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Recipes for improper ferroelectricity in molecular
perovskites
Hanna L.B. Boström1, Mark S. Senn 1,2 & Andrew L. Goodwin 1

The central goal of crystal engineering is to control material function via rational design of

structure. A particularly successful realisation of this paradigm is hybrid improper ferroe-

lectricity in layered perovskite materials, where layering and cooperative octahedral tilts

combine to break inversion symmetry. However, in the parent family of inorganic ABX3

perovskites, symmetry prevents hybrid coupling to polar distortions. Here, we use group-

theoretical analysis to uncover a profound enhancement of the number of improper ferro-

electric coupling schemes available to molecular perovskites. This enhancement arises

because molecular substitution diversifies the range of distortions possible. Not only do our

insights rationalise the emergence of polarisation in previously studied materials, but we

identify the fundamental importance of molecular degrees of freedom that are straightfor-

wardly controlled from a synthetic viewpoint. We envisage that the crystal design principles

we develop here will enable targeted synthesis of a large family of new acentric functional

materials.
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F
erroelectricity, i.e., the presence of a switchable electric
polarisation, is an important property with many techno-
logical applications1. An early canonical ferroelectric was

BaTiO3, with the broader family of ABX3 perovskite oxides now
known to include a variety of ferroelectric systems2–5. The fer-
roelectric response of BaTiO3 originates from a second-order
Jahn–Teller (SOJT) effect, in which the B-site cation Ti4+ dis-
places from the centre of its TiO6 coordination environment2,6.
As this polar instability also acts as the primary order parameter,
BaTiO3 is a proper ferroelectric. Despite the continuing discus-
sion regarding the origin of polar coupling in BaTiO3

7, the gen-
eral SOJT mechanism at play is rare and its generalisation is
challenging, as it requires a d0 electronic configuration6. Hence,
design approaches for new ferroelectric materials based on SOJT
instabilities are limited and, moreover, the mechanism is difficult
to couple with spin-active d-electron configurations, which has
largely prevented its exploitation in the search for magnetoelectric
multiferroics8. In fact, ferroelectricity is comparatively rare in
bulk perovskite materials and BaTiO3 is much more of an
exception than a rule9.

It is in this context that the concept of hybrid improper fer-
roelectricity is especially appealing10. A necessary condition for
ferroelectricity is the presence of a polar space group, which in
turn requires broken inversion symmetry. Simple inorganic per-
ovskites contain two crystallographically distinct inversion centres
(at the A- and B-site, respectively) and in BaTiO3, the zone-centre
polar mode breaks both of these, driving the polarity11. Alter-
natively, in favourable cases, a combination of two or more
modes—each non-polar in their own right—may collectively lift
inversion symmetry and give rise to a polar secondary order
parameter10,12. This so-called hybrid improper ferroelectricity
mechanism is attractive from a crystal engineering perspective
because it lends itself to design rules via group-theoretical analy-
sis10. In addition, the mechanism does not preclude magnetic
order10,13. Hence, using group-theoretical methods, it is possible
to enumerate the symmetry breaking caused by given distortions
of an aristotype and thereby predict the propensity for the for-
mation of acentric structures. For simple inorganic perovskites,
the accessible degrees of freedom—cooperative first-order
Jahn–Teller (FOJT) distortions and octahedral tilting—all pre-
serve the inversion centre of the B-site, and in order to enable
hybrid improper ferroelectricity, additional symmetry breaking in
the form of A-site cation order or layering is needed13–15.

A recent development in the broader field is the increased
interest in molecular perovskite analogues16. These are solid
compounds with the same ABX3 stoichiometry of conventional
perovskites, but where A or X (or both) are molecular ions. This
populous class of materials may be categorised according to the
nature of the anionic linker: topical families include the
organic–halide perovskites17,18, metal formates19,20, Prussian blue
analogues21,22, azides23,24, dicyanamides25,26, hypophosphites27,
thiocyanates28,29, and dicyanometallates30,31. The enhanced
structural flexibility allowed by molecular species enables addi-
tional degrees of freedom unfeasible in conventional inorganic
perovskites: unconventional tilts30,32, columnar shifts33, and
multipolar order (Fig. 1)34,35. The first two of these correspond to
rigid-unit modes (RUMs)36—i.e., phonon modes which propa-
gate without deforming BX6 coordination geometries37,38. The
larger number of RUMs in molecular perovskites is conceptually
related to the additional flexibility driven by reduced connectivity
in Ruddlesden–Popper phases39. By contrast, the presence of
multipolar degrees of freedom reflects reorientations of non-
spherical molecular A-site cations34,35,40.

