Benham and Tsien, 1987) or involved G pro-
tein activation (Dubyak, 1991), which formed the basis
of their subdivision into two main groups termed P2X
receptors (ligand-gated cation channels) and P2Y recep-
tors (G protein-coupled receptors) (Abbracchio and
Burnstock, 1994; Fredholm et al., 1994). Subtypes are
defined according to the molecular structure of cloned
mammalian P2 receptors, discriminated by different nu-
merical subscripts (P2Xn or P2Yn) (Burnstock and King,
1996; Fredholm et al., 1996). This forms the basis of a
system of nomenclature that will replace the earlier
subtype nomenclature (including P2X, P2Y, P2U, P2T, and
P2Z receptors) as correlations between cloned and endog-
enous receptors are established. P3, P4, and P2YAp4A (or
P2D) receptors have been proposed, but evidence for
their existence is based solely on the distinct pharmaco-
logical profiles exhibited by some biological tissues. As
this is no longer tenable for the identification and sub-
classification of receptors, it remains to be determined,
preferably by molecular studies, how these correlate
with cloned P2 receptors, and therefore exactly how they
will fit within a unifying system of purine and pyrimi-
dine receptor nomenclature.

TABLE 1
Families of receptors for purines and pyrimidines

Adenosine/P1 receptors P2 receptors

Natural ligands Adenosine ATP
ADP
UTP
UDP
Adenine dinucleotides

Subgroup — P2X P2Y
Type G protein-coupled Ion channel G protein-coupled

Nonselective porea

Subtypes A1, A2A, A2B, A3 P2X1–7, P2Xn P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2YADP (or P2T)
Uridine nucleotide-specificb

AMP does not activate P2 receptors, but may be an agonist at adenosine/P1 receptors.
P2Xn, heteropolymeric receptors such as P2X2P2X3 and possibly others with subunit combinations currently unknown.
a P2X7 (or P2Z) receptor only.
b Endogenous uridine nucleotide-specific receptors, which may have counterparts in P2Y4 and P2Y6 receptors.
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The main aim of this review is to present the charac-
teristics of receptors for purines and pyrimidines within
a framework whereby comparisons can be made between
cloned and endogenous receptors. For the P2 receptor
family this is in order to promote the conversion from a
system of nomenclature that is rapidly losing its value,
to a unifying system of classification based on structur-
ally distinct cloned receptors. However, pharmacological
characterization of endogenous P2 receptors is often
equivocal, largely because of the current lack of selective
agonists and antagonists and because of complications
introduced by the common and widespread coexpression
of different types of P2 receptors. Thus, it will become
apparent in the present review that in assigning names
to endogenous P2 receptors we have needed to strike a
balance between caution (against overinterpretation)
and anticipation of the direction in which this field is
heading. Signal transduction mechanisms, pharmaco-
logical response profiles, receptor desensitization, tissue
distribution, and biological effects of receptors for pu-
rines and pyrimidines are considered. Because ATP and
ADP are rapidly degraded to adenosine, and because
most cells and tissues coexpress P1 and P2 receptors, we
also consider the interactions that may occur between
receptors belonging to these two families. Although mod-
ulation of ecto-nucleotidase expression and activity is an
important means by which to regulate purine receptor
function, this aspect of purinergic signaling is not dealt
with in detail in this article; the reader is referred to
other reviews on the subject (Ziganshin et al., 1994a;
Zimmerman, 1996).

II. Adenosine/P1 Receptors

A. Introduction

The adenosine/P1 receptor family comprises A1, A2A,
A2B, and A3 adenosine receptors, identified by conver-

gent data from molecular, biochemical, and pharmaco-
logical studies (table 2). Receptors from each of these
four distinct subtypes have been cloned from a variety of
species and characterized following functional expres-
sion in mammalian cells or Xenopus oocytes (table 3). A1
and A2 receptors were described by Van Calker et al. in
1979, in studies showing that activation of these recep-
tors by adenosine and its derivatives inhibited, via A1, or
stimulated, via A2, adenylate cyclase activity in cultured
mouse brain cells (Van Calker et al., 1979). The effects of
adenosine could be antagonized by methylxanthines and
the order of potency of adenosine analogs was different
for the two receptors (Van Calker et al., 1979). Londos et
al. (1980) independently drew similar conclusions using
membrane preparations from rat adipocytes, hepato-
cytes, and Leydig tumor cells; the adenosine receptors
coupled to inhibition of adenylate cyclase (those in adi-
pocytes) they named Ri (corresponding to the A1 sub-
type) and the adenosine receptors coupled to stimulation
of adenylate cyclase (those in hepatocytes and Leydig
cells) they termed Ra (synonymous with the A2 subtype).
This alternative system of nomenclature was based on
“R” to designate the “ribose” moiety of the nucleoside
and “i” and “a” to indicate inhibition and activation of
adenylate cyclase respectively (Londos et al., 1980). The
A1/A2 nomenclature is now used, which is fortunate
because A1 receptors act through a variety of transduc-
tion mechanisms in addition to adenylate cyclase. A1a
and A1b receptors have been proposed (Gustafsson et al.,
1990), but this subdivision of the A1 receptor remains
equivocal.

A2 receptors are further subdivided into types A2A and
A2B. The suggestion that A2 receptors could be divided
into two classes was originally based on the recognition
that adenosine-mediated stimulation of adenylate cy-
clase in rat brain was effected via distinct high affinity

TABLE 2
Classification of adenosine/P1 receptors

A1 A2A A2B A3

G protein-coupling Gi/o GS GS Gq Gi Gq
Effects 2cAMP 1cAMP 1cAMP 2cAMP

1IP3 1IP3 1IP3
1K1

2Ca21

Selective agonists CPA, CCPA, CHA, R-PIA CGS21680, HE-NECA, APEC, CV
1808, DPMA, WRC-0470

— IB-MECA, 2Cl-IB-MECA

Selective
antagonists

DPCPX, XAC, KW-3902,
ENX, KFM 19, N 0861,
FK 453, WRC 0571

KF17837, ZM241385, CSC, SCH
58261

— I-ABOPXa, L-268605, L-249313,
MRS 1067, MRS 1097

Abbreviations: APEC, 2-[(2-aminoethylamino)carbonylethylphenylethylamino]-59-N-ethylcarboxamidoadenosine; CGS21680, 2-[p-(2-carbonyl-ethyl)-phenylethylamino]-
59-N-ethylcarboxamidoadenosine; CCPA, 2-chloro-CPA; CHA, N6-cyclopentyladenosine; 2Cl-IB-MECA, 2-chloro-N6-(3-iodobenzyl)-59-(N-methylcarbamoyl)adenosine; CPA,
N6-cyclopentyladenosine; CSC, 8-(3-chlorostyry)caffeine; CV 1808, 2-phenylaminoadenosine; DPCPX, 1,3-dipropyl-8-cyclopentylxanthine; DPMA, N6-[2(3,5-dimethoxyphe-
nyl)-2-(2-methylphenyl)ethyl]-adenosine; ENX, 1,3-dipropyl-8-[2-(5,6-epoxy)norbornyl]xanthine; FK 453, (1)-(R)-[(E)-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)acryloyl]-2-pip-
eridine ethanol; HE-NECA, 2-hexyl-59-N-ethylcarboxamidoadenosine; I-ABOPX, 3-(3-iodo-4-aminobenzyl)-8-(4-oxyacetate)phenyl-1-propylxanthine; IB-MECA, N6-(3-iodo-
benzyl)-59-(N-methylcarbamoyl)adenosine; KF17837, 1,3-dipropyl-8-(3,4-dimethoxystyryl)-7-methylxanthine; KFM 19, [(6)-8-(3-oxocyclopentyl)-1,3-dipropylxanthine]; KW-
3902, 8-noradamant-3-yl-1,3-dipropylxanthine; L-249313, 6-carboxymethyl-5,9-dihydro-9-methyl-2-phenyl-[1,2,4]-triazolo[5,1-a][2,7]naphthyridine; L-268605, 3-(4-
methoxyphenyl)-5-amino-7-oxo-thiazolo[3,2]pyrimidine; MRS 1067, 3,6-dichloro-29-isopropyloxy-49-methylflavone; MRS 1097, 3,5-diethyl 2-methyl-6-phenyl-4-(trans-2-
phenylvinyl)-1,4(R,S)-dihydropyridine-3,5-dicarboxylate; N 0861, 1,3-dipropyl-8-[2,(5,6-epoxy)norbornyl]xanthine; R-PIA, (R)N6-phenylisopropyladenosine; SCH 58261,
5-amino-7-(2-phenylethyl)-2 (2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine; WRC 0470, 2-cyclohexylmethylidenehydrazinoadenosine; WRC 0571, 8-(N-methyliso-
propyl)amino-N6-(59-endohydroxy-endonorbornyl)-9-methyladenine; XAC, xanthine amine congener; ZM 241385, 4-(2-[7-amino-2-(2-furyl)]1,2,4-triazolo[2,3-a][1,3,5]triazin-
5-ylamino]ethyl)phenol.

a High affinity (nM) at sheep and human, but not rat A3 adenosine receptors.
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binding sites (localized in striatal membranes) and low
affinity binding sites (present throughout the brain)
(Daly et al., 1983). This subdivision was supported in a
study which compared the high affinity striatal A2 bind-
ing site with a low-affinity A2 binding site characterized
in a human fibroblast cell line; the two sites were termed
A2A and A2B, respectively (Bruns et al., 1986). Definitive
evidence for the existence of these two subtypes comes
from the cloning and sequencing of distinct A2A and A2B
receptors which show distinct pharmacological profiles
in transfected cells similar to those of the endogenous
receptors.

Consistent with the fact that these are distinct recep-
tors, there is a considerable lack of amino acid sequence
homology between cloned A1, A2A, A2B, and A3 receptors.
For example, the homology between rat A1 and A2B
receptors is only 45% (Stehle et al., 1992), and the hu-
man A3 receptor only shows approximately 50%, 43%,
and 40% homology with human A1, A2A, and A2B recep-
tors, respectively (Linden, 1994). The homology between
A2A and A2B receptors is also slight, being approxi-
mately 46% when these subtypes are cloned from rat
and 61% when cloned from human (Stehle et al., 1992;
Pierce et al., 1992).

An adenosine binding site with high affinity for 2-phe-
nylaminoadenosine (CV 1808) (A2A-selective agonist) in
rat striatal membranes has been suggested to be a novel
“A4” adenosine receptor (Cornfield et al., 1992). The very
low affinity of 2-[p-(2-carbonyl-ethyl)-phenylethylamino]-
59-N-ethylcarboxamidoadenosine (CGS 21680) and N-
ethylcarboxamidoadenosine (NECA) at this site were
taken to indicate that this is not an A2 receptor. However,
the binding studies were carried out at 4°C (Cornfield et
al., 1992), and the existence of a distinct A4 receptor has
been challenged by the demonstration that when similar
binding studies are carried out at 21°C, the potency order

of compounds at the striatal membrane site is character-
istic of the A2A adenosine receptor (Luthin and Linden,
1995). Furthermore, in COS cells transfected with adeno-
sine A2A receptors, binding studies carried out at 4°C pro-
duce an “A4” binding profile (Luthin and Linden, 1995).
This justifies the more rigorous criteria now demanded for
classification of receptors, whose identity must be proved
by molecular as well as by biochemical or pharmacological
means.

There is a vast and rapidly growing literature on
adenosine/P1 receptors; it has not been possible to do
justice to this in the present review. Out of necessity,
therefore, we focus on the more recent literature.

B. Structure

All adenosine receptors couple to G proteins. In com-
mon with other G protein-coupled receptors, they have
seven putative transmembrane (TM) domains of hydro-
phobic amino acids, each believed to constitute an a-
helix of approximately 21 to 28 amino acids. The N-
terminal of the protein lies on the extracellular side and
the C-terminal on the cytoplasmic side of the membrane.
A pocket for the ligand binding site is formed by the
three-dimensional arrangement of the a-helical TM do-
mains, and the agonist is believed to bind within the
upper half of this pore. The transmembrane domains are
connected by three extracellular and three cytoplasmic
hydrophilic loops of unequal size; typically the extracel-
lular loop between TM4 and TM5 and the cytoplasmic loop
between TM5 and TM6 is extended. These features are
illustrated in a schematic of the A1 receptor in figure 1.

N-linked glycosylation often occurs on the second ex-
tracellular loop; the roles of the carbohydrate moieties of
the glycosylated receptor are not clear, although sug-
gested functions include stabilization of protein confor-
mation, protection of proteins from proteases, and mod-

TABLE 3
Cloned adenosine/P1 receptors

Number of amino
acids cDNA library source References

A1 326 Human brain Libert et al., 1992; Townsend-Nicholson and Shine, 1992
326 Canine thyroid Libert et al., 1989, 1991
326 Bovine brain Tucker et al., 1992; Olah et al., 1992
328 Rabbit kidney Bhattacharya et al., 1993

326/327 Rat brain Reppert et al., 1991; Mahan et al., 1991
326 Mouse brain Marquardt et al., 1994
326 Guinea-pig brain Meng et al., 1994a

A2A 409 Human hippocampus Furlong et al., 1992
411 Canine thyroid Libert et al., 1989; Maenhaut et al., 1990
410 Rat brain Chern et al., 1992; Fink et al., 1992
409 Guinea-pig brain Meng et al., 1994b
410 Mouse bone marrow-derived mast cells Marquardt et al., 1994

A2B 328 Human hippocampus Pierce et al., 1992
332 Rat brain Stehle et al., 1992; Rivkees and Reppert, 1992
332 Mouse bone marrow-derived mast cells Marquardt et al., 1994

A3 318 Human striatum Salvatore et al., 1993
318 Human heart Sajjadi et al., 1993
317 Sheep pars tuberalis Linden et al., 1993
320 Rabbit lung Hill et al., 1997
320 Rat brain Zhou et al., 1992
320 Rat testis Meyerhof et al., 1991; Zhou et al., 1992
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ulation of protein function. Current evidence suggests
that glycosylation has no obvious influence on ligand
binding (Piersen et al., 1994). The intracellular segment
of the receptor interacts with the appropriate G protein
with subsequent activation of the intracellular signal
transduction mechanism. The third intracellular loop of
the adenosine A2A receptor seems to be the main deter-
minant of its G protein selectivity (Olah, 1997). Phos-
phorylation by protein kinases of amino acid residues on
the cytoplasmic domains seems to be involved in desen-
sitization of A2A and A3 receptors (Palmer and Stiles,
1997a, 1997b).

The transmembrane regions are generally highly con-
served, with particularly long stretches of amino acid
homology being found in TM2, TM3, and TM5. Most
sequence differences have been observed in a hypervari-
able region located at the N-terminal half of the second
extracellular loop (Tucker and Linden, 1993). It is the
residues within the transmembrane regions that are
crucial for ligand binding and specificity and, with the
exception of the distal (carboxyl) region of the second
extracellular loop, the extracellular loops, the C-termi-
nal and the N-terminal do not seem to be involved in
ligand recognition (Olah et al., 1994b, 1995). A number
of amino acid residues contribute, in different ways,
to ligand specificity within the binding pocket. Site-

directed mutagenesis of the bovine A1 adenosine recep-
tor suggests that conserved histidine residues in TM6
and TM7 are important in ligand binding. Histidine 278
in TM7 seems to be particularly important because mu-
tation of this amino acid abolishes ligand binding (Olah
et al., 1992). Mutagenesis of the human A1 adenosine
receptor has shown that threonine 277 in TM7 is impor-
tant in binding of the non-selective adenosine receptor
agonist NECA, but has little effect on the affinity of bind-
ing of the A1 selective agonist (R)-N6-(2-phenyl-1-methyl-
ethyl)-adenosine (R-PIA), or of antagonists (Townsend-
Nicholson and Schofield, 1994). Modification of Glu 16 in
TM1 and Asp 55 in TM2 of the human A1 receptor alters
the affinity of binding for [3H]CCPA (2-chloro-N6-cyclo-
pentyladenosine) and other agonists, but does not affect
antagonist binding (Barbhaiya et al., 1996). Site-di-
rected mutagenesis of the human A2A adenosine recep-
tor has identified several residues in TM5–7 that are
involved in ligand binding (Kim et al., 1995). Glu 13 in
TM1 of the human A2A receptor seems to be critically
involved in agonist, but not antagonist recognition (Ijz-
erman et al., 1996).

A potential problem inherent in the methodology of
site-directed mutagenesis is that changes in primary
structure may cause changes in tertiary structure of the
molecule. This has been addressed by studies with chi-
meras constructed from structurally similar, but phar-
macologically different receptors. The ligand binding
properties of A1/A3 chimeric receptors support the con-
cept of a crucial role for histidine residues in TM6 and
TM7 in ligand binding (Olah et al., 1995). In addition, a
critical role in ligand binding of the distal region of the
second extracellular loop has been identified, although
its specific interactions are not yet clear (Olah et al.,
1994b). Possible roles include direct interaction of an
amino acid residue(s) within this region with the ligand,
an influence on the conformation of the receptor and/or
steric hindrance. Construction of chimeric human A1
and rat A2A adenosine receptors was used to show that
TM1–4 are important in A1 receptor agonist and antag-
onist binding and ligand specificity (Rivkees et al.,
1995a).

C. Agonists

Analogs with greater stability than adenosine are pro-
duced by modification of the N6 and C2 positions of the
adenine ring and the 59-position of the ribose moiety of
adenosine, and have been used extensively in the char-
acterization of adenosine/P1 receptors. NECA (Williams,
1989), N-[2-(4-aminophenyl)ethyl] adenosine (APNEA)
(Fozard and Carruthers, 1993), and N6-(3-[125I]iodo-4-
aminobenzyl)-59-N-methylcarboxamidoadenosine (125I-
AB-MECA) (Olah et al., 1994a) do not discriminate be-
tween adenosine receptor subtypes. Agonists with
subtype selectivity are detailed in the sections on indi-
vidual adenosine receptor subtypes and the chemical
structure of some of these are illustrated in figure 2.

FIG. 1. Schematic of the A1 adenosine receptor. In common with other
G protein-coupled receptors, the A1 receptor has seven putative trans-
membrane domains (I-VII) of hydrophobic amino acids, each believed to
constitute an a-helix, which are connected by three extracellular and
three intracellular hydrophilic loops. The number of amino acids com-
prising the extra- and intracellular loops and the extracellular N-termi-
nal and intracellular C-terminal regions of the bovine A1 receptor are
indicated in parentheses (Olah et al., 1992). The transmembrane regions
comprise 23 to 25 amino acids in the bovine A1 receptor (Olah et al., 1992).
The arrangement of the transmembrane regions forms a pocket for the
ligand binding site. The location of histidine residues (H) in transmem-
brane regions VI (position 254) and VII (position 278) in the bovine A1
receptor, which are believed to be important in ligand binding (Olah et al.,
1992), are indicated. Extracellular and transmembrane regions of the
protein believed to be important in agonist and antagonist binding are
indicated (Olah et al., 1994b,c). S-S denotes the presence of hypothetical
disulfide bridges (Jacobson et al., 1993c). Glycosylation occurs on the
second extracellular loop.
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ATP and metabolically stable ATP derivatives, i.e.,
adenosine 59-O-(3-thiotriphosphate)(ATPgS) and b,g-
methylene ATP (b,g-meATP), can act directly as ago-
nists at adenosine/P1 receptors in some tissues where
responses are blocked by methylxanthines, but are not
affected by adenosine deaminase or by blockade of 59-
nucleotidase. b,g-MeATP is approximately equipotent
with adenosine at mediating contraction of smooth mus-
cle adenosine/P1 receptors of rat colon (Bailey and Hou-
rani, 1990), and relaxation via adenosine/P1 receptors of
rat duodenum (Hourani et al., 1991), and guinea-pig
trachealis muscle (Piper and Hollingsworth, 1996). ATP,
ATPgS, and b,g-meATP inhibit [3H]-NA release in a
variety of tissues via receptors that are blocked by the A1
selective antagonist 1,3-dipropyl-8-cyclopentylxanthine
(DPCPX) as well as by the P2 receptor antagonist ciba-
cron blue (Von Kügelgen et al., 1992, 1995b, 1996). ATP
(Collis and Pettinger, 1982) and diadenosine polyphos-
phates (Hoyle et al., 1996; Vahlensieck et al., 1996) have
been reported to stimulate directly adenosine/P1 recep-
tors in guinea-pig atria, eliciting negative inotropic and

chronotropic effects without prior conversion to adeno-
sine. These effects are not consistent with the pharma-
cological profile of any of the established subtypes of
adenosine/P1 receptor, and in some respects are similar
to the profile described for the P3 receptor.

D. Antagonists

Xanthines and xanthine derivatives, including the
natural derivatives theophylline and caffeine, are non-
selective adenosine/P1 receptor antagonists. They are
not universal adenosine/P1 receptor antagonists; xan-
thine-resistant relaxations to adenosine and its analogs
were observed in guinea-pig aorta (Collis and Brown,
1983; Martin, 1992), rat aorta (Prentice and Hourani,
1996), guinea-pig trachea (Brackett and Daly, 1991),
porcine coronary artery (Abebe et al., 1994), and guinea-
pig taenia cecum (Prentice et al., 1995). Some A3 recep-
tors, namely those of rat, rabbit, and gerbil, are charac-
teristically insensitive to methylxanthines, thus it is
possible that the xanthine-resistant responses to aden-
osine described in some tissues occur following actions of
adenosine at mast cell A3 receptors and the subsequent
release of vasoactive mediators. This hypothesis would
predict that guinea-pig and pig A3 receptors are also
xanthine-insensitive, because xanthine-resistant re-
sponses to adenosine have been reported in these spe-
cies. It would be interesting to see if these responses can
be blocked by inhibitors of mast cell degranulation.

8-Phenyltheophylline and the more water soluble
8-(p-sulfophenyl)theophylline (8-SPT) (Daly et al., 1985)
are more potent than theophylline at adenosine/P1 re-
ceptors, but are not subtype-selective. 8-SPT and its
derivative 1,3-dipropyl-8-sulfophenylxanthine (DPSPX)
do not cross the blood-brain barrier, being purely periph-
erally acting adenosine/P1 receptor antagonists (Daly et
al., 1985) and thus can be used to discriminate between
central and peripheral adenosine receptors. A number of
xanthines and non-xanthines identified as adenosine
receptor antagonists with reasonable subtype selectivity
are described below (see Sections III.F., IV.F., and VI.F.)
and their chemical structures illustrated in figure 3.

III. A1 Receptor

Subdivision of A1 receptors into high affinity A1a re-
ceptors and low affinity A1b receptors has been proposed
(Gustafsson et al., 1990). This was based on the descrip-
tion of high-affinity binding sites for adenosine agonists
and antagonists in rat and guinea-pig brain (A1a) and
low-affinity binding sites in rat vas deferens and guinea-
pig ileum (A1b) (Gustafsson et al., 1990). However, there
are no cloned equivalents for these putative subtypes
and their existence remains equivocal. It is possible that
these reflect high and low affinity states of the same A1

receptor.

FIG. 2. The chemical structure of some agonists at adenosine/P1 re-
ceptors.
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A. Cloned A1 Receptors

A1 receptors have been cloned from several species
(table 3). The human adenosine A1 receptor subtype
gene (ADORA1) has been localized to chromosome
1q32.1 (Townsend-Nicholson et al., 1995a). The variabil-
ity in the primary sequence of the A1 receptor between
species is less than 10% for A1 receptors from dog, rat,
and cow, and less than 5% between bovine and human
A1 receptors, but this seems to be sufficient to cause
considerable interspecies differences in ligand binding
(Tucker and Linden, 1993) and subtle differences in the
mechanisms underlying receptor desensitization (Ram-
kumar et al., 1991; Nie et al., 1997; Palmer and Stiles,
1997b). Species homologs of A1 receptors have been sug-
gested to differ in their ability to discriminate among the
related Go/Gi protein alpha subunits (Jockers et al.,
1994).

B. Signal Transduction Mechanisms

The A1 receptor mediates a broad range of signaling
responses, which may be caused by its coupling to dif-
ferent G proteins within the Gi/o family (Freissmuth et
al., 1991; Munshi et al., 1991). The G proteins Gi and Go
are substrates for pertussis toxin that ADP-ribosylates
the a-subunit of Gi/o/t family members, uncoupling them
from receptors. Accordingly, effects mediated by A1 re-
ceptors are generally blocked by pertussis toxin. How-
ever, presynaptic A1 receptors seem to be at least partly
resistant to pertussis toxin (Fredholm et al., 1989; Ha-

suo et al., 1992); the reason for this could be the very
tight coupling of the presynaptic A1 receptors to poten-
tially pertussis toxin-sensitive G proteins, rather than
coupling to pertussis toxin-insensitive G proteins (Van
der Ploeg et al., 1992). A partially-purified protein with
selectivity for G protein a subunits has been shown to
stabilize the rat brain A1 receptor-G protein complex,
thereby promoting tight coupling of the A1 receptor with
its G protein (Nanoff et al., 1997). Interestingly, this is a
feature of the rat brain but not the human brain A1

receptor; the latter is not under the control of a coupling
cofactor, but operates according to the classic ternary
complex model of receptor-G protein coupling (Nanoff et
al., 1997).

The most widely recognized signaling pathway of A1

receptors is inhibition of adenylate cyclase causing a
decrease in the second-messenger cAMP (Van Calker et
al., 1978; Londos et al., 1980). This in turn modulates
the activity of cAMP-dependent protein kinase, which
phosphorylates diverse protein targets. A1 coupling to
adenylate cyclase has been described in a number of
tissues including brain, adipose tissue, and testes. In
addition to direct modulation of signaling pathways
downstream to cAMP, inhibition of adenylate cyclase via
A1 receptors blocks the effects of other agents which act
by stimulating adenylate cyclase activity in cells.

Another signaling mechanism of A1 receptors is acti-
vation of phospholipase C (PLC) leading to membrane
phosphoinositide metabolism and increased production
of inositol 1,4,5-triphosphate (IP3) [and diacylglycerol
(DAG)] and Ca21 mobilization. This has been described
in chinese hamster ovary (CHO)-K1 cells expressing the
cloned human A1 receptor (Iredale et al., 1994; Megson
et al., 1995) as well as at endogenous A1 receptors in a
number of tissues including DDT1 MF-2 smooth muscle
cells (Gerwins and Fredholm, 1992a,b; White et al., 1992),
heart (Scholz et al., 1993), myometrium (Schiemann et al.,
1991a,b), rabbit cortical collecting tubule cells (Arend et al.,
1989), renal cells (Weinberg et al., 1989), tracheal epithe-
lial cells (Galietta et al., 1992), cultured mesangial cells
(Olivera et al., 1992), and primary astrocytes (Peakman
and Hill, 1995). IP3 stimulates the release of Ca21 from
intracellular stores via interactions with specific receptors
located on the sarcoplasmic reticulum. Elevation of cytoso-
lic Ca21 by IP3 can stimulate a variety of signaling path-
ways, including a family of phosphatidyl serine-dependent
serine/threonine-directed kinases collectively called pro-
tein kinase C (PKC) (of which there are at least 11 differ-
ent isoforms), phospholipase A2 (PLA2), Ca21-dependent
K1 channels, and nitric oxide synthase (NOS). Depletion of
Ca21 from IP3-sensitive pools may promote Ca21 influx
from extracellular sources.

Activation of phospholipase D (PLD) via A1 adenosine
receptors in DDT1 MF-2 smooth muscle cells has been
described (Gerwins and Fredholm, 1995a, 1995b), al-
though as in the majority of cell systems this may be

FIG. 3. The chemical structure of some antagonists at adenosine/P1
receptors.
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downstream of phosphoinositide hydrolysis and may re-
quire the intermediate activation of PKC or Ca21.

Stimulation of A1 receptors can activate several types
of K1 channel, described principally in cardiac muscle
and neurons. In supraventricular tissues (sino-atrial
and atrioventricular node, and atrium), the A1 receptor
couples directly via pertussis toxin-sensitive G proteins
to K1 channels (the same K1 channels are activated by
both adenosine and acetylcholine), and activation causes
bradycardia (Belardinelli et al., 1995a; Bünemann and
Pott, 1995; Ito et al., 1995). A1 adenosine receptors also
couple to ATP-sensitive K1 channels (KATP channel); the
activity is additionally regulated by metabolic demand
(they close when intracellular ATP levels are high). Cou-
pling seems to occur through the G protein in a mem-
brane-delimited manner (Kirsch et al., 1990; Dart and
Standen, 1993), although coupling via cytosolic factors is
possible given the strong evidence that A1 receptors,
KATP channels, and PKC all have a role in ischemic
preconditioning. A1 receptor coupling to KATP channels
has been described in rat and guinea-pig ventricular
myocytes (Kirsch et al., 1990; Ito et al., 1994), porcine
coronary arteries (Merkel et al., 1992; Dart and Standen,
1993), rabbit heart (Nakhostine and Lamontagne, 1993),
and rat cerebral cells (Heurteaux et al., 1995). Activa-
tion of KATP channels mediates a reduction in action
potential duration, vasodilatation and an increase in
blood flow, which is consistent with their having a piv-
otal role in the coupling of vascular tone to metabolic
demand determined both by intracellular purines (ATP/
ADP levels) and by the extracellular actions of adeno-
sine (released, for instance, during hypoxia or ischemia).

Neurons express multiple K1 channels that A1 recep-
tors may couple to regulate membrane potential and
determine action potential frequency and duration. A1

receptors reduce neuronal excitability and decrease fir-
ing rate by a hyperpolarizing effect mediated mainly by
an increase in K1 conductance (Trussell and Jackson,
1985; Greene and Haas, 1991; Pan et al., 1995).

A1 receptors also couple to inhibition of Ca21 currents,
which may account for inhibition of neurotransmitter
release, although other or multiple mechanisms may be
involved in this process (see Fredholm, 1995). Inhibition
of Ca21 currents by A1 receptors has been described in
dorsal root ganglion neurons (Dolphin et al., 1986), rat
hippocampal pyramidal neurons (Scholz and Miller,
1991), rat sympathetic neurons (N-type Ca21 channels,
plus an unidentified Ca21 channel) (Zhu and Ikeda,
1993), rat brainstem (predominantly N-type, but also
P-type Ca21 channels) (Umemiya and Berger, 1994),
hippocampal CA1 neurons (N-type, plus some unidenti-
fied Ca21 channels) (Wu and Saggau, 1994), hippocam-
pal CA3 neurons (N-type Ca21 channel) (Mogul et al.,
1993), and mouse motoneurons (N-type Ca21 channel)
(Mynlieff and Beam, 1994). In atrial myocytes adenosine
has an inhibitory effect on basal L-type Ca21 current,

although this is small and may be secondary to a reduc-
tion in basal cAMP (Belardinelli et al., 1995a).

C. Desensitization

Several mechanisms, operational at different levels of
the signal transduction cascade, contribute to differen-
tial desensitization of G protein-coupled receptors.
Rapid desensitization (occuring within a few minutes of
agonist exposure) seems to involve phosphorylation of
specific residues on the receptor C-terminal or the cyto-
plasmic loops by G protein-coupled receptor-specific ki-
nases (GRKs) and/or kinases regulated by levels of in-
tracellular second-messengers such as cAMP-dependent
protein kinase. The phosphorylated receptor may bind to
members of a family of proteins called arrestins, which
cause uncoupling of the receptor from its G proteins.
Desensitization occuring over a longer time course also
involves uncoupling of the receptor-G proteins complex,
but phosphorylation does not seem to be a prerequisite.
Sequestration of receptors into an intracellular compart-
ment may occur, as described for the increase in A1
receptors in light vesicle membrane fractions prepared
from the hamster vas deferens smooth muscle cell line,
DDT1 MF-2 cells, after chronic exposure to R-PIA (Ram-
kumar et al., 1991). Prolonged exposure to agonist may
additionally lead to down-regulation of receptors and/or
of the associated G proteins.

Desensitization of A1 receptors by exposure to adeno-
sine analogs has consistently been described both in
vitro and in vivo, but this usually requires prolonged
exposure to agonist (from 15 minutes to several hours or
even days) (Parsons and Stiles, 1987; Ramkumar et al.,
1991; Abbracchio et al., 1992; Green et al., 1992; Lee et
al., 1993; Longabaugh et al., 1989; Casati et al., 1994).
This is considerably longer than the time to desensitiza-
tion of A3 receptors which typically undergo significant
desensitization within several minutes. Interestingly,
while an agonist-stimulated increase in phosphorylation
has been described for A1 receptors in hamster DDT1
MF-2 cells in association with receptor uncoupling from
G proteins and desensitization, presumably by GRKs
(Ramkumar et al., 1991; Nie et al., 1997), phosphoryla-
tion does not occur for the human A1 receptor expressed
in CHO cells at a time when receptor down-regulation is
observed (Palmer and Stiles, 1997b). Down-regulation of
A1 receptors and/or of the associated G proteins after
prolonged exposure to agonist has been reported in most
of the cells and tissues in which this has been studied
(Parsons and Stiles, 1987; Longabaugh et al., 1989;
Green et al., 1992; Ramkumar et al., 1991, 1993a; Ab-
bracchio et al., 1992).

Down-regulation of G proteins following A1 receptor
activation may lead to heterologous receptor desensiti-
zation. Chronic stimulation of A1 receptors in adipocytes
in vivo (Longabaugh et al., 1989) and in isolated adipo-
cytes (Green et al., 1992) with (-)N6-phenylisolpropyl
adenosine (PIA) for up to 6 and 7 days, respectively,

RECEPTORS FOR PURINES AND PYRIMIDINES 423



causes down-regulation of A1 receptors, non-uniform
down-regulation of Gi proteins, and heterologous desen-
sitization of other lipolytic hormone responses. In con-
trast, chronic (7 days) infusion of (R)N6-phenylisopropyl
adenosine (R-PIA) in guinea-pigs homologously desensi-
tizes the atrioventricular nodal response to adenosine:
there is down-regulation of A1 adenosine receptors, a
decrease in high affinity A1 receptors, and a decrease in
Gi and Go proteins, but no change in responses mediated
by muscarinic receptors (Dennis et al., 1995).

D. Sensitization/Up-Regulation

Long-term treatment with adenosine/P1 receptor an-
tagonists generally leads to an increase in the effects of
adenosine via a selective increase in the number of A1
receptors, receptor sensitization and/or altered interac-
tion between the receptor and the associated G proteins
(Fredholm, 1982; Murray, 1982; Fredholm et al., 1984;
Green and Stiles, 1986; Ramkumar et al., 1991; Fastbom
and Fredholm, 1990; Zhang and Wells, 1990; Lupica et
al., 1991a, 1991b; Shi et al., 1994). Long-term (12 day)
caffeine treatment of rats increases the number of hip-
pocampal A1 (but not A2A) receptors, without any
changes in A1 messenger ribonucleic acid (mRNA), sug-
gesting that the adaptive changes are at the posttrans-
lational level (Johansson et al., 1993a). An increase in
the density of cortical A1 receptors has been described
after chronic caffeine injestion in mice, but surprisingly,
given that striatal adrenergic, cholinergic, GABA, and
serotonin receptors and Ca21 channels are also affected
by this treatment, there is no change in the density of
striatal A2A receptors (Shi et al., 1993).

E. Agonists

Certain N6-substituted adenosine derivatives, such as
N6-cyclopentyladenosine (CPA), N6-cyclohexyladenosine
(CHA), and R-PIA, are selective agonists at A1 receptors
with Ki values in the range of 0.6 to 1.3 nM (see Jacobson
et al., 1992b) (table 2).

Substitutions at both the N6- and C2-positions have
produced 2-chloro-CPA (CCPA) which is A1 selective,
1500-fold versus A2 receptors in binding studies in rat
brain, with a Ki of 0.6 nM (Lohse et al., 1988; Thompson
et al., 1991; Jacobson et al., 1992b). N-[1S, trans,2-
hydroxycyclopentyl] adenosine (GR79236) has been re-
ported to be an A1 selective agonist, which is approxi-
mately equipotent with CPA in a variety of isolated
tissues and cell types (Reeves et al., 1993; Gurden et al.,
1993).

F. Antagonists

Most of the selective A1 receptor antagonists de-
scribed to date are xanthine-based derivatives. The in-
troduction of hydrophobic (particularly phenyl or cy-
cloalkyl) substituents into position 8 of the xanthine ring
has yielded potent and A1-selective antagonists, includ-
ing 1,3-dipropyl-8-phenyl(2-amino-4-chloro)xanthine

(PACPX), DPCPX, and xanthine amine congener (XAC)
(Bruns et al., 1987; Martinson et al., 1987; Shimada et
al., 1991) (fig. 3). Of these, DPCPX has the greatest
affinity (Ki 1.5 nM) for A1 receptors and the greatest
A1-subtype selectivity (A2/A1 affinity ratio 740), as
shown in rat brain membranes (Bruns et al., 1987; Lohse
et al., 1987). The human A1 receptor has an approxi-
mately lower affinity for DPCPX (Libert et al., 1992;
Klotz et al., 1998). A number of other 8-substituted xan-
thines, including (6)-8-(3-oxocyclopentyl)-1,3-dipropyl-
xanthine (KFM 19) and KW-3902 (8-noradamant-3-yl-
1,3-dipropylxanthine), have been shown to be selective an-
tagonists at A1 receptors (see Williams, 1989; Jacobson et
al., 1992b). The alkylxanthine 1,3-dipropyl-8-[2-(5,6-ep-
oxy)norbornyl]xanthine (ENX) is a potent (KB 3.6 nM) and
selective antagonist at A1 receptors in the guinea- pig
heart and brain and in DDT1 MF-2 cells, with 400-fold
greater affinity of binding versus A2A receptors in guinea-
pig brain (Belardinelli et al., 1995b).

Several classes of non-xanthine antagonists have been
described, some showing reasonable affinity and selec-
tivity for the A1 receptor (see Jacobson et al., 1992b; Daly et
al., 1993). Some of the more active of these are the tricyclic
non-xanthine antagonists, including the triazoloquinazo-
lines (Francis et al., 1988), the triazoloquinoxalines
(Trivedi and Bruns, 1988; Sarges et al., 1990), and the
imidazoquinolines (Van Galen et al., 1991).

The adenine derivative 1,3-dipropyl-8-[2,(5,6-epoxy)nor-
bornyl]xanthine (N 0861) is reasonably selective (10- to
47-fold versus A2A receptors) and potent at A1 receptors in
a number of tissues (May et al., 1991; Martin et al., 1993a;
Belardinelli et al., 1995b). This compound has been super-
ceded by the S-enantiomer 12 (CVT-124) with nanomolar
selectivity and 1800- and 2400-fold selectivity at rat and
cloned human A1 receptors, respectively (Pfister et al.,
1997), and by 8-(N-methylisopropyl)amino-N6-(59-endohy-
droxy-endonorbornyl-)9-methyl adenine (WRC 0571) with
62-fold selectivity versus the A2A receptor and 4670-selec-
tivity versus the A3 receptor (Martin et al., 1996).

(1)-(R)-[(E)-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)acry-
loyl]-2-piperidine ethanol, FK 453, has been reported to be
a potent and selective A1 receptor antagonist with IC50

values of approximately 17 nM at rat cortical A1 receptors
and 11 mM at striatal A2 receptors (Terai et al., 1995).
Chiral pyrolo[2,3-d]pyrimidine and pyrimido[4,5-b]indole
derivatives have been shown to be potent and highly ste-
reoselective A1 adenosine receptor antagonists (Müller et
al., 1996a).

G. Distribution and Biological Effects

A1 receptors are widely distributed in most species
and mediate diverse biological effects. There is consid-
erable literature in this area. Thus, this section is in-
tended to give an indication of the ubiquity and diversity
of actions mediated by adenosine at A1 receptors, rather
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than to provide a comprehensive account of A1 receptor
distribution and effects.

A1 receptors are particularly ubiquitous within the
central nervous system (CNS), with high levels being
expressed in the cerebral cortex, hippocampus, cerebel-
lum, thalamus, brain stem, and spinal cord (Reppert et
al., 1991; Dixon et al., 1996) (fig. 4). Immunohistochem-
ical analysis using polyclonal antisera generated against
rat and human A1 adenosine receptors has identified
different labeling densities of individual cells and their
processes in selected regions of the brain (Rivkees et al.,
1995b). A1 receptor mRNA is widely distributed in pe-
ripheral tissues having been localized in vas deferens,
testis, white adipose tissue, stomach, spleen, pituitary,
adrenal, heart, aorta, liver, eye, and bladder (Reppert et
al., 1991; Dixon et al., 1996). Only very low levels of A1
mRNA are present in lung, kidney, and small intestine
(Reppert et al., 1991; Stehle et al., 1992; Dixon et al.,
1996) (fig. 4).

