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ABSTRACT Countless possibilities of recipe combinations challenge us to determine which additional

ingredient goes well with others. In this work, we propose RecipeBowl which is a cooking recommendation

system that takes a set of ingredients and cooking tags as input and suggests possible ingredient and recipe

choices. We formulate a recipe completion task to train RecipeBowl on our constructed dataset where the

model predicts a target ingredient previously eliminated from the original recipe. The RecipeBowl consists

of a set encoder and a 2-way decoder for prediction. For the set encoder, we utilize the Set Transformer

that builds meaningful set representations. Overall, our model builds a set representation of an leave-one-

out recipe and maps it to the ingredient and recipe embedding space. Experimental results demonstrate

the effectiveness of our approach. Furthermore, analysis on model predictions and interpretations show

interesting insights related to cooking knowledge.

INDEX TERMS Food Ingredient Combination, Food Ingredient Recommendation, Food Ingredient

Relations, Recipe Context Learning, Recipe Recommendation, Set Representation Learning

I. INTRODUCTION

Finding the right additional ingredients and sample recipes is

an essential, yet challenging task in the culinary world due to

vast cooking possibilities [1]. Previous works have attempted

to build food recommendation systems [2], [3] using small

recipe datasets and shallow data-driven approaches. Food

pairing tasks [4]–[6] have been proposed, but were limited to

one-to-one ingredient recommendation. With multiple ingre-

dients available, a system that is able to provide reasonable in-

gredient and candidate recipe choices based on sophisticated

cooking knowledge may be desirable.

In this work, we propose RecipeBowl, a set-based model

that jointly recommends ingredients and recipes. For example

in Figure 1, given lime, chicken breasts, olive oil and garlic as

input set, the user desires to cook an ’easy’, ’main dish’ grilled

in an ’oven’ using ’chicken’. In this case, the RecipeBowl

suggests ingredients (e.g., balsamic vinegar, cilantro, white

wine, rosemary and so on) that are likely to go well with the

input set and satisfy the user’s needs. Moreover, candidate

recipes (e.g. Easy Garlic Chicken, Grilled Pesto Chicken and

FIGURE 1: Overview of RecipeBowl Cooking Recommender.

RecipeBowl takes two types of input then recommends

additional ingredients and sample recipes. The bold-faced in-

gredient (balsamic vinegar) and recipe (Easy Garlic Chicken)

are the targets selected from their original recipe.

so on) are also provided to guide the user’s decisions on

cooking.

We formulated a recipe completion task where the model is
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given a leave-one-out set of ingredients and tag information

to predict one target ingredient previously excluded from the

original set. We constructed a dataset based on a large recipe

corpus Recipe1M [7]–[9] where each instance consists of an

leave-one-out set as input and target ingredient as output. We

then trained the model in a supervised learning setting where

it has to predict the target ingredient and its corresponding

recipe given the leave-one-out set. The main objective is to

simultaneously learn two different embedding spaces and push

its vector projections towards the actual vector representations

in each space. The trained model provides recommendations

based on similarity-based rankings calculated between its

predicted ingredient/recipe with the actual ones in each of

their embedding spaces.

We performed quantitative and qualitative analysis on our

model’s recommendations to demonstrate the viability of

our approach. Experimental results show that our model

suggests reasonable ingredients that are relevant to recipe

context. Observations on the predicted embedding space

in t-sne visualizations, set context vectors in clustermaps

and attention weights in heatmaps provide insight of how

RecipeBowl utilizes recipe contextual knowledge and derives

it from various ingredient combinations.

The major contributions are summarized as follows.

• We formulate a recipe completion task that trains a model

on set-to-one prediction in a supervised learning setting.

• We propose RecipeBowl, a two-way cooking recom-

mender model that adopts the Set Transformer [10]

framework for building representations of ingredient

sets 1.

• We introduce a large-scale recipe completion dataset [8],

[9] using Tf-Idf scores for selecting optimal target

ingredients.

• Both quantitative and qualitative analysis show that

RecipeBowl suggests practical choices based on recipe

context and ingredient relations.

II. RELATED WORK

A. LEARNING RECIPE REPRESENTATIONS

Cross-modal features, namely text and image features have

been widely used for generating recipe representations [7],

[11], [12]. These methods require image data to conduct

recipe-related tasks. Recently, Li et al. has introduced Reciptor,

a Set Transformer-based model [10] for learning recipe

representations in a unsupervised fashion [9]. The authors

pre-trained recipe representations from Recipe1M [8] using

two loss functions which are the cosine similarity loss and

the triplet loss. The authors of this work demonstrated the

Set Transformer’s effectiveness by using the pre-trained

embeddings for food-related downstream tasks such as cuisine

classification.