In this paper, we show how these new types of structural
degrees of freedom can combine to break inversion symmetry,
hence establishing a new set of design rules for engineering

acentric molecular perovskites. First, we introduce our general
recipe for designing acentric materials. Second, we classify the
various symmetry breaking ingredients accessible to molecular
perovskites in terms of the irreducible representations of the
high-symmetry perovskite aristotype. Third, we use these ingre-
dients to construct the key ferroelectric coupling schemes. And,
fourth, we illustrate how this approach can be used to rationalise
the emergence of polarisation in a number of previously reported
systems.

Results
Polarisation from trilinear coupling. The fundamental idea of
our approach is to identify two distortions (A and B) of the parent
Pm�3m aristotype that are inherently non-polar but which, when
combined, give rise to an additional polar degree of freedom (P)
in the hettotype (child structure). In a Landau-style expansion of
the free energy about the parent structure, this produces a third-
order (trilinear) term βABP. As A and B are inherently non-zero
if they are unstable with respect to the parent phase then—irre-
spective of the sign of the coefficient β—P will also adopt a non-
zero (positive or negative) value in order to stabilise the free
energy. We can use the idea of invariants analysis41 to identify the
permissible third-order terms in the general free energy expan-
sion; i.e., identify for which combinations of A and B one would
expect coupling to P. For the zone-boundary/zone-centre dis-
tortions that we consider here, we find that such couplings may in
fact be identified by inspection, as detailed in the following
paragraphs.

Each distortion we consider can be described as transforming
as an irreducible representation (irrep) of the parent space group
Pm�3m (Table 1, see Supplementary Fig. 1 and Supplementary
Table 1 for a more comprehensive list). The irrep labels are of the
form k ±

# , where the symbol k denotes the propagation or wave
vector of the distortion with respect to the parent structure. In
our study we consider k= [0, 0, 0] (Γ), 1

2
;

1
2
;

1
2

� �

(R), 1
2
;

1
2
; 0

� �

(M), 0;

1
2
; 0

� �

(X), and symmetry equivalents thereof—these
being the distortion periodicities most relevant to real examples.
The + or − sign generally denotes that either one or the other
inversion centre, related to each other by a origin shift (i.e., a
translation by 1

2
;

1
2
;

1
2
), is broken. Clearly, any collective ordering

or distortion that fails to break both these inversion centres at
once cannot lead to an improper ferroelectric coupling, and it is
this point that underlies our arguments based on invariants
analysis presented below.

As any term that features in the free energy expansion about
the parent phase must conserve both crystal momentum and
parity with respect to the inversion symmetry, it can quickly be
seen that any two distortions transforming as X+ and X−, or as
M+ and M−, or as R+ and R− must couple to a non-
centrosymmetric (and in general polar) distortion P, which itself
transforms as Γ−. On the other hand, any two distortions to the
parent phase that have either a different propagation vector and/
or the same sign with respect to inversion parity cannot produce
such a coupling to P. Hence, combinations such as X+ and R−, or
M− and M− etc., may be immediately discounted. As a final
point, we note that higher-order coupling terms such as (X+, M+,
R−), (X−, M−, R−), and so on also produce a fourth-order
coupling in P, provided that the rules for preservation of crystal
momentum and parity are observed.

Distortions in molecular perovskites. In the context of mole-
cular perovskites, the relevant collective distortions involve con-
ventional tilts, unconventional tilts, columnar shifts, FOJT effects,
and multipolar A-site order. The combinations of distortions
capable of driving polarity are shown in Fig. 2, with an example of
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a representative child space group given for each specific com-
bination. For analysis of related third- and fourth-order coupling
schemes, see Supplementary Tables 2 and 3. Our main result is
the clear distinction in number of possibilities for inversion
symmetry breaking in molecular perovskites relative to their
conventional ceramic counterparts (inset in Fig. 2). Indeed, we
find that either multipolar order (driven by molecular substitu-
tion on the A-site) or the activation of columnar shifts (driven by
molecular substitution on the X-site) is by itself sufficient to break
inversion symmetry when correctly coupled to any other order

parameter. Hence, in the design of ferroelectric molecular per-
ovskites, molecular substitution need involve only one site (A or
X) and polar ground states are theoretically possible both for A-
site-only substituted perovskites (e.g., the organic–halide per-
ovskites) and for their X-site-only substituted cousins (e.g.,
Prussian blue analogues).