It is now well established that adenosine is released
from biological tissues during hypoxia and ischemic con-
ditions. One of its effects is to reduce neuronal activity
and thereby oxygen consumption; thus it acts as a neu-
roprotective agent. A significant part of these effects
seem to be mediated by the A1 receptor. A1 receptors are
located pre and postsynaptically on cell bodies, and on
axons, where they mediate inhibition of neurotransmis-
sion by decreasing transmitter release, hyperpolarizing
neuronal membranes, reducing excitability and firing
rate, and altering axonal transmission. Adenosine can
also exert behavioral effects: adenosine actions at A1
receptors have been implicated in sedative, anticonvul-
sant, anxiolytic, and locomotor depressant effects (Ni-
kodijevic et al., 1991; Stone, 1991; Jain et al., 1995;
Malhotra and Gupta, 1997). Conversely, xanthine an-
tagonists such as caffeine and theophylline have central
stimulatory properties ascribed, at least in part, to in-
hibition of endogenous adenosine, although inhibition of

cyclic nucleotide phosphodiesterases may contribute to
this effect.

A1 receptors mediate cardiac depression through neg-
ative chronotropic, dromotropic, and inotropic effects
(see Olsson and Pearson, 1990). Slowing of the heart
rate occurs via A1 receptors on sinoatrial and atrioven-
tricular nodes causing bradycardia and heart block, re-
spectively, while the inotropic effects include a decrease
in atrial contractility and action potential duration (Ol-
sson and Pearson, 1990). This aspect of A1 receptor-
mediated effects has found application in the clinical use
of adenosine to treat supraventricular tachycardia, and
in the use of adenosine receptor antagonists in the treat-
ment of bradyarrhythmias.

In the kidney, activation of A1 receptors mediates
diverse effects including vasoconstriction (principally of
the afferent arteriole), a decrease in glomerular filtra-
tion rate, mesangial cell contraction, inhibition of renin
secretion, and inhibition of neurotransmitter release
(Olivera et al., 1989; Agmon et al., 1993; Barrett and
Droppleman, 1993; Munger and Jackson, 1994). Intra-
venous and intra-aortic administration of adenosine in
rats decrease water and sodium excretion via A1 recep-
tors, while selective antagonism of A1 receptors causes
diuresis and natriuresis (see Mizumoto et al., 1993; Van
Beuren et al., 1993). Intrarenal administration of aden-
osine, but not of the A2A selective agonist CGS 21680, in
dogs also decreases water and sodium excretion (Levens
et al., 1991a,b). Furthermore, A1 receptors increase
transepithelial resistance and reduce Na1 uptake in
inner medullary collecting duct cells in culture (Yagil et
al., 1994). On the other hand, intrarenal administration
of adenosine and the A1-selective agonist CHA in rats
has been shown to induce marked diuresis and natriure-
sis which can be inhibited by the A1-selective antagonist
DPCPX (Yagil, 1994).

Direct effects on blood vessel tone via adenosine ac-
tions on A1 receptors are rare. A more significant role of
A1 receptors with regard to regulation of blood vessel
tone appears to be prejunctional modulation of neuro-
transmitter release. Prejunctional inhibition of neuro-
transmission via A1 receptors on perivascular sympa-
thetic (Gonçalves and Queiroz, 1996) and capsaicin-
sensitive sensory afferents (Rubino et al., 1993) has been
shown. However, A1 receptors have been observed to
mediate relaxation of porcine coronary artery (Merkel et
al., 1992), and contraction of guinea-pig aorta (Stoggall
and Shaw, 1990) and pulmonary artery (Szentmiklósi et
al., 1995). A1 receptors have also been reported to me-
diate contraction of rat isolated spleen (Fozard and Mi-
lavec-Krizman, 1993) and rat vas deferens (Hourani and
Jones, 1994), as well as bronchoconstriction and bron-
chial hyperresponsiveness (Ali et al., 1994a, 1994b; Pau-
wels and Joos, 1995; el-Hashim et al., 1996). Diverse
A1-mediated effects in the gut have been described, in-
cluding inhibition of peristalsis of rat jejunum (Hancock
and Coupar, 1995b), relaxation of longitudinal muscle of

FIG. 4. Tissue distribution of adenosine receptor mRNA expression as
examined by RT-PCR. Sizes of PCR products are given in base pairs.
(From Dixon et al., 1996, Br J Pharmacol 118:1461–1468; with permis-
sion from McMillan Press Limited.)
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rat duodenum (Nicholls et al., 1992, 1996), and contrac-
tion of rat colonic muscularis mucosa (Bailey et al., 1992;
Reeves et al., 1993). Interestingly, adenosine mediates
contraction of guinea-pig myometrial smooth muscle via
A1 receptors that in non-pregnant animals are coupled
to the formation of IP3, but in pregnant animals are
coupled both to IP3 and negatively to adenylate cyclase
(Schiemann and Buxton, 1991; Schiemann et al.,
1991a,b).

Selective inhibition of the synthesis of A1 receptors
with antisense oligonucleotides confirmed that these re-
ceptors are involved in an animal model of asthma (Nyce
and Metzger, 1997). There was a marked reduction in
the number of A1 receptors in the lung and attenuation
of airway constriction to adenosine, histamine, and dust-
mite allergen (Nyce and Metzger, 1997). Although the
site of action remains to be determined, selective antag-
onism of A1 receptors offers a possible new approach in
asthma therapy.

A1 receptors on bovine pulmonary artery endothelial
cells have been shown to mediate Cl2 efflux (Arima et
al., 1994). In human airway epithelial cells, A1 receptors
have been reported to mobilize intracellular Ca21 and
activate K1 and Cl2 conductance (Rugolo et al., 1993),
while selective inhibition of A1 receptors with DPCPX
increases cAMP-activated Cl2 conductance (McCoy et
al., 1995).

A1 adenosine receptors on rat cochleal membranes
(Ramkumar et al., 1994), astrocytes (Peakman and Hill,
1994), and epididymal spermatozoa (Minelli et al., 1995)
have been described. Release of Ca21 from internal
stores in perisynaptic glial cells of the frog neuromuscu-
lar junction via A1 receptors has been described (Robi-
taille, 1995).

Adenosine acts via A1 receptors and inhibition of
cAMP to inhibit lipolysis and increase insulin sensitivity
in adipose tissue (Londos et al., 1985; Green, 1987).
Abnormal A1 receptor function in genetic obesity has
been proposed, showing that lipolysis is less active and
A1 receptor signaling more active, which may be caused
by changes in receptor phosphorylation, but also possi-
bly by adenylate cyclase activity (LaNoue and Martin,
1994; Berkich et al., 1995). In contrast, insulin sensitiv-
ity is decreased by activation of A1 receptors in skeletal
muscle (Challis et al., 1992). A1 receptors on pancreatic
b cells mediate inhibition of insulin secretion (Hillaire-
Buys et al., 1989).

A1 receptors have been widely reported to mediate the
protective effects of adenosine in preconditioning and
during ischemia or during reperfusion injury in the
heart (Tsuchida et al., 1993, 1994; Yao and Gross, 1993;
Lee et al., 1995; Lasley and Mentzer, 1995; Strickler et
al., 1996; Grover et al., 1992; van Winkle et al., 1994;
Sakamoto et al., 1995; Mizumura et al., 1996; Stam-
baugh et al., 1997), lung (Neely and Keith, 1995), and
brain (Heurteaux et al., 1995). Strong evidence for a
protective role of A1 adenosine receptors comes from

studies with transgenic mice over expressing the A1
receptor. Mice over expressing the A1 receptor have been
shown to have an increased myocardial resistance to
ischemia (Matherne et al., 1997). The mechanism in-
volved is not yet clear; it may involve A1 receptor acti-
vation of KATP channels as infarct size reduction after
activation of A1 receptors has been reported to be com-
pletely abolished by the blockade of KATP channels
(Grover et al., 1992; van Winkle et al., 1994; Mizumura
et al., 1996). On the other hand, there seems to be a
general consensus that PKC is involved in ischemic pre-
conditioning, and activation of PKC was shown to be the
critical factor involved in limitation of myocardial in-
farct size by A1 receptors in anaesthetized rabbits (Saka-
moto et al., 1995). However, not all researchers are in
agreement that adenosine is cardioprotective, or that A1
receptors mediate ischemic preconditioning (Asimakis et
al., 1993; Ganote et al., 1993; Hendrikx et al., 1993;
Lasley et al., 1993; Liu et al., 1994). In addition, a pro-
tective role for adenosine A3 receptors has been sug-
gested (see Section VI.G.).

Reperfusion of ischemic tissue results in locally in-
creased permeability and pulmonary edema that is as-
sociated with neutrophil accumulation in the microvas-
culature; neutrophil-endothelial cell interactions are
known to be a prerequisite for the associated microvas-
cular injury. Paradoxically, given the protective role of
A1 receptors in ischemia-reperfusion injury, adenosine
contributes to inflammatory reactions via effects on neu-
trophil and/or endothelial A1 receptors. This is done by
augmenting responses to microbial stimuli, promoting
chemotaxis, adhesion to endothelium, phagocytosis, and
release of reactive oxygen intermediates (Cronstein et
al., 1990; Cronstein, 1994; Zahler et al., 1994; Bullough
et al., 1995; Felsch et al., 1995). It is possible that the
local concentration of adenosine is crucial in determin-
ing which type of response predominates. A concentra-
tion-dependent dual protective-destructive role has also
been described for the A3 adenosine receptor, but what is
even more intriguing is that it involves high and low
levels of activation of A3 receptors on the same cell (in
both HL-60 and U 937 cells) (Yao et al., 1997).

A1 adenosine receptors have been implicated in mod-
ulation of nociception in the spinal cord (Reeve and
Dickenson, 1995) and in the periphery (Karlsten et al.,
1992; Ocana and Baeyens, 1994). This may involve in-
hibition of sensory neurotransmitter release, because A1
receptors have been shown to mediate inhibition of cal-
citonin gene-related peptide (CGRP) release from capsa-
icin-sensitive sensory neurons in the spinal cord (Santi-
coli et al., 1993) and in the periphery (Rubino et al.,
1993), as well as inhibit GABA currents in dorsal root
ganglion neurons (Hu and Li, 1997). Analgesic effects of
caffeine have also been described. These effects have
been attributed to caffeine’s effects on supraspinal A1
receptors because caffeine’s effect is mimicked by the
A1-selective agonist 8-cyclopentyltheophylline (CPT);
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spinally or peripherally administered caffeine lacks an-
tinociceptive effects (Sawynok and Reid, 1996).

Synergistic interactions between A1 adenosine recep-
tors and receptors coupled to a different class of G pro-
tein, typically pertussis toxin insensitive Gq/11 proteins,
have been described, whereby coactivation of the recep-
tors results in an augmented increase in effectors/sec-
ond-messengers derived from the Gq/11 protein coupled
pathway. The intracellular mechanisms underlying this
potentiation are not well understood and have been sug-
gested variously to involve intra- and extracellular cal-
cium, second-messengers, and Gi protein bg subunits.
Early evidence for this kind of interaction came with the
observation that adenosine enhances a1-adrenoceptor-
induced accumulation of cAMP in rat vas deferens (Hägg-
blad and Fredholm, 1987). Synergistic interactions have
since been shown in DDT1 MF-2 cells for A1 receptors and
ATP receptors (Gerwins and Fredholm, 1992a), histamine
H1 receptors (Dickenson and Hill, 1994), and bradykinin
receptors (Gerwins and Fredholm, 1992b). A1 receptors
transfected into CHO cells act synergistically with recep-
tors for thrombin (Dickenson and Hill, 1997), cholecysto-
kinin A (Dickenson and Hill, 1996), and ATP (Megson et
al., 1995). A1 receptors in astrocytes interact synergisti-
cally with histamine H1 receptors (Peakman and Hill,
1995) and glutamate receptors (Ogata et al., 1994) to raise
levels of [Ca21]i. Synergistic interactions between A1 and
a1-adrenoceptor mediated increases in inositol phosphate
accumulation has been shown in mouse striatal astrocytes
(el-Etr et al., 1992a,b; Marin et al., 1993). In hippocampal
neurons, positive interactions have been described be-
tween adenosine A1 and GABAA receptors (Akhondzadeh
and Stone, 1994), as well as negative interactions between
A1 and metabotropic glutamate receptors (de Mendonça
and Ribeiro, 1997). Cross-talk between A1 and other recep-
tors is clearly widespread; its physiological significance is
an important area for future research.

IV. A2A Receptor

A. Cloned A2A Receptors

The A2A receptor has been cloned from several species
(table 3) and has a characteristic pharmacological profile
in transfected cells consistent with that of the endoge-
nous receptor. The first cloned adenosine receptor,
RDC8, cloned from a canine thyroid cDNA library (Lib-
ert et al., 1989), was subsequently identified as an A2A
receptor based on the binding of [3H]NECA and
[3H]CGS 21680, and by activation of adenylate cyclase
in cells transfected with the receptor (Maenhaut et al.,
1990). The exogenous A2A receptor was shown to have a
tissue distribution similar to endogenous A2A binding
sites in brain, that is, limited to the striatum, nucleus
accumbens and olfactory tubercule (Schiffmann et al.,
1990). Subsequently, A2A receptors were cloned from rat
brain (Chern et al., 1992; Fink et al., 1992), human
hippocampus (Furlong et al., 1992), and guinea-pig

brain (Meng et al., 1994b). Both A2A and A2B receptors
have been cloned from mouse bone marrow-derived mast
cells (Marquardt et al., 1994). The gene for the A2A
receptor has been mapped to human chromosome 22
(MacCollin et al., 1994; Peterfreund et al., 1996) with
reported chromosomal localizations of 22q11.2 (Le et al.,
1996) and 22q11.2-q13.1 (Libert et al., 1994).

In common with the other adenosine receptor sub-
types, there is significant interspecies differences in the
amino acid sequences of cloned A2A receptors; for exam-
ple, between rat and human A2A receptors there is ap-
proximately 84% amino acid homology (Chern et al.,
1992; Fink et al., 1992; Furlong et al., 1992; Linden,
1994), and between rat and dog A2A receptors 82% ho-
mology (Chern et al., 1992; Fink et al., 1992).

The significantly greater molecular weight of the A2A
receptor (45 kDa) compared with the other adenosine
receptor subtypes (36 to 37 kDa) can largely be attrib-
uted to its substantially longer carboxy terminal do-
main. This region is not involved in tight coupling to Gs
proteins because this is a function predominantly of the
N-terminal segment of the third intracellular loop (Olah,
1997). A truncated mutant of the canine A2A adenosine
receptor was used to show that neither the long carboxy-
terminus nor the glycosidic moieties are required for
ligand binding (Piersen et al., 1994). Site-directed mu-
tagenesis of the human A2A adenosine receptor has been
used to identify the various residues involved in agonist
and antagonist binding (Kim et al., 1995; Ijzerman et al.,
1996).

B. Signal Transduction Mechanisms

The most commonly recognized signal transduction
mechanism for A2A receptors is activation of adenylate
cyclase. This implies coupling with the G protein Gs,
although other G proteins may also be involved. Vibrio
cholerae (cholera toxin) ADP-ribosylates the a-subunit
of Gs family members, inhibiting the intrinsic GTPase
activity of Gas and thus has been useful in characteriz-
ing members of this family. Coupling of the A2A receptor
to its G protein is tight (see Palmer and Stiles, 1995).
Hence, there is only slow dissociation of agonist from the
receptor and stabilization of the receptor-G protein com-
plex.

cAMP-independent signaling has been suggested for
A2A receptors on striatal GABA nerve terminals (Kirk
and Richardson, 1995) and striatal cholinergic nerve
terminals (Gubitz et al., 1996). In striatal nerve termi-
nals, A2A receptors are suggested to mediate dual sig-
naling via P- and N-type Ca21 channels linked to Gs/
adenylate cyclase/PKA and cholera toxin-insensitive G
protein/PKC, respectively (Gubitz et al., 1996). It has
been suggested that A2A receptor-mediated inhibition of
superoxide anion generation in neutrophils may be me-
diated via cAMP-independent activation of a serine/
threonine protein phosphatase (Revan et al., 1996).
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A2A receptor-mediated facilitation of synaptic trans-
mission and transmitter release seems to occur through
potentiation of presynaptic P-type Ca21 channels, and
probably involves adenylate cyclase and activation of a
cAMP-dependent protein kinase (Mogul et al., 1993; Cor-
reia-de-Sá and Ribeiro, 1994a; Umemiya and Berger,
1994; Gubitz et al., 1996).

KATP channels are suggested to be involved in coro-
nary vasodilatation mediated by A2 receptors in the dog
(Akatsuka et al., 1994). Activation of KATP channels by
A2 receptors in arterial myocytes is suggested to involve
a cAMP-dependent protein kinase (Kleppisch and Nel-
son, 1995).

C. Desensitization

Desensitization of A2A receptors has been reported,
which may be more rapid, similar to, or less rapid than
that of A1 receptors. In DDT1 MF-2 cells, the t1/2 for
desensitization of A2A receptors (45 min) is more rapid
than that for A1 receptors, and in contrast to A1 recep-
tors, there is no change in A2A receptor number or affin-
ity (Ramkumar et al., 1991). A2A receptor desensitiza-
tion after exposure to A2- or A2A-selective agonists for up
to several minutes to 4h has been observed in a number
of tissues including porcine coronary artery (Makujina
and Mustafa, 1993), rat aortic vascular smooth muscle
cells (Anand-Srivastava et al., 1989), DDT1 MF-2
smooth muscle cells (Ramkumar et al., 1991), rat pheo-
chromocytoma PC12 cells (Chern et al., 1993), and in
canine A2A receptors expressed in CHO cells (Palmer et
al., 1994). On the other hand, guinea-pig coronary artery
A2A receptors do not desensitize after more than 2h
exposure to 2-[(2-aminoethylamino) carbonylethylphe-
nylethylamino]-59-N-ethylcarboxamido adenosine (APEC)
or 1,4-phenylene-diisothiocyanate, 4-isothiocyanatophenyl
aminothiocarbonyl-APEC (DITC-APEC) (Niiya et al.,
1993). Furthermore, A2A receptors seem to be relatively
resistant compared with A1 receptors to desensitization in
rat brain slices (Abbracchio et al., 1992) and in spontane-
ously hypertensive rats after chronic treatment with A1
and A2 selective agonists in vivo (Casati et al., 1994). In rat
striatum slices, A2 receptors do not desensitize following
exposure to NECA for up to 1h, whereas A1 receptors
desensitize rapidly (Abbracchio et al., 1992).

The mechanism underlying desensitization of A2A re-
ceptors has been studied in some detail in transfected
CHO cells, where it has been shown that exposure to
agonist causes rapid desensitization and phosphoryla-
tion (Palmer et al., 1994; Palmer and Stiles, 1997b). The
threonine 298 residue of the carboxy terminal of the A2A
receptor seems to be essential for agonist-stimulated
rapid receptor phosphorylation and short-term, but not
long-term, desensitization (Palmer and Stiles, 1997a).
The majority of the C terminal seems not to be involved
in desensitization, because desensitization of a trun-
cated mutant lacking the majority of the A2A carboxyl-
terminal (the last 95 residues) is unchanged (Palmer

and Stiles, 1997a). Evidence that desensitization may
involve GRKs, implying uncoupling of the receptor-G
protein complexes, has been provided by a study in
NG108–15 mouse neuroblastoma 3 rat glioma cells mu-
tants overexpressing GRK2, where the rate of desensi-
tization of endogenous A2A and A2B receptors was mark-
edly slowed (Mundell et al., 1997). This effect was
selective in that agonist-induced desensitization of se-
cretin and IP-prostanoid receptor stimulated adenylate
cyclase were not affected by dominant negative mutant
GRK2 overexpression (Mundell et al., 1997). Receptor
sequestration, whereby a receptor translocates to a
”light membrane” fraction, has been described for A2A
receptors expressed in CHO cells, but this seems to be
involved in the recovery of the response of the receptor
rather than in desensitization (Palmer et al., 1994).

Studies of long-term desensitization of endogenous
A2A receptors in rat pheochromocytoma PC12 cells
showed that whereas a 30 min exposure of A2A receptors
to CGS 21680 is associated with inhibition of adenylate
cyclase activity, long-term agonist exposure (12–20h) is
associated additionally with down regulation of Gs a
proteins and activation of phosphodiesterase (Chern et
al., 1993). Long-term (24h) exposure to agonist may
additionally lead to down-regulation of receptor number
and up-regulation of inhibitory G proteins (Palmer et al.,
1994; Palmer and Stiles, 1997a). Approximately 2 weeks
of continuous infusion of either NECA or CGS 21680
causes a decrease in the number of A2A receptor binding
sites in rat striatum (Porter et al., 1988; Webb et al.,
1993a). A calcium-independent PKC isoenzyme seems to
be involved in phosphorylation and inhibition of adenyl-
ate cyclase type VI activity after prolonged stimulation
and desensitization of the A2A receptor, at least in rat
pheochromocytoma PC12 cells (Lai et al., 1997), provid-
ing an additional mechanism by which to regulate A2A
receptor signal transduction.

D. Sensitization/Up-Regulation

Striatal A2A adenosine receptors in rats and mice are
up-regulated after chronic caffeine ingestion (Hawkins
et al., 1988; Traversa et al., 1994). A2A receptors seem to
be less prone to up-regulation after chronic blockade
with non-selective antagonists than are A1 receptors
(Lupica et al., 1991a; Johansson et al., 1993a).

E. Agonists

A2A receptors do not generally bind N6-substituted
adenosine derivatives and show a preference for deriv-
atives with modifications of the 2nd position of the ade-
nine ring; bulky substituents in this position can selec-
tively enhance A2A receptor affinity (Jacobson et al.,
1992b; Cristalli et al., 1994; Siddiqi et al., 1995). Several
synthetic A2A-selective agonists are modeled according
to this structural modification. It should be noted that
the agonist studies detailed below have been carried out
in species other than humans, and that the human A2A
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receptor has a comparatively lower affinity of binding
for CGS 21680 and other adenosine receptor agonists
(Dionisotti et al., 1997; Klotz et al., 1998).

The C2-substituted NECA derivative, CGS 21680, is
140-fold selective for the A2A versus the A1 receptor
(Hutchison et al., 1990) (fig. 2). CGS 21680 has only very
low affinity at the A2B receptor, and thus has been used
extensively to discriminate between A2A and A2B sub-
types (Jarvis et al., 1989; Lupica et al., 1990). [3H]CGS
21680 has been reported to bind in rat cortex and hip-
pocampus to adenosine binding sites different to the
classic striatal A2A receptors, which does not seem to be
caused by high and low affinity states of the same A2A
receptor, or to binding at A3 or A4 receptors (Johansson
et al., 1993b; Cunha et al., 1996; Lindström et al., 1996).
Amine derivatives of CGS 21680, namely APEC (fig. 2),
DITC-APEC and 2-[4-(2-([4-aminophenyl]methylcar-
bonyl)-ethyl)-phenyl]ethylamino-59-N-ethylcarboxamido-
adenosine (PAPA-APEC), are A2A-selective agonists (Bar-
rington et al., 1989; Ramkumar et al., 1991; Jacobson et al.,
1992a; Niiya et al., 1993). DITC-APEC binds covalently,
causing irreversible activation of the A2A receptor (Niiya et
al., 1993).

The C2-substituted adenosine derivative CV 1808 dis-
plays poor selectivity (approximately 5-fold) for the A2A
versus the A1 receptor (Kawazoe et al., 1980; Bruns et al.,
1986), but is a valuable precursor for the synthesis of more
selective A2A receptor agonists. N6-(2(3,5-dimethoxyphe-
nyl)-2-(2-methylphenyl)ethyl)-adenosine (DPMA) is a se-
lective A2A receptor agonist (Merkel et al., 1992; Alexander
et al., 1994).

A series of 2-aralkynyl and 2-heteroalkynyl deriva-
tives of NECA have been studied for their selectivity at
the A2A receptor (Cristalli et al., 1995). Of these, the
4-formylphenylethynyl derivative shows affinity in the
low nanomolar range and approximately 160-fold selec-
tivity. 2-Hexyl-59-N-ethylcarboxamidoadenosine (2HE-
NECA) has been suggested to be selective at A2A recep-
tors with 60- and 160-fold selectivity in binding studies
for A2A versus A1 receptors in rat and bovine brain,
respectively (Monopoli et al., 1994). Although NECA
itself is approximately equipotent at A1 and A2A recep-
tors, it can be useful in A2A receptor characterization
provided that A1-selective ligands are shown not to have
equivalent effects.

The 2-hydrazinoadenosine, WRC-0470 (2-cyclohexyl-
methylidenehydrazinoadenosine) has been shown to be
a potent and selective A2A agonist, with low nanomolar
affinity at recombinant A2A receptors transfected in
mammalian cells and in functional assays in a variety of
tissues (Martin et al., 1997b).

F. Antagonists

Several antagonists selective for the A2A receptor
have been synthesized. 8-(3-chlorostyryl)caffeine (CSC)
is a potent (Ki 54 nM) and selective A2A antagonist in
radioligand binding assays in rat brain (520-fold selec-

tive versus A1 receptors), in reversing agonist effects on
adenylate cyclase in PC12 cells (22-fold selective), and in
blocking locomotor depression elicited by the A2A-selec-
tive agonist APEC in vivo (Jacobson et al., 1993a) (fig. 3).
1,3-dialkyl-7-methyl-8-(3,4,5-trimethoxystyryl)xanthine
(KF-17837) has been described as a potent and selective
A2A antagonist with 62-fold selectivity for A2A over A1
receptors in binding studies in rat brain, and 30-fold
selectivity for the A2A over the A2B receptor in inhibition
of cAMP accumulation (A2A IC50 5 53 nM; A2B IC50 5
1500 nM) (Shimada et al., 1992; Kanda et al., 1994;
Nonaka et al., 1994). DMPX (3,7-dimethyl-1-propargylx-
anthine) derivatives have been shown to be potent and
selective A2A antagonists; 8-(m-bromostyryl)-DMPX has
a Ki value of 8.2 nM and is 146-fold selective versus A1
receptors (Müller et al., 1996b).

ZM 241385, (4-(2-[7-amino-2-(2-furyl)[1,2,4]-triazolo
[2,3-a] [1,3,5]triazin-5-yl amino]ethyl)phenol) is a potent
and selective non-xanthine A2A adenosine receptor an-
tagonist (Poucher et al., 1995) (fig. 3). It has high affinity
for the A2A receptor (pA2 value approximately 9), is
1000- and 91-fold selective versus A1 and A2B receptors,
respectively, and has virtually no effects at A3 receptors
(Poucher et al., 1995).

[3H]SCH 58261 ([3H-5-amino-7-(2-phenylethyl)-2-(2-
furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine) is
a novel potent and selective A2A antagonist radioligand
which binds with low nanomolar affinity to A2A recep-
tors in human platelet and rat striatal membranes, and
at A2A receptors transfected into CHO cells (Zocchi et al.,
1996; Dionisotti et al., 1997). The analog SCH 63390
(5-amino-7-(3-phenylpropyl)-2-(2-furyl)pyrazolo[4,3-e]-
1,2,4-triazolo[1,5-c]pyrimidine) has similar potency at
A2A receptors, but greater selectivity (210-fold) (Baraldi
et al., 1996).

G. Distribution and Biological Effects

A2A receptors have a wide-ranging but restricted dis-
tribution that includes immune tissues, platelets, the
CNS, and vascular smooth muscle and endothelium.
Functional studies concerned with A2A receptors in iso-
lated cells and tissues, in the central and peripheral
nervous systems, and in isolated blood vessels and vas-
cular beds, are listed in tables 4, 5 and 6, and illustrate
the wide distribution and diverse biological effects me-
diated by this receptor.

Within the brain, the highest levels of A2A receptors
are in the striatum, nucleus accumbens, and olfactory
tubercle (regions which are rich in dopamine) (Ongini
and Fredholm, 1996). Low levels of A2A receptor also
seem to be expressed in most other brain regions, al-
though for striatal cholinergic neurons this is controver-
sial (Dixon et al., 1996; Peterfreund et al., 1996; Jin and
Fredholm, 1997; Svenningsson et al., 1997). Striatal
neurons express A2A receptors in close association with
dopamine D2 receptors and specific negative interac-
tions have been described (Férre et al., 1991, 1992, 1997;
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Fink et al., 1992; Schiffmann and Vanderhaeghen,
1993). Outside the brain, the most abundant expression
of human A2A mRNA is in immune tissues, eye and
skeletal muscle; heart, lung, bladder, and uterus also
show strong expression, with less abundant expression
in small intestine, kidney, spleen, stomach, testis, skin,
kidney, and liver (Dixon et al., 1996; Peterfreund et al.,
1996).

A2A receptors in the CNS and particularly in the pe-
ripheral nervous system (PNS) generally facilitate neu-
rotransmitter release (table 5).

The negative interactions that have been observed
between A2A and dopamine D2 receptors involve a re-
duced affinity of agonist binding to dopamine D2 recep-
tors upon stimulation of A2A receptors in rat striatal
membranes (Ferré et al., 1991, 1992, 1997). This raises
the possibility of using A2A receptor antagonists as a
novel therapeutic approach in the treatment of Parkin-
sons disease, to reduce the profound disabling effects
arising from degeneration of dopaminergic nigrostriatal
neurons of the basal ganglia in this disease (Richardson

et al., 1997). Interactions are not observed between A2A
and D2 receptors transfected into COS-7 cells; it was
suggested that the receptors do not interact directly to
influence agonist binding (Snaprud et al., 1994). Inter-
estingly, activation of A2A receptors on rat striatal nerve
terminals causes desensitization of coexpressed A1 re-
ceptors by a mechanism which seems to involve PKC
(Dixon et al., 1997a). It is noteworthy that both D2
dopamine and A1 adenosine receptors couple to Gi pro-
teins to cause inhibition of adenylate cyclase. Thus, with
respect to the actions of adenosine at A2A receptors,
negative A2A-A1 and A2A-D2 interactions will shift the
balance of intracellular signaling further toward stimu-
lation of cAMP. Interactions between A2A receptors and
dopamine D1 receptors, and receptors for CGRP, gluta-
mate, and acetylcholine have also been reported (see
Sebastiào and Ribeiro, 1996). Negative interactions
whereby activation of the A2A receptor blocks the pro-
tective effects of preconditioning hypoxia, believed to be
via A1 and A3 receptors, have been described (Strickler
et al., 1996).

TABLE 4
Distribution and effects mediated by endogenously expressed A2 adenosine receptors

Tissue Subtype Effects Reference

Astrocytes A2 Reactive astroglyosis Hindley et al., 1994
Astrocytes, type 1 A2B — Peakman and Hill, 1994, 1996
Astrocytes, type 2 A2A, A2B — Peakman and Hill, 1996
Astroglioma cell line D384 A2B — Altiok et al., 1992; Fredholm and Altiok, 1994
Astrocytoma cell line U373 A2B 1 Interleukin 6 Fiebich et al., 1996
Neutrophils A2A 2 Apoptosis Zhang et al., 1996; Walker et al., 1996

A2A 2 Oxygen radical generation,
phagocytosis and adhesion

Cronstein et al., 1990, 1992; Salmon and Cronstein,
1990; Gurden et al., 1993; Cronstein, 1994; Bullough
et al., 1995; Felsch et al., 1995

Jurkat cells (human T-cell line) A2A, A2B — Nonaka et al., 1994; van der Ploeg et al., 1996
Mast cells (mouse) A2A, A2B — Marquardt et al., 1994
Mastocytoma cells (canine) A2B Degranulation Auchampach et al., 1997a
HMC-1 (human mast cell line) A2A, A2B Interleukin-8 secretion by A2B Feoktistov and Biaggioni, 1995
Fibroblasts A2B — Bruns et al., 1986; Brackett and Daly, 1994
Platelets A2A 2 Aggregation Huttemann et al., 1984; Gurden et al., 1993; Monopoli

et al., 1994; Cristalli et al., 1995
Chromaffin cells A2B 2 DMPP-evoked catecholamine

release
Casado et al., 1992; Mateo et al., 1995

Pheochromocytoma PC12 cells A2 1 ATP-evoked dopamine release Koizumi et al., 1994
Pheochromocytoma PC12 cells A2A, A2B — Hide et al., 1992; Chern et al., 1993; Nonaka et al.,

1994; van der Ploeg et al., 1996
Pineal gland A2B — Gharib et al., 1992
Retinal membranes A2A, A2B — Blazynski and McIntosh, 1993
Retinal pigment epithelial cells A2B — Blazynski, 1993
Outer rod segments A2A — McIntosh and Blazynski, 1994
Airways A2B Bronchoconstriction Pauwels and Joos, 1995
Trachea A2(B) Relaxation Losinski and Alexander, 1995
Taenia coli A2 Relaxation Burnstock et al., 1984
Duodenum; longitudinal muscle A2B Relaxation Nicholls et al., 1992
Duodenum; muscularis mucosae A2B Contraction Nicholls et al., 1996
Colon A2B — Stehle et al., 1992
Caecum A2B — Stehle et al., 1992
Intestine A2B 2 Secretion Hancock and Coupar, 1995a
Intestinal epithelia A2B 1 Cl2 secretion Strohmeier et al., 1995
Parietal cells A2 1 Gastric acid secretion Ainz et al., 1993
Liver A2 1 Glycogenolysis Buxton et al., 1987
Hepatocytes A2 1 Glycogenolysis Stanley et al., 1987
Kidney A2 Erythropoietin production Nakashima et al., 1993
Kidney A2 1 Renin release Churchill and Churchill, 1985; Churchill and Bidani,

1987
Glomeruli A2 — Freissmuth et al., 1987
Pancreatic A cells A2 1 Glucagon secretion Chapal et al., 1985
Bladder A2B — Nicholls et al., 1992; Stehle et al., 1992
Sperm A2 1 Motility Shen et al., 1993
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Behavioral effects of A2A receptors are evidenced by
A2A-mediated cataleptic activity and antagonism of apo-
morphine-induced climbing (an animal model of schizo-
phrenia) (Kanda et al., 1994; Kafka and Corbett, 1996).

In the vasculature, A2A receptors have been described
on both the smooth muscle and endothelium, where they
are associated with vasodilatation (table 6). There seems
to be considerable variation in A2A receptor expression
between blood vessels, although it is possible that ves-
sels unresponsive to A2A-selective agonists do express
the receptor but at very low levels, or that the receptor is
not coupled to a functional response. This functional
diversity is exemplified by the fact that A2A receptors
mediate relaxation of rat aorta and bovine coronary
artery (Conti et al., 1993), whereas in guinea-pig pulmo-
nary artery (Szentmiklósi et al., 1995) and rat mesen-
teric arterial bed (Rubino et al., 1995), adenosine-medi-
ated relaxation is mediated via the A2B receptor, and
relaxation via A2A receptors is weak or non existent (fig.
5). Adenosine has a mitogenic effect on endothelial cells,
which in human endothelial cells is mediated via the A2A
receptor and subsequent activation of mitogen-activated
protein kinase (MAPK) (Sexl et al., 1997). The mitogenic
activation seems to be independent of Gs, Gi and typical
PKC isoforms, but is associated with activation of p21ras

(Sexl et al., 1997).
An interesting development in this field is provided by

a study of A2A receptor knockout mice (Ledent et al.,

1997). These mice showed reduced exploratory activity.
Caffeine, which normally stimulates locomotor activity,
substantially depressed activity. The A2A knockout mice
also showed increased aggresiveness, hypoalgesia, an in-
crease in blood pressure and heart rate, and an increase in
platelet aggregation (Ledent et al., 1997). It is satisfying
that these findings are broadly consistent with those pre-
dicted from studies of the endogenous A2A receptor in iso-
lated cells and tissues, and in whole animals.

V. A2B Receptor

A. Cloned A2B Receptors

A2B receptors have been cloned from human hip-
pocampus (Pierce et al., 1992), rat brain (Rivkees and Rep-
pert, 1992; Stehle et al., 1992), and mouse bone marrow-
derived mast cells (Marquardt et al., 1994) (table 3). The
human A2B adenosine receptor gene (ADORA2B) has been
localized to chromosome 17p11.2-p12 (Townsend-Nichol-
son et al., 1995b) and 17p12 (Jacobson et al., 1995a). A
human A2B receptor pseudogene has been cloned and lo-
calized to chromosome 1q32 (Jacobson et al., 1995a). Al-
though the pseudogene is unable to encode a functional
receptor, it is 79% identical with the functional A2B recep-
tor. Thus, it was noted that the existence of the transcript
in tissues could lead to misinterpretation of in situ hybrid-
ization and northern blot analysis when probes are used to
recognize sequences common to these receptors (Jacobson

TABLE 5
Functional distribution of endogenously expressed A2 adenosine receptors in central and peripheral nervous systems

Location Subtype Effects Reference

CNS
Caudate-putamen synaptosomes A2A 2 K1-evoked GABA release Kurokawa et al., 1994
Cerebral cortex A2(A) 2 Neuronal firing Phillis, 1990; Lin and Phillis, 1991
Cerebral cortex A2(B) 1 ACh- and K1-evoked aspartate release Phillis et al., 1993a,b
Cerebral cortex A2A 2 Ischemia-evoked GABA release O’Regan et al., 1992a
Cerebral cortex A2A 2 Ischemia-evoked glutamate and

aspartate release
O’Regan et al., 1992b

Globus pallidus A2A 1 Electrically evoked GABA release Mayfield et al., 1993
Globus pallidus synaptosomes A2A 2 K1-evoked GABA release Kurokawa et al., 1994
Hippocampus A2A 1 Electrically evoked [14C]ACh release Jin and Fredholm, 1997
Hippocampus (CA3 region) A2A 1 Electrically evoked [3H]ACh release Cunha et al., 1994
Hippocampus (CA3 region) A2 1 P-type calcium currents Mogul et al., 1993
Hippocampal synaptosomes A2A 1 Veratridine-evoked [3H]ACh release Cunha et al., 1995
Nucleus accumbens A2A 2 Locomotor activity (baroreceptor 2,

chemoreceptor 1)
Barraco et al., 1993, 1994

Nucleus tractus solitarius A2A Baroreflex control (hypotension,
bradycardia)

Barraco et al., 1993; Ergene et al., 1994

A2A 1 Electrically evoked [3H]NA release Barraco et al., 1995
A2A 2 K1-evoked glutamate release Castillo-Meléndez et al., 1994

Striatum A2A Catalepsy Hauber and Munkle, 1995
Striatum A2 1 Dopamine release Zetterström and Fillenz, 1990
Striatum A2A 1 ACh release Brown et al., 1990; Kurokawa et al., 1994
Striatum A2A 1 Veratridine-evoked [3H]ACh release Kirkpatrick and Richardson, 1993
Striatum A2A 2 NMDA receptor conductance Nörenberg et al., 1997b
Striatal synaptosomes A2A 2 K1-evoked GABA release Kirk and Richardson, 1995
Superior colliculus A2A 1 Evoked potentials Ishikawa et al., 1997
Spinal cord A2 Antinociception DeLander and Hopkins, 1987

PNS
Motor nerves; phrenic nerve-
hemidiaphragm

A2A 1 Electrically and CGRP-evoked
[3H]ACh release

Correia-de-Sá and Ribeiro, 1994a,b; Correia-de-
Sá et al., 1996

Myenteric neurones A2A 1 Excitability Christofi et al., 1994
Airway sensory neurones A2(A) 2 Capsaicin-evoked substance P release Morimoto et al., 1993
Vagal afferent neurones A2A Depolarization Castillo-Melendez et al., 1994
Vas deferens neurones A2A 1 Electrically evoked NA release Gonçalves and Queiroz, 1993
Rat tail artery neurones A2A 1 Electrically evoked NA release Gonçalves and Queiroz, 1996
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et al., 1995a). As with the other adenosine receptor sub-
types, there is considerable species differences in the se-
quence of the A2B receptor; for example, 86% amino acid
sequence homology between rat and human A2B receptors
(Stehle et al., 1992; Pierce et al., 1992; Linden, 1994).

B. Signal Transduction Mechanisms

A2B receptor coupling to different signaling pathways
has been reported, including activation of adenylate cy-
clase, Gq/G11-mediated coupling to PLC and IP3-depen-
dent increase in [Ca21]i (in human mast cells) (Feoktis-
tov and Biaggioni, 1995), and coupling to PLC when
expressed in Xenopus oocytes (Yakel et al., 1993).

C. Desensitization

The lack of A2B receptor-selective agonists has un-
doubtedly contributed to the general lack of information
on A2B receptor desensitization. In rat PC12 cells, the
A2B response has been shown to be reduced in A2A-
desensitized cells, possibly through common inhibition
of adenylate cyclase (Chern et al., 1993). In mutant
NG108–15 cells overexpressing GRK2, desensitization
of endogenous A2B receptors was markedly less than
that in normal cells (t1/2 15–20 min), indicating that
receptor phosphorylation and uncoupling from G pro-
teins may be involved in desensitization of A2B receptors
(Mundell et al., 1997). Although it is not yet clear
whether there are inherent differences in the rates of
desensitization of A2A and A2B receptors, the lower af-

finity of A2B receptors for adenosine raises the possibil-
ity that they may still be fully operational, and thus may
act as a backup for adenosine responses, when the
higher affinity coexpressed A2A receptors have been ac-
tivated and desensitized.