B. RECOMMENDATION IN FOOD DOMAIN

1The code for RecipeBowl is available in https://t.ly/rV8t

1) Recommending Ingredients and Food Pairings

Previous works related to food pairing discovery have been

introduced where ingredient-ingredient relations are repre-

sented as edges in a network and its nodes denote the

ingredients. Ahn et al. firstly proposed to define food pairings

based on the number of flavor compounds shared between

two ingredients [4]. Park et al. introduced Kitchenette, a

Siamese Neural Networks based model trained on a large-

scale dataset Recipe1M [8] to predict food pairing scores

and discover novel ingredient pairings [6]. Haussman et al.

incorporated semantic-driven knowledge graphs for food rec-

ommendation [13]. While the previously mentioned authors

either utilized chemical information in ingredients or a large

recipe corpus in food pairing related tasks, Park et al. further

proposed to incorporate both aspects to construct a large

scale ingredient-compound network called FlavorGraph using

metapaths [14].

Prior works on recommending ingredients have also been

proposed. Shino et al. used ingredient categories and co-

occurrence relations to suggest suitable alternative ingredient

for a given recipe [15]. Liu et al. extended this approach by

considering the diversity of ingredient categories and novelty

of ingredient combinations [16]. De Clercq et al. used non-

negative matrix factorization and number of shared flavor

compounds information to retrieve eliminated ingredients

from recipes [3].

2) Recommending Recipes

Previous works have focused on personalized recommen-

dation of recipes using various features and employing

machine learning-based approaches [17]–[20]. While Ge et al.

proposed to incorporate users’ tags and ratings that indicate

food preferences in recommendation [17], we employed a

similar approach by utilizing recipe tag information such as

main dish, 5-minute-cooking. Other works have additionally

taken nutrition-related factors into account to provide healthy

food recommendations [21]–[24].

Perhaps one of the previous works that is closest to our

task formulation is Cueto et al. [25]. The authors of this work

employed memory-based collaborative filtering approaches

to recommend ingredients for a given partial recipe. However,

the dataset used in their work is small compared to our work

as we trained our deep learning-based model on Recipe1M [8].

Moreover, while Cueto et al.’s model suggests only additional

ingredients, our model is trained both on ingredient and recipe

representations and provides each of their recommendations.

III. DATASET

A. PREPROCESSING ORIGINAL DATASET

We built an extended version of the Reciptor [9] dataset con-

taining 507,834 recipes which is a subset of Recipe1M [7], [8].

Each recipe instance in our preprocessed dataset contains a

list of ingredients, cooking instructions and cooking tags (630

unique tags) that were previously extracted from Recipe1M.

Since the rich tag information (e.g., easy, healthy, seasonal

[preference], main-dish, desserts, fruit [cuisine category],
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Recipe Information Input Ingredients
Target

Ingredients

Easy
Garlic

Chicken Breasts

Ingredients
chicken
breasts

olive
oil

garlic
lime
juice

Score 0.29 0.17 0.24 0.30

Garden
Ranch
Pizza

Ingredients

red
bell

peppers

ranch
dressing

mozzarella
cheese

parmesan
cheese

broccoli
garlic
clove

pizza
crust

Score 0.13 0.18 0.12 0.09 0.15 0.10 0.22

Creamy
French

Dressing

Ingredients salt garlic sugar
dijon

mustard
tomato
paste

pepper
olive
oil

red wine
vinegar

Score 0.06 0.14 0.09 0.16 0.16 0.11 0.10 0.18

TABLE 1: Examples of recipe completion data for RecipeBowl. Lime juice (0.30) in Easy Garlic Chicken Breasts, pizza crust

(0.22) in Garden Ranch Pizza, and red wine vinegar (0.18) in Creamy French Dressing are selected as target ingredients.

meat, vegetarian, low-calorie [diet information], american,

european, asian [regional category]) from Reciptor would

be helpful in our task [17], we crafted a 630-dimensional

tag information binary vector for each recipe instance. We

prepared 3,729 unique ingredients and a 80%/10%/10%

randomly partitioned dataset. Prior to dataset construction, we

excluded recipes with few (4 or less) ingredients from each

of the partitioned dataset. Therefore the dataset has 373,760

training recipes, 47,104 validation recipes and 47,104 test

recipes.

B. SELECTING TARGET INGREDIENTS

We adopted De Clercq et al.’s recipe completion-based

approach for training RecipeBowl [3]. The model is trained to

predict a target ingredient x given a leave-one-out set X where

x was previously eliminated from a original set X ∪ {x} of

ingredients. Based on the above learning objective, we con-

structed a dataset for recipe completion where each instance

includes an leave-one-out ingredient set, target ingredient and

cooking tag information. Our main emphasis is to help the

model learn cooking context based on the combinatory nature

of various ingredients. In De Clercq et al.’s work, the target

ingredients were selected randomly [3]. Among the randomly

selected ingredients, commonly occurring ones such as salt

and butter may act as trivial targets. These ingredients may

render the model unable to differentiate the characteristics of

ingredient combinations.