Arguably one of the easiest distortions to control from a
materials design perspective is that of A-site multipolar order.
Many common organic cations are polar—their charge being
localised on a single atom. Moreover, both rod-like (prolate) and
disc-like (oblate) cations possess quadrupole moments. This
includes common cations such as methylammonium CH3NH

þ
3

� �

,
hydrazinium NH2NH

þ
3

� �

, guanidinium C NH2ð Þþ3
� �

, and imida-
zolium. Higher-order multipoles are also possible, such as the
hexapole moment of guanidinium and the octupole moment of
ammonium and tetramethylammonium. Table 1 makes clear that
equivalent types of zone-boundary dipolar and quadrupolar order
transform as irreps with opposite sign with respect to inversion
parity. Hence, the incorporation of cations which support both
dipole and quadrupole moments gives access to a greatly
increased number of possible improper couplings to bulk
polarisation.

Oxide AzideFormateCyanideHalide ThiocyanateHypophosphite Dicyanamide Dicyanometallate

Conventional

tilts

Columnar

shifts

Jahn–Teller

distortions

Unconventional

tilts

Unconventional tilt, X5
− NH4Cd(HCOO)3Columnar shift, X5

+

Multipoles: dipole, quadrupole and hexapole

a

b

c

Fig. 1Molecular perovskites and their degrees of freedom. a A perovskite oxide with the molecular congeners shown to scale. In all cases, the A-site cation

is shown as spacefilling, with carbon in black, hydrogen in white, nitrogen in orange, and phosphorus in green. b Schematic illustrations of the various

degrees of freedom accessible to molecular perovskites. c A combination of two such distortions—an unconventional tilt (left) and columnar shift (centre)

—is responsible for the crystal symmetry of [NH4]Cd(HCOO)3 (right). Note that the unconventional tilt results in some neighbouring coordination

octahedra rotating in the same sense, which is possible only because the X-site anions are molecular

Table 1 The irreps corresponding to the different distortions

considered

Distortion Irreps

Conventional tilting Mþ
2 , R

�
5

Unconventional tilting Γþ4 , X
�
1;5, M

þ
5

Columnar shifts Γþ3;4;5, X
þ
5 , M

�
2

Jahn–Teller distortions Mþ
3 , R

�
3

Quadrupolar A-site order Γþ3;5, X
þ
2;5, M

þ
1;2;4;5, R

þ
5

Dipolar A-site order Γ�4 , X
�
3;5, M

�
3;5, R

�
4
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Relevance to polar molecular perovskites. But to what extent are
these predictions borne out in practice? There are in fact a
number of hybrid ferroelectric molecular perovskites already
reported in the literature. In Table 2 we list the various molecular
perovskites known to adopt polar structure types, and present the
corresponding irreps responsible for the emergence of polarisa-
tion (noting that it is not always possible to identify unambigu-
ously the primary order parameters from a single crystal structure
alone). We now proceed to rationalise the emergence of polar-
isation in detail for two of these systems in light of the analysis
presented above. For ease of illustration, we give two-dimensional
representations of the relevant coupling schemes in Fig. 3.

Our first experimental example is that of the formate
perovskite [NH4]Cd(HCOO)3, first synthesised several decades
ago42 and revisited more recently for its dielectric properties43.
The system crystallises in the polar space group Pna21, with the
formate anion adopting a mixed syn-anti binding mode. This
binding geometry is less prevalent than the anti-anti binding
mode typically observed for formate-bridged perovskites20,44–47,
and is related to the low tolerance factor47. The structure contains
a considerable planar shift alternating along the c direction which
is described by the irrep Xþ

5 . It also supports an unconventional
tilt, which transforms as X�

5 . These distortions yield the polar
space group Cmc21, which in combination with the conventional
in-phase tilting Mþ

2

� �

gives Pna21. Despite the fact that three
order parameters are needed to fully account for the observed
space group, the shift Xþ

5

� �

and unconventional tilt X�
5

� �

are
sufficient to account for inversion symmetry breaking.

Our second example is that of [Gua]Cu(HCOO)3 (where
Gua= C NH2ð Þþ3 ), which also crystallises with Pna21 space group
symmetry. In this case the coupling is between a cooperative
Jahn–Teller distortion and multipolar A-site order. It is the only
polar member of the family [Gua]M(HCOO)3 (M=Mn, Fe, Co,
Ni, Cu, Zn, Cd)44,48, and also the only Jahn–Teller-active member

of the same family, which immediately identifies the importance
of a collective Jahn–Teller distortion Mþ

3

� �

in the coupling
scheme. The multipolar order associated with the particular
alignment of the Gua cation couches in fact two order
parameters: the quadrupolar ordering Xþ

5 (orientation of the
guanidinium plane normal) and the hexapolar ordering R�

5
(specific orientation around the threefold axis). The role of
collective JT order in driving inversion symmetry breaking in this
system has been identified previously, as has the intriguing
possibility of magnetoelectric coupling in the hypothetical
chromium(II) analogue GuaCr(HCOO)3

49,50. Quantum mechan-
ical calculations estimate the maximum polarisation in this
system to be 0.22 μC/cm2 50, which demonstrates that the
achievable polarisations in these molecular perovskites is likely
comparable to that of the Rochelle salts, for example51.