D. Agonists and Antagonists

Despite intensive efforts in this area, there are no
A2B-selective agonists. Thus, at present, activation of
adenylate cyclase in membranes and accumulation of
cAMP in cells is used to characterize A2B receptors,
provided a lack of activity/binding of A1-, A2A-, and A3-
selective agonists is confirmed. As with A2A receptors,
A2B receptors show a preference for adenosine deriva-
tives with modifications of the C2 position of the adenine
ring. NECA is currently the most potent agonist at A2B
receptors, having low micromolar affinity (Brackett and
Daly, 1994; Alexander et al., 1996; Klotz et al., 1998), but
is less useful in characterization of A2B receptors in cells
or tissues in which A2A receptors are coexpressed be-
cause it is non-selective. 2-ClADO, N6-(3-iodobenzyl)-59-
(N-methylcarbamoyl)adenosine (IB-MECA), and R-PIA
are among the more potent of other conventional ade-
nosine-receptor agonists that act also at A2B receptors,
but their affinity for the A2B receptor is relatively low
(EC50 values 9 to 11 mM) (Brackett and Daly, 1994; Klotz
et al., 1998).

Enprofylline blocks A2B receptors in human mast cells
HMC-1 (Ki 7 mM) and canine BR mastocytoma cells and

TABLE 6
Functional distribution of endogenously expressed vascular A2 adenosine receptors

Vessel and species Receptor Location Reference

Aorta; guinea-pig A2B EC, SM Hargreaves et al., 1991; Martin, 1992; Martin et al., 1993b;
Gurden et al., 1993; Alexander et al., 1994

Aorta; rabbit A2A N.D. Balwierczak et al., 1991
Aorta; rat A2A, A2B EC, SMa Conti et al., 1993; Lewis et al., 1994; Monopoli et al., 1994;

Prentice and Hourani, 1996
Aortic EC; human A2A, A2B EC Iwamoto et al., 1994
Aortic SM cells; rat A2B SM Dubey et al., 1996
Coeliac artery; rabbit A2A N.D. Balwierczak et al., 1991
Coronary artery; bovine A2A N.D. Conti et al., 1993; Monopoli et al., 1994
Coronary artery; canine A2A N.D. Balwierczak et al., 1991; Gurden et al., 1993
Coronary artery; human A2A N.D. Makujina et al., 1992
Coronary artery; porcine A2A, A2(B) EC, SM Balwierczak et al., 1991; Abebe et al., 1994; Monopoli et al., 1994
Coronary artery EC; guinea-pig A2A EC Schiele and Schwabe, 1994
Coronary bed/vessels; guinea-pig A2A EC, SM Martin et al., 1993b; Vials and Burnstock, 1993
Corpus cavernosum; rabbit A2B EC, SM Chiang et al., 1994
DDT1 MF-2 cells (SM cells) A2A SM Ramkumar et al., 1991
Hepatic arterial bed; rabbit A2A N.D. Mathie et al., 1991a,b
Mammary artery; human A2A N.D. Makujina et al., 1992
Mesenteric arterial bed; rat A2A EC, SM Hiley et al., 1995
Mesenteric arterial bed; rat A2B SM Rubino et al., 1995
Mesenteric artery; rabbit A2A N.D. Balwierczak et al., 1991
Placental arterial bed; human A2A N.D. Read et al., 1993
Pulmonary artery; guinea pig A2B SM Szentmiklósi et al., 1995
Pulmonary arterial bed; rat A2B SM Haynes et al., 1995
Pulmonary artery and vein; rabbit A2 EC, SM Steinhorn et al., 1994
Pulmonary arterial bed; rabbit A2 N.D. Pearl, 1994
Renal artery; rat A2B EC Martin and Potts, 1994
Renal bed; rat A2A SM Levens et al., 1991a,b; Agmon et al., 1993
Saphenous vein; canine A2B N.D. Hargreaves et al., 1991
Saphenous vein; human A2A N.D. Makujina et al., 1992
Umbilical vein EC; human A2A EC Sobrevia et al., 1997

EC, endothelium; SM, smooth muscle; N.D., not determined.
a A2A adenosine receptor only.
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is inactive at A1, A2A, and A3 receptors. It may, there-
fore, be a valuable starting compound from which to
develop more potent selective A2B receptor antagonists
(Feoktistov and Biagionni, 1996). The non-xanthine al-
loxazine has been reported as having approximately
9-fold selectivity for the A2B compared with the A2A
receptor (Brackett and Daly, 1994). XAC and CGS 15943
are antagonists with low nanomolar affinity at A2B re-
ceptors, but are non-selective versus other subtypes of
adenosine receptor (Alexander et al., 1996; Klotz et al.,
1998).

E. Distribution and Biological Effects

A2B receptors are found on practically every cell in
most species; however, the number of receptors is small
and relatively high concentrations of adenosine are gen-
erally needed to evoke a response. The sensitive tech-
nique of reverse transcription-polymerase chain reac-
tion (RT-PCR) showed low levels of A2B receptors in all
rat brain regions tested (Dixon et al., 1996). Northern
blot analysis showed relatively high expression of A2B
receptors in the caecum, large intestine, and urinary

bladder, with lower levels in the brain, spinal cord, lung,
vas deferens, and pituitary (Stehle et al., 1992). RT-PCR
revealed the highest expression of A2B receptors in the
proximal colon, with lower levels in the eye, lung,
uterus, and bladder; still lower levels in the aorta, stom-
ach, testis, and skeletal muscle; and the lowest levels in
the jejunum, kidney, heart, skin, spleen, and liver
(Dixon et al., 1996).

Selected distributions and biological effects mediated
by A2B receptors in isolated cells and tissues are listed in
tables 4 and 6. Functional studies have identified A2B
receptors in airway smooth muscle, fibroblasts, glial
cells, the gastrointestinal tract, and the vasculature. A2B
receptors have been cloned from, and immunolocalized
on, mouse bone marrow-derived mast cells (Marquardt
et al., 1994), and shown to mediate degranulation of
canine BR mastocytoma cells (Auchampach et al.,
1997a). They have also immunolocalized and been
shown to activate human mast cells (Feoktistov and
Biagionni, 1996). This implies a possible role in allergic
and inflammatory disorders. The antiasthmatic effects
of enprofylline, a potential A2B receptor antagonist, are
consistent with this hypothesis (Feoktistov and Biag-
gioni, 1996).

Vascular A2B receptors identified by pharmacological
and biochemical studies are listed in table 6, which
shows that these receptors may couple to a functional
response (vasodilatation) in both smooth muscle and
endothelium. Interestingly, A2B receptors seem to be
important in mediating vasodilatation in some vessels,
including the rat mesenteric arterial bed (Rubino et al.,
1995) and guinea-pig pulmonary arteries (Szentmiklósi
et al., 1995), but not in others where the A2A subtype
predominates (table 6, fig. 5). Rat aortic smooth muscle
A2B receptors have been implicated in inhibition of
growth (Dubey et al., 1996), identifying a possible long-
term trophic role for these receptors.

VI. A3 Receptor

A. Cloned A3 Receptors

A3, the fourth distinct adenosine receptor, was iden-
tified relatively late in the history of adenosine/P1 re-
ceptors with the cloning, expression, and functional
characterization of a novel adenosine receptor from rat
striatum (Zhou et al., 1992). This was identical with a
clone previously isolated from a rat testis cDNA library
encoding a G protein-coupled receptor with greater than
40% sequence homology with canine A1 and A2A adeno-
sine receptors, although its ligand had not then been
identified (Meyerhof et al., 1991). The recombinant stri-
atal A3 receptor does not resemble any other adeno-
sine/P1 subtypes in agonist or antagonist binding; it
binds ligands with a potency order of R-PIA 5 NECA .
S-PIA and is coupled to inhibition of adenylate cyclase
activity in a pertussis toxin-sensitive manner; it binds
with high affinity to the radioligand N6-2-(3-iodo-4-

FIG. 5. Species variation in functional expression of vasodilator A2A
and A2B receptors. Note that the agonist potencies suggest the presence
of A2A receptors in rat aorta (a) and bovine coronary artery (b), and A2B
receptors in rat mesenteric arterial bed, (c) and guinea-pig pulmonary
arteries (d).

a., b. Mean dose-response curves for the vasorelaxant activity induced
by some adenosine agonists in isolated rat aorta (a) and bovine coronary
artery (b). Each response is expressed as the percentage of the maximum
contraction induced by PGF2a (3 mM). Vertical bars represent 95% con-
fidence limits. (From Conti et al., 1993).

c. Dose-response curves showing vasodilator responses of the rat mes-
enteric vascular bed to ATP (Œ), 2-meSATP (n), adenosine (L), 2-CADO
(,), NECA (�), CPA (E) and CGS 21680 (F). Vasodilator response are
shown as percent vasodilatation of the methoxamine sustained tone
taken as 100% and are the mean of 4 to 7 preparations. Response are to
bolus injections of drugs. Symbols show means 6 SEM (From Rubino et
al., 1995, Br J Pharmacol 115: 648–652; with permission from McMillam
Press Limited).

d. Concentration-dependent relaxation of guinea pig pulmonary arter-
ies by NECA (Œ; n 5 5), CADO (r; n 5 5), adenosine (�; n 5 16), CGS
21680 (n; n 5 5), R-PIA (l; n 5 5) or CPA (F; n 5 15). Relaxant responses
are expressed as a percentage of the noradrenaline-contraction (mean 6
SEM). (From Szentmiklósi et al., 1995).

RECEPTORS FOR PURINES AND PYRIMIDINES 433



aminophenyl)ethyladenosine but not to the A2A-selec-
tive adenosine ligand [3H]CGS 21680 or the alkylxan-
thine antagonists XAC, IBMX, or the A1-selective
antagonist DPCPX.

Homologs of the rat striatal A3 receptor have been
cloned from sheep pars tuberalis (pituitary tissue) (Lin-
den et al., 1993), human heart (Sajjadi and Firestein,
1993, and striatum (Salvatore et al., 1993) (see also
Linden, 1994) (table 3). Interspecies differences in A3
receptor structure are large; the rat A3 receptor shows
only approximately 74% sequence homology with sheep
and human A3 receptors each, although there is 85%
homology of sheep and human A3 receptors. This is
reflected in the very different pharmacological profiles of
the species homologs, particularly with respect to antag-
onist binding, and this has caused considerable compli-
cations in the characterization of this receptor. The hu-
man A3 receptor has been localized to chromosome 1
p13.3 (Monitto et al., 1995).

The rat, but not the human, A3 receptor transcript
may be subject to extensive alternative splicing, further
evidence of the profound interspecies differences involv-
ing the A3 receptor. A splice variant of the rat A3 recep-
tor (A3i), having a 17 amino acid insertion within the
second intracellular loop, has been cloned and charac-
terized (Sajjadi et al., 1996). There was no evidence for
alternative splicing of the human A3 receptor transcript
(Sajjadi et al., 1996).

This A3 receptor has taken precedence over the con-
troversial A3 receptor defined principally according to its
pharmacological profile by Ribeiro and Sebastiào (1986),
which probably represents an A1 receptor (Carruthers
and Fozard, 1993; Ribeiro and Sebastiào, 1994).

B. Signal Transduction Mechanisms

The A3 receptor is G protein-linked, coupling to Gia2-,
Gia3- and, to a lesser extent, to Gq/11 proteins (Palmer et
al., 1995b). In rat basophilic leukemia cells (RBL-2H3; a
cultured mast cell line) (Ali et al., 1990; Ramkumar et
al., 1993b) and in rat brain (Abbracchio et al., 1995a),
the A3 receptor stimulates PLC and elevates IP3 levels
and intracellular Ca21. PKC has been suggested to be
involved in A3 receptor-mediated preconditioning in rab-
bit cardiomyocytes (Armstrong and Ganote, 1994). The
A3 receptor has also been shown to inhibit adenylate
cyclase activity (Zhou et al., 1992; Abbracchio et al.,
1995b).

C. Desensitization

Recombinant rat and human A3 receptors have been
shown to desensitize within minutes in response to ag-
onist exposure; this is associated with uncoupling of the
receptor-G protein complex, as indicated by a reduction
in the number of high affinity binding sites (Palmer et
al., 1995a; Palmer et al., 1997). Desensitization of the
rat A3 receptor is rapid (within a few minutes), homol-
ogous, and is associated with rapid phosphorylation by a

G protein-coupled receptor kinase similar to, or identical
with, GRK2 (Palmer et al., 1995a; Palmer and Stiles,
1997b). Rapid, homologous functional desensitization of
A3 receptors has also been described in RBL-2H3 cells
(Ali et al., 1990; Ramkumar et al., 1993b). A chimeric
A1-A3 receptor constructed from an A1 receptor (non-
desensitizing under the conditions of the study) and the
C-terminal domain of an A3 receptor was expressed in
CHO cells and shown to undergo rapid desensitization.
This indicates that the C-terminal domain of the A3

receptor is the site for phosphorylation by the G protein-
coupled receptor kinases involved in desensitization
(Palmer et al., 1996).

The effects of long-term agonist exposure on interac-
tion of the rat A3 receptor with G proteins was assessed
using a transfected CHO cell system (Palmer et al.,
1995b). Chronic exposure of A3 receptors to the non-
selective agonist NECA (for up to 24h) causes selective
down-regulation of Gia3- and b-subunits, without chang-
ing levels of Gia2 or Gq-like proteins (Palmer et al.,
1995b).

D. Up-Regulation

In situ hybridization identified the A3 receptor in mes-
enchymal cells and eosinophils within the lamina pro-
pria of the airways and the adventitia of blood vessels in
the lung, as well as in peripheral eosinophils, but inter-
estingly, not in mast cells (Walker et al., 1997). It was
found that the A3 receptor transcript was greater in lung
tissue from subjects with airway inflammation than in
normal lung. This is consistent with the hypothesis that
there is a distinct distribution of the A3 receptor in
inflammatory cells and that this is up-regulated in air-
way inflammation (Walker et al., 1997).

E. Agonists

The main class of selective A3 receptor agonists is the
N6-substituted adenosine-59-uronamides. N6-benzylN-
ECA is potent (Ki 6.8 nM) and moderately selective (13-
and 14-fold versus A1 and A2A) at rat A3 receptors trans-
fected into CHO cells (van Galen et al., 1994). N6-(3-iodo-
benzyl)-59-(N-methylcarbamoyl)adenosine (IB-MECA) (Ki

1.1 nM) is 50-fold selective for rat brain A3 receptors versus
A2A or A1 receptors (Gallo-Rodriguez et al., 1994) (fig. 2).
The iodinated radioligand [125I]AB-MECA binds with ap-
proximately nanomolar affinity to rat brain A3 adenosine
receptors expressed in CHO cells, but also binds to native
A1 receptors. Selectivity is increased by 2-substitution of
N6-benzyladenosine-59-uronamides; 2-chloro-IB-MECA
(2Cl-IB-MECA, Ki 5 0.33 nM) is highly selective for A3

versus A1 and A2A receptors, by 2500- and 1400-fold, re-
spectively (Kim et al., 1994) (fig. 2). There is pronounced
interspecies differences in the relative affinities of agonist
binding at A3 receptors (Ji et al., 1994; Linden, 1994).

434 RALEVIC AND BURNSTOCK



F. Antagonists

Several classes of compounds have been developed as
A3 antagonists. One class comprises xanthines and their
derivatives. Rat, rabbit, and gerbil brain A3 receptors
bind only weakly to xanthine derivatives compared with
human and sheep A3 receptors, which exhibit high af-
finity (Zhou et al., 1992; Linden et al., 1993; Salvatore
et al., 1993; Ji et al., 1994). The most potent of the
8-phenyl-substituted xanthines, I-ABOPX (3-(3-iodo-4-
aminobenzyl)-8-(4-oxyacetate)phenyl-1-propylxanthine,
or BW-A522) binds with nanomolar affinity to human
and sheep A3 receptors (Linden et al., 1993; Salvatore et
al., 1993), but by contrast with micromolar affinity at
rabbit, gerbil, and rat A3 receptors (Ji et al., 1994).

Five chemical classes of non-xanthine antagonists
have been reported. L-268605 (3-(4-methoxyphenyl)-5-
amino-7-oxo-thiazolo [3, 2]pyrimidine) is a potent and
selective A3 antagonist with a Ki value of 18 nM and no
appreciable affinity for human A1 and A2A receptors
(Jacobson et al., 1996) (fig. 3). Another class is repre-
sented by L-249313 (6-carboxymethyl-5,9-dihydro-9-
methyl-2-phenyl-[1, 2, 4]-triazolo[5,1-a][2, 7]naphthyri-
dine) with high affinity at cloned human A3 receptors, Ki
value of 13 nM, but low affinity at native rat brain A3
receptors, Ki 58 mM, and selectivity of approximately
300- and 1460-fold over A1 and A2A receptors, respec-
tively (Jacobson et al., 1996) (fig. 3).

The three other categories of molecules with promise
as A3 receptor antagonists are the flavonoid MRS 1067
(3,6-dichloro-29isopropyloxy-49-methyl-flavone), the 6-phe-
nyl-1,4-dihydropyridines MRS 1097 (3,5-diethyl[2-methyl-
6-phenyl-4-(2-phenyl-(E)-vinyl]-1,4-(6)-dihydropyridine-
3,5-dicarboxylate) and MRS 1191 (3-ethyl 5-benzyl
2-methyl-6-phenyl-4-phenylethynyl-1,4-(6)-dihydropyri-
dine-3,5-dicarboxylate) and the triazoloquinazolene MRS
1220 (9-chloro-2-(2-furyl)-5-phenylacetylamino[1, 2, 4]tria-
zolo[1,5-c]quinazoline). Of these, MRS 1220 and MRS 1197
show promise as potent and selective competitive antago-
nists, with Ki values of 0.6 and 31 nM, respectively, for
inhibition of [125I]AB-MECA binding and KB values of 1.7
and 92 nM at human recombinant A3 receptors (Jacobson
et al., 1997). A much lower affinity was observed at the rat
A3 receptor: .2000-fold for MRS1220 and 112-fold for
MRS 1197 (Jacobson et al., 1997) as has been noted with
xanthine-based antagonists.

G. Distribution and Biological Effects

The A3 receptor is widely distributed, but its physio-
logical role is still largely unknown. A3 mRNA is ex-
pressed in testis, lung, kidneys, placenta, heart, brain,
spleen, liver, uterus, bladder, jejunum, proximal colon,
and eye of rat, sheep, and humans (Zhou et al., 1992;
Linden et al., 1993; Salvatore et al., 1993; Linden, 1994;
Rivkees, 1994; Dixon et al., 1996) (fig. 4). A3 mRNA was
not detected in rat skin or skeletal muscle (Dixon et al.,
1996) (fig. 4). Rat testis seems to have particularly high

concentrations of A3 mRNA (in spermatocytes and sper-
matids), compared with rather lower levels in most other
rat tissues (Linden et al., 1993; Salvatore et al., 1993).
The highest levels of human A3 mRNA are found in lung
and liver, with lower levels in aorta and brain (Salvatore
et al., 1993). In sheep, the highest levels of A3 mRNA are
found in lung, spleen, pars tuberalis, and pineal gland
(Linden et al., 1993). PCR was used to establish the
presence of A3 receptors in rabbit cardiac myocytes
(Wang et al., 1997).

The A3 receptor on mast cells facilitates the release of
allergic mediators including histamine, suggesting a
role in inflammation (Ramkumar et al., 1993b). Sys-
temic administration of 3-IB-MECA causes scratching in
mice that is prevented by coadministration of a hista-
mine antagonist (Jacobson et al., 1993b). APNEA has
been shown to be a bronchoconstrictor in rats in vivo, an
effect that may be mediated by mast cells (Pauwels and
Joos, 1995), but it does not elicit bronchoconstriction in
rabbits (el-Hashim et al., 1996). Constriction mediated
by adenosine in isolated arterioles of golden hamster
cheek pouches is blocked by an inhibitor of mast cell
degranulation, which suggests a role for A3 receptors on
mast cells in this response (Doyle et al., 1994).

The A3 receptor has been implicated in the 8-SPT-
resistant hypotensive response to APNEA in the pithed
rat (Fozard and Carruthers, 1993). The response is per-
tussis toxin-sensitive and is blocked by the A3 receptor
antagonist BW-A522 (Fozard and Hannon, 1994). How-
ever, it seems that the hypotensive response may be
caused by the secondary action of histamine released
after activation of mast cell A3 receptors (Hannon et al.,
1995).

Systemic administration of 3-IB-MECA depresses lo-
comotor activity in mice, which may suggest a role for
brain A3 adenosine receptors in modulation of behavior
(Jacobson et al., 1993b). Interestingly, activation of rat
hippocampal A3 receptors has been shown to desensitize
A1 receptor-mediated inhibition of excitatory neuro-
transmission in this brain region, indicating cross-talk
between these two receptors (Dunwiddie et al., 1997).

A3 receptors on human eosinophils (Kohno et al.,
1996a) and human promyelocytic HL-60 cells (Kohno et
al., 1996b; Yao et al., 1997) seem to be involved in
apoptosis, an active self-destructive process caused by a
genetically programmed cascade of molecular events in-
volving DNA degradation and death of the cell by nu-
clear and cytoplasmic breakup. This seems to require
high concentrations of agonist or chronic activation of
the A3 receptor in a manner that mimicks the require-
ment of high levels of ATP to activate the non-specific
pore-formation of the P2X7 receptor and apoptosis, and
suggests that this potentially autocatalytic process may
occur during pathological conditions resulting in cell
damage and release of high levels of purines. Apoptotic
effects are caused by high concentrations (micromolar)
of A3 receptor agonist in HL-60 leukemia and U-937

RECEPTORS FOR PURINES AND PYRIMIDINES 435



lymphoma cells, but paradoxically, A3 receptor antago-
nists also induce apoptotic cell death, and this is opposed
by low (nanomolar) concentrations of Cl-IB-MECA (Yao
et al., 1997). This indicates that low-level activation of
A3 receptors may result in cell protection, and further-
more that this may occur as a consequence of endog-
enously released adenosine (Yao et al., 1997). Acute
stimulation of A3 receptors with micromolar concentra-
tions of Cl-IB-MECA has also been shown to cause lysis
of granular hippocampal neurons in culture (Von Lubitz
et al., 1996).

A3 receptors may be involved in the cardioprotective
effect of adenosine in ischemia and preconditioning dur-
ing ischemia reperfusion injury (Liu et al., 1994; Arm-
strong and Ganote, 1994, 1995; Auchampach et al.,
1997b; Stambaugh et al., 1997). Preconditioning is
blocked by A3 receptor antagonists, whereas APNEA
(A1/A3 selective), but not R-PIA (A1 selective), protect
against ischemia in rabbit cardiomyocytes (Armstrong
and Ganote, 1995). A3 receptors have been shown to
mediate preconditioning and to reduce myocardial in-
jury (Strickler et al., 1996; Tracey et al., 1997). In iso-
lated cardiac myocytes, maximal preconditioning-in-
duced cardioprotection was shown to require activation
of both A1 and A3 receptors (Wang et al., 1997). Acute
IB-MECA has a detrimental effect on ischemic brain
injury, whereas chronic IB-MECA has a protective effect
(Von Lubitz et al., 1994). This dual effect mimicks the
effects of Cl-IB-MECA on leukemia and lymphoma cell
lines (Yao et al., 1997). Activation of an A3 receptor in
basophilic leukemia cells (RBL-2H3), endothelial cells,
cardiac myocytes, and smooth muscle cells activates the
cellular antioxidant defense system by increasing the
activity of superoxide dismutase, catalase, and glutathi-
one reductase, thereby providing a means by which
adenosine may have a cytoprotective action in ischemia
(Maggirwar et al., 1994).

VII. Integrated Effects of Adenosine/P1
Receptors

A1, A2A, A2B, and A3 adenosine receptors have distinct
but frequently overlapping tissue distributions. The fact
that more than one adenosine/P1 receptor subtype may
be expressed by the same cell raises questions about the
functional significance of this colocalization. Because
the different adenosine/P1 receptor subtypes have quite
different affinities for the endogenous agonist, the local
concentration of adenosine in physiological and patho-
physiological conditions is likely to be extremely impor-
tant. EC50 values for adenosine at rat A1, A2A, A2B, and
A3 receptors of 73 (Daly and Padgett, 1992), 150 (Daly
and Padgett, 1992), 5100 (Peakman and Hill, 1994), and
6500 (Zhou et al., 1992), respectively, have been re-
ported. At rat phrenic motor nerve terminals (Correia-
de-Sá et al., 1996) and prejunctional receptors in rat vas
deferens (Gonçalves and Queiroz, 1993), the concentra-
tion of adenosine needed to increase transmitter release

via activation of A2A receptors seems to be higher than
that required to inhibit transmitter release via A1 recep-
tors. Because adenosine is formed as a breakdown prod-
uct of ATP released from nerves, this implies that the
adenosine concentration is crucially linked to the ongo-
ing neuronal activity, which therefore may be an impor-
tant determinant of the subtype of autoregulatory aden-
osine receptor that is activated. In rat hemidiaphragm,
the frequency and intensity of stimulation of motor
nerves and subsequent formation of endogenous adeno-
sine was shown to be critical, with high-intensity, high-
frequency nerve stimulation favoring A2A receptor-me-
diated facilitation of [3H]acetylcholine (ACh) release
(Correia-de-Sá et al., 1996). Thus, adenosine concentra-
tion and receptor affinity may determine the pattern of
differential activation of coexpressed A1 and A2A recep-
tors (and other adenosine receptors).

Expression of more than one type of adenosine/P1
receptor on the same cell may allow the common agonist
adenosine to activate multiple signaling pathways. Ad-
enylate cyclase is a common effector, which is negatively
coupled to A1 and A3 receptors and positively coupled to
A2 receptors, affording the opportunity for reciprocal
control and, therefore, fine tuning of this signaling path-
way. Coexisting A1 and A2 adenosine receptors with
opposite actions on adenylate cyclase activity have been
described in a number of cells, including the smooth
muscle cell line DDT1 MF-2 (Ramkumar et al., 1991),
cultured porcine coronary artery smooth muscle cells
(Mills and Gewirtz, 1990), and glomeruli and mesangial
cells (Olivera and Lopez-Novoa, 1992). A1 and A2B re-
ceptors on primary rat astrocytes each regulate adenyl-
ate cyclase activity, but independently (Peakman and
Hill, 1994).

The extracellular adenosine concentration may be a
crucial determinant of the differential activation of co-
existing adenosine/P1 receptors under pathophysiologi-
cal as well as physiological conditions. Induction and
inhibition of the inflammatory response by neutrophil
A1 and A2 receptors, respectively, has been reported
(Cronstein, 1994; Bullough et al., 1995). Low concentra-
tions of adenosine caused activation of the A1 receptor
and induced superoxide anion generation, phagocytosis
via Fc receptors, and adhesion to endothelial cells,
whereas higher concentrations of adenosine (.500 nM)
required to saturate A2 receptors lead to inhibition of
these effects. A2A and A2B receptors coexist on fetal chick
heart cells; the high affinity A2A receptor has been sug-
gested to be an important modulator of myocyte contrac-
tility under physiological conditions, whereas under
pathophysiological conditions, such as cardiac ischemia
resulting in release of large amounts of adenosine, the
low affinity A2B receptor may assume functional signif-
icance (Liang and Haltiwanger, 1995). Such studies are
helping to expand on the established link between aden-
osine release and the metabolic demands of tissues by
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building in specific actions on identified cell-surface
adenosine/P1 receptors.

Stimulation of the A2A receptor on rat striatal synap-
tosomes causes desensitization of coexpressed A1 recep-
tors, favoring A2A receptor-mediated signaling (Dixon et
al., 1997a). This has important implications for other
coexpressed adenosine receptors, and it would be inter-
esting to see if this is a general phenomenon for these
subtypes.

There is an interesting sidedness to the opposite re-
sponses evoked by A1-like and A2A-like adenosine recep-
tors colocalized on monolayers of renal epithelial cells
(Casavola et al., 1997). The A1-like receptors are located
on the apical surface and mediate inhibition of transep-
ithelial Na1 transport by (a) inhibition of the basolater-
ally located Na1/H1 exchanger and (b) an increase in
intracellular H1, probably via Ca21/PKC. The A2A-like
receptors are located on the basolateral side and stimu-
late transepithelial Na1 transport, suggested to be via
stimulation of Na1/H1 exchange and thereby cellular
alkalinization, probably via an increase in cAMP/PKA
(Casavola et al., 1997). The same adenosine receptor can
elicit a different functional response in different tissues.
In rat duodenum, A2B (and A1) adenosine receptors on
the longitudinal muscle mediate relaxation, whereas
A2B receptors on the muscularis mucosae mediate con-
traction (Nicholls et al., 1996).

Integrated effects of adenosine/P1 receptors in whole
tissue responses are considered, together with P2 recep-
tors, in Section XXII.

VIII. P2 Receptors

A. Introduction

P2 receptors are divided into two main classes based
on whether they are ligand-gated ion channels (P2X
receptors) or are coupled to G proteins (P2Y receptors)
(Abbracchio and Burnstock, 1994; Fredholm et al., 1994)
(table 7).

The P2X/P2Y nomenclature was adopted from that
originally used in a subdivision of P2 receptors proposed
in 1985 by Burnstock and Kennedy, who described
“P2X-” and “P2Y-purinoceptors” with distinct pharmaco-
logical profiles and tissue distributions: the “P2X-
purinoceptor” was shown to be most potently activated by
the stable analogs of ATP, a,b-methylene ATP (a,b-
meATP), and b,g-meATP. At the “P2Y-purinoceptor”
2-methylthio ATP (2MeSATP) was the most potent agonist
and a,b-meATP and b,g-meATP were weak or inactive.
Furthermore, the “P2X-purinoceptor” was shown to be se-
lectively desensitized by a,b-meATP and to be antagonized
by 39-O-(3-[N-(4-azido-2-nitrophenyl)amino]-propiony-
l)ATP (ANAPP3) (Burnstock and Kennedy, 1985). Distinct
tissue distributions and functions reinforced this subdivi-
sion: “P2X-purinoceptors” were shown to be present in vas
deferens, urinary bladder, and vascular smooth muscle,
and to mediate contraction; “P2Y-purinoceptors” were

shown to be present in guinea-pig taenia coli and on vas-
cular endothelial cells, as well as to mediate relaxation. P2
receptors have since been cloned from smooth muscle and
endothelium; the pharmacological profiles originally at-
tributed to “P2X-” and “P2Y-purinoceptors” seem to corre-
spond most closely to activation of P2X1-like and P2Y1–like
receptors, respectively. However, it is now apparent that
there is heterogeneity of P2X responses among different
smooth muscles, and of P2Y responses between taenia coli
and endothelium, which may be caused by different recep-
tor subtypes or small differences in structure of the same
receptor.

Other P2 receptors that have been identified in bio-
logical tissue principally according to their different
pharmacological profiles are the P2U receptor (activated
equally by ATP and UTP; widely distributed), the P2T
receptor (platelet ADP receptor; mediates aggregation),
and the P2Z receptor (found on mast cells and lypho-
cytes; mediates cytotoxicity and degranulation) (Gordon,
1986; O’Connor et al., 1991). P2S (Wiklund and Gustafs-
son, 1988), P2R (Von Kügelgen and Starke, 1990), P2D
(Pintor et al., 1993), uridine nucleotide-specific receptors
(“pyrimidinoceptors”) (Seifert and Schultz, 1989; Von
Kügelgen and Starke, 1990), P3 (Shinozuka et al., 1988;
Forsythe et al., 1991), and P4 (Pintor and Miras-Portu-
gal, 1995a) receptors have also been proposed. Of these
the P2U, P2Z, and uridine nucleotide-specific receptors
have been cloned. Because receptor subclassification
based on pharmacological criteria alone is no longer
tenable, the separate identity of the other proposed sub-
types remains to be proved.

The revision of P2 receptor nomenclature was
prompted by evidence that extracellular ATP works
through two different transduction mechanisms, namely
intrinsic ion channels and G protein-coupled receptors
(Benhan and Tsien, 1987; Dubyak, 1991), and by the
cloning of the first two P2 receptors, P2Y1 (a “P2Y-puri-
noceptor”) (Webb et al., 1993b) and P2Y2 (a “P2U-puri-
noceptor”) (Lustig et al., 1993). It was also becoming
increasingly apparent that there was significant heter-
ogeneity among native P2 receptors, reflected in an in-
creasing diversity of pharmacological response profiles
that could not easily be accommodated within the exist-
ing system of receptor subclassification. Thus, in 1994 it
was formally suggested that P2 receptors should be di-
vided into two broad groups termed P2X and P2Y ac-
cording to whether they are ligand-gated ion channels or
are coupled to G proteins, respectively, with subtypes
defined by the different structure of mammalian P2
receptors (Abbracchio and Burnstock, 1994; Barnard et
al., 1994; Fredholm et al., 1994).

To date seven mammalian P2X receptors, P2X1–7, and
five P2Y receptors, P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11
have been cloned, characterized pharmacologically and
accepted as valid members of the P2 receptor family.
The use of lower case to define the cloned p2y3 receptor
reflects the possibility that this may be the avian ho-
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molog of the human P2Y6 receptor, although this has not
yet been confirmed. The jump in sequence in the num-
bering of the P2Y receptor family is caused by the rec-
ognition that certain receptors had been erroneously
identified as belonging to this family, leading to the
subsequent withdrawal of P2Y5 (Webb et al., 1996b) and
P2Y7 (Akbar et al., 1996). The cloned receptors P2Y9 and
P2Y10 are also not nucleotide receptors. A P2Y receptor
cloned from Xenopus neural plate (provisionally called
P2Y8) is not included in the definitive P2Y receptor
family recognized by the IUPHAR committee, based
largely on the rationale that this is a non-mammalian
receptor. The platelet ADP receptor P2YADP (or P2T re-
ceptor) has not yet been cloned and, therefore, as recom-

mended by the IUPHAR committee, the name of this
receptor is given in italics.

P2Y4 (human but not rat receptor) and P2Y6 are uri-
dine nucleotide-specific receptors (receptors not acti-
vated or only weakly activated by purines) that have
been cloned and shown to be sensitive preferentially to
UTP and UDP, respectively (the rat P2Y4 receptor is
also activated potently by ATP; see Section XV). Their
identification complements earlier suggestions of the
existence of endogenous uridine nucleotide-specific re-
ceptors based on distinct pharmacology of some biologi-
cal tissue. Before the cloning of these receptors, the
possibility that there were subtypes of endogenous uri-
dine nucleotide-specific receptors was not considered,

TABLE 7
P2 receptor signal transduction mechanisms, agonists, and antagonists

Family P2X P2Y

Receptor type Ion channel G protein-coupled: Gq/11, Gi
b

Nonselective porea

Signaling pathway N.A. PLC, AC,c K1 channelsd

PLCPC,e PLA2,f PLDf

PKC
MAPKg

Effectors Ca21 .. Na1 . K1 1IP3, 1Ca21, 1DAG
2cAMPc

Ca21, Cl2, K1 currentsh

Agonists Nonselective ATP ATPi

ATPgS ATPgSj

2MeSATP 2MeSATPk

Ap4A Ap4Aj

P2X/P2Y-selective a,b-meATPl ADPc

b,g-meATPl UTPm

BzATPa UTPgSj

UDPn

2Cl-ADPc

2MeSADPc

ADPbS,c ADPbFc

Antagonists Nonselective Suramin Suramin
PPADS PPADS
Reactive blue 2 Reactive blue 2

P2X/P2Y-selective NF023 ARL 67085o

NF279 FPL 66096o

KN-62a A3P5PSk

MRS 2179k

2-hexylthio-ATPp

2-cyclohexylthio-ATPp

N.A., not applicable.
a P2X7 and endogenous P2X7-like receptor.
b P2Y1 and endogenous P2Y1-like receptors acting through PLC couple to Gq/11 proteins; P2Y1 and endogenous P2Y1-like receptors acting through adenylate cyclase couple

to Gi proteins; P2Y2 and endogenous P2Y2-like receptors, P2Y4 and P2YADP receptors couple to Gq/11 and Gi proteins; p2y3 and P2Y6 receptors couple to Gq/11 proteins.
c P2Y1 and endogenous P2Y1-like receptors and P2YADP receptors.
d Some endogenous P2Y1-like receptors activate K1 channels via interactions with their G protein subunits.
e P2Y1 and endogenous P2Y1-like receptor signaling; possibly downstream of PKC.
f P2Y1 and P2Y2 receptors and their endogenous counterparts; signaling possibly downstream of PKC.
g P2Y1 and P2Y2 receptors and their endogenous counterparts; signaling downstream of PKC.
h Secondary to activation of PLC, although activation of K1 currents by some endogenous P2Y1-like receptors is via direct interactions with G protein subunits.
i P2Y1 and P2Y2 receptors and their endogenous counterparts; ATP is an antagonist at P2YADP receptors.
j P2Y2 and endogenous P2Y2-like receptors.
k P2Y1 and endogenous P2Y1-like receptors.
l P2X1, P2X3 and heteromeric P2X2P2X3 receptors.
m P2Y2 and endogenous P2Y2-like receptors and P2Y4 receptors.
n P2Y6 receptor.
o P2YADP.
p P2Y1 and endogenous P2Y1-like receptors coupled to AC.
Abbreviations: AC, adenylate cyclase; ADPbF, adenosine 59-O-(2-fluoro)-diphosphate; ADPbS, adenosine 59-O-(2-thio-diphosphate; cAMP, adenosine 39,59-cyclic mono-

phosphate; A3P5PS, adenosine 39-phosphate 59-phosphosulfate; ARL 67085, 6-N,N-diethyl-D-b,g-dibromomethylene ATP; ATPgS, adenosine 59-O-(3-thiotriphosphate);
BzATP, 39-O-(4-benzoyl)benzoyl ATP; DAG, diacylglycerol; FPL 66096, 2-propylthio-D-b,g-difluoromethylene ATP; IP3, inositol 1,4,5-trisphosphate; KN-62, 1-[N,O-bis(5-
isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine; MAPK, mitogen-activated protein kinase; a,b-meATP, a,b-methylene ATP; b,g-meATP, b,g-methylene ATP;
2MeSADP, 2-methylthio ADP; 2MeSATP, 2-methylthio ATP; MRS 2179, N6-methyl modification of 29-deoxyadenosine 39,59-bisphosphate; NF023, symmetrical 39-urea of
8-(benzamido)naphthalene-1,3,5-trisulfonic acid; NF279, 8,89-(carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino))bis(1,3,5-naphthalenetrisulfonic
acid); PLCPC, phosphatidylcholine-specific phospholipase C; PKC, protein kinase C; PLA2, phospholipase A2; PLC, phospholipase C; PLD, phospholipase D; PPADS, pyridoxal
phosphate-6-azophenyl-29,49-disulfonic acid; suramin, 8-(3-benzamido-4-methylbenzamido)-naphthalene-1,3,5-trisulfonic acid; UTPgS, uridine 59-O-(3-thiotriphosphate).
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and by implication the possibility of different UTP/UDP
selectivities for members of this family was not appreci-
ated. Thus, in much of the literature to date, the agonist
potency profiles documented for endogenous uridine nu-
cleotide-specific receptors are incomplete, leaving open
the possibility that these are P2Y4 or P2Y6 receptors, or
some other subtype not yet cloned. The lack of selective
agonists and antagonists, and complications introduced
by receptor coexpression and agonist interconversion,
means that the subtype identity of most endogenous
uridine nucleotide-specific receptors is currently un-
clear. Because of this, a separate section in this review is
devoted to endogenous uridine nucleotide-specific recep-
tors (see Section XVIII.). Interestingly, the P2Y11 recep-
tor is so far the only P2Y receptor selective for ATP
versus other purine and pyrimidine nucleotides.

For researchers in this field, important discoveries
made in the last 10 years have been the source of in-
sight, and in some cases frustration, because these de-
mand a reevaluation of conclusions drawn from earlier
studies on P2 receptors. These include the discovery
that: (a) multiple P2X receptor proteins are often coex-
pressed in different proportions in different tissues; (b)
P2X receptors are multisubunit receptors that may exist
as heteromers with different pharmacology compared
with the homomers; (c) cations can profoundly affect
P2X channel activity; (d) 2MeSATP, previously widely
regarded as a selective “P2Y-purinoceptor” agonist, is
also a potent agonist at P2X receptors; (e) ecto-nucleoti-
dases can profoundly alter agonist potencies; and (f)
antagonists previously used with some confidence as P2
receptor blockers are non-selective, can modulate ecto-
nucleotidase activity and may have allosteric effects on
P2 receptors. The general lack of selective agonists and
antagonists, together with complications introduced by
coexistence of different P2 receptors and impure solu-
tions caused by purine and pyrimidine degradation and
interconversion, also has significantly hindered ad-
vances in P2 receptor characterization.