To prevent this, we selected target ingredients based on

their Tf-Idf (Term Frequent-Inverse Document Frequency)

score where terms and documents are ingredients and recipes

respectively [26]. The Tf-Idf score indicates the relative

importance of an ingredient within the recipe based on its

occurrence in the whole corpus. We first calculated the Tf-Idf

scores based on all ingredients, and then normalized them

within each recipe where term frequency for each ingredient

is always 1 in each recipe. We selected an ingredient x with

the highest Tf-Idf score and eliminated it from each recipe.

Conclusively, the inputs for training RecipeBowl on recipe

completion is the leave-one-out set X while the target is x for

each recipe instance X ∪ {x}. Table 1. shows the examples
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FIGURE 2: Analysis on Target Ingredient Selection

of our recipe completion dataset. In Table 1., the normalized

Tf-Idf scores in Creamy French Dressing are low (e.g. salt

(0.06), sugar (0.09), olive oil (0.10)). On the other hand, lime

juice (0.30) in Easy Garlic Chicken Breasts, pizza crust (0.22)

in Garden Ranch Pizza and red wine vinegar (0.18) in Creamy

French Dressing have the highest normalized Tf-Idf scores.

We further justify our target selection approach by the

following analysis. Figure 2. shows two distributions of target

ingredients based on different selection options (Random and

Tf-Idf). The distribution based on random selection is skewed

where the highly frequent target ingredients based on random

selection are commonly used ingredients (e.g. salt, butter and

sugar) in most recipes. On the other hand, the distribution

based on Td-Idf selection is relatively uniform which provides

a better learning setting for RecipeBowl.

Along with recommending ingredients, RecipeBowl aims

to simultaneously suggest recipe candidates. We utilized the

pretrained recipe embeddings from Reciptor [9] as ground

truths for training the recipe inference task of our model.

Since the pretrained embedding vectors include sequential

recipe context, we expect RecipeBowl to suggest acceptable

recipe candidates and benefit ingredient recommendation.

IV. MODEL
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FIGURE 3: Overall Model Description for RecipeBowl: An example recipe Easy Garlic Chicken Breasts is shown on the left

side. Top K additional ingredient and candidate recipe recommendations are shown on the right side.

A. OVERVIEW

RecipeBowl takes a set of ingredients as input and predicts

a corresponding target ingredient and recipe as output (Fig-

ure 3.). The ingredients including the target are represented

as continuous vectors retrieved from an embedding lookup

table initialized by the ingredient node embeddings from

FlavorGraph [14]. The target recipe vectors are pretrained

embeddings retrieved from Reciptor [9]. The RecipeBowl

consists of the Set Encoder and the 2-way Decoder. The

Set Encoder encodes a set of ingredient vectors into a set

context embedding space. The 2-way Decoder maps the

set context vector into two different embedding spaces of

different modality. The model is trained to approximate the

predicted vector to its target ingredient and recipe vector in its

corresponding embedding space and is trained in a multi-task

learning fashion.

B. SET ENCODER - LEARNING SET

REPRESENTATIONS

We adapt the Set Transformer framework in our model as

the Set Encoder module to build latent representations for

incomplete sets of ingredients using attention mechanism [10].

In this work, we constructed the Set Transformer as a stack of

components including Induced Set Attention Blocks (ISAB)

and a Multihead Attention based pooling (PMA) layer. The

ISAB is fed with a input set of vectors to calculate self-

attention weights between the elements where the final output

is also a set of equal size. The PMA layer aggregates the

element-wise features by calculating their attention weights

on a set of parameterized seed vectors. Both ISAB and PMA

layer use Multihead Attention Blocks (MAB) which are the

components of the Transformer model originally proposed

by Vaswani et al. [27]. The MAB computes the attention

function with multiple projections of the input queries and key-

value pairs. Different from the Set Transformer in Li et al.’s

Reciptor [9], we constructed our version of Set Transformer

with one ISAB followed by one PMA layer.

1) Multihead Attention

Given a set of n dq-dimensional query vectors Q ∈ Rn×d and

its corresponding key-value pairs K ∈ Rn×dk , V ∈ Rn×dv ,

an attention function takes Q as input and produces outputs

using K, V. In our model, d = dq = dk = dv for simplicity.

Attention(Q,K,V ) = φ(QK⊤)V (1)

where φ is scaled softmax φ(·) = softmax(·/
√
d). The

outputs of the above function are expressed as a weighted

sum of V where each value’s weight is determined by a dot

product scalar of its corresponding key and the query.

An extended version of this mechanism called Multihead

Attention was introduced by Vaswani et al. where multiple

projections are applied to the query and key-value vectors to

produce different attention-based outputs [27]. The k-head

attention function has k triplets of linear transformations

WQ
i ,WK

i ,WV
i (i ∈ {1, 2, ..., k}) each applied to Q, K and

V respectively. The k projections are each then fed into the

attention function to produced k different outputs which are

concatenated k-wise and finally projected into a h-dimensional

space. The Multihead Attention is mathematically expressed

as follows,

Multihead(Q,K,V ) = (O1 ⊕ ...⊕Oi ⊕ ...⊕Ok)W
O

(2)

Oi = Attention(QWQ
i ,KWK

i ,V WV
i ) (3)

where WQ
i ,WK

i ,WV
i ∈ Rd×h,WO

i ∈ Rh·k×d.

2) Multihead Attention Block

While the query, key and value vectors involved in Multihead

Attention may be different, the key and value vectors in the

Multihead Attention Block are the same. Given two sets of

vectors X,Y ∈ Rn×d, the MAB is mathematically expressed

as follows,

MAB(X,Y ) = LayerNorm(H + RFF(H))) (4)

H = LayerNorm(X + Multihead(X,Y ,Y )) (5)
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where RFF is a row-wise feedforward layer and LayerNorm

is layer normalization ( [28]).

3) Set Attention Block

The Set Attention Block was proposed by Lee et al. as an

extension of the Multihead Attention Block to calculate self-

attention weights between the vectors in a set [10]. The output

from the SAB contains element-to-element interactions of

the set. Higher order relations between the elements can be

modeled through a stack of SABs. Our approach focuses on

learning the combinatory nature of ingredients which provides

a rationale for using SABs in the model architecture. Given a

set of vectors X ∈ Rn×d, the SAB is expressed as follows,

SAB = MAB(X,X) (6)

4) Induced Set Attention Block

Another extension variant of the Multihead Attention Block

proposed by Lee et al. is the Induced Set Attention Block. The

ISAB contains trainable inducing vectors that are fed with

the element vectors into the MAB to compute the outputs

which are again fed into another MAB with the same element

vectors [10]. Given a set of input vectors X ∈ Rn×d and a

set of inducing vectors K ∈ Rk×d, the ISAB is expressed as

follows,

ISAB = MAB(X,H) (7)

where H = MAB(K,X).

5) Multihead Attention based Pooling Layer

One of the common permutation-invariant methods to aggre-

gate the element-wise representations is element-wise summa-

tion [29], [30]. However, Lee et al. proposed aggregating the

representations by applying multihead attention on another

set of m parameterized seed vectors S ∈ Rm×d [10]. Given

a set of n ingredient vectors refined by the previous SAB or

ISAB, Z ∈ Rn×d, pooling by Multihead Attention (PMA) is

expressed as follows,

PMA = MAB(Z,RFF(S)) (8)

6) Set Transformer

Conclusively, given an input set of ingredient vectors I ∈
Rn×d the Set Transformer we employed in our work is

mathematically expressed as follows,

S = LayerNorm(ReLU(PMA(I ′)Ws + bs))I
′ = ISAB(I)

(9)

where Ws ∈ Rd×h, bs ∈ Rh are the weights and biases

for the final nonlinear transformation in the Set Transformer

and S ∈ Rh is the final latent representation for the set of

ingredients. We denote this as the Set Encoder in our whole

model architecture as it encodes a set of ingredients into a

latent embedding space.

C. 2-WAY DECODER - PREDICTING INGREDIENTS AND

RECIPES

The 2-way Decoder takes the set context vector concatenated

with a 630-dimensional tag vector as input to generate the d-

dimensional target ingredient vector and r-dimensional target

recipe vector. The tag vectors are constraints to guide the

model’s predictive space. Given the encoded set representation

S ∈ Rd and the tag binary vector T ∈ {0, 1}630, the predicted

vectors for both the target ingredient ŷp ∈ Rd and recipe

ŷq ∈ Rr are mathematically expressed as follows,

ŷp = LayerNorm(ReLU((S⊕T)W1 + b1))W2 + b2 (10)

ŷq = LayerNorm(ReLU((S⊕T)W3 + b3))W4 + b4 (11)

where W1,W3 ∈ Rh×d,W2,W4 ∈ Rd×d are trainable

weights and b1, b2, b3, b4 ∈ Rd are trainable biases.

D. LOSS OBJECTIVE FUNCTION AND OPTIMIZATION

Given a pair of predicted and its ground truth target vectors

(ŷp, yp), we employed a negative likelihood loss function

based on a softmax over negative Euclidean distances in the

ingredient embedding space [31], [32]. As we trained our

model using batch sampling, the softmax for the Euclidean

distance between the ith pair (ŷp(i), yp(i)) is calculated over

the batch of target ingredient vectors including yp(i). Given

a batch B and model parameters Θ, the loss objective for

RecipeBowl is mathematically expressed as follows,

f(x, y) = −
√
|x− y|2 (12)

Lp (ŷp(i), yp(i),Θ) = − log
e

f(ŷp(i),yp(i))

τ

∑B−1

k=0
e

f(ŷp(i),yp(k))

τ

(13)

where τ is a temperature scalar for controlling model optimiza-

tion [33]. The model is therefore is trained on a distance metric

learning setting since the Euclidean distance between the

predicted ingredient and target ingredient is minimized [31].

Given the ith target ingredient as thet positive sample, we

adopted the idea of using all other B target ingredients in a

batch as negative samples for better optimization [34]. We

will denote this scheme as using in-batch negatives.