Although much valuable information can be derived
from studies of populations of cells in culture, there are
potential pitfalls associated with this technique. Thus,
emerging evidence that the expression of P2 receptors
may alter in culture conditions adds another potential
complication to the study of purine receptors. For exam-
ple, astrocytes studied in situ, or after acute isolation
from rat brain, are insensitive or only a few cells respond
to ATP, whereas in primary cultures, there is a profound
increase in the number of cells responding to ATP (Jabs
et al., 1997; Kimelberg et al., 1997). Similarly, up-regu-
lation of the P2Y2 receptor in rat salivary gland cells in
culture compared with acutely isolated cells has been
reported (Turner et al., 1997). Thus, caution is needed in
the interpretation of studies of P2 receptors on cells in
culture.

Autocatalytic release of ATP has been shown from
endothelial cells (Yang et al., 1994) and it is possible that

this phenomenon will be described for other cell types as
well as for other purines and pyrimidines. In addition,
ATP is released from many different cells in response to
stimuli such as shear stress and hypoxia, which may be
relevant for the ongoing level of activation of purine
receptors expressed by the same or neighboring cells.
This may be particularly important with respect to the
activity of P2X1 and P2X3 receptors, as these receptors
desensitize rapidly.

Because of the diverse reasons discussed above, it is
currently a considerable challenge to dissect out and
characterize endogenous receptors for purines and pyri-
midines in different biological systems, and even more of
a challenge to identify for each of these a physiological or
pathophysiological role. However, endogenous receptor
counterparts have been shown for some cloned P2 recep-
tors, matching both in terms of receptor distribution,
signaling mechanisms, and pharmacology. In this re-
view, we use the name of the clone in preference to the
classical nomenclature where possible to promote the
conversion from the older system to the newer terminol-
ogy. However, because for the majority of cases this
characterization is currently equivocal, we qualify this
with the term “-like”. Thus, “P2X1-like receptor” re-
places the classical “P2X-purinoceptor” of smooth mus-
cle, “P2X7-like receptor” is used for the “P2Z-purinocep-
tor”, “P2Y1-like receptor” is used in preference to the
classical “P2Y-purinoceptor,” and “P2Y2-like receptor”
replaces “P2U-purinoceptor”. Unequivocal characteriza-
tion of endogenous P2 receptors awaits the development
and use of subtype-selective agonists and antagonists.

B. Agonists

P2 receptors have broad natural ligand specificity,
recognizing ATP, ADP, UTP, UDP, and the diadenosine
polyphosphates (table 7). The chemical structures of
some principal P2 receptor agonists are illustrated in
figure 6. At present there are no agonists or antagonists
that discriminate adequately between families of P2X
and P2Y receptors, or between subtypes of receptors
within each of these groups (table 7). Some of the most
useful agonists are the stable ATP analogs a,b-meATP
and b,g-meATP, which if effective, strongly imply actions
at P2X receptors (specifically at P2X1 and P2X3 subtypes)
and are generally inactive at P2Y receptors. Also useful are
ADP, adenosine 59-O-(2-thiodiphosphate)(ADPbS,) and
UTP, as these are agonists at some P2Y receptors, but are
weak or inactive at P2X receptors.

Agonist potency orders, important in the characteriza-
tion of cloned and native P2 receptors, are profoundly
influenced by the different stabilities of P2 receptor li-
gands in the presence of ecto-nucleotidases. a,b-MeATP
is considerably more stable than ATP and 2MeSATP
when ecto-nucleotidase activity is not suppressed, which
contributes significantly to its greater potency (up to
100-fold more potent) at native P2X1 receptors in vascu-
lar smooth muscle, bladder, and vas deferens. However,
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when ecto-ATPase effects are controlled by use of single
cells and rapid concentration-clamp applications of ago-
nist, or by inhibition of ecto-ATPase activity [for in-
stance using 6-N,N-diethyl-D-b,g-dibromomethylene
ATP (ARL 67156) or removal of divalent cations], a,b-
meATP is less potent than 2MeSATP and ATP at native
and cloned P2X1 receptors (Crack et al., 1994; Evans and
Kennedy, 1994; Humphrey et al., 1995; Khakh et al.,
1995b). Thus, greater caution is now advised in the
interpretation of the order of agonist potency where
ecto-nucleotidase activity has not been suppressed. This

is a particularly important consideration in the pharma-
cology of P2X receptors because of the wide range of
stabilities of commonly-used P2X agonists, but seems to
have had less of an impact on P2Y receptor profiles,
probably because many of the commonly used P2Y ago-
nists are similarly unstable. An additional consideration
is that many P2 receptor antagonists inhibit ecto-nucle-
otidase activity, which may reduce their effectiveness
against biologically unstable P2 agonists.

C. Antagonists

Antagonists selective for subtypes of P2X and P2Y
receptors are considered in later sections on individual
receptors (see Sections X.F., XII.E., XVIV.D.). This sec-
tion considers other established and putative P2 recep-
tor antagonists, which, unfortunately, do not discrimi-
nate well, if at all, between P2X or P2Y receptors, let
alone for subtypes within these families (table 7). Many
of these also inhibit ecto-nucleotidases and may have
allosteric effects on the receptor (Michel et al., 1997).
Table 8 summarizes the potencies of some of the most
commonly used antagonists at recombinant and endog-
enous P2 receptors. The general lack of selective antag-
onists highlights the problems currently encountered in
subtype-identification of P2 receptors using ligand bind-
ing. The chemical structures of some P2 receptor antag-
onists are illustrated in figure 7.

In principle, any P2 receptor antagonist should be
tested for its selectivity against all known subtypes of
this family. Evaluation of antagonist selectivity at het-
eromeric P2X receptors is also important because of its
relevance for biological tissue where P2X receptor pro-
teins are typically coexpressed; such studies might ad-
ditionally provide useful information about the specific
contribution of the different subunits to the pharmacol-
ogy of the receptor heteromer. A commonly used biolog-
ical assay is antagonism of constriction by a,b-meATP of
vas deferens and vascular smooth muscle. This is gen-
erally taken as an indication of actions at endogenous
P2X1-like receptors for a number of reasons: (a) the P2X1
receptor has been cloned from smooth muscle; (b) immu-
nohistochemical studies have shown that it is the pre-
dominant P2X receptor protein expressed by smooth
muscle; (c) a,b-meATP is selective for P2X1 and P2X3
receptors, but the latter is not expressed by smooth
muscle; and (d) the smooth muscle P2X response shows
a similar pharmacology to the recombinant P2X1 recep-
tor, and as with the P2X1 receptor, undergoes rapid
desensitization. Relaxant effects of 2MeSATP or ADPbS
at guinea-pig taenia coli and via the vascular endothe-
lium have been used to examine antagonist potencies at
endogenous P2Y1-like receptors. The potencies of antag-
onists at endogenous P2 receptors in these and other
biological assays are reported in table 8b.

1. Suramin. The trypanoside suramin (8-(3-benz-
amido-4-methylbenzamido)-naphthalene-1,3,5-trisulfo-
nic acid) is generally selective as an antagonist at P2

FIG. 6. The chemical structure of some key agonists at P2 receptors.
(Adapted from Windscheif, 1996).
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receptors versus other types of receptors (Dunn and
Blakeley, 1988) (but see later this section), but is not a
universal P2 receptor antagonist, and does not discrim-
inate between P2X and P2Y receptors (table 8). Further-
more, suramin inhibits ecto-nucleotidase (Crack et al.,
1994; Beukers et al., 1995; Ziganshin et al., 1995; Bült-
mann et al., 1996b; Chen et al., 1996c) and neural ecto-
diadenosine polyphosphate hydrolase (Mateo et al.,
1996) activity, which may complicate interpretation of
antagonist activity when it is used against ligands which
are biologically unstable.

Antagonism by suramin of recombinant and endoge-
nous P2X and P2Y receptors occurs with relatively low
potency (pA2 values approximately 5) (table 8). Antago-
nism is frequently non-competitive. Suramin is weak or
inactive at recombinant P2X6 and P2X4 receptors (Buell
et al., 1996b) and at P2Y6 and human P2Y4 receptors
(Chang et al., 1995; Communi et al., 1996a; Robaye et al.,
1997). Suramin is an antagonist at a subpopulation of
endogenous P2Y2-like receptors (Hoiting et al., 1990;
Murrin and Boarder, 1992; Henning et al., 1992, 1993;
Carew et al., 1994; Chen et al., 1994b; Sipma et al., 1994;
Ho et al., 1995; Paulais et al., 1995; Ziyal, 1997), and
blocks native P2X7 (or P2Z) receptors in human lympho-
cytes (Wiley et al., 1993).

Inhibition by suramin of nicotinic receptors in chick
cultured sympathetic neurons (Allgaier et al., 1995b),
GABA and glutamate receptors in rat hippocampal neu-
rons (Nakazawa et al., 1995), and vasoactive intestinal
polypeptide (VIP)- and 5-hydroxytryptamine (5-HT)-me-
diated relaxations of the guinea-pig proximal colon

(Briejer et al., 1995) have been described, at concentra-
tions within the range used for block of P2 receptors.
Suramin at 100 mM inhibits, by approximately 40%,
GABA and glutamate receptor currents in rat hippocam-
pal neurons (Nakazawa et al., 1995), and 300 mM

suramin produces approximately 40% block of 1,1-di-
methyl-4-phenylpiperazinium (DMPP; nicotinic recep-
tor agonist)-induced overflow of [3H]NA in cultured
chick sympathetic neurons (Allagaier et al., 1995b). In-
hibition by suramin of NMDA-gated ion channels (IC50
68 mM) was described in mouse hippocampal neurons
(Peoples and Li, 1998). In guinea-pig proximal colon, 300
mM suramin is a more potent inhibitor of relaxant re-
sponses to VIP (virtually abolishing responses) than of
responses to ATP, and also produces a modest block of
5-HT-induced relaxation (Briejer et al., 1995).

Other diverse effects of suramin include inhibition of
the binding of growth factors, inhibition of the GTPase
activity of certain G proteins, and inhibition of DNA and
RNA polymerases (see Voogd et al., 1993). Suramin and
its analogs have been shown to block responses at A1
adenosine and D2 dopamine receptors in brain mem-
branes by inhibiting the formation of the agonist/recep-
tor/G protein complex (Beindl et al., 1996). Although this
should be borne in mind when interpreting the effects of
suramin in biological systems, it should be noted that
these studies were carried out on brain membrane prep-
arations and that because of its highly polar nature,
suramin does not readily cross cell membranes.

2. NF023. NF023 (symmetrical 39-urea of 8-(benzami-
do)naphthalene-1,3,5-trisulfonic acid) is a suramin-

TABLE 8a
Antagonist selectivities at cloned P2 receptors

Receptor Suramin PPADS P5P RB2 NF023 Referencesg

P2X1 IC50 1–5 IC50 1 IC50 10–20 N.D. N.D. 1,2
P2X2 IC50 1–5 IC50 2 IC50 10–20 Yes N.D. 1,2
P2X3 IC50 3 IC50 1 IC50 10 N.D. N.D. 1
P2X4 rat Inactive Inactive Inactive Inactivea N.D. 1,3–6

(.500 mM) (.100 mM) (.100 mM) (.50 mM)
IC50 46–50b

IC50 120–128c

P2X4 human IC50 178 IC50 27.5 IC50 38b

IC50 39c

P2X5 IC50 4 IC50 3 N.D. N.D. N.D. 1
P2X6 Inactive Inactive N.D. N.D. N.D. 1
P2X7-human IC50 4 IC50 4.2 N.D. N.D. N.D. 7,8
P2X7-rat IC50 4.1 IC50 4.3
P2Y1 pA2 5.4–6 pA2 6 N.D. N.D. N.D. 9–11
P2Y2 pA2 4.3 Inactive N.D. N.D. N.D. 10
p2y3 pA2 5 N.D. N.D. N.D. N.D. 12
P2Y4-human Inactive IC50 15/inactive N.D. Yesd N.D. 14,15
P2Y4-rat Weak Inactive N.D. IC50 21 N.D. 16
P2Y6 Slighte Slightf N.D. IC50 31 N.D. 15,17
P2Y11 N.D. N.D. N.D. N.D. N.D. 18

IC50 and pA2 values are mM; N.D., not determined.
a RB2.
b Basilen blue (isomer of RB2).
c Cibacron blue (isomer of RB2).
d 33% inhibition of the UTP response.
e Less potent than RB2 and PPADS.
f Less potent than RB2.
g References: 1 Collo et al., 1996; 2 Evans et al., 1995; 3 Bo et al., 1995; 4 Soto et al., 1996a; 5 Buell et al., 1996b; 6 Garcia-Guzman et al., 1997a; 7 Surprenant et al., 1996;

8 Rassendren et al., 1997; 9 Brown et al., 1995; 10 Charlton et al., 1996a; 11 Schachter et al., 1996; 12 Webb et al., 1996a; 13 Charlton et al., 1996b; 14 Communi et al., 1996a;
15 Chang et al., 1995; 16 Bogdanov et al., 1998; 17 Robaye et al., 1997; 18 Communi et al., 1997.
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based compound which is moderately selective as an
antagonist of P2X receptors. NF023 is about 30-fold
selective for P2X1-like receptors in the rat vas deferens
versus P2Y1-like receptors in the guinea-pig taenia coli

(Bültmann et al., 1996b). It has 79-fold selectivity for
endogenous P2X1-like receptors in rabbit vas deferens
versus P2Y1-like receptors in turkey erythrocytes; pA2
values of 5.5 to 5.7 at P2X1-like receptors in rabbit

TABLE 8b
Antagonist selectivities at endogenous P2 receptors

Tissue Receptora Suramin PPADS P5P RB2 NF023 Referencesk

Rat vas deferens P2X (P2X1) pKB 5.5 iso-PPADSb pKB 5.3–5.8 pKB 5.8c pA2 5.9 1,2
Kd 3.9 Kd 1.0 3

Rabbit vas deferens P2X (P2X1) pA2 5.1 pA2 6.3 pA2 5.2 pA2 5.7 4,5
Guinea-pig vas deferens P2X (P2X1) Yes (NC) pKB 5.6 6,7
Rat mesenteric bed P2X (P2X1) pA2 5.0 pKB 6.4 pA2 5.4 pA2 5.5 5,8
Hamster mesenteric bed P2X (P2X1) pA2 5.3 pA2 5.6 9
Rabbit ear artery P2X (P2X1) pKB 4.8 pA2 6.4 N.D. 10–12
Rabbit saphenous artery P2X (P2X1) pA2 4.8 pA2 6.0 pA2 5.7 9,11,12
Rat renal vascular bed P2X (P2X1) Yes pKB 6.0 Yes 13
Guinea-pig ileum submucosal

arterioles
P2X (P2X1) pKB 5.5 pKB 6.3 14

Rabbit urinary bladder P2X (P2X1) pA2 6.3 15
Guinea-pig urinary bladder P2X (P2X1) pA2 5.1 pA2 6.7 16
Human urinary bladder P2X (P2X1) pKB 5.9d 17
Human saphenous vein P2X (P2X1) pKB 4.8 18
Rat vagus nerve P2X pA2 5.9 iso-PPADSe pKB 5.3–5.4 pKB 4.96c 19,20
Guinea-pig taenia coli P2Y (P2Y1) pA2 5.0 pA2 4.6–5.3 pA2 4.2 9,21,22

Kd 10.1 Kd 22–34 3
Rat duodenum P2Y (P2Y1) pA2 5.0 pA2 5.1 pA2 5.4 pA2 4.3 5,11
Rat mesenteric bed P2Y (P2Y1) pA2 5.3 pA2 5.5–6.0 pA2 4.9 9,11,22,23
Bovine aorta P2Y (P2Y1) pKB 5.5 24
Rat aorta P2Y (P2Y1) Kd 2–6 Kd 0.2–0.4 Kd 0.5–0.8 25
Turkey erythrocytes P2Y (P2Y1) Yes (NC) pA2 5.9 Yes (NC) 26
Bovine pulmonary artery EC P2Y (P2Y1) pA2 5.5 pA2 6.3 27
Rabbit thoracic aorta 9

1EC(ATP) P2Y (P2Y1) pA2 3.2–4.4 Inactive
2EC(ATP) P2Y Inactive Inactive

C6 glioma cells 26,28
1IP3 P2Y (P2Y1) pA2 4.4 Yes (NC)
2cAMP P2Y (P2Y1) Slight at

100 mM
Inactive at

,100 mM
pA2 6.3

Rat astrocytes P2Y Yes IC50 0.9 29
Mouse vas deferens P2Y-likef pKB 5.3 30
Rat atria P2Y-likeg pKB 5.1 31
Rat mesenteric bed P2Y (P2Y2) Inactive Inactive Inactive 9,23
Hamster mesenteric bed P2Y (P2Y2) pA2 4.9 Inactive 9
Bovine aorta P2Y (P2Y2) Inactive 24
Rat aorta P2Y (P2Y2) Kd 26–37 Kd 6.5 25
Bovine pulmonary artery EC P2Y (P2Y2) pA2 4.4 pA2 5.7 27
C6 glioma P2Y (P2Y2) pA2 4.4 26
C2C12 myotubes P2Y (P2Y2) pA2 4.4 32
Rat astrocytes P2Y (P2Y2) Yes IC50 7.2 29
Rat neuroblastoma 3 glioma

cells
P2Y (P2Y2) IC50 40–60 IC50 20–30 33

RAW 264.7 macrophages P2Y
(pyrimidinoceptor)

pA2 4.8 Inactive pA2 5.8 34

Rat mesenteric arteries P2Y
(pyrimidinoceptor)h

Inactive Inactive Inactive 22,23,35

Rat superior cervical
ganglion

P2Y
(pyrimidinoceptor)i

Inactive 36

Human platelets P2Y (P2T) pA2 4.6 Yesj 37,38

P2X1-like receptor-mediated responses were determined against the effects of a,b-meATP; P2Y1-like receptor-mediated responses were determined against the effects of
ADPbS or 2MeSATP; P2Y2-like receptor-mediated responses were determined against the effects of UTP (in tissues in which ATP is approximately equipotent with UTP).

NC, noncompetitive; 1EC, with endothelium; -EC, without endothelium.
a The likely cloned receptor counterparts of endogenous responses are indicated in parentheses.
b pKB 6.6 for iso-PPADS (Khakh et al., 1994).
c Cibacron blue.
d Suramin antagonized only the lower part of the a,b-meATP response curve (Palea et al., 1995).
e pKB 6.0 for iso-PPADS (Trezise et al., 1994c).
f Antagonism of ATPgS inhibition of [3H]NA overflow.
g Antagonism of ATP- and ATPgS-mediated inhibition of evoked [3H]NA overflow.
h Tested against contractions to UTP.
i Tested against depolarizations to UDP and UTP; responses to a,b-meATP and ATP were blocked.
j At high concentrations (.100 mM).
k References: 1, Khakh et al., 1994; 2, Trezise et al., 1994b; 3, Bültmann et al., 1996b; 4, Lambrecht et al., 1992; 5, Lambrecht et al., 1996; 6, McLaren et al., 1994; 7, Bailey

and Hourani, 1995; 8, Windscheif et al., 1994; 9, Ziyal, 1997; 10, Leff et al., 1990; 11, Lambrecht, 1996; 12, Ziganshin et al., 1994b; 13, Eltze and Ullrich, 1996; 14, Galligan
et al., 1995; 15, Ziganshin et al., 1993; 16, Usune et al., 1996; 17, Palea et al., 1995; 18, von Kügelgen et al., 1995; 19, Trezise et al., 1994b; 20, Trezise et al., 1994c; 21, Hoyle
et al., 1990; 22, Windscheif et al., 1995a; 23, Ralevic and Burnstock, 1996a; 24, Wilkinson et al., 1994; 25, Hansmann et al., 1997; 26, Boyer et al., 1994; 27, Chen et al., 1996a;
28, Lin and Chuang, 1994; 29, Ho et al., 1995; 30, von Kügelgen et al., 1994; 31, von Kügelgen et al., 1995b; 32, Henning et al., 1993; 33, Reiser, 1995; 34, Chen et al., 1996c;
35, Lagaud et al., 1996; 36, Connolly and Harrison, 1995; 37, Hourani et al., 1992; 38, Windscheif et al., 1995b.
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isolated blood vessels, rabbit vas deferens, and rat and
hamster mesenteric arterial beds; and pA2 values of 4.6
to 5.5 at vascular and nonvascular smooth muscle P2Y1-
like receptors (Lambrecht et al., 1996; Ziyal, 1997; Ziyal
et al., 1997). Its effects at the other P2X (and P2Y)
receptor subtypes have not been reported. Antagonism
is competitive and reversible. Like the parent compound
suramin, NF023 inhibits ecto-nucleotidase activity, but
unlike suramin, it has high P2X1-like versus ecto-nucle-
otidase-selectivity (Beukers et al., 1995; Bültmann et al.,
1996b).

3. NF279. NF279 (8, 89-(carbonylbis(imino-4,1-phenylen-
ecarbonylimino-4,1-phenylenecarbonylimino))bis(1,3,5-
naphthalenetrisulfonic acid) is a suramin analog that is
about 10-fold more potent than NF023 in blocking a,b-
meATP-mediated contractions at P2X1-like receptors in rat
vas deferens, pIC50 5.7 (Damer et al., 1998). With a pA2 value
of 4.3 at P2Y1-like receptors in the guinea-pig taenia coli, it
has the highest P2X- versus P2Y- and ecto-nucleotidase-
selectivity so far reported (Damer et al., 1998).

4. Pyridoxal-5-phosphate (P5P). P5P is a non-selective
P2 receptor antagonist, but has proved useful as a start-
ing compound for the synthesis of more P2X-selective
antagonists (Lambrecht et al., 1996). Antagonism by
P5P is, however, selective versus non-purine receptors
and seems to be competitive at P2X1-like receptors in
vas deferens of rabbit (Lambrecht et al., 1996) and rat
(Trezise et al., 1994b), and at a,b-meATP-mediated de-
polarization of rat vagus nerve (Trezise et al., 1994b).
P5P non-competitively inhibits responses mediated by
recombinant receptors P2X1 and P2X2 but is less potent
than its derivative pyridoxalphosphate-6-azophenyl-
29,49-disulfonic acid (PPADS) (Evans et al., 1995). P5P
inhibits a,b-meATP-induced depolarization of rat supe-
rior cervical ganglion (Connolly, 1995).

5. PPADS. Although originally put forward as a P2X-
selective antagonist, unfortunately it must now be ac-
cepted that PPADS is a non-selective (but non-univer-
sal) P2 receptor antagonist. PPADS is a slowly-
equilibrating and slowly-reversible antagonist with pA2
values of approximately 6 to 6.7 at endogenous P2X1-like
receptors in a variety of smooth muscle preparations
(table 8; Lambrecht et al., 1996; Ziganshin et al., 1993,
1994b; Bültmann and Starke, 1994a; McLaren et al.,
1994; Windscheif et al., 1994; Galligan et al., 1995; Von
Kügelgen et al., 1995a; Eltze and Ullrich, 1996; Ralevic
and Burnstock, 1996b; Usune et al., 1996). It also blocks
recombinant P2X1, P2X2, P2X3, and P2X5 receptors with
IC50 values of 1 to 2.6 mM (Collo et al., 1996). A lysine
residue in receptors P2X1, P2X2, and P2X5 (amino acid
249 in P2X1) seems to be involved in the slowly revers-
ible component of block by PPADS, probably involving
formation of a Schiff’s base (Buell et al., 1996b). Rat
recombinant P2X4 and P2X6 receptors are not blocked
by PPADS (Buell et al., 1996b; Collo et al., 1996; Soto et
al., 1996a,b; Garcia-Guzman et al., 1997a), but interest-
ingly, the human homolog of the P2X4 receptor is

FIG. 7. The chemical structures of some P2 receptor antagonists.
(Adapted from Windscheif, 1996).
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blocked by PPADS with an IC50 of 28 mM (Garcia-Guz-
man et al., 1997a). PPADS antagonizes depolarizations
induced by a,b-meATP in rat superior cervical ganglion
(Connolly, 1995).

PPADS generally blocks endogenous P2Y1-like and
recombinant P2Y1 receptors coupled to PLC (Boyer et
al., 1994; Brown et al., 1995; Charlton et al., 1996a;
Schachter et al., 1996) but not those coupled to inhibi-
tion of adenylate cyclase (Boyer et al., 1994; Webb et al.,
1996c). PPADS has been reported to be inactive at P2Y1-
like receptors in smooth muscle of rabbit mesenteric
artery and endothelium of rabbit aorta (Ziganshin et al.,
1994b), but blocks those in rat duodenum, guinea-pig
taenia coli (pA2 values 5.1 and 5.3, respectively) (Wind-
scheif et al., 1995a), and rat mesenteric arterial bed (pA2
value 6.0) (Ralevic and Burnstock, 1996b). PPADS
blocks P2Y2-like receptors in astrocytes from the dorsal
horn of the spinal cord (IC50 approximately 0.9 mM) (Ho
et al., 1995) but not P2Y2-like receptors on rat mesen-
teric arterial endothelium (Windscheif et al., 1994; Ra-
levic and Burnstock, 1996a), or those on cultured bovine
aortic endothelial cells (Brown et al., 1995). PPADS an-
tagonizes responses to UTP at the recombinant P2Y4
receptor (IC50 value approximately 15 mM) (Communi et
al., 1996a). At high concentrations PPADS blocks
P2YADP receptor-mediated ADP-induced platelet aggre-
gation and inhibits ecto-nucleotidase activity (Winds-
cheif et al., 1995b; Chen et al., 1996c). At concentrations
greater than 10 mM, non-specific effects of PPADS have
been reported involving inhibition of IP3-induced [Ca21]i
mobilization (Vigne et al., 1996).

6. Iso-PPADS. An isomer of PPADS, pyridoxalphos-
phate-6-azophenyl-29,59-disulfonic acid (iso-PPADS) is a
slowly-equilibrating and slowly-reversible antagonist of
responses at P2X receptors with similar potency to
PPADS (Trezise et al., 1994c) and competes for [3H]a,b-
meATP binding sites in the rat vas deferens (Khakh et
al., 1994). Iso-PPADS blocks depolarizations evoked by
a,b-meATP, but not those to UTP in rat superior cervical
ganglion, but in contrast to PPADS also blocks depolar-
izations to muscarine (Connolly, 1995).

7. Reactive blue 2. The anthraquinone-sulfonic acid
derivative reactive blue 2 (synonymous with cibacron
blue) is a non-competitive P2 receptor antagonist which
does not discriminate adequately between P2X and P2Y
subtypes. In the vasculature, it has micromolar affinity
and some selectivity for endothelial P2Y1 and smooth
muscle P2Y1-like receptors versus other vascular P2X
and P2Y receptors; however, selectivity versus the
smooth muscle P2X1-like receptor is low, and its use is
limited by a narrow effective concentration range and
time of exposure (Burnstock and Warland, 1987a; Hop-
wood and Burnstock, 1987; Houston et al., 1987). Reac-
tive blue 2 antagonism of P2Y receptors includes block of
the recombinant P2Y6 receptor (Chang et al., 1995) and
some endogenous P2Y2-like and uridine nucleotide-spe-
cific receptors (Nakaoka and Yamashita, 1995; Chen et

al., 1996c). Reactive blue 2 blocks selectively contractile
responses to ADPbS at a P2Y-like receptor, but en-
hances P2X receptor-mediated contractions to a,b-
meATP and ATP in rat anococcygeus smooth muscle
(Najbar et al., 1996)

Reactive blue 2 also has been shown to block re-
sponses mediated by endogenous P2X receptors in adult
rat superior cervical and nodose ganglia, and guinea-pig
coeliac ganglion (Silinsky and Gerzanich, 1993; Con-
nolly and Harrison, 1994; Khakh et al., 1995a), rat vagus
nerve (Trezise et al., 1994c), urinary bladder and vas
deferens (Choo, 1981; Bo et al., 1994; Bültmann and
Starke, 1994a; Suzuki and Kokubun, 1994), endogenous
P2X7-like receptors (McMillian et al., 1993; Wiley et al.,
1993), and recombinant P2X2 (Brake et al., 1994) and
P2X4 (Bo et al., 1995; Séguéla et al., 1996) receptors.
Thus, this compound does not discriminate adequately
between P2X and P2Y receptors, although it may be
useful in discriminating between subtypes of coexisting
P2 receptors. Inhibition by reactive blue 2 of GABA and
glutamate receptors (Motin and Bennett, 1995; Naka-
zawa et al., 1995), and NMDA-gated ion channels (Peo-
ples and Li, 1998) further advises caution in the use of
this compound. Inhibition of ectoATPase activity by re-
active blue 2 also has been reported (Stout and Kirley,
1995).

8. Reactive red. Reactive red is at least 350 times more
potent than reactive blue 2 as a competitive antagonist
at the P2Y1-like receptor of guinea-pig taenia coli (Kd, 28
nM); however, it is only 15-fold selective versus the P2X1-
like receptor in rat vas deferens, and has ecto-nucleoti-
dase activity (Bültmann and Starke, 1995). Its effects at
other P2X and P2Y subtypes are largely unknown.

9. Trypan blue. Trypan blue blocks selectively (versus
K1 and noradrenaline) a,b-meATP-mediated contrac-
tions at the P2X1-like receptor in rat vas deferens but is
also an inhibitor of ADPbS-mediated relaxations via
P2Y1-like receptors in guinea-pig taenia coli and an in-
hibitor of ecto-nucleotidase activity (Bültmann et al.,
1994; Wittenburg et al., 1996).

10. Evans blue. Evans blue blocks selectively re-
sponses to a,b-meATP in the rat vas deferens versus
those mediated by ADPbS in the guinea-pig taenia coli,
but potentiates contraction to ATP, ADP, and 2MeSATP
in a manner attributable in part to ecto-nucleotidase
inhibition; it also has non-specific potentiating effects
(Bültmann and Starke, 1993; Bültmann et al., 1995;
Wittenburg et al., 1996). The desmethyl derivative of
Evans blue, NH01, is highly selective for the P2X1-like
receptor in vas deferens versus the P2Y1-like receptor in
guinea-pig taenia coli (Kd values 0.8 and . 100 mM,
respectively), but is only moderately selective for the
P2X1 receptor versus inhibition of ecto-nucleotidase ac-
tivity (Wittenburg et al., 1996).

11. DIDS. The Cl2 transport blocker 4,49-diisothiocya-
natostilbene-2,29-disulfonate (DIDS) is a noncompeti-
tive, pseudo-irreversible antagonist of P2X1-like recep-
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tor-mediated contractions to a,b-meATP and of the
purinergic component of the neurogenic contractile re-
sponse in guinea-pig and rat vas deferens, and is selec-
tive versus the P2Y1-like receptor of guinea-pig taenia
coli (Fedan and Lamport, 1990; Bültmann and Starke,
1994b; Bültmann et al., 1996a). However, it is nonselec-
tive versus inhibition of ecto-nucleotidase activity (Bült-
mann et al., 1996a). DIDS discriminates between sub-
types of P2X receptors, being a potent inhibitor of
responses mediated at the P2X1 receptor cloned from
human bladder (IC50 3 mM), but less than 40% effective
at recombinant P2X2 receptors from PC12 cells at con-
centrations of up to 300 mM (Evans et al., 1995). DIDS
blocks depolarization to a,b-meATP in rat superior cer-
vical ganglia, but has no effect on depolarization to UTP
or potassium, or hyperpolarization to adenosine (Con-
nolly and Harrison, 1995a). DIDS and some analogs of
DIDS also block endogenous P2X7-like receptors (el-
Moatassim and Dubyak, 1993; McMillian et al., 1993;
Soltoff et al., 1993). DIDS, PPADS, and dextran sulfate
discriminate between recombinant human P2X1 and rat
P2X2 receptors in displacement of binding studies, hav-
ing 7- to 33-fold higher affinity for P2X1 receptors
(Michel et al., 1996).

12. Arylazidoaminopropionyl ATP (ANAPP3).
ANAPP3, a photo-affinity analog of ATP, activates and
desensitizes endogenous smooth muscle P2X1-like re-
ceptors, irreversibly so after exposure to light, and se-
lectively versus non-purine receptors (Hogaboom et al.,
1980; Fedan et al., 1985; Venkova and Krier, 1993). Its
effects at other P2X receptor subtypes have not been
determined. However, ANAPP3 also weakly antagonizes
relaxations to ATP, ADP, and adenosine in the guinea-
pig taenia coli (Westfall et al., 1982).

13. 2-Alkylthio derivatives of ATP. 2-Alkylthio deriv-
atives of ATP are potent P2Y1 receptor antagonists: both
base modifications, leading to 8-(6-aminohexylamino)-
ATP and N-oxide ATP, and ribose modifications, leading
to 29,39-isopropylidene-AMP, result in derivatives that
display selectivity for endothelial P2Y1-like receptors
and are virtually inactive at smooth muscle P2Y1-like
and P2X1-like receptors (Burnstock et al., 1994).

14. 59-p-Fluorosulfonyl benzoyladenosine. This is an
irreversible inhibitor of ATP-induced Ba21 influx via the
P2X7 receptor in human lymphocytes, although maxi-
mal inhibition does not exceed 90% (Wiley et al., 1994).

IX. P2X Receptors

P2X receptors are ATP-gated ion channels which me-
diate rapid (within 10 ms) and selective permeability to
cations (Na1, K1 and Ca21)(Bean, 1992; Dubyak and
el-Moatassim, 1993; North, 1996). This is appropriate
given their distribution on excitable cells (smooth mus-
cle cells, neurons, and glial cells) and role as mediators
of fast excitatory neurotransmission to ATP in both the
central and peripheral nervous systems. This contrasts
with the slower onset of response (less than 100 ms) to

ATP acting at metabotropic P2Y receptors, which in-
volves coupling to G proteins and second-messenger sys-
tems. Seven P2X receptor proteins (P2X1 to P2X7) have
been cloned and the ion channels formed from homo-
meric association of the subunits when expressed in
Xenopus oocytes or in mammalian cells have been func-
tionally characterized and show distinct pharmacologi-
cal profiles (table 9). The P2X7 receptor is considered
separately below (see Section X.) because it is function-
ally unique among P2X receptors in being able to act as
a non-selective pore.

A. Structure

Structural features of P2X receptors have been pre-
dicted from the amino acid sequences of cloned P2X
receptor subunits. It is important to bear in mind that
the P2X proteins that have been cloned are receptor
subunits, not actual receptors; a single 2 transmem-
brane subunit alone cannot form an ion channel. The
proteins have 379 to 472 amino acids and are believed to
insert into the cell membrane to form a pore comprising
two hydrophobic transmembrane domains, with much of
the protein occuring extracellularly as an intervening
hydrophilic loop (fig. 8). The overall structure of the
receptor most closely resembles that of amiloride-sensi-
tive epithelial Na1 channels. The putative extracellular
loop of cloned receptors P2X1 to P2X7 has 10 conserved
cysteine residues, 14 conserved glycine residues and 2 to
6 potential N-linked glycosylation sites. It is believed
that disulfide bridges may form the structural con-
straints needed to couple the ATP-binding site to the ion
pore. Most of the conserved regions are in the extracel-
lular loop, with the transmembrane domains being less
well-conserved.

The quaternary structures of classical ligand-gated
channels, for example, those of the nicotinic ACh recep-
tor and the epithelial Na1 channel, generally take the
form of heteromeric complexes of structurally related
subunits. P2X receptors are believed to complex in a
similar way in biological tissues. Their subunit stoichi-
ometry is unknown, but may involve three subunits (or
multiples of three subunits) based on SDS polyacryl-
amide gel electrophoresis estimates of the relative mo-
lecular mass of the recombinant P2X1 and P2X3 recep-
tors determined under non-denaturing conditions
(Nicke et al., 1998).

The pharmacological properties of endogenous P2X
receptors in smooth muscle and PC12 cells correlate well
with those of the recombinant receptors cloned from
these tissues, P2X1 and P2X2 receptors, respectively;
both native and recombinant P2X1 receptors are sensi-
tive to a,b-meATP and rapidly desensitize, whereas
P2X2 receptors are insensitive to a,b-meATP and do not
desensitize. A good correlation is also seen between the
properties of endogenous P2X receptors in neonatal dor-
sal root ganglion and the recombinant P2X3 receptor
(cloned from and expressed predominantly or exclu-
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sively in sensory neurons); both are sensitive to a,b-
meATP and rapidly desensitize (Evans and Surprenant,
1996). Thus, there is good reason to believe that the
native P2X receptors in these tissues are predominantly
homomers formed by the association of a single type of
subunit.

However, this is not always the case. ATP-gated cur-
rents at endogenous P2X receptors in rat nodose neu-
rons are mimicked by a,b-meATP and do not desensitize
(Lewis et al., 1995), a pharmacological profile that does
not correspond to any of the homomeric P2X receptors
cloned to date; all are expressed in sensory ganglia ex-
cept P2X7. Although P2X3 is expressed preferentially in
sensory neurons, currents evoked by ATP and a,b-
meATP at the recombinant P2X3 receptor rapidly desen-
sitize. However, when P2X3 is coexpressed in HEK293
cells with P2X2 (but not with other subtypes), a nonde-
sensitizing response to ATP is observed which mimicks
that seen in rat nodose neurons and which cannot be
explained by additive effects of the two homomeric chan-
nels (Lewis et al., 1995). It was suggested that a new
heteromeric receptor, P2X2P2X3, is formed from the
P2X3 and P2X2 subunits (Lewis et al., 1995). This hy-
pothesis is supported by the observation of a high level of
colocalization of P2X2- and P2X3-immunoreactivity in
rat nodose and dorsal root ganglia (Vulchanova et al.,
1997). Direct evidence for the formation of a P2X2P2X3
heteromer comes from a study showing that in cells

coinfected with P2X2 and P2X3 receptors, the two pro-
teins can be cross-immunoprecipitated with antibodies
specific for either of the epitope tags introduced at the C
terminal of the proteins (Radford et al., 1997). Electro-
physiological studies showing sensitivity to a,b-meATP
and a slowly desensitizing response is consistent with
formation of heteromeric receptors because this is dis-
tinct from responses mediated by homomeric P2X2 and
P2X3 receptors (Radford et al., 1997).

Further evidence for the existence of P2X2P2X3 het-
eromers in sensory neurons is suggested by electrophys-
iological studies in cultured neurons of adult rat dorsal
root (Robertson et al., 1996) and trigeminal ganglion
neurons (Cook et al., 1997). However, heterogeneity
within populations of sensory neurons has been identi-
fied in the form of single labeling for P2X2 or P2X3 of
some rat nodose and dorsal root neurons (possibly coex-
isting with other P2X proteins) (Vulchanova et al.,
1997), and by the demonstration of two types of inward
current to ATP (transient and slowly desensitizing) in
tooth-pulp nociceptors (Cook and McCleskey, 1997).
This raises interesting questions about the patterns of
P2X receptor subtype expression and the physiological
properties of different neurons.