For training the model on recipe prediction given the ith
pair (ŷq, yq) in the training batch, we employed the cosine

embedding loss defined as below,

cosine(x, y) =
x · y

‖x‖ ‖y‖ (14)

Lq (ŷq(i), yq(i),Θ) = 1− cosine( ˆyq(i), yq(i)) (15)

Finally, the multi-objective loss function for a batch of

quadruplets (ŷp, yp, ŷq, yq) is as below,

L (ŷp, yp, ŷq, yq,Θ) =
1

B

B−1∑

i=0

Lp(i) +
1

B

B−1∑

i=0

Lq(i) (16)

where Lp(i), Lq(i) are the simplified notations of the loss

function for ith sample in batch.
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Types Models MRR Recall@1 Recall@5 Recall@10

Simple Statistics Popularity Choice 0.0080 0.0019 0.0019 0.019

Traditional
Machine Learning
Methods

Random Forest 0.0077 (0.0002) 0.0019 (0.0002) 0.0083 (0.0003) 0.0155 (0.0005)
Logistic Regression 0.1354 (0.0011) 0.0754 (0.0010) 0.1888 (0.0013) 0.2535 (0.0015)
Simple MLP 0.1685 (0.0031) 0.0955 (0.0006) 0.2349 (0.0028) 0.3141 (0.0053)

Deep Learning
Methods

Vanilla Sum 0.2178 (0.0040) 0.1300 (0.0035) 0.3044 (0.0046) 0.3965 (0.0058)
Bi-directional LSTM 0.2024 (0.0071) 0.1199 (0.0057) 0.2831 (0.0094) 0.3681 (0.0104)
Deep Sets 0.2126 (0.0082) 0.1258 (0.0065) 0.2975 (0.0109) 0.3872 (0.0114)
Reciptor 0.2103 (0.0011) 0.1249 (0.0011) 0.2936 (0.0015) 0.3807 (0.0024)
RecipeBowl 0.2261 (0.0020) 0.1358 (0.0020) 0.3166 (0.0021) 0.4072 (0.0023)

TABLE 2: Evaluation results. Best results are in bold. All experiments were repeated 10 times with different splits. All results

except Popularity Choice have mean and standard deviation for each metric. All results compared to RecipeBowl have a p-value

below 0.05 as result of significance test

Purposes Ablations MRR Recall@1 Recall@5 Recall@10

Our Model RecipeBowl 0.2281 0.1379 0.3182 0.4086

Recipe Context
RecipeBowl -Cooking Tags 0.1463 0.0797 0.2035 0.2790
RecipeBowl -Recipe Prediction Layer 0.2153 0.1286 0.3015 0.3899

Pre-trained Ingredient Embeddings
RecipeBowl -FlavorGraph +word2vec 0.2044 0.1218 0.2857 0.3704
RecipeBowl -FlavorGraph +random 0.2153 0.1275 0.3021 0.3902

Decoder RecipeBowl -2-way Decoder 0.1343 0.0736 0.1863 0.2559

Loss Function
RecipeBowl -Euclidean +Dot-product 0.0511 0.0200 0.0697 0.1088
RecipeBowl -In-batch Negatives 0.0579 0.0269 0.0792 0.1191

TABLE 3: Ablation test results. The best results are in bold. All results were obtained from experiments on the first random split

of out dataset.

V. EXPERIMENTS

A. EXPERIMENTAL SETTING

We conducted experiments to evaluate and compare our

proposed RecipeBowl’s performance on recipe completion

task with other model options. We firstly performed a simple

preliminary experiment by giving each leave-one-out input

set of ingredients the same list of ingredients sorted by

their occurrence as target ingredient in the whole dataset.

We denote this method as Popularity Choice. We selected

traditional machine learning approaches for our baseline

experiments to evaluate our proposed model architecture.

We imported the pre-trained FlavorGraph embeddings and

summed each of the input ingredients into a single 300-

dimensional continuous vector [14]. We then concatenated it

with its corresponding 630-dimensional cooking tag vector.

As a result, the dimension of each input vector is 930. The

baseline models that were used in this setting are Random

Forest Classifier, Logistic Regression and MLP Classifier and

were all imported from the Scikit-learn Python package [35].

They are multi-class classification models where the class

labels are the 3,729 unique ingredients.

We additionally conducted baseline experiments on various

types of Set Encoders to assess the use of our custom

Set Transformer while retaining other model features in

RecipeBowl such as the Decoder and use of cooking tag

vectors. The baseline modules for the Set Encoders are the

following,

• Vanilla Sum: The ingredient vectors from the Flavor-

Graph embedding lookup table are summed into a single

set context vector for each recipe input. This resembles

the continuous bag-of-words model [36].

• Bidirectional LSTM: Previously used in recipe embed-

ding experiments by Li et al. [9], this module encodes

a sequence of ingredients in both directions into a set

context vector.

• Deep Sets: Introduced by Zaheer et al. and used in Lee

et al.’s baseline experiments [10], the Deep Sets model

is a permutation-invariant deep learning model that

builds deeper element-wise and set-wise representations

through a stack of layers [30].

• Reciptor: Adopted from Li et al.’s [9], the Reciptor

model is a Set Transformer containing 2 ISABS, 1 PMA

and 1 SAB. All inherent MABs have 4 attention heads

while each ISAB has 16 trainable inducing vectors and

the PMA has 2 trainable seed vectors.

As our version of Set Transformer (1 ISAB, 1 PMA) is used

in the RecipeBowl architecture as the Set Encoder, we denote

other deep learning model variants by their corresponding Set

Encoder since the other components in the model architecture

are fixed.

1) Model Training and Evaluation Metrics

We fit the traditional machine learning models into our large

training dataset and evaluated their performance based on

the predicted probabilities for each class (3,729 ingredients).

The predicted list of probabilities were sorted for evaluative

purposes. The deep learning architectures using various

Set Encoder modules including RecipeBowl and its ablated
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versions were trained to the maximum of 60 epochs with early

stopping using the AdaBound optimizer [37]. All models were

trained on the same training dataset and evaluated on the same

test dataset as well. The hyperparameters for RecipeBowl that

were estimated using the validation dataset and are available

in the anonymous code repository.

We retrieved the predicted ingredient vectors of test dataset

from the deep learning models including RecipeBowl, to

generate ranking-based recommendation results. We then cal-

culated a pairwise matrix of cosine similarity scores between

the vector predictions for the incomplete ingredient set in test

dataset and 3,729 actual ingredient vectors. We sorted the

similarity scores to obtain a ranked list of recommended ingre-

dients. Both lists are used for evaluation based on multi-item

recommendation. We used Mean Reciprocal Rank (MRR) and

Recall@K (K=1,5,10) to evaluate the recommendation results

derived from the scores.

B. EXPERIMENTAL RESULTS

1) Model Performance

We made 10 different 80%/10%/10% random splits of our

dataset to perform the main experiments on the recipe com-

pletion task. In addition, the random initialization of trainable

parameters in deep learning models is different according to

each of the random split. For each model configuration includ-

ing the traditional machine learning models, we calculated the

mean and standard deviation of each evaluation metric MRR,

Recall@1, Recall@5 and Recall@10. We also conducted

statistical tests to obtain p-values to prove RecipeBowl’s

statistical significance.

Table 2 shows the evaluation results of RecipeBowl

and other baseline models. Results show that RecipeBowl

achieved the highest performance in all metrics (MRR:

0.2261 (0.0020), Recall@1: 0.1358 (0.0020), Recall@5:

0.3166 (0.0021), Recall@10: 0.4072 (0.0023)). According

to the results, utilizing several model-related components and

additional features such as tag vectors helped RecipeBowl

outperform other model options. It is notable that our version

of the Set Transformer used in RecipeBowl has less model

complexity than Li et al.’s version used in Reciptor [9] which

led to better generalization results (MRR: 0.2103 (0.0011)).

2) Ablation Study on General Model Architecture

We performed ablation tests to find whether 1) utilizing

recipe context information, 2) employing a negative likelihood

loss function based on a softmax over euclidean distances

with in-batch negatives, 3) using the pre-trained FlavorGraph

vectors as initial embeddings for RecipeBowl and 4) adding

a Decoder before projecting the set context vectors into

another embedding space were effective or detrimental to

RecipeBowl’s training.

Table 3 shows the ablation results on RecipeBowl. All abla-

tion experiments were performed using the first random split

of our dataset. The ablation results illustrate the importance

of selecting the right loss criteria for training RecipeBowl.

Combining the effects of distance metric learning and in-batch

negatives randomly containing both easy and hard (highly

related to targets) ingredient negatives seemingly benefit

RecipeBowl’s performance.

In terms of model architecture, results show RecipeBowl’s

dependency on both the 2-way Decoder (MRR: 0.1343) and

tag vectors (MRR: 0.1463). Considering the risks of multi-task

learning, our ablation results show that recipe prediction task

does not negatively affect RecipeBowl but rather boosts by a

small amount (MRR: 0.2153). Though we imported the pre-

trained FlavorGraph embeddings from Park et al.’s work, our

ablation results show less difference in performance (MRR:

0.2153) leaving room for further investigation.

VI. ANALYSIS

A. RECIPEBOWL RECOMMENDATIONS

The RecipeBowl accepts any ingredient sets and recommends

additional ingredients and candidate recipes which is illus-

trated in Figure 3. In Table 4, we show six different user input

examples with different cooking tags. Here, we recommend

top 10 ingredients and top 5 recipes. Our model made accurate

ingredient predictions (bold-faced) for the first four examples.

In addition, RecipeBowl provided relevant and plausible

alternatives other than the actual target ingredient in those

examples. Moreover, RecipeBowl served its purpose as a 2-

way recommender given the recommended recipe titles that

are relevant to both the user input and cooking tags.