The likely formation of P2X2P2X3 heteromers in sen-
sory neurons has important implications for the subunit
organization of P2X receptors in other biological tissues,
because the different P2X proteins have widespread and

TABLE 9
Cloned P2X receptors

Receptor
Number of

amino
acids

cDNA library source Agonist activity References

P2X1 399 Human urinary bladder ATP . a,b-meATP Valera et al., 1995; Longhurst et al., 1996
Rat vas deferens 2MeSATP . ATP . a,b-meATP Valera et al., 1994
Mouse urinary bladder — Valera et al., 1996

P2X2 472 Rat PC12 cells 2MeSATP . ATP; a,b-meATP inactive Brake et al., 1994
P2X2(b)

a 401 Rat cerebellum 2MeSATP 5 ATP 5 a,b-meATP Brändle et al., 1997; Simon et al., 1997

P2X3 397 Human heart, spinal cord 2MeSATP . ATP . a,b-meATP Garcia-Guzman et al., 1997b
Rat DRG cells 2MeSATP . ATP . a,b-meATP . UTP Chen et al., 1995a
Rat DRG cells ATP . 2MeSATP . a,b-meATP Lewis et al., 1995

P2X4 388 Human brain ATP .. 2MeSATP $ CTP . a,b-meATP Garcia-Guzman et al., 1997a
Rat brain ATP .. 2MeSATP $ CTP . a,b-meATP Soto et al., 1996a
Rat brain ATP . 2MeSATP .. a,b-meATP Séguéla et al., 1996
Rat hippocampus ATP . 2MeSATP .. a,b-meATP Bo et al., 1995
Rat SCG ATP; a,b-meATP inactive Buell et al., 1996b
Rat pancreatic islet ATP, ADP, 2MeSATP .. a,b-meATP Wang et al., 1996

P2X5 417 Rat ganglia ATP . 2MeSATP . ADP Collo et al., 1996
a,b-meATP inactive

455 Rat heart ATP . 2MeSATP . ADP Garcia-Guzman et al., 1996

P2X6 379 Rat superior cervical
ganglion

ATP . 2MeSATP . ADP; a,b-meATP inactive Collo et al., 1996

Rat brain — Soto et al., 1996b

P2X7 595 Mouse macrophage BzATP . ATP . UTP Nuttle et al., 1993
ATP . UTP . BzATP

Rat macrophage and
brain

BzATP . ATP . 2MeSATP . ADP; UTP
inactive

Surprenant et al., 1996

595 Human monocytes BzATP . ATP Rassendren et al., 1997
a Splice variant, also termed P2X2-2.
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overlapping distributions. However, it seems that not all
combinations are possible; for example, cotransfected
P2X1 and P2X2 subunits do not combine to form hetero-
meric receptors (Surprenant, 1996). Figure 9 shows ex-
amples of ATP-gated currents in native cells and how
these correlate with recombinant P2X receptors.

Alternative splicing of P2X pre-messenger RNA has
been shown for the P2X2 receptor (Brändle et al., 1997;
Simon et al., 1997). The splice variant exhibits a differ-
ent pharmacology to the native receptor, suggesting that
there may be heterogeneity in responses of tissues ex-
pressing the different proteins.

B. Cloned P2X Receptors

1. P2X1 receptor. The P2X1 receptor has been cloned
from rat vas deferens and human and mouse urinary
bladder (Valera et al., 1994, 1995, 1996) (table 9). The
recombinant receptor is activated by 2MeSATP $
ATP . a,b-meATP .. ADP, and inward currents evoked
by these compounds are reversibly blocked by suramin
and PPADS (Valera et al., 1994). The receptor desensi-
tizes very rapidly (in hundreds of milliseconds).

P2X1 receptor mRNA is expressed in urinary bladder,
smooth muscle layers of small arteries and arterioles,
and vas deferens, with lower levels in lung and spleen
(Valera et al., 1994; Collo et al., 1996). P2X1 receptor
mRNA is also expressed in dorsal root ganglia, trigem-
inal ganglia, coeliac ganglia, spinal cord, and rat brain
(Valera et al., 1994; Webb et al., 1995; Collo et al., 1996).

The P2X1 receptor seems to be the most significant
P2X subtype in vascular smooth muscle, although P2X4
receptors may also be expressed (Soto et al., 1996a). The
similar pharmacological profiles and desensitization of
the recombinant P2X1 receptor and its native counter-
part is consistent with the concept that the vascular
smooth muscle P2X receptor is a P2X1 receptor ho-
momer. ATP-gated ion channels in platelets and
megakaryocytes have a similar pharmacology to the re-
combinant P2X1 receptor, which has led to the sugges-
tion that these ion channels are P2X1 receptors (Soma-
sundaram and Mahaut-Smith, 1994; MacKenzie et al.,
1996).

2. P2X2 receptor. The P2X2 receptor first cloned from
rat pheochromocytoma PC12 cells (originally called
P2XR1) (Brake et al., 1994) displays only 41% amino
acid homology with the rat vas deferens P2X1 receptor.
At the recombinant P2X2 receptor ATP, adenosine 59-O-
(3-thiotriphosphate) (ATPgS) and 2MeSATP are approx-
imately equipotent at eliciting non-selective inward cat-
ion currents, whereas a,b-meATP and b,g-meATP are
inactive as agonists or antagonists (Brake et al., 1994).
This receptor undergoes little or no desensitization. It
also differs from the P2X1 receptor in that it is less
permeable to Ca21 and shows much higher sensitivity to
inhibition by extracellular Ca21 (Evans et al., 1996).

P2X2 receptor mRNA is distributed in bladder, brain,
spinal cord, superior cervical ganglia, adrenal medulla,
intestine, and vas deferens, with highest levels found in
the pituitary gland and vas deferens (Brake et al., 1994).
Distinct but restricted patterns of distribution of P2X2
mRNA have been described within rat brain (Collo et al.,
1996). P2X2 receptor mRNA is the only P2X mRNA

FIG. 8. Diagram depicting a proposed transmembrane topology for
P2X2 protein showing both N- and C-terminals in the cytoplasm. Two
putative membrane spanning segments (M1 and M2) traverse the lipid
bilayer of the plasma membrane and are connected by a hydrophilic
segment of 270 amino acids. This putative extracellular domain is shown
containing two disulfide-bonded loops (S-S) and three N-linked glycosyl
chains (triangles). The P2X2 cDNA was sequenced on both strands using
Sequanase. (From Brake et al., 1994).

FIG. 9. Examples of ATP-gated currents evoked in native cells (A-D)
and in HEK293 cells expressing homomeric (E-G) or heteromeric (H) P2X
receptors. Bars above each trace refer to the duration of agonist applica-
tion. All recordings are at holding potential of 270 mV. Traces shown in
C from neonatal dorsal root ganglion neurons are unpublished records
kindly supplied by M. Rae, S. Robertson, E. Rowan, and C. Kennedy,
University of Strathclyde; all other traces from authors unpublished
records. (From Evans and Surprenant, 1996.)
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observed in the adrenal medulla (Collo et al., 1996).
P2X2 mRNA is absent from skeletal muscle, and several
organs including heart, liver, kidney, lung, and spleen.
Immunohistochemical detection shows a widespread
distribution of the P2X2 receptor in brain and spinal
cord (Vulchanova et al., 1996). The pharmacological pro-
file of the P2X response in PC12 cells, namely insensi-
tivity to a,b-meATP and lack of desensitization, is con-
sistent with the concept that this is an endogenous
counterpart of the P2X2 receptor.

Sequence homology (about 40%) between P2X2 and a
partial cDNA called RP-2 encoding for a protein acti-
vated in thymocytes undergoing programmed cell death,
has led to the suggestion that RP-2 may encode an ion
channel subunit activated by ATP released during apo-
ptosis (Brake et al., 1994).

A splice variant of a P2X2 receptor has been isolated
from rat cerebellum and characterized pharmacologi-
cally (Brändle et al., 1997; Simon et al., 1997). The
protein, termed P2X2(b) or P2X2–2, has a 69 amino acid
deletion of the carboxyl-terminal, shows a similar distri-
bution in the rat central and peripheral nervous system
as the original P2X2 receptor (distinguished by the ter-
minology P2X2(a)), and forms a homomeric receptor me-
diating inward currents to ATP (Brändle et al., 1997;
Simon et al., 1997). Although the P2X2(b) receptor was
equally sensitive to agonists as the P2X2(a) receptor, it
showed significantly lower antagonist sensitivity and a
faster rate of desensitization. Two other splice variants
were also identified, and designated p2X2(c) and p2X2(d)
to indicate that their functional significance remains to
be determined (Simon et al., 1997).

A truncated form of the P2X2 receptor (360 amino
acids compared with the 472 of P2X2), P2X2–1 (originally
called P2xR1), has been isolated from the pituitary
gland and secretory epithelial tissue of rat cochlea (Hou-
sley et al., 1995).

3. P2X3 receptor. The P2X3 receptor cloned from rat
dorsal root ganglion (Chen et al., 1995a; Lewis et al.,
1995) shows only 43% amino acid sequence homology
with the P2X1 receptor and 47% identity to the P2X2
receptor. The P2X3 receptor is activated by agonists with
a potency order of 2MeSATP .. ATP . a,b-meATP and
undergoes rapid desensitization (in less than 100 ms).

The P2X3 receptor has a very restricted distribution; it
is expressed only by a subset of sensory neurons (trigem-
inal, nodose, and dorsal root ganglia), and is absent from
sympathetic, enteric and central nervous system neu-
rons, and smooth muscle (Chen et al., 1995a; Lewis et
al., 1995; Collo et al., 1996). All of the other cloned P2X
receptors also have been localized in sensory neurons.
The human P2X3 receptor transcript is limited to spinal
cord and heart (Garcia-Guzman et al., 1997b). Interest-
ingly, whereas the homomeric P2X3 receptor accounts
for rapidly desensitizing currents to ATP and a,b-
meATP in neonatal sensory neurons (Krishtal et al.,
1988a, 1988b; Li et al., 1993; Robertson et al., 1996), a

heteromeric P2X2P2X3 receptor seems to account for the
nondesensitizing response in adult sensory neurons
(Lewis et al., 1995), suggesting that there may be differ-
ential expression of P2X subunits in sensory neurons in
development.

4. P2X4 receptor. The P2X4 receptor protein has been
cloned from rat hippocampus (Bo et al., 1995), DRG cells
(Buell et al., 1996b), rat (Séguéla et al., 1996; Garcia-
Guzman et al., 1997a) and human brain (Soto et al.,
1996a; Garcia-Guzman et al., 1997a), as well as rat
endocrine tissue (Wang et al., 1996). The P2X receptor
cloned from rat brain by Séguéla et al. (1996) was ref-
ered to as P2x3 in their paper, but a comparison of the
receptor sequence with known subtypes identifies it as
P2X4. A sequence homology of 87% between the human
and rat P2X4 receptors is sufficiently different to pro-
duce subtle differences in antagonist binding and desen-
sitization. The recombinant P2X4 receptor is most po-
tently activated by 2MeSATP, but a,b-meATP is weak or
inactive (Bo et al., 1995; Séguéla et al., 1996). P2X4 is
relatively insensitive to the antagonists suramin and
PPADS; high concentrations (.100 mM) are required to
block ATP-evoked currents (Bo et al., 1995; Séguéla et
al., 1996), although the human receptor shows a higher
sensitivity for suramin and PPADS (Garcia-Guzman et
al., 1997a). A lysine residue present in the P2X1 and
P2X2 receptors, but absent in the P2X4 receptor, is crit-
ical for the binding of antagonists but not agonists (Buell
et al., 1996a). The P2X4 receptor does not desensitize
rapidly, although reversible rundown of the current oc-
curs during prolonged exposure to ATP (Séguéla et al.,
1996). More rapid desensitization of the human P2X4
receptor (Garcia-Guzman et al., 1997a) compared with
the rat P2X4 receptor (Buell et al., 1996a) has been
described. P2X4 ATP-gated currents are potentiated by
coapplication of Zn21 (Séguéla et al., 1996; Garcia-Guz-
man et al., 1997a).

P2X4 receptor mRNA is expressed in brain, spinal
cord, sensory ganglia, superior cervical ganglion, lung,
bronchial epithelium, thymus, bladder, acinar cells of
the salivary gland, adrenal gland, testis, and vas defer-
ens (Bo et al., 1995; Buell et al., 1996b; Collo et al., 1996;
Séguéla et al., 1996). Within the brain and spinal cord,
the distribution of P2X4 mRNA is very similar to, but not
identical with, that of the P2X6 receptor (Collo et al.,
1996). P2X4 receptor mRNA is unique in that it is the
only type expressed by acinar cells of the salivary gland
(Collo et al., 1996).

5. P2X5 receptor. This P2X receptor was first cloned
from rat coeliac ganglia (Collo et al., 1996). Human
homologs of the P2X5 receptor have tentatively been
identified (Tokuyama et al., 1996a, 1996b). Rapid in-
ward currents are activated by ATP . 2MeSATP .
ADP, whereas a,b-meATP is ineffective as an agonist.
The receptor does not readily desensitize. Currents are
readily inhibited by suramin and PPADS. In situ hybrid-
ization shows P2X5 mRNA in motoneurons of the ven-
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tral horn of the cervical spinal cord, and in neurons in
the trigeminal and dorsal root ganglia. With the excep-
tion of the mesencephalic nucleus of the trigeminal
nerve, the brain does not express P2X5 mRNA (Collo et
al., 1996). Appropriately, functional studies have iden-
tified P2X receptors in rat trigeminal mesencephalic
nucleus neurons with a profile most similar to that of
P2X5 receptors (Khakh et al., 1997)

6. P2X6 receptor. This clone was isolated from a rat
superior cervical ganglion cDNA library (Collo et al.,
1996). Rapid currents are mediated by ATP . 2Me-
SATP . ADP, but a,b-meATP has no effect. Currents
are only partially inhibited by suramin or PPADS. P2X6
mRNA is heavily expressed in the CNS, with heaviest
staining in cerebellar Purkinje cells and ependyma
(Collo et al., 1996). Staining is also detected in the cer-
vical spinal cord, notably in spinal motoneurons of lam-
ina IX, and the superficial dorsal horn neurons of lamina
II. P2X6 mRNA is also present in trigeminal, dorsal root,
and coeliac ganglia; and in gland cells of the uterus,
granulosa cells of the ovary, and bronchial epithelia, but
is absent from salivary epithelia, adrenal medulla, and
bladder smooth muscle (Collo et al., 1996).

7. P2X7 receptor. This receptor is considered in detail
in Section X.

C. Signal Transduction Mechanisms

P2X receptors mediate the rapid (onset within 10 ms)
non-selective passage of cations (Na1, K1, Ca21) across
the cell membrane resulting in an increase in intracel-
lular Ca21 and depolarization (Bean, 1992; Dubyak and
el-Moatassim, 1993). The direct flux of extracellular
Ca21 through the channel constitutes a significant
source of the increase in intracellular Ca21. However,
membrane depolarization leads to the secondary activa-
tion of voltage-dependent Ca21 channels, which proba-
bly make the primary contribution to Ca21 influx and to
the increase in intracellular Ca21. Because this trans-
duction mechanism does not depend on the production
and diffusion of second-messengers within the cytosol or
cell membrane, the response time is very rapid, and
appropriately plays an important role in fast neuronal
signaling and regulation of muscle contractility. P2X
channels often show considerable current fluctuation, or
“flickery bursts,” in the open state that may represent
unresolved closures or rapid transition between states
(Evans and Surprenant, 1996). Selectivity for Ca21 per-
meability between P2X receptors on sensory versus au-
tonomic nerves and smooth muscle has been suggested,
but the patterns are not entirely clear (see Evans and
Surprenant, 1996). The kinetics of ATP-gated currents
have been reviewed (Surprenant, 1996).

Cations can modulate ATP-activated currents in na-
tive and endogenous P2X receptors. Mg21 and Ca21

generally inhibit P2X receptor currents, probably by
decreasing the affinity of the ATP binding site by an
allosteric change in the receptor (Honoré et al., 1989;

Nakazawa et al., 1990; Li et al., 1997a). However, an
increase in the transient ATP response (but not the
slowly-desensitizing ATP response) has been observed
when Ca21 replaces Na1 in the extracellular solution in
rat trigeminal sensory neurons (Cook and McCleskey,
1997). Interestingly, the recombinant P2X2 receptor
seems to be more susceptible than the P2X1 receptor to
inhibition by increases in extracellular Ca21 (Evans et
al., 1996). Allosteric interactions may also be responsi-
ble for the ability of monovalent cations to negatively
modulate binding to recombinant P2X4 receptors
(Michel et al., 1997), and trivalent cations to negatively
modulate the binding site of recombinant P2X1 and
P2X2 receptors and the endogenous receptor of PC12
cells (Nakazawa et al., 1997).

Zn21 potentiates the cation conductance induced by
ATP at most P2X receptors, including those in rat supe-
rior cervical ganglion (Cloues et al., 1993; Cloues, 1995),
nodose and coeliac ganglion neurons (Li et al., 1993,
1996), PC12 cells (Koizumi et al., 1995a), and recombi-
nant P2X1 (Brake et al., 1994) and P2X4 receptors (Ség-
uéla et al., 1996). The P2X7 receptor is an exception in
this respect because it is inhibited by Zn21 and Cu21

(Virginio et al., 1997). Ni21 enhances ATP-activated cur-
rents in rat superior cervical ganglia (Cloues et al., 1993)
and Cd21 potentiates ATP-evoked inward currents and
dopamine release in rat phaeochromocytoma cells
(Ikeda et al., 1996).

Modulation of the affinity of the ATP-binding site
occurs by extracellular protons; acid pH causes an in-
crease, and alkaline pH causes a decrease in currents, as
shown for the recombinant P2X2 receptor and endoge-
nous P2X receptors in rat dorsal root and nodose gan-
glion cells (King et al., 1996b; Li et al., 1996, 1997b;
Wildman et al., 1997). This may be particularly signifi-
cant for P2X receptor-mediated signaling in pathophys-
iological conditions where injury or inflammation can
profoundly alter extracellular pH.

D. Desensitization

P2X receptors can be divided into two broad groups
according to whether they desensitize rapidly, that is,
within 100 to 300 ms, or slowly if at all (table 10). This
subdivision hinges critically on the time to desensitiza-
tion; “rapid” desensitization should not be confused with
desensitization which occurs over a few seconds, and
thus is a phenomenon which is difficult to identify in
other than studies of single channel activity. As a gen-
eral rule, all rapidly desensitizing P2X receptors are
activated by a,b-meATP as well as by 2MeSATP and
ATP. These include: recombinant P2X1 and P2X3 recep-
tors; their endogenous counterparts, namely P2X1-like
receptors of smooth muscle (with some exceptions, indi-
cated below); P2X1-like receptors of promyelocyte HL60
cells (Buell et al., 1996b); and platelets (MacKenzie et
al., 1996) and P2X3-like receptors of neonatal sensory
neurons (dorsal root ganglion and nodose ganglion)
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(Krishtal et al., 1988a,b; Li et al., 1993; Robertson et al.,
1996). Desensitization of P2X3-like receptors of neonatal
sensory neurons, but not P2X1-like receptors of smooth
muscle, is concentration-dependent (Evans and Sur-
prenant, 1996; Robertson et al., 1996). Desensitization
will clearly serve to terminate the purinergic response
even though ATP release may still be ongoing, but ex-
actly why this is more important in some tissues re-
mains to be determined.

P2X receptors which do not desensitize rapidly, desen-
sitize slowly or not at all. These “non-desensitizing” P2X
receptors are defined as receptors for which the currents
are maintained for at least a few seconds in the contin-
uous presence of agonist. Non-desensitizing P2X recep-
tors can be further subdivided into two groups: 1) those
that are sensitive to a,b-meATP, and 2) those that are
insensitive or only weakly sensitive to a,b-meATP
(Evans and Surprenant, 1996). Non-desensitizing a,b-
meATP-sensitive P2X receptors are those in adult sen-
sory ganglia (nodose and dorsal root ganglion) (Krishtal
et al., 1988a, 1988b; Li et al., 1993; Khakh et al., 1995a;
Wright and Li, 1995), and guinea-pig coeliac ganglion
(Evans et al., 1992; Khakh et al., 1995a). It has been
suggested that these receptors may be heteromers of
P2X2 and P2X3 subunits (P2X2P2X3 receptors) (Lewis et
al., 1995) (fig. 9). Non-desensitizing a,b-meATP-sensi-
tive responses have also been shown in some smooth
muscle, namely in the arterial vasculature of human
placenta (Dobronyi et al., 1997; Ralevic et al., 1997), and
intestine of the three-spined stickleback Gasterosteus
aculeatus L (Knight and Burnstock, 1993), and similarly
may be caused by actions at P2X heteromers. Non-de-
sensitizing a,b-meATP-sensitive P2X receptors have
also been described in the CNS, on rat locus coeruleus
neurons (Tschöpl et al., 1992; Shen and North, 1993),

and some rostral ventrolateral medulla neurons (Ralevic
et al., 1996).

Non-desensitizing a,b-meATP-insensitive P2X recep-
tors are cloned P2X2, P2X4, P2X5, and P2X6 receptors
(table 10a), as well as native P2X receptors on most
autonomic neurons, including rat superior cervical gan-
glia (Cloues et al., 1993; Nakazawa and Inoue, 1993;
Khakh et al., 1995a), guinea-pig submucosal enteric
neurons (Barajas-Lopez et al., 1994), PC12 cells (Naka-
zawa et al., 1990; Nakazawa and Hess, 1993; Kim and
Rabin, 1994), rat cardiac parasympathetic ganglia
(Fieber and Adams, 1991), and chick ciliary ganglion
neurons (Abe et al., 1995). Non-desensitizing a,b-
meATP-insensitive receptors have also been described
in the CNS in nucleus tractus solitarius neurons (Ueno
et al., 1992; Nabekura et al., 1995) and trigeminal mes-
encephalic nucleus neurons (Khakh et al., 1997); these
may correspond to P2X4, P2X5, or P2X6 receptors, or to
combinations of these subunits, given the rich expres-
sion of these proteins in the brain. ATP-gated a,b-
meATP-insensitive currents in myometrial smooth mus-
cle cells from pregnant rats have been reported to be
resistant to desensitization (Honoré et al., 1989).

The mechanism of P2X receptor desensitization is not
well understood. For the rapidly desensitizing P2X1 re-
ceptor, this may involve the hydrophobic domains of the
receptor because transfer to the P2X2 receptor of both of
the hydrophobic domains, but not the extracellular loop,
of the P2X1 receptor changes the phenotype of the P2X2
receptor from non-desensitizing to rapidly-desensitizing
(Werner et al., 1996). Amino acid deletions of the car-
boxyl terminal of the P2X2 receptor produces splice vari-
ants that desensitize more rapidly than the original
receptor (Brändle et al., 1997; Simon et al., 1997). On the
other hand, the N-terminal region of the receptor has

TABLE 10
Distinguishing pharmacological characteristics of P2 receptors

P2X receptors Desensitization a,b-meATP
sensitivity

PPADS
sensitivity

Suramin
sensitivity

P2X1 Rapid Yes Yes Yes
P2X2 Slow — Yes Yes
P2X3 Rapid Yes Yes Yes
P2X4 Slow — — —
P2X5 Slow — Yes Yes
P2X6 Slow — — —
P2X7 (P2Z) Slow — N.D. Yes
P2X2P2X3 Slow Yes N.D. N.D.

P2Y receptors
Agonist sensitivity

2MeSATP ATP UTP ADP UDP

P2Y1 Yes Yes — Yes —
P2Y2 — Yes Yes — —
p2y3 — — Yes Yes Yes
P2Y4 — Yesa Yes — —
P2Y6 — — — — Yes
P2Y11 Yes Yes — — —
P2YADP — —b — Yes —
Endogenous uridine nucleotide-specific — — Yes — Yes

—, weak or inactive; N.D., not determined.
a Rat, but not human. P2Y4 receptor is sensitive to ATP 5 UTP.
b ATP is a competitive antagonist.
Lower case is used to designate the p2y3 receptor in recognition that it is a nonmammalian (chick) receptor and may be the homolog of the mammalian P2Y6 receptor.
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been suggested to be important in desensitization of the
P2X3 receptor (King et al., 1997). Desensitization of the
P2X3 receptor seems to involve the activation of cal-
cineurin through the entry of extracellular calcium
(King et al., 1997).

E. Agonists and Antagonists

There are no universal or subtype-selective P2X re-
ceptor agonists. ATP and diadenosine polyphosphates
with a phosphate chain length greater than or equal to
three are naturally-occuring agonists at P2X receptors
(Hoyle et al., 1989; Hoyle, 1990; Bo et al., 1994; Schlüter
et al., 1994; Bailey and Hourani, 1995; Ralevic et al.,
1995a; Usune et al., 1996). The greater potency of the
longer chain diadenosine polyphosphates (Ap4A-Ap6A)
compared with ATP at endogenous P2X1-like receptors
may be caused by their greater resistance to breakdown
(Hoyle, 1990; Ogilvie, 1992; Ralevic et al., 1995a). UTP is
a weak agonist of P2X3 receptors (Chen et al., 1995a;
Robertson et al., 1996) and may interact with P2X1-like
receptors in rat urinary bladder (Hashimoto and
Kokubun, 1995) as well as mouse vas deferens (Von
Kügelgen et al., 1990).

In physiological solution, Ca21 and Mg21 ions form
complexes with the free acid ATP42, such that the solu-
tion contains a mixture of ATP42, MgATP22, and
CaATP22 (together with lower concentrations of the spe-
cies variants MgHATP2, CaHATP2, and Ca2ATP). Un-
der physiological conditions, ATP42 is a minor compo-
nent of the total ATP concentration (approximately 1 to
10% depending on temperature, pH, and divalent cation
concentration). The concentration of ATP42 decreases
with increasing cation concentration and with acidic pH
(that results in conversion of ATP42 to HATP32, which
has proved useful in studies aimed at investigating the
identity of the active form of ATP). Cockroft and Gomp-
erts (1980) raised the question of which was the active
form of ATP with their suggestion that ATP42 causes an
increase in mast cell plasma membrane permeability. It
has since been shown that this form of the ligand is
likely to be responsible for pore-forming actions in mast
cells, macrophages, and lymphocytes as well as a num-
ber of other cell types expressing a receptor termed the
P2Z or P2X7 receptor. Addition of Mg21 forms the inac-
tive species MaATP22 and thereby reduces the concen-
tration of ATP42, rapidly closing the cation channel
(Greenberg et al., 1988; el-Moatassim and Dubyak,
1993; Gargett et al., 1996; Lin and Lee, 1996). Similarly,
39-O-(4-benzoyl)benzoyl ATP (BzATP42), and not the
complex MgBzATP22, seems to be the active species in
P2Z or P2X7-mediated pore formation.

The idea that ATP42 is the active form of ATP has
been extended to P2X receptors other than the P2Z or
P2X7 receptor. Hence, ATP42 has been suggested to be
the ligand that activates P2X receptors in guinea-pig vas
deferens smooth muscle (Fedan et al., 1990), rat parotid
acinar cells (McMillian et al., 1993), and PC12 cells (Kim

and Rabin, 1994; Choi and Kim, 1996); it also mediates
ATP-gated currents in pregnant rat myometrial smooth
muscle cells (Honoré et al., 1989). The P2X receptors
expressed by these tissues do not form nonspecific mem-
brane pores. In these studies, suggestion of a role for
ATP42 as the active ligand is based primarily on the fact
that responses are inhibited by elevation of extracellular
Mg21 or other cations which chelate with ATP, and
because responses correlate well with the calculated
ATP42 concentration and not with the total ATP concen-
tration or with the concentration of Mg21 in solution.
However, this alone does not seem to be sufficient evi-
dence in light of more recent studies which show that
divalent cations can influence agonist potency by effects
other than by changes in the relative concentrations of
the ATP species in solution.

It is now apparent that interpretation of the effects of
removal of Mg21 and Ca21 from solution on agonist
potency is complicated by additional inhibition of ecto-
nucleotidase activity, disinhibition of single channel
conductance of P2X receptors, and possibly membrane
depolarization. These effects seem to have a greater
influence on the end response than does a shift in the
concentration of the active species of ATP. Inhibition of
ecto-nucleotidase activity seems to be the overriding
effect of Ca21 and Mg21 removal on agonist potency in
the rat isolated vagus nerve, where the potency of re-
sponses to ATP and 2MeSATP was increased, but that of
the stable analog a,b-meATP was unchanged (Trezise et
al., 1994a). Studies on single channel conductance of
native P2 receptors in rat nodose ganglion, PC12 cells,
and recombinant P2X1 and P2X2 receptors, in which
consideration of ecto-nucleotidase activity is effectively
bypassed in conditions of concentration clamp, have con-
firmed that raising Ca21 or Mg21 decreases the potency
of ATP (Nakazawa and Hess, 1993; Evans et al., 1996; Li
et al., 1997a; Virginio et al., 1997). However, the mech-
anism seems to involve a decrease in the affinity of the
agonist binding site by allosteric effects on the receptor
(although direct cation block of the channels is also
possible) (Nakazawa and Hess, 1993; Evans et al., 1996;
Li et al., 1997a). The fact that recombinant P2X2 recep-
tors show a higher sensitivity than P2X1 receptors to
inhibition by extracellular Ca21 (Evans et al., 1996) is
further consistent with the hypothesis that cation mod-
ulation of P2X receptors is due to changes occuring at
the level of the receptor, and can be influenced by the
intrinsic properties of that receptor, rather than a
change in the relative concentrations of ATP species in
the extracellular solution. Because of these complicating
factors, the identity of the active species of ATP acting at
P2X receptors is currently unclear.

a,b-MeATP is an agonist at recombinant P2X1, P2X3,
and heteromeric P2X2P2X3 receptors; endogenous P2X1-
like receptors in smooth muscle, platelets, and HL60
cells; P2X3-like receptors in neonatal nodose and dorsal
root ganglia; and P2X receptors in guinea-pig coeliac
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ganglion. a,b-meATP generally does not bind to P2Y
receptors; it is weak or inactive (EC50 values 100 mM) at
recombinant receptors P2X2 and P2X4–7 and at the
likely endogenous P2X receptor couterparts (Collo et al.,
1996; Evans and Surprenant, 1996). a,b-meATP-sensi-
tive P2X receptors are sensitive to ATP, 2MeSATP, and
a,b-meATP with EC50 values of approximately 0.5 to 5
mM, whereas a,b-meATP-insensitive P2X receptors are
generally less sensitive to ATP and 2MeSATP (EC50
values 8 to 50 mM) (Collo et al., 1996; Evans and Sur-
prenant, 1996).

P2X receptors that are sensitive to a,b-meATP can be
divided into two groups according to whether they are
(rapidly) desensitizing or are non-desensitizing (see also
Section IX.D., Desensitization). a,b-MeATP-sensitive
desensitizing P2X receptors are cloned P2X1 and P2X3
receptors and their likely endogenous counterparts. a,b-
MeATP-sensitive non-desensitizing P2X receptors in-
clude some smooth muscle P2X receptors (Knight and
Burnstock, 1993; Dobronyi et al., 1997; Relevic et al.,
1997), P2X receptors on adult dorsal root ganglion and
nodose ganglion, and guinea-pig coeliac neurons as well
as heteromeric P2X2P2X3 receptors (Krishtal et al.,
1988a,b; Evans et al., 1992; Li et al., 1993; Khakh et al.,
1995a; Lewis et al., 1995; Wright and Li, 1995).

Notably, L-b,g-meATP is active at P2X but not at P2Y
receptors. It can discriminate between a,b-meATP-sen-
sitive P2X receptors on smooth muscle of vas deferens
and those on neurons. It is approximately equipotent
with a,b-meATP and ATP at vas deferens and at the
recombinant P2X1 receptor when ecto-nucleotidase ac-
tivity is supressed, but ineffective at P2X receptors of rat
vagal neurons, rat nodose ganglion neurons, and guinea-
pig coeliac neurons (Trezise et al., 1995; Surprenant,
1996).

ATPgS is an agonist at recombinant P2X2 and P2X4
receptors (Brake et al., 1994; Bo et al., 1995). It is a
partial agonist at recombinant P2X1 and P2X2 receptors,
as well as at endogenous receptors in vas deferens, PC12
cells, and nodose and coeliac ganglia (Surprenant, 1996)
with potency generally less than that of ATP.

PPADS, NF023, and NF279 show selectivity as antag-
onists at P2X versus P2Y receptors (see Section VIII.C.).

F. Distribution and Biological Effects

Tissue distributions of the different cloned P2X recep-
tor proteins are detailed in the section on cloned recep-
tors (see Section IX.B.). Most of the receptor proteins
have widespread distributions and most tissues express
more than one subtype of P2X receptor, which may lead
to heteropolymerization. Exceptions are P2X3, which is
only expressed in sensory ganglia (Chen et al., 1995a;
Lewis et al., 1995), P2X1, which is the principal subtype
expressed in smooth muscle (Valera et al., 1994; Collo et
al., 1996), and P2X4, which is the only subtype expressed
by acinar cells of salivary glands (Buell et al., 1996b).
The principal distribution of P2X receptors is on excit-
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able tissue such as smooth muscle and nerves, although
they have also been cloned from, or have been shown to
be expressed by, endocrine tissues (P2X4; Wang et al.,
1996), platelets (P2X1-like; MacKenzie et al., 1996), and
promyelocyte HL60 cells (P2X1-like; Buell et al., 1996a).

Autoradiography using [3H]-a,b-meATP, which labels
P2X1 and P2X3 receptors, has shown high and low affin-
ity binding sites in vascular smooth muscle, urinary
bladder, brain, spinal cord, heart, liver, spleen, and co-
chlea (Bo and Burnstock, 1990, 1993, 1994; Michel and
Humphrey, 1993; Balcar et al., 1995; Mockett et al.,
1995). The significance of the two binding sites is not
clear, and may represent distinct P2X subtypes, al-
though [3H]a,b-meATP binding to nucleotide-binding
proteins cannot be excluded. At least two high affinity
binding sites for [3H]a,b-meATP were described in a rat
aortic endothelial cell line, one of which was suggested
to correspond to labeling of 59-nucleotidase, advising
caution in the use of this radioligand (Michel et al., 1995).

1. CNS. P2X receptors are widely distributed in the
CNS; excitation and activation of cation channels by
ATP and/or a,b-meATP have been described throughout
the brain and spinal cord (table 11). However, despite
the widespread distribution of P2X receptors, evidence
that ATP acts as a fast excitatory transmitter in the
brain has so far been convincingly provided only for the
medial habenulla (Edwards et al., 1992; Edwards and
Gibb, 1993) and locus coeruleus (Nieber et al., 1997). In
these regions, synaptic currents are blocked by suramin
and by desensitization with a,b-meATP, and are mim-
icked by ATP and a,b-meATP. Interestingly, the non-
desensitizing receptors P2X2, P2X4, and P2X6 are the
most abundantly expressed P2X receptors in the brain
(Kidd et al., 1995; Collo et al., 1996), which correlates
well with the majority of functional studies that show a
lack of desensitization of P2X receptors in the CNS
(table 11).

Activation of P2X receptors increases the activity of
neurons in the rostral ventrolateral medulla and the
pre-Bötzinger region, areas within the brainstem that
contribute specifically to central regulation of the car-
diovascular system and respiratory drive (Sun et al.,
1992; Ralevic et al., 1996, 1998). Pronounced effects on
blood pressure and respiratory drive observed on micro-
injection of ATP and a,b-meATP into these regions in-
dicates a potential role for P2X receptors in central
modulation of the cardiovascular and respiratory sys-
tems (Sun et al., 1992; Ralevic et al., 1996, 1998). Clar-
ification of the physiological significance of these find-
ings awaits identification of the specific pathways and
release of endogenous ATP acting as a mediator of these
effects.

There are marked regional differences in excitation by
ATP of neurons throughout the brain. For instance, in
rat brain, responses to ATP are elicited in 100% of neu-
rons in the locus coeruleus, 96% of neurons in the dorsal
motor nucleus, and 25% of neurons in the nucleus trac-

tus solitarius, while neurons in the mesencephalic and
parabrachial nucleii are insensitive to ATP (Shen and
North, 1993; Nabekura et al., 1995). The functional sig-
nificance of this is not clear. These values correlate
poorly with the reported densities of [3H]a,b-meATP
binding in rat brain (Bo and Burnstock, 1994), probably
because [3H]a,b-meATP binds most strongly to P2X1
and P2X3 receptors and does not reflect adequately the
distribution of other P2X subtypes. A strong correlation
between the percentage of cells responding to ATP and
ACh/nicotine suggests colocalization of P2X and nico-
tinic ACh receptors (Nabekura et al., 1995).

2. Sensory nerves. Rapid inward currents are medi-
ated by ATP in the dorsal horn of the spinal cord (Li and
Perl, 1995; Li et al., 1997b), and there is evidence for
P2X receptor-mediated fast synaptic transmission via
ATP in a small subset of dorsal horn neurons (Bardoni et
al., 1997). Glutamate evoked release after activation of
P2X receptors on dorsal root ganglion neurons indicates
a role for presynaptic P2X receptors (Gu and MacDer-
mott, 1997). ATP-gated currents have also been shown
on many sensory ganglion neurons (Krishtal et al.,
1988a,b; Khakh et al., 1995a; Wright and Li, 1995; Rob-
ertson et al., 1996; Li et al., 1993, 1997a,b). P2X2P2X3
heteropolymeric receptors have been suggested to ac-
count for non-desensitizing ATP-gated currents in adult
sensory ganglia (Lewis et al., 1995). P2X receptors also
been shown in peripheral sensory nerve terminals, on
capsaicin-sensitive sensory nerve terminals in canine
lung (Pelleg and Hurt, 1996) and rat hindpaw (Bland-
Ward and Humphrey, 1997), and in rat tooth pulp sen-
sory neurons (Cook et al., 1997), where they may be
involved in nociception. Immunohistochemical studies
indicate the involvement of P2X3-like receptors in ATP
responses in sensory nerves of tooth pulp (Cook et al.,
1997). Together, these findings are consistent with the
concept that ATP may be involved in the generation of
pain signals via P2X receptors

3. PNS. ATP may act via P2X receptors to mediate
transmission between neurons, as first shown by
suramin-mediated block of synaptic currents between
cultured coeliac ganglion cells (Evans et al., 1992; Silin-
sky et al., 1992). ATP-gated currents also have been
shown on many sympathetic (Cloues et al., 1993; Cloues,
1995; Khakh et al., 1995a) and parasympathetic ganglia
(Fieber and Adams, 1991; Abe et al., 1995; Sun and
Stanley, 1996)

The presynaptic P2 receptors on postganglionic sym-
pathetic neurons may belong to the P2X receptor family.
These include P2 receptors on cultured rat sympathetic
neurons that mediate NA release (Boehm, 1994; Boehm
et al., 1995), P2 receptors in chick cultured sympathetic
neurons that facilitate electrically-evoked [3H]NA re-
lease (Allgaier et al., 1994a,b, 1995a,b), and P2X (P2X2-
like) receptors in pheochromocytoma cells that mediate
NA and dopamine release (Inoue et al., 1991; Majid et
al., 1992, 1993; Nakazawa and Inoue, 1992; Ikeda et al.,
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1996). a,b-MeATP acts at presynaptic P2X-like recep-
tors on cholinergic and nonadrenergic axons of guinea-
pig ileum to enhance electrically-evoked release of
[3H]choline and [3H]NA, respectively (Sperlagh and
Vizi, 1991). Activation of cholinergic nerves in guinea-
pig ileum via P2X-like receptors has been proposed
(Kennedy and Humphrey, 1994). Multiple P2X recep-
tors, predominantly P2X2-like receptors and rapidly de-
sensitizing P2X receptors (P2X1- or P2X3-like), have
been described on guinea-pig myenteric neurons (Zhou
and Galligan, 1996). In rat isolated vagus nerve, re-
sponses to high, but not low, concentrations of a,b-
meATP are resistant to antagonism by suramin and
reactive blue 2, but are attenuated by iso-PPADS, sug-
gesting heterogeneity of endogenous P2X receptors
(Trezise et al., 1994c). An ATP-gated channel sensitive
to suramin and insensitive to UTP mediates NA release
from a subpopulation of adrenal chromaffin cells (Castro
et al., 1995).

4. Smooth muscle. ATP neurotransmission in the PNS
identifies a physiological role for P2X receptors on
smooth muscle, and as mediators of excitatory junction
potentials (EJPs), depolarization, and constriction
(Burnstock, 1990; Burnstock and Ralevic, 1996). The
postjunctional response of the vas deferens, and most
blood vessels to sympathetic nerve stimulation, is a
rapid EJP that is blocked by tetrodotoxin, guanethidine,
P2 receptor antagonists, and by desensitization of the
P2X1-like receptor with a,b-meATP, but is resistant to
a-adrenoceptor blockade (Burnstock, 1990; Von Kügel-
gen and Starke, 1991). Longer periods of stimulation
result in summation of the EJPs and the membrane
depolarizes allowing the opening of voltage-dependent
Ca21 channels, Ca21 entry, and contraction. The P2X1

protein is the predominant subtype expressed in vascu-
lar smooth muscle, although P2X4 transcripts have been
shown to be expressed in rat aorta and vena cava (Soto
et al., 1996a). This correlates well with the rapid desen-
sitization of ATP and a,b-meATP-mediated contractile
responses observed in most smooth muscle preparations
(Burnstock and Kennedy, 1985; Ralevic and Burnstock,
1988, 1991a,b).

The rabbit saphenous artery provides a classic exam-
ple of a vessel in which pharmacological manipulations
have been used to identify the relative contributions of
NA and ATP to sympathetic neurotransmission (Burn-
stock and Warland, 1987b; Warland and Burnstock,
1987). In this vessel, sympathetic nerve stimulation pro-
duces a contractile response of which less than 30% is
blocked by the a1-adrenoceptor antagonist prazosin,
whereas the remainder, the purinergic component, is
abolished by a,b-meATP (Burnstock and Warland,
1987b) (fig. 10). The sympathetic origin of the purinergic
response is confirmed by the fact that reserpine treat-
ment, which depletes sympathetic nerves of their cate-
cholamine content, fails to abolish nerve-mediated con-

tractions despite a greater than 95% reduction in tissue
NA content.

It can be envisaged that rapid desensitization of the
P2X response in smooth muscle may result in attenua-
tion of sympathetic contraction both by effectively elim-
inating the purinergic component of the response, as
well as by removing the potential for synergistic aug-
mentation of the response by postjunctional interactions
involving P2X receptors and adrenoceptors (see Ralevic
and Burnstock, 1990, 1991a). The physiological signifi-
cance of rapid desensitization of the smooth muscle P2X
receptor is currently unclear, although a role in negative
modulation of the sympathetic response during repeti-
tive or prolonged neurogenic stimulation seems to be
indicated. The contractile response mediated by P2X
receptors in the perfused arterial vasculature of human
placental cotyledons is a rare example of a vascular
smooth muscle P2X response that does not desensitize
(Dobronyi et al., 1997; Ralevic et al., 1997); it may be
significant that placental blood vessels are also unique
in that they are not innervated.

The expression of more than one functionally-coupled
P2X receptor in a single tissue is suggested in the rat vas
deferens where three distinct contraction-mediating re-
ceptors for ATP were proposed based on differential
functional antagonism by PPADS, suramin and reactive
blue 2, and different susceptibility to desensitization
(Bültmann and Starke, 1994a). Suramin-resistant com-
ponents of the contractile response to ATP, which may
be caused by actions at suramin-insensitive P2X4 and
P2X6 receptors, have been described in vas deferens of
mouse (Von Kügelgen et al., 1990), rat (Bültmann and
Starke, 1994a), and guinea pig (Bailey and Hourani,

FIG. 10. Contractions produced in the isolated saphenous artery of the
rabbit on neurogenic transmural stimulation (0.08–0.1 msec; supramaxi-
mal voltage) for 1 sec (a,b) at the frequencies (hz) indicated (Œ). Nerve
stimulations were repeated in the presence of 10 mM prazosin added
before (a) or after (b) desensitization of the P2-purinoceptor with a,b-
methylene ATP (a,b-meATP) as indicated on the figure by the arrowed
lines. The horizontal bar signifies 4 min and the vertical bar 1 g. (From
Burnstock and Warland, 1987b, Br J Pharmacol 90:111–120; with per-
mission from McMillan Press Limited.)
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1994, 1995), and in frog aorta (Knight and Burnstock,
1996), as well as human urinary bladder (Palea et al.,
1995). Where this was examined, the suramin-resistant
contractile response to ATP does not appear to be caused
by actions at a P2Y2-like receptor, or to ecto-nucleoti-
dase inhibition by suramin (Von Kügelgen et al., 1990;
Bailey and Hourani, 1994, 1995; Knight and Burnstock,
1996). A suramin-resistant component of constriction to
ATP in cat colon circular muscle also cannot be ex-
plained by the ectoATPase activity of suramin (Venkova
and Krier, 1993).

Differences in pharmacological profiles have been re-
ported for smooth muscle P2X1-like receptors of urinary
bladder, vas deferens, and blood vessels (Abbracchio and
Burnstock, 1994; Burnstock et al., 1994). Notably, 2Me-
SATP and derivatives of ATP are inactive in rabbit
saphenous artery but are agonists at P2X1-like receptors
in guinea-pig vas deferens and bladder (Burnstock et al.,
1994). Non-desensitizing responses of smooth muscle to
a,b-meATP have been described in human placental
arteries (Dobronyi et al., 1997; Ralevic et al., 1997), and
stickleback intestine (Knight and Burnstock, 1993),
which is different from the rapidly desensitizing P2X1-
like response to a,b-meATP typical of other smooth mus-
cle preparations. It is possible that the non-desensitizing
response is mediated by heteromeric P2X receptors with
subunits confering both sensitivity to a,b-meATP and
resistance to desensitization.

In rat and human urinary bladder, but not in dog
bladder, a,b-meATP mediates contraction, suggesting
species heterogeneity with respect to expression of P2X
receptors in this issue (Palea et al., 1994; Suzuki and
Kokubun, 1994). b,g-MeATP is a potent constrictor of
human saphenous vein, but is weak or inactive in hu-
man extrarenal veins and arteries (Von Kügelgen et al.,
1995a), suggesting that P2X receptor proteins are differ-
entially distributed among vessels.

5. Blood cells. ATP and a,b-meATP activate cation
channels in human platelets that have been suggested to
be P2X1 receptors (MacKenzie et al., 1996). The currents
are mimicked by the spontaneous activation of single
channel currents in platelets, suggested to be caused by
autocrine activation following release of endogenous
ADP and ATP from the platelets. In rat megakaryocytes,
ATP and ATPgS activate a rapid (100 ms) nonselective
cation channel that rapidly desensitizes (Soma-
sundaram and Mahaut-Smith, 1994), and may also be
mediated by a P2X1 receptor. Currents elicited by exog-
enous ATP or a,b-meATP at P2X1-like receptors in
HL60 cells can only be observed when the ongoing de-
sensitization by ATP released from these cells is re-
moved (Buell et al., 1996a), suggesting that P2X1 recep-
tors may be more widely distributed than currently
anticipated.

Interactions between P2X and nicotinic ACh recep-
tors, or possibly direct activation by ATP of ACh recep-
tors (possibly by actions on different subunits), have

been described in PC12 cells (Nakazawa et al., 1990;
Nakazawa, 1994), cultured Xenopus myotomal muscle
cells (Igusa, 1988), membranes of rat superior cervical
ganglion (SCG) cells (Nakazawa and Inoue, 1993; Naka-
zawa, 1994), and postjunctional ACh receptors in rat
cultured flexor digitorum brevis muscle fibers (Mozrzy-
mas and Ruzzier, 1992). ATP-induced [3H]NA release
from chick sympathetic neurons is blocked by nicotinic
receptor antagonists (Allgaier et al., 1995b). However,
ATP does not act at nicotinic receptors in guinea-pig
coeliac ganglion (Evans et al., 1992), rat intracardiac
neurons (Fieber and Adams, 1991), or, controversially,
rat SCG neurons (Cloues et al., 1993; Boehm, 1994).

X. P2X7 and Endogenous P2X7-Like (or P2Z)
Receptors

The P2X7 receptor cloned from rat macrophages and
brain by Surprenant et al. in 1996 is the cytolytic “P2Z
receptor” previously described in mast cells, macro-
phages, fibroblasts, lymphocytes, erythrocytes, and
erythroleukemia cells. In line with the main aim of this
review, “P2X7-like receptor” is used for the endogenous
receptor counterpart of the P2X7 receptor in preference
to “P2Z receptor”. A unique feature of cloned P2X7 and
endogenous P2X7-like receptors is that, whereas under
physiological conditions these function like other P2X
receptors in that they are selectively permeable to small
cations only, in the continued presence of ATP and when
divalent cation levels are low, the cation channel can
convert to a pore, permeable to small molecules as well
as ions.

A. Structure

The P2X7 receptor and its endogenous counterpart is
structurally similar to other P2X receptors (see Section
IX A), except for the fact that it has a significantly longer
intracellular C-terminal (240 amino acids) than other
P2X receptors, of which at least the last 177 amino acids
are crucial for the induction of the non-selective pore
(Surprenant et al., 1996).

B. Cloned P2X7 Receptors

The P2X7 receptor was first cloned from rat brain and
macrophages (Surprenant et al., 1996). The recombinant
receptor has an agonist potency order for eliciting in-
ward currents of 39-O-(4-benzoyl)benzoyl ATP (BzATP)
.. ATP .. 2MeSATP . ATPgS . ADP (Surprenant et
al., 1996) (table 9). The human homolog has been cloned
and shows a lower sensitivity to agonists (Rassendren et
al., 1997). In low divalent cation solution, agonists in-
duce sustained currents and the channel becomes per-
meable to molecules of up to 900 daltons, although in
normal solution selectivity for small cations is observed
(Surprenant et al., 1996). As with other P2X receptors,
this receptor is inhibited by divalent cations (Rassen-
dren et al., 1997; Virginio et al., 1997).
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C. Signal Transduction Mechanisms

Brief activation of the recombinant P2X7 receptor and
its endogenous counterpart causes rapid membrane de-
polarization and cation influx and is a reversible pro-
cess. However, sustained activation causes an increase
in permeability by allowing bidirectional transport of a
variety of ions including Na1, K1, and Ca21 and small
molecules with a molecular weight of less than or equal
to 900 daltons, except in lymphocytes where the limit is
200–300 daltons. This effect is associated with cytotox-
icity. Permeabilization involves the cytoplasmic C ter-
minus of the protein because it does not occur with a
truncated P2X7 receptor lacking the last 177 residues,
although cation function of the receptor is retained. The
different upper size limit of the pore for P2X7-like recep-
tors in different cells may represent isoforms of the
receptor or different conductance states.

In murine and human macrophages (el-Moatassim
and Dubyak, 1992, 1993; Humphreys and Dubyak,
1996) and human leukaemic lymphocytes (Gargett et al.,
1996; Gargett and Wiley, 1997), activation of P2X7-like
receptors causes activation of phospholipase D, although
the mechanism is unknown. In lymphocytes this has
been suggested to be coupled to the influx of bivalent
cations (Gargett et al., 1996), whereas in murine macro-
phages it is suggested to occur distinct from P2X7-like
pore formation (el-Moatassim and Dubyak, 1993). In
murine macrophages BzATP-induced activation of phos-
pholipase D is not mimicked by Ca21-mobilizing ago-
nists or by activators of protein kinase C (el-Moatassim
and Dubyak, 1992), and in a human monocyte cell line it
is blocked by calcium-calmodulin kinase II inhibition
(Humphreys and Dubyak 1996).

Activation of the P2X7-like receptor of human macro-
phages triggers the release of the inflammatory cytokine
IL-1b, which may provide a clue to the physiological
and/or pathophysiological role of this receptor (Griffiths
et al., 1995; Ferrari et al., 1997).

D. Desensitization

Currents evoked at recombinant P2X7 and endoge-
nous P2X7-like receptors do not readily desensitize.
However, species differences in the time for which the
current flows caused by brief application of agonist have
been described. Currents elicited by BzATP at the re-
combinant rat P2X7 receptor decline slowly, particularly
in low divalent cation solution, leading to sustained cur-
rents (10–20 min) even by very brief agonist application
(1–3s) (Surprenant et al., 1996). By contrast, currents
evoked at the human P2X7 receptor decline to baseline
within 10–20 sec of discontinuing agonist application
(Rassendren et al., 1997).

E. Agonists

The recombinant P2X7 receptors and its endogenous
counterpart have high selectivity for ATP, with most

other purine compounds having little or no activity. The
active ligand is suggested to be the tetrabasic acid
ATP42 (Cockcroft and Gomperts, 1980), which is present
as approximately 1% of the relatively high concentration
(100 mM) of ATP that is required to activate this recep-
tor. Thus, reducing the extracellular cation concentra-
tion increases agonist potency. Increasing the concentra-
tion of Mg21 rapidly closes the cation channel, although
it is not clear to what extent this is due to the formation
of the inactive MgATP22 complex, caused by direct block
of the ion channel, or caused by a decrease in affinity
caused by allosteric modulation of the receptor (Virginio
et al., 1997). By contrast with other P2X receptors, the
P2X7-like receptor is inhibited by Cu21 and Zn21 (Vir-
ginio et al., 1997). P1,P4-diadenosine tetraphosphate
(Ap4A) can activate the P2X7-like receptor of mast cells,
possibly because of its quadruple negative charge
(Tatham et al., 1988).

BzATP is currently the most potent agonist at the
endogenous P2X7-like receptor; it is 10 to 100 times
more potent than ATP in activating P2X7-like receptors
in a number of cells (Gonzalez et al., 1989a; Erb et al.,
1990; el-Moatassim and Dubyak, 1992; Soltoff et al.,
1992; McMillian et al., 1993; Nuttle et al., 1993), al-
though it is only twice as potent as ATP in eliciting
cytolysis of hepatocytes (Zoetewij et al., 1996). Species
differences between human and murine macrophage
P2X7-like receptors have been suggested, based on dif-
ferent sensitivities to permeabilization by ATP, BzATP,
and ATPgS (Hickman et al., 1994).

F. Antagonists

KN-62 (1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-
L-tyrosyl]-4-phenylpiperazine) has been described as a
potent antagonist at the P2X7-like receptor of human
lymphocytes with an IC50 of approximately 12 nM (Gar-
gett and Wiley, 1997).

29,39-Dialdehyde ATP (oxidized ATP) is an antagonist
at the P2X7-like receptor, but is irreversible and re-
quires prolonged exposure of cells to high concentrations
of inhibitor (Murgia et al., 1993; Wiley et al., 1994;
Falzoni et al., 1995; Humphreys and Dubyak, 1996;
Zoetewij et al., 1996; Surprenant et al., 1996).

G. Distribution and Biological Effects

P2X7 mRNA and protein are distributed in bone mar-
row cells, including granulocytes, monocytes/macro-
phages and B lymphocytes, and in macrophages in
brain, as shown by evidence from functional studies on
these cell types (Collo et al., 1997).

Functional studies have shown that P2X7-like recep-
tor distribution is generally limited to cells of hemopoi-
etic origin including mast cells (Cockcroft and Gomperts,
1980; Tatham et al., 1988; Tatham and Lindau, 1990),
macrophages (Steinberg et al., 1987; Greenberg et al.,
1988; el-Moatassim and Dubyak, 1992, 1993; Murgia et
al., 1992, 1993; Hickman et al., 1994; Falzoni et al.,
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1995), the human monocyte cell line THP-1 (Humphreys
and Dubyak, 1996), fibroblasts (Weisman et al., 1989;
Erb et al., 1990; Pizzo et al., 1992), erythrocytes (Parker
and Snow, 1972), erythroleukaemia cells (Chahwala and
Cantley, 1984), and lymphocytes (Wiley et al., 1994;
Gargett et al., 1996; Jamieson et al., 1996; Markwardt et
al., 1997). P2X7-like receptors are also present on hepa-
tocytes (Zoetewij et al., 1996) and parotid and salivary
gland acinar cells (Sasaki and Gallacher, 1990; McMil-
lian et al., 1993; Soltoff et al., 1992, 1993).

Although several roles for the P2X7 receptor have
been proposed, its physiological significance is largely
unknown. The increased permeability caused by activa-
tion of the P2X7-like receptor results in large ion fluxes
and leakage of small metabolites. On prolonged stimu-
lation it may cause cell swelling, vacuolization, and cell
death by necrosis or apoptosis (Dubyak and el-
Moatassim, 1993). The biological significance of this cy-
totoxic effect of ATP is not clear, but may have a role in
the elimination of unwanted cells during physiological
or pathological cell and tissue turnover. There is increas-
ing evidence to support suggestions that the P2X7 recep-
tor is involved in signaling between macrophages or
other cells involved in the immune response and target
cells (Steinberg and Di Virgilio, 1991; Dubyak and el-
Moatassim, 1993); the P2X7-like receptor is involved in
fusion of macrophages to form multinucleated giant cells
that die shortly after fusion, a process that is inhibited
by oxidized ATP (Chiozzi et al., 1997). Furthermore,
ATP causes the release of the inflammatory cytokine
IL-1b via the P2Y7-like receptor of human macrophages
(Griffiths et al., 1995; Ferrari et al., 1997).

Loss of the adhesion molecule L-selectin from leuko-
cytes after activation of P2X7-like receptors implicates a
role for these receptors in modulation of leukocyte bind-
ing to endothelial cells and migration through the vas-
cular wall (Jamieson et al., 1996; Wiley et al., 1996).

XI. P2Y Receptors

P2Y receptors are purine and pyrimidine nucleotide
receptors that are coupled to G proteins. Currently this
includes the cloned mammalian receptors P2Y1, P2Y2,
P2Y4, P2Y6, and P2Y11, and the P2YADP (or P2T) recep-
tor (that has not yet been cloned), and endogenous uri-
dine nucleotide-specific receptors (that show some phar-
macological similarities with cloned P2Y4 and P2Y6
receptors) (tables 10 and 12). The chick p2y3 receptor
may be the homolog of the human P2Y6 receptor (hence
lower case lettering). Putative P2Y5, P2Y7, P2Y9, and
P2Y10 receptors are not included in the definitive P2Y
receptor family after convincing evidence that these are
not P2Y receptors. A receptor claimed as P2YAp4A (or
P2D) has not yet been cloned, but may belong to the P2Y
receptor family. A P2Y receptor has been cloned from
Xenopus neural plate (Bogdanov et al., 1997).

Receptors for pyrimidines that are activated specifi-
cally by uridine nucleotides, but not by adenine nucleo-

sides or nucleotides, were first proposed by Seifert and
Schultz in 1989. This proposal has been confirmed by
the cloning of two uridine nucleotide-specific receptors,
P2Y4 (human) and P2Y6, showing preference for UTP
and UDP, respectively (Communi et al., 1996b, c) (but
see Section XV). Subsequent to Seifert and Schultz’s
proposal, but before the cloning of P2Y4 and P2Y6 recep-
tors, some confusion in the literature was caused by the
identification of “P2U-purinoceptors”, activated equipo-
tently by UTP and ATP (O’Connor et al., 1991), because
P2U receptors were often loosely termed “pyrimidinocep-
tors” and separate identity of these and receptors acti-
vated preferentially by UTP or UDP (but weakly or not
at all by ATP) was often indistinct. The cloning of the
P2Y2 receptor and its characterization as a receptor
activated by ATP, as well as UTP, helped to reinforce the
concept that this receptor is distinct from receptors that
are activated selectively by pyrimidines.

A. Structure

P2Y receptors are 308 to 377 amino acid proteins with
a mass of 41 to 53 kDa after glycosylation. The seven
transmembrane domain tertiary structure of P2Y recep-
tors is common to that of other G protein-coupled recep-
tors, general features of which have been described for
adenosine P1 receptors (see Section.II.B.). A model of
the P2Y receptor, based on the primary sequence of the
P2Y1 receptor and using the structural homolog rhodop-
sin as a G protein-coupled receptor template, has iden-
tified positively charged amino acid residues in trans-
membrane regions 3, 6, and 7 that may be involved in
ligand binding by electrostatic interactions with the
phosphates of ATP (Van Rhee et al., 1995). Several of
these amino acids are conserved in other G protein-
coupled receptors. Site-directed mutagenesis of the P2Y2

receptor to convert positively charged amino acids in
transmembrane regions 6 and 7 to neutral amino acids
causes a 100- to 850-fold decrease in the potency of ATP
and UTP, which suggests a role for these amino acids in
binding purines and pyrimidines (Erb et al., 1995). By
contrast, the most critical residues for ATP binding at
the human P2Y1 receptor are in transmembrane regions
3 and 7 on the exofacial side of the receptor (Jiang et al.,
1997).

Most P2Y receptors act via G protein coupling to ac-
tivate PLC leading to the formation of IP3 and mobili-
zation of intracellular Ca21. Coupling to adenylate cy-
clase by some P2Y receptors has also been described.
The response time of P2Y receptors is longer than that of
the rapid responses mediated by P2X receptors because
it involves second-messenger systems and/or ionic con-
ductances mediated by G protein coupling. Signaling
pathways for the P2Y receptor subtypes are considered
in detail in the sections for each of these receptors.
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XII. P2Y1 and Endogenous P2Y1-Like Receptors

The P2Y1 receptor, and its endogenous counterpart
termed P2Y1-like, is a receptor for the endogenous li-
gands ADP, ATP, and certain diadenosine polyphos-
phates; it is not activated by UDP and UTP. It seems to
be more sensitive to adenine nucleotide diphosphates
than to triphosphates. Sensitivity to ATP seems to be
variable; many P2Y1 and P2Y1-like receptors are rela-
tively insensitive to ATP (ATP may act as a partial
agonist), but are strongly activated by ADP (see Heter-
ogeneity of P2Y1-like receptors, Section XII.F.). Charac-
teristically, among all other P2Y subtypes, the P2Y1
receptor and its endogenous counterpart are strongly
activated by 2MeSATP, ADP, ADPbS, and adenosine-59-
O-(2-fluoro)-diphosphate (ADPbF) (table 10b). In the
present review, evidence for G protein coupling, and
evidence that 2MeSATP and ADP or ADPbS or ADPbF
are full and potent agonists, is taken as provisional
evidence for an endogenous P2Y1-like receptor, although
this remains to be confirmed with the development and
use of selective agonists and antagonists.

A. Cloned P2Y1 Receptors

The first cloned P2Y1 receptor was from chick brain
(Webb et al., 1993b) (table 12). The recombinant receptor

is activated by agonists with a potency order of 2Me-
SATP $ ATP .. ADP, although a,b-meATP, b,g-
meATP, and UTP are inactive (Webb et al., 1993b).
Responses to ATP and 2MeSATP are antagonized by
suramin and reactive blue 2. Activation of the recombi-
nant P2Y1 receptor mediates IP3 formation and an in-
crease in intracellular Ca21, but no change in cAMP
levels (Simon et al., 1995). Homologs of the chick brain
P2Y1 receptor have been cloned from a variety of species
(table 12). Notably, the relative potency of ATP and ADP
differs widely between recombinant P2Y1 and endoge-
nous P2Y1-like receptors. Although it is possible that for
recombinant receptors this is because of differences in
assay conditions, the unequivocal insensitivity to ATP of
some endogenous P2Y1-like receptors (Dixon et al., 1995;
Ralevic and Burnstock, 1996a; Webb et al., 1996b) sug-
gests that this is likely to be due to inherent differences
in receptor structure.

B. Signal Transduction Mechanisms

The main signal transduction pathway of recombinant
P2Y1 and endogenous P2Y1-like receptors is activation
of PLC. From studies of the P2Y1-like receptor in turkey
erythrocytes, the G protein has been identified as a Gq
protein, G11, and is insensitive to pertussis and cholera

TABLE 12
Cloned P2Y receptors

Receptor
Number of

amino
acids

cDNA library source Agonist activity References

P2Y1 362 Human brain 2MeSATP . ATP .. UTP Schachter et al., 1996
Human prostate and ovary 2MeSATP . ATP 5 ADP Janssens et al., 1996
Human placenta — Léon et al., 1995, 1997
Human HEL cells — Ayyanathan et al., 1996
Bovine endothelium 2MeSATP 5 ADP . ATP .. UTP Henderson et al., 1995
Rat insulinoma cells 2MeSATP . 2Cl-ATP . ATP (a,b-meATP inactive) Tokuyama et al., 1995
Rat ileal myocytes 2MeSATP 5 2ClATP . ADP . ATP (UTP inactive) Pacaud et al., 1996
Mouse insulinoma cells — Tokuyama et al., 1995
Turkey brain 2MeSATP . ADP . ATP (UTP inactive) Filtz et al., 1994
Chick brain 2MeSATP . ATP . ADP (UTP inactive) Webb et al., 1993b

P2Y2 373 Human CF/T43 epithelial cells ATP 5 UTP .. 2MeSATP Parr et al., 1995
Human bone — Bowler et al., 1995
Rat microvascular coronary EC — Gödecke et al., 1996
Rat alveolar type II cells ATP 5 UTP Rice et al., 1995
Rat pituitary ATP 5 UTP . ADP 5 UDP . GTP Chen et al., 1996b
Wistar Kyoto rata — Seye et al., 1996
Mouse NG108-15 neuroblastoma

cells
ATP 5 UTP . ATPgS .. 2MeSATP Lustig et al., 1993

p2y3b 328 Chick brain UDP . UTP . ADP . 2MeSATP . ATP Webb et al., 1995, 1996a

P2Y4 352 Human placenta UTP . ATP 5 ADPc Communi et al., 1996b
Human placenta — Stam et al., 1996
Human chromosome X UTP . UDP (ATP inactive) Nguyen et al., 1996
Rat heart ATP 5 UTP 5 ADP 5 ITP 5 ATPgS 5 2MeSATP 5

Ap4A . UDP
Bogdanov et al., 1998

P2Y6 379 Human placenta and spleen UDP . UTP . ADP . 2MeSATP .. ATP Communi et al., 1996b
Rat aortic smooth muscle UTP . ADP 5 2MeSATP . ATP Chang et al., 1995
Activated T-cells — Southey et al., 1996

P2Y11 371 Human placenta ATP . 2MeSATP ... ADP (UTP, UDP inactive) Communi et al., 1997
a Tissue not specified.
b p2y3 may be the chick homologue of the mammalian P2Y6 receptor.
c The reported activity of UDP at the P2Y4 receptor has been shown to be caused by UTP present as a contaminant.
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toxin, which activates PLCb isoenzymes via its a sub-
unit (Waldo et al., 1991a, 1991b; Maurice et al., 1993).
Insensitivity or partial sensitivity to pertussis toxin is
characteristic of most endogenous P2Y1-like receptors
coupled to PLC, indicating the involvement of Gq/11 pro-
teins. In contrast, P2Y1-like receptors coupled to inhibi-
tion of adenylate cyclase are typically blocked by pertus-
sis toxin, indicating an involvement of Gi proteins (Boyer
et al., 1995; Berti-Mattera et al., 1996; Webb et al.,
1996c).

IP3 formation and Ca21 mobilization can stimulate a
variety of signaling pathways including PKC, PLA2,
Ca21-dependent K1 channels, NOS and subsequent en-
dothelium-derived relaxing factor (EDRF) formation,
and can generate endothelium-derived hyperpolarizing
factor (EDHF). The main physiological target of DAG is
stimulation of PKC, which in turn may stimulate phos-
phatidyl choline-specific PLC, PLD, the MAPK pathway,
and Ca21 influx via voltage-operated Ca21 channels.
Generation of PKC (with no detectable elevations in IP3

or cytosolic Ca21) and subsequent rapid tyrosine phos-
phorylation of MAPK seems to be the pathway by which
P2Y1-like (and P2Y2-like) receptors on endothelial cells
mediate prostacyclin production (Bowden et al., 1995;
Patel et al., 1996). This pathway is involved in cell me-
tabolism, secretion, gene expression, and growth. P2Y1-
like receptor activation of a phosphatidyl choline-spe-
cific PLC, and of PLD, has been reported (Martin and
Michaelis, 1989; Pirotton et al., 1990; Purkiss and
Boarder, 1992), although activation may occur down-
stream of PKC.

A second signaling pathway of endogenous P2Y1-like
receptors may be inhibition of adenylate cyclase. This
has been described for P2Y1-like receptors in a clonal
population of rat brain capillary endothelial cells (B10
cells) (Webb et al., 1996c). The two pathways are ex-
pressed independently, that is, P2Y1-like activation of
PLC does not coincide with P2Y1-like inhibition of ade-
nylate cyclase. It is not yet clear whether this involves
differential G protein-coupling or is caused by heteroge-
neity of P2Y1-like receptors (Webb et al., 1996c). P2Y
receptor-mediated adenylate cyclase inhibition was orig-
inally described for P2Y1-like receptors in rat C6 glioma
cells and the clonal cell line C6–2B (Pianet et al., 1989;
Valeins et al., 1992; Lin and Chuang, 1993; Boyer et al.,
1993, 1994, 1995). However, the decrease in cAMP in C6
cells is not blocked by selective antagonists of the P2Y1

receptor,which suggests that these receptors are distinct
from P2Y1 receptors coupled to activation of PLC (Boyer
et al., 1996). P2Y1-like receptor-mediated inhibition of
adenylate cyclase activity has also been described in
Schwann cells (Berti-Mattera et al., 1996). Inhibition of
adenylate cyclase is pertussis toxin-sensitive, indicating
an involvement of Gi proteins, but it is unclear whether
activation is mediated by a, b, or g subunits (Boyer et al.,
1995; Harden et al., 1995; Webb et al., 1996c).

P2Y1-like receptors may mediate membrane-delim-
ited G protein regulation of ion channels, that is, lack
the involvement of cytosolic second-messenger systems.
Although membrane-delimited regulation is frequently
assumed to imply a direct physical interaction between
the active G protein subunit and the ion channel, some
ion channels may be regulated by lipid-soluble second-
messengers such as arachidonic acid and metabolites
(Wickman and Clapham, 1995). In rat cerebellar neu-
rons, the opening of an outwardly rectifying, pertussis
toxin-insensitive GDPbS-sensitive K1 current by 2Me-
SATP . ADP . ATP activation of a P2Y1-like receptor
was suggested via coupling of the b,g subunits of the G
protein to a K1 channel (Ikeuchi and Nishizaki, 1996a).
The single channel currents induced by 2MeSATP were
without latency, suggesting that the channel was acti-
vated only by plasma membrane factors without the
involvement of intracellular components (Ikeuchi and
Nishizaki, 1996a). An ADP-sensitive K1 channel in in-
ferior colliculus (Ikeuchi and Nishizaki, 1995b) and med-
ullar (Ikeuchi et al., 1995a) neurons was also suggested
to be activated by direct action of the bg subunits of the
G protein. In contrast, 2MeSATP and ATP activation of
a K1 channel in striatal neurons seems to be mediated
via PKC (Ikeuchi and Nishizaki, 1995a).

In some cells, P2Y1-like receptors are colocalized with
P2Y2-like receptors. The biological significance of this is
not clear, particularly where ATP is a common agonist,
but makes more sense where the P2Y1-like receptor is
selective for ADP, and ATP acts only at the P2Y2-like
receptor (as has shown to be the case for coexisting
P2Y1- and P2Y2-like receptors on some endothelial
cells). The receptors have similar signaling pathways,
although the P2Y1-like receptor seems to be more sen-
sitive than the P2Y2-like receptor to manipulations of
PKC activity. This is likely to be related to the important
role of PKC as a negative feedback regulator of PLC
activity to allow finely tuned regulation of this signaling
pathway. Thus, stimulation of PKC with 12-O-tetrade-
canoyl-b-phorbol 13-acetate (TPA) causes a greater in-
hibition of P2Y1- than of P2Y2-like receptor mediated
responses in rat osteoblastic cells (Gallinaro et al., 1995).
The IP3 response of the endothelial P2Y1-like receptor is
attenuated by stimulation of PKC with phorbol 12-my-
ristate 13-acetate and enhanced by PKC inhibition with
Ro 31–8220, but the P2Y2-like response is less affected
or is unaffected (Purkiss et al., 1994; Communi et al.,
1995; Chen et al., 1996a). Discrimination between the
signaling pathways of P2Y1- and P2Y2-like receptors,
and the ways in which these may be differentially mod-
ulated, might provide some clues about the biological
significance of their colocalization.

C. Desensitization

In general, P2Y1 and P2Y1-like receptors do not
readily desensitize. When this does occur, as with other
G protein-coupled receptors, desensitization may in-
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volve receptor phosphorylation by protein kinases and
uncoupling from the associated G protein. Studies of the
P2Y1-like receptor in turkey erythrocyte membranes
showed that desensitization (t1/2 15 min) is heterolo-
gous, involves multiple mechanisms, and does not in-
volve PKC or intracellular Ca21 (Galas and Harden,
1995). In cultured bovine aortic endothelial cells, preex-
posure to 2MeSATP or UTP causes homologous partial
desensitization of IP3 formation by P2Y1- and P2Y2-like
receptors, respectively, and heterologous partial desen-
sitization of the 2MeSATP response by UTP (Wilkinson
et al., 1994). P2Y1-like receptor desensitization has also
been observed in rat colon muscularis mucosae (Hourani
et al., 1993) and rabbit mesenteric arterial smooth mus-
cle (Ziganshin et al., 1994b).

D. Agonists

The P2Y1 and P2Y1-like receptor is generally more
sensitive to adenine nucleotide diphosphates than to
triphosphates. ADPbS, ADPbF, and 39-deoxyATPaS
(dATPaS) are potent agonists at P2Y1 receptors. 2Me-
SATP is a potent and selective agonist at the P2Y1 and
P2Y1-like receptor versus other cloned P2Y receptors
(but see P2Y11 receptor, Section XVII.), but is also a
potent agonist at most P2X receptors. a,b-meATP, b,g-
meATP, and UTP are inactive and thus are useful as
negative evidence in the characterization of this recep-
tor. Certain of the diadenosine polyphosphates (partic-
ularly those with a phosphate chain of three phosphates
or less) may be natural, albeit non-selective, agonists at
P2Y1-like receptors (Ralevic et al., 1995a; Pintor et al.,
1996). The potency of ATP differs widely among endog-
enous P2Y1-like receptors, and the lack of effect of ATP
at some endogenous P2Y1-like receptors is unequivocal
(Dixon et al., 1995; Ralevic and Burnstock, 1996a; Webb
et al., 1996b). This would tend to rule out the possibility
that this heterogeneity is caused by contamination of
solutions of ADP and ATP caused by purine interconver-
sion and metabolism. However, molecular evidence does
not support a subdivision of the P2Y1 receptor, and
heterogeneity of ADP/ATP relative potencies is also ap-
parent for recombinant P2Y1 receptors (table 12).

The charge carried by the molecule may influence
agonist potency; it has been suggested that ATP uncom-
plexed with divalent cations, ATP42, is the preferred
agonist of the P2Y1-like receptor expressed on bovine
aortic endothelial cells (Motte et al., 1993b). In the guin-
ea-pig taenia coli, the order of potency for relaxation at
the P2Y1-like receptor by non-hydrolysable analogs of
b,g-meATP reflects the order of electronegativity, with
the more acidic analogs being more potent: AMP-
PCF2P . AMP-CCl2P . b,g-meATP (Cusack et al.,
1987).

2-Thioether derivatives of adenine nucleotides, in-
cluding 2-hexylthio ATP and 2-cyclohexylthio ATP, are
potent agonists at P2Y1-like receptors coupled to ade-
nylate cyclase (EC50 values 28 and 58 pM respectively),

but are significantly less potent at PLC-coupled P2Y1
receptors (Boyer et al., 1995). N6-Methyl ATP is selective
for P2Y1-like receptors in the taenia coli versus vascular
P2Y1-like receptors (Fischer et al., 1993; Burnstock et
al., 1994).

E. Antagonists

Adenosine 39,59- and 29,59-bisphosphates act as compet-
itive antagonists at the P2Y1 receptor coupled to PLC;
adenosine-39-phosphate-59-phosphosulfate (A3P5PS) and
adenosine-39-phosphate-59-phosphate (A3P5P) block re-
sponses at the recombinant P2Y1 receptor with pKB values
of 6.5 and 5.7, respectively (Boyer et al., 1996). These
compounds are inactive at the adenylate cyclase-coupled
P2Y1-like receptor of C6 glioma cells and at recombinant
P2Y2, P2Y4, or P2Y6 receptors (Boyer et al., 1996). Inter-
estingly, A3P5PS and A3P5P are partial agonists at the
turkey but not the human recombinant P2Y1 receptor.
N6-methyl modification of 29-deoxyadenosine 3959-bisphos-
phate, to produce the compound MRS 2179, enhanced an-
tagonist potency (IC50 value 330 nM) by 17-fold and elim-
inated the partial agonist properties observed with the
lead compound, resulting in the most potent P2Y1 receptor
antagonist reported to date (Camaioni et al., 1998).

F. Heterogeneity of P2Y1 and Endogenous P2Y1-Like
Receptors

Although endogenous P2Y1-like receptors couple to
different signal transduction pathways and there may
be profound differences in their ligand binding profiles,
molecular evidence does not support the subdivision of
this receptor. It seems most likely that this heterogene-
ity may arise from small differences in structure. Se-
quence homology of only 84% between turkey and hu-
man P2Y1 receptors may explain why A3P5PS and
A3P5P are partial agonists at the turkey P2Y1 receptor
but not its human homolog (Boyer et al., 1996). These
receptors were expressed in the same cell type and as-
sayed under the same conditions.

Heterogeneity in ligand binding at P2Y1 receptors
includes both agonist and antagonist binding profiles.
Recombinant P2Y1 receptors cloned from different spe-
cies and tissues show different relative potencies to ATP
and ADP (table 12), as do their endogenous counter-
parts. Although the true potency of ATP at endogenous
P2Y1-like receptors is difficult to assess because of ac-
tions at coexisting receptors and rapid breakdown by
ecto-nucleotidases, ADP-specific P2Y1-like receptors
that are activated potently by ADP and 2MeSATP, but
weakly or not at all by ATP, have been described in a
number of isolated cells and tissues, including rat hepa-
tocytes (Keppens and deWulf, 1991; Keppens et al.,
1992; Dixon et al., 1995), endothelium of rat mesenteric
arteries (Ralevic and Burnstock, 1996a,) and rat brain
capillary endothelial cells (Feolde et al., 1995; Webb et
al., 1996c). The P2 receptor antagonist PPADS has been
shown to block vasodilatation mediated by ADP and
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2MeSATP (at a P2Y1-like receptor) but not to ATP and
UTP (at a P2Y2-like receptor), which implies that at
least in rat mesenteric arteries, ATP does not act at
P2Y1-like receptors, although it does act at P2Y2-like
receptors (Ralevic and Burnstock, 1996a). This has im-
portant implications for the agonist selectivity of P2Y1
receptors in other tissues.

ADP-specific P2Y1-like receptors may account for
some of the ambiguities in the literature concerning
classification of P2Y receptors. Thus, ADP-activated
P2Y receptors identified as “P2T” (P2YADP) receptors in
osteoblasts (Sistare et al., 1994, 1995) are likely to be
ADP-specific P2Y1 receptors because 2MeSATP and
ADP are equipotent agonists (Reimer and Dixon, 1992;
Sistare et al., 1994, 1995; Dixon et al., 1997b). A “P2T”
receptor coexisting with the P2Y2 receptor in porcine
ovarian granulosa cells may also be an ADP-specific
P2Y1 receptor (Kamada et al., 1994).

PPADS is able to discriminate between some P2Y1
receptors; it generally blocks recombinant P2Y1 recep-
tors and endogenous P2Y1-like receptors coupled to PLC
(Boyer et al., 1994; Brown et al., 1995; Charlton et al.,
1996a; Schachter et al., 1996) but has no effect at P2Y1-
like receptors coupled to inhibition of adenylate cyclase
(Boyer et al., 1994; Webb et al., 1996c). On the other
hand, PPADS is ineffective at rabbit aortic endothelial
P2Y1-like receptors, where PLC coupling might be ex-
pected (Ziganshin et al., 1994b). Block of P2Y1-like re-
ceptors with different pA2 values also implies receptor
heterogeneity: pA2 values 5.1 and 5.3 in rat duodenum
and guinea-pig taenia coli, respectively, (Windscheif et
al., 1995a); pA2 values 6.0 in rat mesenteric arterial
endothelium (Ralevic and Burnstock, 1996a) and at re-
combinant turkey brain (Charlton et al., 1996a) P2Y1
receptors. PPADS is ineffective as an antagonist at rab-
bit mesenteric arterial smooth muscle P2Y1-like recep-
tors (Ziganshin et al., 1994b).

Different sensitivities to ATP and analogs of ATP
have been shown for P2Y1-like receptors in guinea-pig
taenia coli, and in vascular endothelium and smooth
muscle (Fischer et al., 1993; Burnstock et al., 1994; Ab-
bracchio and Burnstock, 1994). Among other differences,
N6-methylATP is a selective agonist at guinea-pig taenia
coli P2Y1-like receptors, but is inactive at vascular P2Y1-
like receptors (Fischer et al., 1993; Burnstock et al.,
1994). Relaxation by a,b-meATP of the guinea-pig tae-
nia coli seems to be via a P2Y receptor of undetermined
subtype as this response is not blocked by the P2X-
selective antagonist Evans blue (Bültmann et al., 1996).
2-Thioether derivatives of adenine nucleotides are po-
tent agonists at adenylyl cyclase-linked P2Y1-like recep-
tors in C6 rat glioma cells, but not at PLC-linked P2Y1-
like receptors of turkey erythroctyes (Boyer et al., 1995).
Interestingly, ATP seems to be a partial agonist at ade-
nylate cyclase-coupled P2Y receptors. At the endothelial
P2Y1-like receptor, P1,P3-diadenosine triphosphate
(Ap3A) is the most potent ligand and P1,P5-diadenosine

pentaphosphate (Ap5A) is inactive (Ralevic et al.,
1995a).

G. Distribution and Biological Effects

P2Y1 and P2Y1-like receptors are widely distributed
having been described in heart, vascular, connective,
immune, and neural tissues. The transcript for chick
brain P2Y1 mRNA is distributed in brain, spinal cord,
gastrointestinal tract, spleen, and skeletal muscle, but
not in heart, liver, stomach, lung, or kidney (Webb et al.,
1993b). In the rat, P2Y1 receptor mRNA is expressed at
variable levels in many tissues including heart, brain,
spleen, lung, liver, skeletal muscle, and kidney, but is
not detected in testis (Tokuyama et al., 1995). Within the
brain, P2Y1 mRNA has a widespread but specific distri-
bution, being particularly rich in various nuclei of the
telencephalon, diencephalon, and mesencephalon as
well as in the external granule, Purkinje, and internal
granule cells of the cerebellum (Webb et al., 1994).