For the last two examples in Table 4, although RecipeBowl

did not predict the correct target ingredients (bold-faced,

torillas, cooked white rice), there were still meaningful

suggestions. For the Mexican dish, our model recommended

tortilla chips at top 1 while tortillas are ranked third. For the

Rice dish, while our model did not predict perfectly (cooked

white rice, out of top 10), most of the recommendations are

still aligned with the target ingredient (e.g. wild rice, yellow

rice). We expect RecipeBowl’s flexibility and understanding

in cooking to be helpful in making cooking choices.

B. ANALYSIS ON PREDICTIONS IN EMBEDDING SPACE

Figure 4. shows the distribution of both target and predicted

embeddings vectors. While the predicted ingredients are close

to their corresponding targets, the embedding seemed to be

clustered into eight categories overall. This shows that the

RecipeBowl model learned not only the optimal ingredient

for the given set but also recipe categorical features.

Figure 5. shows the distribution of sixteen target embed-

dings and their corresponding predictions which is illustrated

in the Embedding Space of Figure 3. In this analysis, 16

target ingredients were randomly selected according to their

ingredient categories along with their predictions in the test

dataset. Most of the predicted ingredients tended to form

clusters corresponding to the selected targets. Moreover,

some target ingredients are centered in the prediction clusters

(e.g. mashed bananas, bread, chicken breasts). Interestingly,

clusters that belong to the same ingredient category (e.g.

pork chops, chicken wings, chicken breasts) tend to be

relatively close to each other. We also found target pairs
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Cooking Tags User Input Top 10 Recommendations (Ingredients) / Top 5 Recommendations (Recipes)

Main Dish
Chicken

Oven

chicken breasts, fresh cilantro,
red onions, barbecue sauce,
mozzarella cheese, cornmeal,
olive oil

pizza dough (target, top1 recommended), pizza crust, flat bread, pimento cheese, crisp bread,
taco seasoning, grape tomatoes, olives, plum tomatoes, pizza sauce

BBQ Chicken Pizza - California Pizza Kitchen Style (original), Ranch Chicken Burgers,
Crispy Chicken Strips, Town House Chicken, Spiced Burgers, Weight Watchers Chicken Cordon
Bleu

Breads
Muffins
Baking

butter, sugar, vanilla, cream
cheese evaporated milk, boiling
water

dark chocolate (target, top1 recommended), banana chips, plain flour, vanilla essence, banana
extract, unsweetened cocoa powder, dark chocolate chips, peanuts, oats, mini chocolate chips

Banana Muffins With Chocolate Peanut Frosting (original), Martha Stewart’s Peanut-Butter
Surprises, Stout Gingerbread Cupcakes With Cream, Better Than Toll House Cookies!, Lunchbox
Peanut Butter Brownies, Great Chocolate Chip Cookies

Tex-Mex
Dinner Party

Cocktails

grapefruit juice, simple syrup,
tequila, lime juice, ice

grapefruits (target, top1 recommended), guava nectar, guava juice, margarita mix,
pomegranate juice, lime wedge, Licor 43, Coke, maraschino cherry juice, cola

Siesta - Grapefruit Margarita (original), Citrus Cranberry Delight, Aida’s Curse Cocktail,
Pineapple, Watermelon & Strawberry Slushes, Cobalt Colada, Frozen Blender Mojito

Japanese
Appetizers

Lunch

nori, hot sauce, tuna, lettuce,
mayonnaise

sushi rice (target, top1 recommended), tobiko, white sesame seeds, imitation crab sticks, tuna
fish, rice cakes, tuna steak, crabsticks, wasabi, soybean paste

Spicy Tuna Salad Roll (original), Oven Hot Ham & Cheese Sandwiches, General Tso’s Chicken
Wraps, Bourbon Street Deli Special Sandwich, Hg’s Southwest Burritofest!

Mexican
Ground beef

Spicy

lean ground beef, sharp ched-
dar cheese, ground cumin, garlic
clove, bell pepper, chili powder,
vegetable oil, eggs, milk, onion,
salt

tortilla chips, diced green chilies, jalapeno, tortillas (target, top4 recommended), corn tortillas,
taco sauce, corn tortilla chips, poblano chiles, refried beans, jalapeno pepper

Casserole Quiche With Crisp-Fried Tortilla Pieces (original), Italian Shepherd’s Pie, Pastit-
sio Pie, Meatloaf Pot Roast, Bacon Cheeseburger Upside Down Pizza, Sweet and Sour Cocktail
Meatballs

Main-dish
Rice

Vegetables
chicken breasts, olive oil, garlic

balsamic vinegar, oregano, ground ginger, green peppers, cumin, ground black pepper, thyme,
Italian seasoning, yellow onion, green bell pepper, lime (target, out of top10)

Roasted Garlic Chicken (original), Sesame Chicken, Italian Wrap Chicken Breast, Teriyaki
Chicken, Apricot Rosemary Chicken

TABLE 4: RecipeBowl Recommendation Results. Examples of these six cases are all from the test set. For the first four examples,

RecipeBowl model accurately predicted the target ingredient (bold-faced), but the last two examples, it did not. However, the

recommendations still seem reasonable.

bread flour&yeast and cocoa&chocolate being close to each

other along with their prediction clusters. Bread flour and

yeast are known to be used together in most recipes while

cocoa is one of the materials for making chocolate chips.

These observations show that the RecipeBowl model learned

ingredient relationships during training.

C. ANALYSIS ON SET REPRESENTATION VECTORS

Figure 6. shows clustermaps of 150 randomly sampled set

context embedding vectors. The Set Context Embeddings

according to Figure 3 are the set-wise vectors from the Set

Encoder, prior to being propagated to the 2-way Decoder.

We selected blueberries, apples, buttermilk and chocolate

chips from the previous list used in t-sne visualization and

extracted incomplete ingredient lists with equal size of 150

containing each of them from the test dataset. We then used

the Set Encoder of RecipeBowl to generate 4 groups of 150

set context vectors and visualized a clustermap for each group.

We selected blueberries and apples since both of them are

fruit ingredients used in a wide variety of dishes. On the

contrary, we additionally selected buttermilk and chocolate

chips that may be used in limited recipe categories such as

bakery and desserts. The clustermaps shown in Figure 6.

seemed to show distinctive clusters which brought interesting

insight. For example, apples can be used in a wide range

of recipes such as sweet desserts (Caramel Apple), bakery

foods (Apple Maple Muffin) or as sauces in meat-based dishes

(Apple Pork Chops) [38], [39]. Buttermilk is widely used

in bakery products due to its nutritional value and taste

enhancement features [40]. We can observe that among the

sampled 150 set context vectors including buttermilk, most

of them were used in bakery recipes (Basic Chocolate Cake).

Overall, RecipeBowl can distinguish different types of recipe

context according to the uses of a particular ingredient. The

detailed clustermaps for these ingredients can be found in the

code repository.

D. ANALYSIS ON ATTENTION WEIGHTS IN SET

ENCODER

Figure 7. shows attention weights of the input ingredients.

We extracted and aggregated the attention values computed

in the first MAB of the ISAB in RecipeBowl’s Set Encoder

in Figure 3 and normalized them with min-max scaling. We

studied the recommendation examples and observed which

ingredient seems to have high influence towards building the

set context vector. For Spicy Tuna Salad Roll, nori recieved

the highest attention which helped RecipeBowl understand the

set input is mainly Japanese cuisine. For BBQ Chicken Pizza,

chicken breasts, fresh cilantro and red onions were majorly

attentive interestingly compared to mozzarella cheese. Lastly,

the input set for Casserole Quiche contained ingredients

mainly used in Mexican cuisine such as bell peppers and
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FIGURE 4: Predicted ingredient vector embeddings.

(10,000 sampled in test).

FIGURE 5: Predicted ingredient vector embeddings.

(Sampled according to 16 target ingredients).

FIGURE 6: Clustermaps of 150 set context vector embeddings for each target ingredient. The dimension size of each set context

vector is 64. The recipe names for each recipe cluster are representative examples.

chili peppers [41], [42]. In turn, we speculate that RecipeBowl

was able to predict tortilla chips based on highly attentive

values of the above ingredients as tortilla-related ingredients

are also commonly used in Mexican dishes.

VII. CONCLUSION & FUTURE WORK

We introduce RecipeBowl, a set-based cooking recommender

for candidate ingredients and recipes. To train the model, we

formulate a supervised learning recipe completion setting

using an extended dataset from Reciptor [9]) and employing

the Set Transformer [10] framework to encode ingredients

into a set context representation. Based on the evaluation

results from the formulated recipe completion task, our model

showed best results among other set encoding variation

baselines and traditional machine learning algorithms. Rec-

ommendation results demonstrate RecipeBowl’s ability to

generate both plausible and diverse recommendations for a

given set of ingredient. We performed in-depth model analysis

on RecipeBowl in a bottom-to-top fashion 3 starting from

the predicted Embedding Space where the vector embed-

dings formed meaningful clusters. We also investigated the

visualizations of the set context vectors which are the direct

outputs from the Set Encoder and examined the attention

weights extracted from the Set Encoder itself and found them
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FIGURE 7: Attention weights of ingredients for each set input. Bold-faced are target ingredients. The rest are input ingredients

with attention values transformed by min-max normalization for each recipe.

supportive to our model’s performance.

While RecipeBowl was able to suggest both appropriate

ingredients and recipe candidates for a given set of other

ingredients, some recipe candidates seemed inconsistent with

the suggested ingredients. We plan to improve RecipeBowl

by encouraging it to recommend recipe candidates related to

some of its suggested ingredients. Though our RecipeBowl

exploited our custom-made Set Transformer to be trained

successfully on recipe completion, we plan to improve the Set

Encoder to extract richer cooking knowledge and provide

better interpretability. In addition, we plan to incorporate

nutritional features and consider dietary requirments during

recommendation. Lastly, we plan to release an applicable

version of RecipeBowl in the future.
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