Receptors with the pharmacological profile of a P2Y1
receptor have been identified in functional studies in a
wide variety of cells including rat astrocytes (Pearce et
al., 1989; Pearce and Langley, 1994), frog glial cells
(Robitaille, 1995), avian erythrocytes (Berrie et al., 1989;
Boyer et al., 1989), rat osteoblasts (Reimer and Dixon,
1992; Gallinaro et al., 1995), pancreatic b cells (Petit et
al., 1988), rat mast cells (Osipchuk and Cahalan, 1992),
rat alveolar type II cells (Rice and Singleton, 1987),
human T-leukemia cells (Biffen and Alexander, 1994),
rat cochlear lateral wall (Ogawa and Schacht, 1995), and
rat cochlear lateral wall epithelial cells (Ikeda et al.,
1995). The physiological significance of these receptors
is still largely undetermined. Diverse P2Y1-like recep-
tor-mediated metabolic effects include insulin secretion
from pancreatic b-cells (Bertrand et al., 1987; Hillaire-
Buys et al., 1991, 1993, 1994), renin secretion in renal
cortical slices (Churchill and Ellis, 1993a, 1993b), glu-
coneogenesis in renal cortical tubules (Cha et al., 1995),
and glycogenolysis in rat hepatocytes (Keppens and De
Wulf, 1991).

The distribution of P2Y1-like receptors on vascular
endothelium and smooth muscle cells implies a role in
the regulation of vascular tone. In most blood vessels,
P2Y1-like receptors are present on the endothelium and
mediate vasodilatation by Ca21-dependent activation of
endothelial NOS and generation of EDRF and by gener-
ation of EDHF. Endothelial prostacyclin production is
also stimulated by the P2Y1-like receptor, but this seems
to play a minimal role in vasodilatation, at least under
physiological conditions. The fact that ATP and ADP are
released locally from endothelial cells during shear
stress and hypoxia and from platelets during aggrega-
tion, identifies a possible role for endothelial P2Y1-like
receptors in modulation of vascular tone under normal
conditions and during thrombosis. P2Y1-like receptors
on pulmonary artery endothelium may be involved in
stimulation of leukocyte adhesion (Dawicki et al., 1995).
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P2Y1-like receptors are present on the smooth muscle
of a number of blood vessels and, like their endothelial
counterparts, mediate vasodilatation (Kennedy and
Burnstock, 1985; Mathieson and Burnstock, 1985; Burn-
stock and Warland, 1987a; Liu et al., 1989; Brizzolara
and Burnstock, 1991; Keefe et al., 1992; Corr and Burn-
stock, 1994; Qasabian et al., 1997; Simonsen et al.,
1997). P2Y1-like receptors (and P2Y2-like receptors) are
expressed by human coronary artery smooth muscle
cells in culture (Strøbæk et al., 1996). The mechanism
underlying relaxation by smooth muscle P2Y1-like re-
ceptors is not known but may involve activation of K1

channels. In rabbit mesenteric arteries and skeletal
muscle-resistance arteries, glibenclamide partially
blocks smooth muscle hyperpolarization and relaxation
to ADP, indicating a role for KATP channels (Brayden,
1991). The smooth muscle P2Y1-like receptor of rabbit
pulmonary artery mediates relaxation independently of
mobilization of intracellular Ca21 (in contrast with that
mediated by coexisting P2Y2-like receptors) implying
lack of involvement of the PLC pathway (Qasabian et al.,
1997). The biological significance of P2Y1-like receptors
expressed by the smooth muscle of rabbit portal vein
(Brizzolara et al., 1993) (fig. 11), guinea-pig pulmonary
artery (Liu et al., 1992), and lamb small coronary arter-
ies (Simonsen et al., 1997) may be in mediation of the
neurogenic, purinergic (non-adrenergic non-cholinergic)
relaxation shown in these vessels. It is possible that
vascular smooth muscle P2Y1-like receptors mediate re-
laxation to ATP released as a neurotransmitter from
sensory-motor nerves. A P2Y1-like receptor on cultured
aortic smooth muscle cells has been reported to mediate
the mitogenic effect of ATP via activation of PKC, and
then Raf-1 and MAPK (Yu et al., 1996); it has also been
reported to cause induction of immediate early genes
(Malam-Souley et al., 1996), which indicates a role in
vascular smooth muscle proliferation.

Interestingly, autocatalytic release of ATP (ATP-me-
diated release of ATP) has been described in guinea-pig
cardiac endothelial cells, which may involve P2Y1-like
receptors (Yang et al., 1994). A P2Y1-like receptor on rat
basophilic leukocyte cells is suggested to amplify intra-
cellular Ca21 signaling and secretory responses to anti-
gen stimulation, and to propagate the response to neigh-
boring cells partly by the release of additional stores of
ATP from secretory granules (Osipchuk and Cahalan,
1992).

Activation of the P2Y1-like receptor expressed on
platelets leads to platelet shape change, aggregation,
and intracellular calcium rise, with no effect on adenyl-
ate cyclase (Daniel et al., 1998; Hechler et al., 1998; Jin
et al., 1998). This effect is blocked by the selective P2Y1

receptor antagonists A2P5P and A3P5P. The P2Y1 re-
ceptor seems to be crucial for triggering the ADP-in-
duced shape change, whereas aggregation is mediated
by cooperative effects with platelet P2YADP (or P2T) re-

ceptor-mediated inhibition of adenylate cyclase (Daniel
et al., 1998; Hechler et al., 1998; Jin et al., 1998).

P2Y1 receptor mRNA is selectively expressed by large
diameter sensory neurons and when expressed in oo-
cytes was shown to be mechano-sensitive and to exhibit
inward currents (Nakamura and Strittmatter, 1996). A
functional correlate may be ATP-triggered Ca21 release
from IP3-sensitive Ca21 stores in large DGR neurons;
[Ca21]i transients were not elicited by small neurons
(Svichar et al., 1997).

ATP inhibits the light-evoked release of ACh from
rabbit retinal cholinergic neurons in a DPCPX-insensi-
tive manner, although the receptor subtype is not clear
(Neal and Cunningham, 1994). A P2Y1-like receptor
may mediate inhibition by ATP and 2MeSATP (but not
a,b-meATP) of excitatory postsynaptic potentials in
guinea-pig submucosal neurons, and although it is sug-
gested that it is a P3-like receptor, it is not activated by
adenosine (Barajas-López et al., 1995).

P2Y1-like receptors mediate the opening of K1 chan-
nels in rat cultured cerebellar neurons, striatal neurons,
superior and inferior colliculus neurons, medullar neu-

FIG. 11. Relaxations of the rabbit portal vein to neurogenic transmu-
ral stimulation for 10 sec (2 to 64 Hz, 0.7 ms, 100 V) at 5 min intervals.
Guanethidine (3.4 mM) and atropine (0.114 mM) were present throughout
to block adrenergic and cholinergic neurotransmission respectively. Tone
was induced with ergotamine (8.6 mM). Panel (a) shows that preincuba-
tion with suramin (30 mM) for 20 min reduced the nerve-mediated relax-
ations compared with controls and that suramin-resistant neurogenic
relaxations were abolished 20 min after the addition of the nitric oxide
synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 0.1 mM).
Panel (b) shows that neurogenic relaxations remaining after 20 min
pretreatment of the tissue with L-NAME (0.1 mM) were abolished 20 min
after the addition of suramin (30 mM). In (c), the effect of adding L-NAME
(0.1 mM) to the tissue is shown; there was an additional rise in tone and
inhibition of the response to nerve stimulation after a 20 min incubation
period. The subsequent treatment of tissues with L-arginine (10 mM) for
20 min reversed this effect. Each of the traces in (a), (b), and (c) is
representative of similar results in six separate experiments. (From
Brizzolara et al., 1993, Br J Pharmacol 109:606–608; with permission
from McMillan Press Limited).
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rons, hippocampal neurons, and spinal neurons (Ikeuchi
et al., 1995a,b; 1996a,b; Ikeuchi and Nishizaki, 1995b;
1996a,b). The transduction mechanism seems to be a
pertussis toxin-insensitive G protein which directly
opens the potassium channels via its bg subunit. Aden-
osine seems to be an agonist at P2Y1-like receptors in
hippocampal neurons (Ikeuchi et al., 1996a) and neurons
of the superior colliculus (Ikeuchi et al., 1995b), raising
the possibility that these are P1 or P3 receptors. A
P2Y1-like receptor mediates dopamine release in rat
striatum (Zhang et al., 1995). An increase in the firing
rate of rat medial vestibular nucleus neurons by ADPbS
has been attributed to activation of P2Y receptors (Ches-
sell et al., 1997).

XIII. P2Y2 and Endogenous P2Y2-Like Receptors

The P2Y2 receptor (and its endogenous counterpart,
formerly called the P2U receptor) is activated by ATP
and UTP with approximately equal potency and is in-
sensitive or is only weakly activated by ADP and other
nucleoside diphosphates, 2MeSATP and a,b-meATP (ta-
ble 10b). In this review, endogenous receptors exhibiting
this pharmacological profile have provisionally been
termed P2Y2-like (but see Section XV.).

A. Cloned P2Y2 Receptors

The first cloned P2Y2 receptor was from mouse
NG108–15 neuroblastoma cells (Lustig et al., 1993).
Species homologs have been cloned from rat, cat, and
human (table 12).

B. Signal Transduction Mechanisms

Cloned P2Y2 and endogenous P2Y2-like receptors cou-
ple via both Gi/o and Gq/11 proteins to mediate phospho-
lipid breakdown and phosphoinositides as well as Ca21

mobilization via PLCb, an effect which may accordingly
be pertussis toxin-sensitive, -partially sensitive, or -in-
sensitive (see Dubyak and el-Moatassim, 1993). P2Y2-
like receptor coupling to Gi proteins involves the bg Gi
protein subunits, which stimulate phospholipase C-b2.
IP3 formation, Ca21 mobilization, and a variety of sig-
naling pathways including PKC, PLA2, Ca21-dependent
K1 channels, and EDRF and EDHF formation. The spe-
cific downstream involvement of a given signaling path-
way seems to be partially dependent on the cell type in
which the P2Y2-like receptor is expressed.

Activation of PLD and stimulation of phosphatidyl-
choline breakdown by P2Y2-like receptors has been re-
ported (Purkiss and Boarder, 1992; Pfeilschifter and
Merriweather, 1993; Balboa et al., 1994; Gerwins and
Fredholm, 1995a,b). The mechanism of activation of PLD
is unclear but may involve the combined actions of PKC,
Ca21, and G proteins, as suggested for P2Y2-mediated
pertussis toxin-insensitive activation of PLD in DDT1
MF2 cells (Gerwins and Fredholm, 1995b). As with the
P2Y1-like receptor, protein tyrosine phosphorylation

and MAPK activation seems to be the major route for
P2Y2-like receptor-mediated prostacyclin production in
endothelial cells (Bowden et al., 1995; Patel et al., 1996).
This occurs subsequent to activation of PKC and does
not involve IP3 or cytosolic Ca21 (Patel et al., 1996).
Stress-activated protein kinases, independent of PKC
activation, have been shown to be activated by ATP and
UTP in rat renal mesangial cells (Huwiler et al., 1997).

Secondary to activation of PLC and mobilization of
Ca21, the P2Y2-like receptor mediates the opening of
Ca21-sensitive Cl2 channels in airway epithelia (Clarke
and Boucher, 1992; Stutts et al., 1992), intrahepatic
biliary epithelial cell lines (Wolkoff et al., 1995), and
avian exocrine salt gland cells (Martin and Shuttle-
worth, 1995), which drives fluid secretion. Activation of
P2Y2-like receptors stimulates cation and K1 currents
via Ca21-dependent signaling mechanisms in HTC cells
from a rat liver tumor cell line (Fitz and Sostman, 1994).
UTP and ATP mediate depolarization of supraoptic neu-
rosecretory cells in rat hypothalamus by the opening of
a non-selective cation channel (Hiruma and Bourque,
1995).

A P2Y2-like receptor has been shown to mediate inhi-
bition of adenylate cyclase in some cells, although as
shown in C6–2B rat glioma cells, this may occur second-
ary to an increase in cytosolic free Ca21 (Munshi et al.,
1993). Inhibition of cAMP accumulation by UTP and
ATP at a P2Y2-like receptor in NCB-20 cells is accom-
panied by an elevation in intracellular Ca21 (Garritsen
et al., 1992). A pertussis toxin-sensitive G protein medi-
ates P2Y2-like inhibition of cAMP accumulation in cul-
tured renal mesangial cells (Schulze-Lohoff et al., 1995).
In the renal epithelial cell line, MDCK-D1 cells UTP and
ATP mediate an increase in cAMP that is blocked by
indomethacin identifying a cyclooxygenase-dependent
mechanism; this suggests the involvement of PGE2 (Post
et al., 1996). An increase in cGMP levels mediated by
P2Y2-like receptors in mouse neuroblastoma 3 rat
glioma hybrid cells occurs secondary to mobilization of
intracellular Ca21 (Reiser, 1995).

Inhibition of N-type calcium currents by P2Y2-like
receptors expressed in sympathetic neurons has been
reported (Filippov et al., 1997).

P2Y2-like receptors are colocalized with P2Y1-like re-
ceptors on many cells and have a common signaling
pathway in PLC. P2Y2-like responses are less sensitive
to manipulations of the PKC pathway (Purkiss et al.,
1994; Communi et al., 1995; Gallinaro et al., 1995; Chen
et al., 1996a) (see also Section XII.B., on P2Y1 and P2Y1-
like receptor signal transduction mechanisms).

C. Desensitization

P2Y2 and endogenous P2Y2-like receptors do not
readily desensitize. However, tachyphylaxis of a P2Y2-
like response has been reported in UMR-106 rat osteo-
blasts (Sistare et al., 1994), human term placental (tro-
phoblastic) cells (Petit and Belisle, 1995), rat cultured

464 RALEVIC AND BURNSTOCK



pituitary cells (gonadotropes) (Chen et al., 1994b,
1995b), C6–2B rat glioma cells (Munshi et al., 1993),
and in cultured endothelial cells (Motte et al., 1993a;
Wilkinson et al., 1994; Nobles et al., 1995). Maximum
desensitization of the P2Y2 receptor in mouse epithelial
cells was observed at 5 to 10 min after UTP exposure,
and full receptor responsiveness recovered at the same
time after removal of agonist (Garrard et al., 1998). The
mechanism of desensitization is not well understood, but
as with many G protein-coupled receptors may involve
phosphorylation of the intracellular regions of the recep-
tor. The C terminal may be important because progres-
sively larger truncations of this region of the P2Y2 receptor
decreased the rate and magnitude of desensitization (Gar-
rad et al., 1998).

Plasticity of expression of the P2Y2 receptor during in
vitro differentiation and inflammatory activation of
HL-60 human promyelocytic leukocytes has been de-
scribed (Martin et al., 1997a). When HL-60 cells differ-
entiate into neutrophils, P2Y2 receptor mRNA levels
and receptor function are largely preserved. In contrast,
differentiation of HL-60 cells into monocytes/macro-
phages is associated with a complete loss of P2Y2 recep-
tor-mediated function and a 10-fold reduction of P2Y2
mRNA levels; this suggests receptor down-regulation
(Martin et al., 1997a). It was suggested that down-
regulation of the P2Y2-like receptor might be related to
inflammatory activation rather than differentiation.

D. Up-Regulation

P2Y2-like receptor activity and P2Y2 receptor mRNA
levels were increased in rat submandibular gland after
ligation of the main excretory duct but not in the con-
tralateral nonligated gland, indicating that changes in
expression of the P2Y2 receptor may occur during patho-
logical conditions (Turner et al., 1997).

E. Agonists and Antagonists

UTP and ATP are natural ligands at P2Y2 and P2Y2-
like receptors, and are approximately equipotent. 2Me-
SATP and a,b-meATP are weak or inactive, which pro-
vides useful negative evidence in the characterization of
this receptor. UTPgS is equipotent with UTP and ATP
at recombinant P2Y2 and endogenous P2Y2-like recep-
tors, but has the advantage of being resistant to hydro-
lysis (Lazarowski et al., 1996). ATPgS has been shown to
be an agonist at recombinant P2Y2 receptors, but is less
potent than UTP and ATP (Lustig et al., 1993; Laz-
arowski et al., 1995). Ap4A is a potent agonist at recom-
binant P2Y2 receptors with a potency greater than
ATPgS and is within the same range as UTP and ATP,
raising the possibility that it is an endogenous regulator
of these receptors (Lazarowski et al., 1995).

It has been suggested that endogenous P2Y2-like re-
ceptors are preferentially activated by the fully ionized
forms of ATP and UTP, ATP42, and UTP42 in bovine
aortic endothelial cells (Lustig et al., 1992; Motte et al.,

1993b), human neutrophils (Walker et al., 1991), a cul-
tured neuroblastoma-glioma hybrid cell line (NG108–15
cells) (Lin et al., 1993), rat lactotrophs (Carew et al., 1994),
mouse pineal gland tumor cells (Suh et al., 1997), and
MDCK cells (Yang et al., 1997). The UTP and ATP re-
sponses were shown to correlate with the concentration of
the fully ionized form of these agonists and not with the
concentration of their cation complexes or other ionized
forms. Although both UTP and ATP are rapidly degraded
and augmentation of responses in Mg21-free medium by
ecto-nucleotidases must be considered, this seems not to be
involved because potentiation of responses was also ob-
served for the stable agonist ATPgS (Yang et al., 1997).
Direct effects of cations on the receptor are also possible.

There are no selective antagonists at P2Y2 and P2Y2-
like receptors. Suramin and PPADS are nonselective
antagonists at subpopulations of P2Y2-like receptors
(see Section XIII.F., Heterogeneity of P2Y2 and Endog-
enous P2Y2-Like Receptors).

F. Heterogeneity of P2Y2 and Endogenous P2Y2-Like
Receptors

Endogenous P2Y2-like receptors show two phenotypes
of response with respect to antagonism by suramin and
PPADS. However, there is no molecular evidence to sup-
port a subdivision of P2Y2 receptors. The differences in
sensitivities to antagonists do not correspond to species
differences or to the apparent division according to dif-
ferences in G protein coupling. Suramin-insensitive
P2Y2-like receptors are those on bovine aortic endothe-
lial cells (Wilkinson et al., 1994), rat duodenum muscu-
laris mucosae (Johnson et al., 1996), rabbit aortic endo-
thelium (Chinellato et al., 1994), and rat mesenteric
arterial endothelium (Ziyal, 1997). PPADS-insensitivity
is also reported for P2Y2-like receptors on rat mesenteric
arterial endothelium (Ralevic and Burnstock, 1996a), as
well as for P2Y2-like receptors on rat renal artery
smooth muscle (Eltze and Ullrich, 1996) and bovine
aortic endothelial cells (Brown et al., 1995).

Suramin-sensitive endogenous P2Y2-like receptors in-
clude those on mouse C2C12 myotubes (Henning et al.,
1992, 1993), rat pituitary gonadotrophs (Chen et al.,
1994b), mouse cortical thick ascending limb segments
(Paulais et al., 1995), rat lactotrophs (Carew et al.,
1994), hamster mesenteric endothelium (Ziyal, 1997),
rat PC12 cells (Murrin and Boarder, 1992), DDT MF-2
cells (Hoiting et al., 1990; Sipma et al., 1994), rat astro-
cytes (Ho et al., 1995), early embryonic chick neural
retina (Sugioka et al., 1996; but also see Section XVII. on
Endogenous Uridine Nucleotide-Specific Receptors), rat
brain endothelial cells (Nobles et al., 1995), rabbit pul-
monary artery endothelium and cultured smooth muscle
cells (Qasabian et al., 1997), bovine pulmonary artery
endothelium (Chen et al., 1996c), mouse mammary tu-
mor epithelial cells (Enomoto et al., 1994), and mouse
neuroblastoma and rat glioma hybrid cells (Reiser,
1995). PPADS is also an inhibitor of P2Y2-like receptors
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in mouse neuroblastoma and rat glioma hybrid cells
(Reiser, 1995), as well as of P2Y2-like receptors in rat
astrocytes (Ho et al., 1995).

G. Distribution and Biological Effects

P2Y2 and endogenous P2Y2-like receptors are widely
distributed, but relatively little is known about their
physiological significance. Particularly intriguing is the
functional significance of a receptor that can be acti-
vated equally by purines and pyrimidines; to establish
the physiological relevance of this it is important to
know more about whether there are different sources or
differential release of UTP and ATP. Some of these
questions may be answered in the not too distant future
as a result of the recent development of a radiometric
assay based on the nucleotide specificity of UDP-glucose
pyrophosphohydrolase, which is capable of detecting
nanomolar concentrations of UTP (Lazarowski et al.,
1997a). UTP has been shown to be released from endo-
thelial cells by increased flow (Saiag et al., 1995) and is
released from epithelial and astrocytoma cells by per-
turbation of the bathing medium (mechanical stimula-
tion) (Enomoto et al., 1994; Lazarowski et al., 1997a).
ATP is also released from these cells under these condi-
tions, although whether its release is independent of
that of UTP is unclear. UTP is stored in platelets (Goetz
et al., 1971), which may be significant in modulation of
vascular contractility during platelet aggregation in
pathophysiological conditions.

Northern blot analysis revealed distribution of P2Y2
receptor mRNA in spleen, testes, kidney, liver, lung,
heart, and brain (Lustig et al., 1993; Parr et al., 1995).
Alveolar type II cell P2Y2 receptor mRNA is expressed in
rat heart, kidney, lung, spleen, and testis, but not in
brain or liver (Rice et al., 1995). The P2Y2 receptor
cloned from human osteoclastoma is expressed in oste-
oclastoma, bone, and osteoblasts (Bowler et al., 1995).
P2Y2 receptor mRNA has been localized in primary cul-
tures of rat aortic smooth muscle cells (Chang et al.,
1995) and in cardiac myocytes and fibroblasts (Webb et
al., 1996d).

As shown in functional studies, receptors exhibiting
the pharmacological properties of the P2Y2 receptor are
present in a wide variety of cells and tissues including
astrocytes, different types of blood cells, chromaffin
cells, endothelial cells, epithelial cells, fibroblasts, glial
cells, hepatocytes, keratinocytes, myocytes, osteoblasts,
pancreatic b-cells, pheochromocytoma PC12 cells, pitu-
itary cells, thyrocytes, and tumor cells (table 13).

In the vasculature, P2Y2-like receptors are generally
present on the endothelium where they stimulate the
synthesis and release of prostacyclin and NO, leading to
vasodilatation (Ralevic and Burnstock, 1991a, 1991b;
1996a, 1996b). Smooth muscle contraction mediated
equipotently by UTP and ATP may indicate P2Y2-like
receptors, although the G protein coupling of these re-
ceptors remains to be confirmed. These receptors have

been described in rat pulmonary vasculature (Rubino
and Burnstock, 1996), rat renal vasculature (Eltze and
Ullrich, 1996), bovine middle cerebral artery (Miyagi et
al., 1996a), and rat duodenum (Johnson et al., 1996).
Interestingly, Ca21-mobilizing P2Y2-like receptors de-
scribed on cultured smooth muscle cells of rabbit pulmo-
nary artery are not coupled to a functional response
(Qasabian et al., 1997). A clue to their role may lie in the
demonstration that P2Y2-like receptors mediate an in-
crease in expression of immediate-early and delayed-
early cell cycle-dependent genes in cultured aortic
smooth muscle cells, in contrast with the induction only
of immediate-early genes by 2MeSATP in the same cells
(Malam-Souley et al., 1996).

Enhanced leukocyte adherence to cultured pulmonary
artery endothelial cells by P2Y2-like receptors has been
shown (Dawicki et al., 1995). P2Y2 receptors on neutro-
phils stimulate degranulation, potentiate N-formyl-me-
thionyl-leucyl-phenylalanine (FMLP)-induced superox-
ide formation, and induce aggregation (Kuroki et al.,
1989; Seifert et al., 1989a,b; Walker et al., 1991). P2Y2-
like receptors on HL-60 cells mediate activation of
NADPH oxidase and superoxide generation and mediate
potentiation of FMLP-induced superoxide formation (Se-
ifert et al., 1989a), while those on neutrophils and HL-60
cells induce chemotaxis and actin polymerization
(Verghese et al., 1996). P2Y2-like receptors on gonado-
trophs mediate the release of luteinizing hormone (Chen
et al., 1995b). P2Y2-like receptors are Cl2 secretagogues
in human nasal mucosa, probably via activation of Ca21-
dependent Cl2 channels (Mason et al., 1991; Stutts et
al., 1992); this is an effect which has been explored for
its potential in the pharmacological control of cystic
fibrosis, a disease characterized by a failure to secrete
Cl2 ions into the airway lumen leading to dehydration of
airway secretions.

Coupling of P2Y2-like receptors to catecholamine se-
cretion in PC12 cells is controversial, having been re-
ported by some researchers (Majid et al., 1993; Koizumi
et al., 1995b), but not by others (Barry and Cheek, 1994;
Nikodijevic et al., 1994; de Souza et al., 1995). It is
intriguing that while there is no good evidence for UTP
release as a neurotransmitter, it is able to modulate the
release of other substance from nerves.

It has been shown recently (Bogdanov et al., 1998)
that, unlike the human P2Y4 receptor (see Section XV.),
which is selective for UTP, the rat P2Y4 homolog is
equisensitive to ATP and UTP; that is, in agonist profile
it is identical with rat P2Y2. Therefore, it seems likely
that the endogenous receptor called P2Y2-like in this
section may be a P2Y2 or a P2Y4 receptor, at least where
rat tissue is concerned. However, since there is a differ-
ential sensitivity to widely used antagonists, it should be
possible to distinguish which receptor is operating in a
particular tissue. In view of this new data, it is now clear
that the former P2U receptor cannot be equated with a
single P2Y subtype.
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XIV. p2y3 Receptor

This receptor has been cloned from chick brain and
has nucleotide selectivity with a potency order of UDP .
UTP . ADP . 2MeSATP . ATP (Webb et al., 1995,
1996a). The designation p2y3 reflects the current reser-
vations expressed by the IUPHAR nomenclature com-
mittee about its inclusion as a distinct subtype within
the P2Y receptor family because no mammalian ho-
molog has yet been identified. It has been suggested that
this may be the chick homolog of the mammalian P2Y6

receptor, with which it has 62% sequence homology,
although this has not yet been confirmed. This receptor
is activated by UDP, and to a lesser extent UTP and
ADP, and couples to PLC. Its expression is rather re-
stricted, being detected in spleen, spinal cord, kidney,
and lung.

XV. P2Y4 Receptor

This uridine nucleotide-specific receptor has been
cloned from human placenta (Communi et al., 1996c),
human chromosome X (Nguyen et al., 1996), and rat
heart (Bogdanov et al., 1998). The human P2Y4 receptor
is highly selective for UTP over ATP and is not activated
by nucleoside diphosphates. ATP can act as an antago-
nist and partial agonist. The human P2Y4 receptor
seems to couple to two distinct G proteins: a Gi protein at
the early stage and a Gq/11 protein at a later stage of
signaling to activate PLC and IP3 formation (Communi
et al., 1996a). The IP3 response declines within minutes
of stimulation of the receptor and is not readily repro-
ducible, indicating desensitization (Robaye et al., 1997).
The human P2Y4 receptor is not blocked by suramin, but
has been reported to be both blocked by PPADS (IC50

approximately 15 mM) (Communi et al., 1996a) and to be
relatively insensitive to block by PPADS (used at 30 mM)
(Charlton et al., 1996b). P2Y4 has a restricted distribu-
tion; it is expressed almost exclusively in placenta with
low levels of expression in lung, and absent in most
other tissues. A P2Y4 receptor (initially termed P2P) has
been described in rat pancreas (Stam et al., 1996). P2Y4

mRNA (and P2Y2 mRNA, as well as barely detectable
levels of P2Y6 mRNA) has been detected in vascular
smooth muscle (Erlinge et al., 1998).

The recent cloning of a rat P2Y4 receptor has shown
that the recombinant receptor is activated equipotently
by ATP and UTP (ADP, ATPgS, 2MeSATP, and Ap4A
are also equipotent, but are partial agonists) (Bogdanov
et al., 1998). Clearly, with respect to ATP and UTP sensi-
tivity, this is identical with the profile described for the
P2Y2 receptor. Important implications arising from this
are that some P2Y2-like responses may be mediated by a
P2Y4 receptor, at least in rat tissues, and that the P2U

receptor cannot be equated with a single P2Y subtype.

XVI. P2Y6 Receptor

This uridine nucleotide-specific receptor has been
cloned from rat aortic smooth muscle (Chang et al.,
1995) and human placenta and spleen (Communi et al.,
1996b). The receptor is activated most potently by UDP
but weakly or not at all by UTP, ATP, ADP, or 2MeSATP
(Communi et al., 1996b; Nicholas et al., 1996). Other
diphosphonucleotides are full agonists at the receptor
but have lower affinities. The response is pertussis toxin
insensitive, indicating the involvement of Gq/11 proteins
in stimulation of PLC and in the formation of IP3. Inter-
estingly, the IP3 response of the human cloned P2Y6

receptor decays only slowly after stimulation, remaining
above baseline for more than an hour after stimulation;
this is a response that is fully reproducible without the
need for a long recovery period (Robaye et al., 1997).

P2Y6 mRNA is found abundantly in various rat tis-
sues including placenta, thymus, lung, stomach, intes-
tine, spleen, mesentery, heart, and aorta (Chang et al.,
1995; Communi et al., 1996b). P2Y6, along with P2Y1

and P2Y2, but not P2Y4 mRNA, has been detected in
adult rat cardiac myocytes (Webb et al., 1996d). It has
been suggested that the P2Y6 receptor accounts for uri-
dine nucleotide-specific responses in C6–2B cells (Nich-
olas et al., 1996). A receptor activated by UDP in human
nasal epithelial cells that is distinct from the P2Y2 re-
ceptor may be an endogenous P2Y6 receptor (Lazarowski
et al., 1997b). The receptor promotes [3H]inositol phos-
phate accumulation and an increase in [Ca21]i and Cl2

secretion, is present on the mucosal but not on the se-
rosal surface, and desensitizes more readily than re-
sponses to UTP (Lazarowski et al., 1997b). Interestingly,
a uridine nucleotide-specific receptor responding to UDP
in Caco-2 human intestinal epithelial cells seems to be
located on the apical but not on the basolateral mem-
brane (Inoue et al., 1997). The more widespread distri-
bution of the P2Y6 receptor, compared with the P2Y4

receptor, suggests that this receptor is more likely to
account for endogenous uridine nucleotide-specific re-
sponses.

XVII. P2Y11 Receptor

The P2Y11 receptor was cloned from human placenta
(Communi et al., 1997). The receptor has 33% amino acid
identity with the P2Y1 receptor, its closest homolog, and
28% homology with the P2Y2 receptor. The receptor
couples to the stimulation of both the phosphoinositide
and the adenylyl cyclase pathways; in this respect, it is
unique among the P2Y family. Interestingly, this recep-
tor seems to be the only P2Y receptor selective for ATP
because it is stimulated by agonists with a rank order of
potency of ATP . 2MeSATP ... ADP, with UTP and
UDP inactive (Communi et al., 1997). Northern blot anal-
ysis detected mRNA corresponding to the P2Y11 receptor
in spleen and HL-60 cells (Communi et al., 1997).
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TABLE 13
Functional distribution of P2Y receptors

P2Y1-likea P2Y2-likeb P2YADP
c

Uridine
nucleotide-

specific
References

Alveolar type II cells Yes Yes — — Rice and Singleton, 1987; Rice et al., 1995
Astrocytes Yes Yes — — Pearce and Langley, 1994; Salter and Hicks, 1994;

Ho et al., 1995; Chen and Chen, 1996
Blood cells

Erythrocytes Yes — — — Boyer et al., 1989, 1994
Erythroleukemic (human HEL

megakaryocytes)
Yes Yes Yes — Shi et al., 1995

Leukemic basophils (rat mast cells) Yes — — — Osipchuk and Cahalan, 1992; Qian and McCloskey,
1993

T-leukemia cells Yesd,e — Yese — Biffen and Alexander, 1994
Macrophages — Yes — Yes Greenberg et al., 1988; Nuttle et al., 1993; Lin and

Lee, 1996
Megakaryocytes — — Yes — Vittet et al., 1992; Uneyama et al., 1994
Monocytes (murine J774) Yes — — — Fan and McCloskey, 1994
Myelomonocytic leukemic (M1) Yes — — — Yamaguchi et al., 1994
Neutrophils — Yes — — Zhang et al., 1996
Platelets Yes — Yes — Hourani et al., 1992; Hall and Hourani, 1993;

Hechler et al., 1998; Fagura et al., 1998; Daniel et
al., 1998; Jin, et al., 1998

CHO cells Yes Yes — — Iredale and Hill, 1993
Chondrocytes — Yes — — Kaplan et al., 1996
Chromaffin cells Yes Yes — — Reichsman et al., 1995
Duct cells

Pancreatic; cystic fibrosis — Yes — — Chan et al., 1996
Submandibular — Yes — — Yu and Turner, 1991

Endothelium Yesd Yes — — Motte et al., 1993a,b; Briner and Kern, 1994;
Purkiss et al., 1993, 1994; Wilkinson et al.,
1994; Communi et al., 1995; Nobles et al., 1995;
Miyagi et al., 1996b; Ralevic and Burnstock,
1996a,b; Ralevic et al., 1991b, 1997; Simonsen et
al., 1997

Yes Yes — Yes Yang et al., 1996
Epithelium

Intestinal, apical; human — Yes — Yes Inoue et al., 1997
Intestinal, basolateral; human Yes Yes — — Inoue et al., 1997
Intrahepatic biliary; human — Yes — — Wolkoff et al., 1995
Mammary tumour; mouse — Yes — Enomoto et al., 1994
Mammary tumour; human Yes Yes — — Flezar and Heisler, 1993
MDCK cells; canine Yes Yes — — Zegarra-Moran et al., 1995; Firestein et al., 1996;

Yang et al., 1997
Nasal mucosa; human — ?f — Yes Lazarowski et al., 1997b
Ocular ciliary; human — Yes — — Wax et al., 1993
Otocyst; embryonic chick Yes — — — Nakaoka and Yamashita, 1995
Pancreatic; human cystic fibrosis — Yes — — Chan et al., 1996; Montserrat et al., 1996
Retinal pigment epithelium — Yesg — — Peterson et al., 1997
Tracheal; hamster — Yes — — Abdullah et al., 1996; Kim et al., 1996
Tracheal; rabbit Yes Yes — — Aksoy et al., 1995
Thymic; rat ?h ?h — ?h Liu et al., 1995
Submandibular salivary; mouse Yes Yes — — Gibb et al., 1994
Sweat gland; equine Yes Yes — — Ko et al., 1994

Fibroblasts — Yes — — Fine et al., 1989; Gonzalez et al., 1989b,c; Marsault
et al., 1992; Grierson and Meldolesi, 1995a,b

Glial cells
Enteric glia — Yes — — Kimball and Mulholland, 1996
Bergmann glia (cerebellar) Yes — — — Kirischuk et al., 1995b
Microglia Yes — — Yes Nörenberg et al., 1997
Oligodendrocytes; cortical Yes — — — Kirischuk et al., 1995a
Oligodendrocytes; retinal — Yes — — Kirischuk et al., 1995a

Glioma
C6/C6-2B glioma cells Yes Yes — Yesi Boyer et al., 1994, 1995, 1996; Munshi et al., 1993;

Lin and Chuang, 1994; Nicholas et al., 1996;
Schachter et al., 1996

Neuroblastoma 3 glioma hybrid Yes Yes — — Lin et al., 1993; Filippov et al., 1994; Reiser et al.,
1995

Goblet (tracheal SPOC1) cells — Yes — — Abdullah et al., 1996
Hepatocytes Yesd Yes — — Charest et al., 1985; Keppens and DeWulf, 1991;

Keppens et al., 1992; Dixon et al., 1995
Keratinocytes — Yes — — Pillai and Bikle, 1992
Kidney tubules

Cortical thick ascending limbs — Yes — — Paulais et al., 1995
Cortical tubules Yes — — — Cha et al., 1995
Terminal inner medullary

collecting duct
— Yes — — Ecelbarger et al., 1994

Mesangial cells (renal) Yes Yes — — Huwiler and Pfeilschifter, 1994; Schulze-Lohoff et
al., 1992, 1995; Takeda et al., 1996

468 RALEVIC AND BURNSTOCK



XVIII. Endogenous Uridine Nucleotide-Specific
Receptors

The inclusion of this as a separate section is a reflec-
tion of the current lack of information about the corre-
lation between cloned (P2Y4 and P2Y6) and endogenous
uridine nucleotide-specific receptors. It is not intended
to imply that these receptors are different, although this
is a possibility. The existence of P2Y2, P2Y4, and P2Y6
receptors identifies two receptors that can be activated
by UTP (P2Y2, P2Y4) and one that can be activated by
UDP (P2Y6). Thus, it is not always clear which of these
receptors mediates uridine nucleotide-mediated re-
sponses in cells and tissues. Additional complications
are introduced by the coexistence of P2 receptors, the
lack of selective agonists and antagonists, and the inter-

conversion and degradation of agonists leading to con-
tamination of solutions and to the possibility of obtain-
ing false positive as well as negative results. With
hindsight, some characterization of endogenous uridine
nucleotide-specific responses in many tissues might
have been achieved by more complete information on
agonist activity profiles, specifically giving information
about their UTP/UDP selectivity. It would be worth-
while to re-evaluate the pharmacological profile of bio-
logical tissues in light of new information on these P2Y
receptors.

A. Signal Transduction Mechanisms

A uridine nucleotide-specific receptor in C6–2B rat
glioma cells mediates pertussis toxin-sensitive activa-

TABLE 13
(Continued)

P2Y1-likea P2Y2-likeb P2YADP
c

Uridine
nucleotide-

specific
References

Myocytes
Cardiac Yes — — — Qu et al., 1993; Scamps and Vassort, 1994
Gastrointestinal Yes Yes — — Blottière et al., 1996; Pacaud et al., 1996
Vascular — Yes — — Erlinge et al., 1995; Pacaud et al., 1995; Guibert et al.,

1996; Malam-Souley et al., 1996; Strøbæk et al., 1996;
Qasabian et al., 1997

Osteoblasts Yesd Yes —j — Bowler et al., 1992; Sistare et al., 1994, 1995; Reimer and
Dixon, 1992; Gallinaro et al., 1995; Dixon et al., 1997b

Ovarian granulosa cells
Human — Yes — — Kamada et al., 1994; Lee et al., 1996
Porcine Yesd Yes —j — Kamada et al., 1994

Ovarian CHO cells Yes Yes — — Iredale and Hill, 1993
Pancreatic b cells Yes — — — Bertrand et al., 1987; Hillaire-Buys et al., 1994
Pheochromocytoma PC12 cells Yes Yes — — Murrin and Boarder, 1992; Majid et al., 1992, 1993; Barry

and Cheek, 1994; Nikodijevic et al., 1994; de Souza et al.,
1995; Koizumi et al., 1995b

Pituitary cells
Gonadotrophs — Yes — — Chen et al., 1994b, 1995b
Lactotrophs — Yes — — Carew et al., 1994

Salt gland cells Yes Yes — — Martin and Shuttleworth, 1995
Schwann cells Yes Yes — — Berti Mattera et al., 1996; Ansselin et al., 1997; Green et

al., 1997
Smooth muscle

Gastrointestinal — Yes — — Johnson et al., 1996
Vascular Yes — — — Kennedy and Burnstock, 1985; Mathieson and Burnstock,

1985; Burnstock and Warland, 1987; Liu et al., 1989;
Brizzolara and Burnstock, 1991; Keef et al., 1992; Corr
and Burnstock, 1994; Simonsen et al., 1997

— Yes — — Eltze and Ullrich, 1996; Miyagi et al., 1996a; Malam-
Souley et al., 1996; Rubino and Burnstock, 1996;
Qasabian et al., 1997

— — — Yes Von Kügelgen et al., 1987, 1990; Saiag et al., 1990, 1992;
Ralevic and Burnstock, 1991b; Juul et al., 1992; Lagaud
et al., 1996; Matsumoto et al., 1997

Thyrocytes — Yes — — Schöfl et al., 1995
Trophoblastic cells (placental) — Yes — — Petit and Belisle, 1995
Tumor cells

Ehrlich ascites — Yes — — Dubyak and De Young, 1985
HTC liver cell line — Yes — — Fitz and Sostman, 1994
Osteosarcoma Yes — — — Kumagai et al., 1991

a P2Y1-like, P2Y receptors other than P2Y2, P2Y4, P2Y6, P2YADP, and endogenous uridine nucleotide-specific receptors; probably P2Y1 receptors (based on sensitivities
to 2MeSATP and/or ADP, and signalling pathways), although other P2Y subtypes cannot be excluded.

b P2Y2-like, activated by ATP 5 UTP suggesting a possible identity as P2Y2 receptors, although at least in rat tissues a P2Y4 subtype identity cannot be excluded (as rat
P2Y4 receptors are activated by ATP 5 UTP). The possible presence of uridine nucleotide-specific receptors cannot be excluded in tissues responding to UTP.

c ADP-specific P2Y receptors, activated by ADP but not by ATP.
d Denotes ADP-specific P2Y receptors (ATP weak or inactive); note that this is also the agonist profile of P2YADP receptors.
e These may be the same P2Y1-like receptor.
f The response to UTP was distinct from that to UDP, but it is not clear whether this is via actions at a P2Y2- or P2Y4-like receptor.
g UTP was five-fold more potent than ATP, thus uridine-nucleotide-specific receptors are possible.
h Subtype(s) not clear: stimulation of PGE2 production by ATPgS $ UTP . ATP.
i P2Y6 (Nicholas et al., 1996).
j P2YADP receptors have been described; however, it is likely that these are ADP-specific P2Y receptors.

RECEPTORS FOR PURINES AND PYRIMIDINES 469



tion of PLC and an increase in IP3 by UTP and UDP, but
is not activated by ATP and ADP (Lazarowski and
Harden, 1994). The uridine nucleotide-specific receptor
in RAW 264.7 macrophages is coupled to pertussis toxin-
sensitive and -insensitive G proteins that mediate acti-
vation of phospholipase A2 (PLA2) and PLC, respectively
(Lin and Lee, 1996).

B. Agonists and Antagonists

Uridine nucleotide-specific receptors are activated by
UTP and/or UDP, but are not activated or only weakly
activated by ATP, ADP, 2MeSATP, and a,b-meATP.

There are no selective antagonists at uridine nucleotide-
specific receptors. In general, responses are insensitive to
P2 receptor antagonists. However, suramin and reactive
blue 2 have been reported to block the UTP-specific inositol
phosphate response of RAW 264.7 macrophages (Lin and
Lee, 1996).

C. Distribution and Biological Effects

Uridine nucleotide-specific receptors, suggested to be
P2Y6 receptors, have been described on C6–2B cells
where they coexist with P2Y1-like and P2Y2-like recep-
tors (Boyer et al., 1993). Uridine nucleotide-specific re-
ceptors are also found on macrophages (Lin and Lee,
1996) and microglial cells (Nörenberg et al., 1997a).
They have been shown to mediate metabolic effects,
membrane ion fluxes, and hemodynamic effects in per-
fused rat liver (Haussinger et al., 1987). Uridine nucle-
otide-specific receptors mediating Cl2 secretion on hu-
man nasal mucosal (Lazarowski et al., 1997b) and
intestinal epithelial cells (Inoue et al., 1997) are acti-
vated by UDP, perhaps indicating that these are P2Y6
receptors.

Uridine nucleotide-specific receptors are found on vas-
cular endothelium and smooth muscle. A pertussis tox-
in-sensitive uridine nucleotide-specific receptor coexists
with P2Y2-like and P2Y1-like receptors on guinea-pig
cardiac endothelial cells (Yang et al., 1996). Uridine
nucleotide-specific receptors mediating contractile re-
sponses to UTP (but not to ATP) have been described on
vascular smooth muscle (Von Kügelgen et al., 1987,
1990; Saiag et al., 1990, 1992; Ralevic and Burnstock,
1991b; Juul et al., 1992; Lagaud et al., 1996). These
receptors are resistant to desensitization by a,b-meATP
and/or do not show cross-tachyphylaxis with responses
to ATP and/or are unaffected by antagonists including
PPADS and suramin. It is possible that these correspond
to human P2Y4 receptors. In canine epicardial coronary
arteries, vasoconstriction mediated by UTP and UDP at
P2Y receptors does not cross-desensitize and is distinct
from vasoconstriction mediated by ATP (Matsumoto et
al., 1997); this suggests effects mediated at uridine nu-
cleotide-specific receptors similar or identical with hu-
man P2Y4 and P2Y6 receptors, respectively.

A uridine nucleotide-specific receptor has been de-
scribed in neurons of the rat superior cervical ganglion

(SCG) (Boehm et al., 1995; Connolly, 1995; Connolly and
Harrison, 1995a, b). This receptor is activated by UTP
and UDP but not by ATP, causing depolarization and
transmitter release. Suramin does not block this SCG
receptor (Connolly and Harrison, 1995b).

The approximately 5-fold greater potency of UTP,
compared with ATP in elevating intracellular Ca21 in
early embryonic chick neural retina, may suggest the
involvement of a uridine nucleotide-specific receptor, al-
though the authors of this study conclude that a P2Y2-
like (P2U) receptor is involved (Sugioka et al., 1996). It is
also possible that a combination of coexpressed P2Y
receptors mediate this response. The biological signifi-
cance of uridine nucleotide-specific receptors is un-
known, but may imply differential release of purines and
pyrimidines.

XVIV. P2YADP (or P2T) Receptor

The P2YADP (or P2T) receptor is activated by ADP,
whereas ATP is a competitive antagonist. Because this
receptor has not yet been cloned from the platelets or
megakaryoblastic cells in which it is expressed, the rec-
ommendation of the IUPHAR committee is that the
name of this receptor is written in italics. It has been
suggested that the P2YADP receptor is equivalent to the
P2Y1 receptor based on their similar pharmacological
profiles and the fact that P2Y1 receptor mRNA is
present in platelets and megakaryoblastic cells lines
(Léon et al., 1997). Although this seemed an attractive
hypothesis with which to explain the enigma of the
P2YADP (or P2T) receptor, there is now convincing phar-
macological evidence that the P2YADP (or P2T receptor)
is not equivalent to the P2Y1 receptor; both of these
receptors are expressed on platelets and cooperate to
mediate platelet shape change and aggregation (Daniel
et al., 1998; Fagura et al., 1998; Hechler et al., 1998; Jin
et al., 1998). Notably, 2MeSATP is a full and potent
agonist at the recombinant P2Y1 receptor, whereas it is
a noncompetitive antagonist at the P2YADP (or P2T) re-
ceptor, and selective antagonists of the P2Y1 receptor do
not block ADP-induced inhibition of adenylate cyclase in
platelets.

A. Signal Transduction Mechanisms

The P2YADP (or P2T) receptor couples to a Gi2 protein
to mediate inhibition of adenylate cyclase activity (Hall
and Hourani, 1993; Hourani and Hall, 1996). Conflicting
reports that the P2YADP (or P2T) receptor may or may
not also activate PLC, generating IP3 and elevating lev-
els of intracellular Ca21, most likely came from observed
effects of ADP at coexisting platelet P2Y1 receptors.
Platelet P2Y1 receptors coupled to activation of PLC are
now known to play a significant role in platelet shape
change and cooperative aggregation with P2YADP (or
P2T) receptors (Daniel et al., 1998; Hechler et al., 1998;
Jin et al., 1998).
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In platelets activated by ADP, rapid influx of extra-
cellular Ca21 forms a significant component of the in-
crease in intracellular Ca21. A component of this Ca21

influx seems to be caused by ADP actions on platelet
P2X1-like receptors (coexisting with P2YADP and P2Y1
receptors) causing the opening of these nonselective cat-
ion channels (Soslau et al., 1995; MacKenzie et al., 1996)
(also see Section IX.F.). Platelet aggregation seems to be
mediated by a combination of the above pathways stim-
ulated by P2YADP (or P2T receptor), P2Y1-like, and P2X1-
like receptor activation.

B. Desensitization

Homologous desensitization of the P2YADP (or P2T)
response has been observed in human erythroleukemic
cells (Shi et al., 1995).

C. Agonists

ADP is the archetypal agonist at P2YADP receptors.
The analogs 2-chloroADP and 2-MeSADP are more po-
tent agonists at P2YADP receptors than ADP, and
ADPaS and ADPbS are partial agonists (Hall and Hou-
rani, 1993; Hourani and Hall, 1996).

D. Antagonists

FPL 66096 (2-propylthio-d-b,g-difluoromethylene
ATP) (pA2 8.7) (Humphries et al., 1994) and ARL 67085
(formerly FPL 67085) (2-propylthio-b,g-dichloromethyl-
ene-d-ATP) (Humphries et al., 1995) are potent and se-
lective competitive antagonists at platelet P2YADP re-
ceptors.

ATP is a competitive antagonist, with the preferred
form being ATP42. The competitive effects of ATP at the
P2YADP receptor may be physiologically meaningful be-
cause degradation to ADP by platelet ecto-ATPase is
slow (Beukers et al., 1993). 2Cl-ATP, b,g-meATP, Ap4A,
Ap5A, and P1,P6-diadenosine hexaphosphate (Ap6A) are
also competitive antagonists; 2MeSATP and adenosine
are non-competitive antagonists at platelet P2YADP re-
ceptors (Harrison et al., 1975; Ogilvie, 1992; Hall and
Hourani, 1993). At high concentrations, Ap3A has anti-
thrombotic effects at the P2YADP receptor. This is in
contrast with its pro-thrombotic effects at low concen-
trations (Ogilvie, 1992), although breakdown to ADP
and adenosine may be involved. Ap4A, Ap5A, and Ap6A
also inhibit ADP-induced platelet aggregation, probably
by competitive interaction with the P2YADP receptor
(Ogilvie et al., 1996). a,b-meATP and UTP are weak
inhibitors of platelet aggregation (Hall and Hourani,
1993). Suramin is a non-selective antagonist at the
P2YADP receptor (Hourani et al., 1992; Hall and Hou-
rani, 1993).

E. Distribution and Biological Effects

The distribution of the P2YADP receptor seems to be
limited to platelets and megakaryoblastic cell lines (Vit-
tet et al., 1992; Shi et al., 1995). The lack of subtype-

specific agonists and antagonists apparently has led to
erroneous descriptions of P2T (P2YADP) receptors on a
number of other cell types including osteoblasts (Sistare
et al., 1994, 1995) and porcine ovarian granulosa cells
(Kamada et al., 1994); it is likely that these are in fact
ADP-specific P2Y1-like receptors. The P2 receptor de-
scribed in porcine ovarian granulosa cells, where ATP is
a competitive antagonist of ADP-induced [Ca21]i mobi-
lization (Kamada et al., 1994), may be an ADP-specific
P2Y1-like receptor, where ATP is a partial agonist.

A role for the platelet P2YADP receptor has been clearly
defined; it mediates the aggregation of platelets to ADP
during thrombosis (Born, 1962; Born and Kratzer, 1984).
One source of ADP activating the P2YADP receptor may be
that derived from ATP released from damaged cells in the
vessel wall. The dense granules of platelets are themselves
sources of high concentrations of ATP and ADP (approxi-
mately 1 M) such that platelet aggregation and degranula-
tion leading to the release of these nucleotides is an auto-
catalytic process. The adenine dinucleotides Ap3A and
Ap4A are co-stored with ADP and ATP in platelets and
comprise up to 5% of the total adenine nucleotide content
of the dense granules (micromolar to millimolar concentra-
tions) (Flodgaard and Klenow, 1982; Luthje and Ogilvie,
1983; Schluter et al., 1994); they are less rapidly metabo-
lized than ATP and may have a role in the platelet aggre-
gatory response.

Complex and cooperative signaling pathways medi-
ated by coexisting P2YADP, P2Y1, and P2X1 receptors
seem to underlie the change in platelet shape, platelet
aggregation, and secretion of dense granules to ADP.
The P2Y1 receptor seems to be necessary to trigger
platelet shape change and aggregation (Daniel et al.,
1998; Hechler et al., 1998; Jin et al., 1998). The P2X1-
like receptor mediates an initial rapid influx of Ca21 in
platelets (MacKenzie et al., 1996), which may also con-
tribute to initiate the change in platelet shape. This
Ca21 influx precedes, but is independent of, the mobili-
zation of intracellular Ca21 by the P2YADP receptor
(Hallam and Rink, 1985; Sage et al., 1990). Mobilization
of intracellular Ca21 and adenylate cyclase by the
P2YADP receptor seems to be linked to platelet aggrega-
tion and cooperates with effects mediated by the P2Y1
receptor, such that antagonism of either receptor is suf-
ficient to block the response. Oscillations in [Ca21]i have
been described, which seem to involve the repetitive
emptying and refilling of intracellular calcium stores.
The mobilization of [Ca21]i seems to be required for
activation of a secondary phase of Ca21 influx (Sage et
al., 1990).

XX. Other P2Y Receptors

The following G protein-coupled receptors have been
cloned and proposed as members of the P2Y receptor
family. Of these, the p2y5, p2y7, p2y9, and p2y10 recep-
tors have now been shown unequivocally not to belong to
the P2Y receptor family, and the inclusion of the Xeno-

RECEPTORS FOR PURINES AND PYRIMIDINES 471



pus P2Y receptor (P2Y8) does not seem likely as it lacks
a mammalian homologue.

A. p2y5 Receptor

A receptor expressed in activated chicken T lympho-
cytes was proposed as a P2Y receptor based on nucleo-
tide binding assays (Webb et al., 1996b). No functional
evaluation was provided. When the turkey homolog was
expressed in 1321N1 human astrocytoma cells, it was
shown that no signaling responses were evoked by nu-
cleotides; this indicates that the receptor is not a mem-
ber of the P2Y receptor family (Li et al., 1997c). It was
noted that caution should be used when interpreting the
results of binding assays in the absence of robust ligands
and that a prerequisite for the identification of addi-
tional P2Y receptors should be a functional demonstra-
tion of signaling responses in an appropriate cell line (Li
et al., 1997c).

B. p2y7/Leukotriene B4 Receptor

It was suggested that a receptor cloned from human
HEL cells was a P2Y7 receptor based on binding and
activation by purine nucleotides when transfected in
COS-7 cells (Akbar et al., 1996). However, its structure,
which was noted to share 30% or less homology with
other cloned P2Y receptors, has been found to be iden-
tical with that of the leukotriene B4 receptor cloned from
HL-60 cells, and sensitivity to purines can be explained
by intrinsic purinoceptors (P2Y2) in COS-7 cells
(Yokomizo et al., 1997). Expression of the putative P2Y7
receptor in 1321N1 human astrocytoma cells has con-
firmed that this receptor is not activated by nucleotides
and is not a member of the P2Y receptor family (Herold
et al., 1997).

C. Xenopus P2Y Receptor (P2Y8)

A P2Y receptor cloned from Xenopus neural plate is
activated equipotently by purine and pyrimidine com-
pounds with three phosphates; ATP 5 UTP 5 ITP 5
CTP 5 GTP (Bogdanov et al., 1997). The cloned receptor
has a particularly long C terminal of 216 amino acids
(compared with approximately 16 to 67 amino acids of
other P2Y receptors) that contributes to the greater
length of this protein. It has been suggested that this
receptor may have a role in early development of the
nervous system. The receptor was tentatively named
P2Y8. As a mammalian homolog of this receptor has not
been identified, its inclusion as a distinct subtype of the
P2Y receptor family does not seem likely.

D. P2Y9 and P2Y10 Receptors

These cloned receptors, submitted to Genbank, are not
nucleotide receptors.

E. P2YAp4A (or P2D) Receptor

It has been proposed that there is a distinct class of
purine receptor, originally termed P2D (“D” for dinucle-

otide), which has high affinity for the diadenosine
polyphosphates (Pintor et al., 1993). This receptor has
not yet been cloned and thus has been given the tenta-
tive name P2YAp4A. It is possible that this receptor be-
longs to the P2Y receptor superfamily because it seems
to couple to G proteins.

In rat brain synaptosomes, [3H]Ap4A and [3H]ADPbS
bind to high and low affinity binding sites (Pintor et al.,
1993). The high affinity binding sites display an agonist
potency profile that is inconsistent with that of any
known subtype of P2 receptor: Ap4A . ADPbS .
b,gmeATP . a,b-meATP .. 2MeSATP. In rat hip-
pocampal slices, Ap4A and Ap5A activate PKC (Klishin
et al., 1994), which suggests the coupling of the putative
P2YAp4A (or P2D) receptor to G proteins. However, inhi-
bition of synaptic transmission by diadenosine polypho-
sphates in hippocampal slices could be inhibited by
adenosine receptor antagonists (Klishin et al., 1994). So
far, this receptor has been described only in the CNS
(Pintor et al., 1993; Klishin et al., 1994).

F. P3 Receptor

A distinct P3 receptor that is activated by both nucleo-
sides and nucleotides, and is antagonized by both xan-
thines and a,b-meATP, has been proposed (Shinozuka et
al., 1988; Forsythe et al., 1991). In aiming toward a
unifying system of purine and pyrimidine receptor no-
menclature, this receptor may need to be renamed ac-
cording to the new system of purine receptor classifica-
tion when further information on its structure, signal
transduction mechanisms, and pharmacological profile
become available. Responses mediated by ATP at the P3
receptor are independent of its breakdown to adenosine,
and stable analogs of ATP are also agonists. In some
respects this receptor is similar to those P1 receptors
which bind ATP and its analogs (Bailey and Hourani,
1990; Hourani et al., 1991; Von Kügelgen et al., 1992;
King et al., 1996a; Piper and Hollingsworth, 1996).

In general, the P3 receptor is prejunctional. It is acti-
vated by agonists with a potency order of 2Cl-adeno-
sine . b,g-meATP . ATP 5 adenosine, as determined
for inhibition of evoked release of NA from sympathetic
nerves in rat tail artery (Shinozuka et al., 1988). This
receptor has also been described in rat vas deferens, and
UTP was additionally shown to inhibit NA overflow
(Forsythe et al., 1991). A receptor activated by adenosine
and ATP, which is blocked by a,b-meATP, mediates
outward K1 currents, and has been identified as a novel
P1 receptor, may be equivalent to the P3 receptor (King
et al., 1996a).

Facilitation by ATP and adenosine of evoked NA re-
lease has been shown in some vascular smooth muscle.
These effects are blocked by a,b-meATP and 8-SPT, but
a,b-meATP is ineffective as an agonist (Miyahara and
Suzuki, 1987; Zhang et al., 1989; Todorov et al., 1994;
Ishii et al., 1995); it has been suggested that this may
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represent a subtype of the P3 receptor (Dalziel and
Westfall, 1994).

Another distinct P3 receptor has been proposed in
smooth muscle of rabbit thoracic aorta; it is activated by
both adenosine and ATP, but is xanthine- and suramin-
insensitive (Chinellato et al., 1994).

G. P4/Diadenosine Polyphosphate-Specific Receptor

A novel receptor for diadenosine polyphosphates, dis-
tinct from the P2YAp4A (or P2D) receptor, has been pro-
posed based on a study in rat brain synaptosomes (Pin-
tor and Miras-Portugal, 1995a). Because this receptor is
not activated by ATP, the term P4 has been suggested.
Increases in synaptosomal Ca21 elicited by Ap4A and
Ap5A were not blocked with suramin and methylxan-
thines, in contrast with the increases in Ca21 evoked by
ATP, a,b-meATP, and ADPbS. Furthermore, the actions
of Ap4A and ATP did not cross-desensitize, although
there was homologous desensitization to Ap5A. It has
been suggested that this receptor may be an ion channel,
or is coupled to a Ca21 channel (Pintor and Miras-Por-
tugal, 1995a). This receptor has not been cloned and its
existence as a distinct subtype is controversial. The syn-
thesis of diinosine polyphosphates as antagonists with
some selectivity for the effects of Ap5A in rat brain
synaptosomes versus the effects mediated by ATP may
prove useful in the characterization of dinucleotide re-
ceptors (Pintor et al., 1998).

XXI. Integrated Effects of P2 Receptors

Many cells express more than one type of P2 receptor.
The biological significance of this is not entirely clear
but allows potential regulation of multiple effectors, fine
tuning of agonist-evoked responses, and/or synergy. The
quite different specificities of many P2 receptors for
endogenous agonists suggest that the source and local
concentration of ADP, ATP, UDP, UTP, and adenine
dinucleotides may be important; more detailed informa-
tion on this might provide some insight into the biolog-
ical significance of P2 receptor coexistence. A number of
cells seem to express more than one type of P2Y recep-
tor: for example, P2Y1- and P2Y2-like receptors are ex-
pressed on cortical astrocytes, osteoblasts, hepatocytes,
endothelial, and epithelial cells; P2Y1- and P2Y2-like
and uridine nucleotide-specific receptors are expressed
on cardiac endothelial cells (Yang et al., 1996) (also see
table 13). These receptors typically have a common sig-
naling pathway in PLC, and downstream divergence at
subsequent steps of this pathway may be important.
Synergism does not seem to occur.

Differential expression and coexpression of receptors
among similar cells has been shown for P2Y1-like and
P2Y2-like receptors on individual cultured human osteo-
blasts (Dixon et al., 1997b) and for astrocytes from the
dorsal spinal cord of the rat (Ho et al., 1995). Coexpres-
sion may also differ among tissues: functional studies
suggest that hamster mesenteric arteries have predom-

inantly P2Y2-like receptors and few P2Y1-like receptors
(Ralevic and Burnstock, 1996b), whereas the converse
seems to be true for piglet aorta (Martin et al., 1985) and
lamb small coronary arteries (Simonsen et al., 1997)
where UTP is a very weak agonist. However, it is pos-
sible that these receptors are expressed but are not
coupled to a vasomotor response. The physiological sig-
nificance of the differential expression of P2Y receptors
at the level of single cells and tissues remains to be
determined.

P2X1-like and P2Y1-like receptors coexist on the
smooth muscle in some vessels; they may reciprocally
control vascular tone by acting as mediators of vasocon-
striction and vasodilatation, respectively. This may oc-
cur following release of ATP from the terminals of
perivascular sympathetic and sensory nerves, respec-
tively. Cooperative effects have been shown for coexist-
ing P2X1-like, P2Y1–like, and P2YADP (or P2T) receptors
on platelets, which mediate ionotropic Ca21 influx and
mobilization of intracellular Ca21, respectively, to bring
about changes in platelet shape and aggregation (Hou-
rani and Hall, 1996; MacKenzie et al., 1996; Daniel et
al., 1998; Hechler et al., 1998; Jin et al., 1998). P2Y2- and
P2X7-like receptors coexist on macrophages, although
the functional significance of this, if any, remains to be
determined.

Receptor expression may be regulated differently un-
der different physiological and pathophysiological condi-
tions, thereby altering patterns of coexpression. Expres-
sion of P2 receptors on mononuclear phagocytes is
regulated differently by proinflammatory cytokines,
which cause rapid down-regulation of P2X1-like and
P2Y2-like receptors, but concomittant massive up-regu-
lation of P2X7-like receptors (Dubyak et al., 1996). There
also is differential functional expression during develop-
ment; P2Y1-like receptors are expressed only in early
myeloid progenitor cells, whereas P2Y2-like receptors
are expressed in late stage progenitor cells, and mature
monocytes and neutrophils (Dubyak et al., 1996; Martin
et al., 1997a).

Integrated effects of P2 receptors in whole tissues are
considered in the next section.

XXII. Integrated Effects of Adenosine/P1 and P2
Receptors

P1/P2 receptor coexistence has been identified for
many cell types; these include P2X7-, A2A-, A2B-, and
A3-like receptors on mast cells; P2Y1, P2Y2, A2A, and
A2B receptors on endothelial cells; A1 and P2X1-like re-
ceptors on smooth muscle cells; and A2A, A2B, P2Y2-, and
P2X2-like receptors on PC12 cells. The functional signif-
icance of this is not entirely clear. Among other possible
interactions there may be reciprocal effects, as shown for
A1 receptor-mediated inhibition and P2Y1-like receptor-
mediated stimulation of insulin secretion in pancreatic
b-cells (Hillaire-Buys et al., 1989, 1993, 1994). Activa-
tion of A2A receptors inhibits ATP-induced Ca21 influx
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via P2X receptors in PC12 cells (Park et al., 1997), indi-
cating antagonistic interplay between these systems.
Integration of purine receptor-mediated responses at the
level of whole tissues is illustrated by purinergic control
of blood vessel tone, which involves vasoconstrictor
P2X1-like and uridine nucleotide-specific receptors on
vascular smooth muscle, vasodilator P2Y1-like, P2Y2-
like, A2A, and A2B receptors found on smooth muscle and
endothelium, and prejunctional A1 receptors that mod-
ulate the release of neurotransmitter from perivascular
nerves (fig. 12).

Normal patterns of purinergic signaling may alter
dramatically under pathophysiological conditions. The
net effect of purine receptors may be vasodilatation if
endothelial cells are intact, but vasoconstriction will
predominate if the endothelium is damaged. When en-
dothelial cells are damaged, collagen is exposed. Plate-
lets adhere to the collagen and release ADP, ATP, UTP,
and adenine dinucleotides, together with other sub-
stances such as 5-HT. Several substances promote fur-
ther aggregation via activation of platelet P2X1-like,
P2Y1-like, and P2YADP receptors. Purines and pyrimi-
dines released from platelets can also act on endothelial
and/or vascular smooth muscle cell P2 receptors. In an
inflammatory reaction, ATP may be released from sen-
sory nerves to have effects on mast cell P2X7-like recep-
tors, although its breakdown product adenosine may
activate coexisting mast cell A3 receptors, leading to
further effects on vascular tone after release of mast cell
mediators.

Understanding how responses mediated by purine re-
ceptors are integrated in biological systems depends on
information on the sources of the natural agonists, as
well as on the receptor signaling pathways. In addition,
the metabolic relationship between purines, whereby
extracellular ATP is rapidly catabolized to ADP and
adenosine has important implications for colocalized
adenosine/P1 and P2 receptors as there may be an in-
terplay between these receptors. Notably, many of the
above studies are concerned with short-term interac-
tions between coexisting purine receptors, which repre-
sents only one aspect of purine and pyrimidine receptor
signaling. Particularly for metabotropic G protein-cou-
pled receptors, long-term trophic interactions are likely
to be important (Cowen et al., 1991; Abbracchio et al.,
1995b; Neary, 1996) and may lead to further insights
into the significance of P1/P2 receptor coexistence and
the cross-talk that may occur between these receptors.
Further information awaits the development of selective
agonists and antagonists and studies with genetic
“knockout” animals.

XXIII. Conclusions

In this review we have considered in detail the phar-
macological actions and interactions of purines and pyri-
midines in different cells and tisssues. These are pre-
sented within a framework intended to facilitate

comparison between cloned and endogenous receptors
and, thereby, to promote the development of the unify-
ing system of nomenclature based on cloned receptors.
For adenosine/P1 receptors, the availability of potent
and selective pharmacological ligands has been crucial
in the subclassification of this family into four subtypes.
For P2 receptors, responses of biological tissue have
been described that do not correspond well with those of
any cloned P2 receptors; there are diverse reasons, in-
cluding the fact that small differences in molecular
structure of a receptor are commonly found between

FIG. 12. Schematic of integrated effects of P1 and P2 purine receptors
in the local control of vascular tone. Noradrenaline (NA), ATP, calcitonin
gene-related peptide (CGRP), and substance P (SP) can be released from
nerves in the adventitia to act on their respective receptors in the smooth
muscle, causing vasoconstriction or vasodilatation. Prejunctional A1 re-
ceptors modulate the release of neurotransmitter from sympathetic and
sensory afferents. P2X2/3 heteromers, possibly together with the corre-
sponding homomeric P2X receptors, may be present on the peripheral
terminals of sensory nerves where they may modulate sensory neuro-
transmission. Vasoconstriction following ATP release from perivascular
nerves is mediated predominantly by P2X1 receptors on the smooth
muscle, while vasodilatation is mediated by smooth muscle P2Y receptors
(P2Y1-like). P2Y receptors (possibly P2Y2, P2Y4, or P2Y6) are also present
on some vascular smooth muscle and mediate vasoconstriction to purines
and pyrimidines of currently undetermined source. Vasodilatation may
also be mediated by smooth muscle A2A and A2B adenosine receptors. ATP
and its breakdown product ADP, and UTP, can be released from endo-
thelial cells by shear stress or hypoxia, to act on endothelial P2Y1 and
P2Y2 receptors to mediate relaxation mainly via endothelium-derived
relaxing factor (EDRF, or nitric oxide) or endothelium-derived hyperpo-
larizing factor (EDHF). ATP can be broken down rapidly to adenosine,
which may act on endothelial and smooth muscle A2A and A2B receptors
to mediate vasodilatation. (Adapted from Burnstock, 1990).
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species and tissues and may profoundly influence its
properties. Other reasons include differences in assay
conditions and because coexpression of different sub-
types of receptors for purines and pyrimidines is com-
mon, which leads to complex pharmacological profiles.
The lack of subtype-selective agonists and antagonists
with which to adequately discriminate between re-
sponses is a significant handicap. Furthermore, while
we have a reasonably good idea of the properties of
homomeric recombinant P2X receptors, the relative con-
tribution of individual subunits to responses mediated
by heteromeric receptors is less clear. Although G pro-
tein-coupled P2Y receptors are single membrane-span-
ning proteins, diversity may be introduced by alternate
G protein and/or second-messenger coupling.

Major advances in adenosine/P1 receptor research in
the last few years include an increased understanding of
the mechanisms underlying desensitization and neuro-
and cardiac-protection, therefore offering novel ap-
proaches for pharmacological manipulation of receptor
activity in disease. Much still needs to be learned about
the A2B receptor, and the development of selective ago-
nists and antagonists is urgently needed. As A2A and
A2B receptors are often coexpressed by the same cell,
this would promote investigations into short-term cross-
talk and the long-term functional relationship between
these subtypes. Newly developed ligands at the A3 re-
ceptor will provide insights into the significance of its
relatively restricted distribution and will increase our
understanding of its dual protective and toxic effects.
While it has long been appreciated that the different
adenosine/P1 receptor subtypes have different affinities
for adenosine, the fact that a single subtype can mediate
opposite effects depending on its level of activation is a
relatively new concept and an exciting area for further
investigation. Little is known about the integrated pat-
terns of events arising from differential activation and
desensitization or up-regulation of coexisting receptors
under conditions of different concentrations of adeno-
sine, and this may be an important area for future
research.

There has been a tremendous interest in the P2 re-
ceptor research in the last decade and many exciting
issues have been raised. Specific questions of interest
include the physiological significance of cation and pH
modulation of P2X receptor activity, the true species of
ATP that is the active ligand at P2 receptors, the mech-
anism of desensitization of P2X receptors, and the bio-
logical significance of a receptor that is activated equi-
potently by ATP and UTP (P2Y2 and some P2Y4
receptors). We expect the future will see important de-
velopments in research on receptors for pyrimidine nu-
cleotides and investigations into the role of diadenosine
polyphosphates as extracellular signaling molecules.
Questions raised about the separate identity of the pu-
tative P3 receptor, and the P2D and P4 receptors claimed
for adenine dinucleotides, currently identified solely by

their distinct pharmacology, are also likely to be re-
solved. Identification of novel splice variants may add
significantly to the repertoire of P2 receptor-mediated
responses. It is interesting that no receptors acting as
ion channels, selective for extracellular pyrimidines,
have been described, which is perhaps surprising given
that some parallels exist for the putative extracellular
roles of purines and pyrimidines. Given the widespread
distribution of receptors responsive to UTP, character-
ization of the sources and conditions which mediate UTP
release is important; there is no evidence for UTP re-
lease as a neurotransmitter to date, but it has been
shown to modulate neurotransmission. The develop-
ment of an assay for detection of nanomolar quantities of
UTP is an exciting and important development in this
field (Lazarowski et al., 1997a).

Clearly, potent and selective agonists and antagonists
are needed in purine and pyrimidine receptor research.
Fortunately, groups in many universities and pharma-
ceutical industries are seeking to identify such ligands
and, with the aid of high throughput screening, there is
a good possibility that these and other questions will be
answered in the not too distant future. The possibility of
developing a transgenic animal model in which the an-
imal P1 or P2 receptor subtype is replaced with the
human homologue has been raised as a possible means
of examining the function and pharmacology of the hu-
man receptor in biological tissue, with the intent of
developing therapeutic strategies for human disease.
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chick sympathetic neurons: ATP-induced noradrenaline release and its blockade
by nicotinic receptor antagonists. Naunyn-Schmiedeberg’s Arch Pharmacol 352:
25–30.

Altiok NA, Balmforth AJ and Fredholm BB (1992) Adenosine receptor induced cAMP
changes in D384 astrocytoma cells and the effect of bradykinin theron. Acta
Physiol Scand 144:55–63.

Anand-Srivastava MB, Cantin M, Ballak M and Picard S (1989) Desensitization of
the stimulatory A2 adenosine receptor-adenylate cyclase system in vascular
smooth muscle cells from rat aorta. Mol Cell Endocrinol 62:273–279.

Ansselin AD, Davey DF and Allen DG (1997) Extracellular ATP increases intracel-
lular calcium in cultured adult Schwann cells. Neuroscience 76:947–955.

Arend LJ, Handler JS, Rhim JS, Gusovsky F and Spielman WS (1989) Adenosine-
sensitive phosphoinositide turnover in a newly established renal cells line. Am J
Physiol 256:F1067–F1074.

Arima M, Ueda S, Matsushita S, Ozawa T and Yamaguchi H (1994) Adenosine
induces Cl- efflux in endothelial cells via a pertussis toxin-sensitive G protein.
Biochem Biophys Res Commun 204:1143–1149.

Armstrong S and Ganote CE (1994) Adenosine receptor specificity in preconditioning
of isolated rabbit cardiomyocytes: Evidence of A3 receptor involvement. Cardiovasc
Res 28:1049–1056.

Armstrong S and Ganote CE (1995) In vitro ischaemic preconditioning of isolated
rabbit cardiomyocytes: Effects of selective adenosine receptor blockade and cal-
phostin C. Cardiovasc Res 29:647–652.

Asimakis GK, Inners-McBride K and Conti VR (1993) Attenuation of postischaemic
dysfunction by ischaemic preconditioning is not mediated by adenosine in the
isolated rat heart. Cardiovasc Res 27:1522–1530.

Auchampach JA, Jin X, Wan TC, Caughey GH and Linden J (1997a) Canine mast
cell adenosine receptors: Cloning and expression of the A3 receptor and evidence
that degranulation is mediated by the A2B receptor. Mol Pharmacol 52: 846–860.

Auchampach JA, Rizvi A, Qiu Y, Tang X-L, Maldonado C, Teschner S and Boli R
(1997b) Selective activation of A3 adenosine receptors with N6-(3-iodobenzyl)ad-
enosine-59-N-methyluronamide protects against myocardial stunning and infarc-
tion without hemodynamic changes in conscious rabbits. Circ Res 80:800–809.

Ayyanathan K, Webb TE, Sandhu AK, Athwal RS, Barnard EA and Kunapuli S
(1996) Cloning and chromosomal localization of the human P2Y1 purinoceptor.
Biochem Biophys Res Commun 218:783–788.

Bailey SJ, Hickman D and Hourani SMO (1992) Characterization of the P1-
purinoceptors mediating contraction of the rat colon muscularis mucosae. Br J
Pharmacol 105:400–404.

Bailey SJ and Hourani SMO (1990) A study of the purinoceptors mediating contrac-
tion in the rat colon. Br J Pharmacol 100:753–756.

Bailey SJ and Hourani SMO (1994) Differential effects of suramin on P2-
purinoceptors mediating contractions of the guinea-pig vas deferens and urinary
bladder. Br J Pharmacol 112:219–225.

Bailey SJ and Hourani SMO (1995) Effects of suramin on contractions of the guinea-
pig vas deferens induced by analogs of adenosine 59-triphosphate. Br J Pharmacol
114:1125–1132.

Balachandran C and Bennett MR (1996) ATP-activated cationic and anionic conduc-
tances in cultured rat hippocampal neurons. Neurosci Lett 204:73–76.

Balboa MA, Firestein BG, Godson C, Bell KS and Insel PA (1994) Protein kinase C
mediates phospholipase D activation by nucleotides and phorbol esters in Madin-
Darby canine kidney cells. J Biol Chem 269:10511–10516.

Balcar VJ, Li Y, Killinger S and Bennett MR (1995) Autoradiography of P2X ATP
receptors in the rat brain. Br J Pharmacol 115:302–306.

Balwierczak JL, Sharif R, Krulan CM, Field FP, Weiss GB and Miller MJS (1991)
Comparative effects of a selective adenosine A2 receptor agonist, CGS 21680, and
nitroprusside in vascular smooth muscle. Eur J Pharmacol 196:117–123.

Barajas-López C, Espinosa-Luna R and Gerzanich V (1994) ATP closes a potassium
channel and opens a cationic conductance through different receptors in neurons
of guinea pig submucous plexus. J Pharmacol Exp Ther 258:1396–1402.
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Brändle U, Spielmanns P, Osteroth R, Sim J, Surprenant A, Buell G, Ruppersberg
JP, Plinkert PK, Zenner H-P and Glowatzki E (1997) Desensitization of the P2X2
receptor controlled by alternative splicing. FEBS Lett 404:294–298.

Brayden JE (1991) Hyperpolarization and relaxation of resistance arteries in re-
sponse to adenosine diphosphate. Circ Res 69:1415–1420.

Briejer MR, Akkermans LMA, Meulemans AL, Lefebvre RA and Schuurkes JAJ
(1995) 5-HT-induced neurogenic relaxations of the guinea-pig proximal colon:
Investigation into the role of ATP and VIP in addition to nitric oxide. Naunyn-
Schmiedeberg’s Arch Pharmacol 351:126–135.

Briner VA and Kern F (1994) ATP stimulates Ca21 mobilization by a nucleotide
receptor in glomerular endothelial cells. Am J Physiol 266:F210–F217.

Brizzolara A and Burnstock G (1991) Endothelium-dependent and endothelium-
independent vasodilatation of the hepatic artery of the rabbit. Br J Pharmacol
103:1206–1212.

Brizzolara AL, Crowe R and Burnstock G (1993) Evidence for the involvement of both
ATP and nitric oxide in non-adrenergic non-cholinergic inhibitory neurotransmis-
sion in the rabbit portal vein. Br J Pharmacol 109:606–608.

Brown C, Tanna B and Boarder MR (1995) PPADS: An antagonist at endothelial
P2Y-purinoceptors but not P2U-purinoceptors. Br J Pharmacol 116:2413–2416.

Brown SJ, James S, Reddington M and Richardson PJ (1990) Both A1 and A2a purine
receptors regulate striatal acetylcholine release. J Neurochem 55:31–38.

Bruns RF, Fergus JH, Badger EW, Bristol JA, Santay LA, Hartman JD, Hayes SJ
and Huang CC (1987) Binding of the A1-selective adenosine antagonist 8-cyclo-
pentyl-1,3-dipropylxanthine to rat brain membranes. Naunyn-Schmiedeberg’s
Arch Pharmacol 335:59–63.

Bruns RF, Lu GH and Pugsley TA (1986) Characterization of the A2 adenosine
receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–
346.

Buell G, Lewis C, Collo G, North RA and Surprenant A (1996a) An antagonist-
insensitive P2X receptor expressed in epithelia and brain. EMBO (Eur Mol Biol
Organ) J 15:55–62.

Buell G, Michel AD, Lewis C, Collo G, Humphrey PP and Surprenant A (1996b) P2X1
receptor activation in HL60 cells. Blood 87:2659–2664.

Bullough DA, Magill MJ, Firestein GS and Mullane KM (1995) Adenosine activates
A2 receptors to inhibit neutrophil adhesion and injury to isolated cardiac myocytes.
J Immunol 155:2579–2586.
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Schöfl C, Rössig L, Pötter E, Von Zur Mühlen A and Brabant G (1995) Extracellular

488 RALEVIC AND BURNSTOCK



ATP and UTP increase cytosolic free calcium by activating a common P2u-receptor
in single human thyrocytes. Biochem Biophys Res Commun 213:928–934.

Scholz H, Kohl C, Neumann J, Schmitz W, Seeland C and Stein B (1993) Inotrophic
actions of adenosine derivatives in the mammalian heart. Drug Dev Res 28:277–
282.

Scholz KP and Miller RJ (1991) Analysis of adenosine actions on Ca21 currents and
synaptic transmission in cultured rat hippocampal pyramidal neurons. J Physiol
(Lond) 435:373–393.

Schulze-Lohoff E, Bitzer M, Ogilvie A and Sterzel RB (1995) P2U-purinergic receptor
activation mediates inhibition of cAMP accumulation in cultured renal mesangial
cells. Renal Physiol Biochem 18:219–230.

Schulze-Lohoff E, Zanner S, Ogilvie A and Sterzel RB (1992) Extracellular ATP
stimulates proliferation of cultured mesangial cells via P2-purinergic receptors.
Am J Physiol 263:F374–F383.
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