Propolar molecular perovskites. Drawing on this concept of
inversion symmetry breaking via coupling to collective JT order,
we flag the possibility of identifying ‘propolar’ molecular frame-
works: i.e., systems such as [Gua]M(HCOO)3 with pre-existing
structural distortions (tilts, multipolar order, …) such that
superposition of JT order would be expected to give a polar state.
In addition to the guanidinium transition-metal formates dis-
cussed above, we identify two additional molecular perovskites
that satisfy this criterion for Mþ

3 -type JT order (the most fre-
quently observed). The first is the hypophosphite [Trz]Mn
(H2PO2)3 (Trz= 1,2,4-triazolium, C2N3H

þ
4 )

27, the structure of
which is described by a coupling of layered shifts Xþ

5

� �

and
conventional a− tilts R�

5

� �

. The second is the formate perovskite
[H2Im]Mn(HCOO)3 (HIm= imidazole, C3N2H4), which is iso-
structural and hence described in terms of the same distortion
modes52. In both cases, substitution of Mn for Cu might rea-
sonably be expected to drive hybrid improper ferroelectricity—a
prediction that could be tested experimentally.

A related strategy is to ask, for a given structure type, what
particular distortions need to be added to generate bulk
polarisation? Whereas the most common space group for
conventional perovskites is Pnma53, it is not yet clear what
crystal symmetry—if any—is especially prominent amongst
molecular perovskites16. Hence, we illustrate this strategy with
the Pnma perovskite structure, mindful of the possibility of
extrapolating to other structures as our collective understanding
develops. The key distortions in the Pnma structure are two
tilts—one in-phase Mþ

2

� �

and the other out-of-phase R�
5

� �

. An
additional antiferroelectric A-site cation displacement X�

5

� �

appears as a secondary order parameter. Consequently, quad-
rupolar A-site order that transforms as either Rþ

5 or Xþ
5 irreps

may provide the required coupling with the octahedral rotations
R�
5

� �

or anti-polar distortions X�
5

� �

. Alternatively, dipolar
ordering transforming as M�

3 or M�
5 could couple to the

octahedral rotations at the M-point Mþ
2

� �

. Hence, a molecular

Pnma Pmma Pbam

Cmcm

Fmm2

Ama2Pcca

Pmc21

Cmc21

P4mm P4mm

Pna21

Pmm2

Pnma Pbam

P4/mbm

l4mm

P4/mbm

Fig. 2 Coupling schemes in molecular perovskites. The accessible distortion

types are given at the top of each column and the right of each row:

conventional tilts, unconventional tilts, columnar shifts, Jahn–Teller

distortions, and multipole ordering. For each combination of distortions, a

representative space group is shown and the colour indicates whether

coupling of the two distortions can ever drive a polar distortion (green) or

not (grey). The inset shows the corresponding coupling scheme for

conventional inorganic perovskites

Table 2 A summary of known polar molecular perovskites,

their crystal symmetries, and the corresponding distortion

mode irreps

Compound Space group Irreps Ref.

NH4Cd(HCOO)3 Pna21 X�
5 Xþ

5
42

[C(NH2)3]Cu(HCOO)3 Pna21 Mþ
3 Xþ

5 R�5
44

[C(NH2)3]Cr(HCOO)3 Pna21 Mþ
3 Xþ

5 R�5
50

[NH3NH2]Mn(HCOO)3 Pna21 Mþ
2 Xþ

5 R�5
56

[NH3NH2]Zn(HCOO)3 Pna21 Mþ
2 Xþ

5 R�5
56

[EtNH3]Mn(HCOO)3 Pna21 Mþ
2 Xþ

5 R�5
45

[PrPEt3]Mn(dca)3 P212121 M�
2 X�

5 R�5
54

[MeOCH2PEt3]Mn(dca)3 P212121 M�
2 X�

5 R�5
54
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cation with both a dipolar moment and quadrupole moment,
enclosed in a Pnma perovskite, will give rise to hybrid improper
ferroelectricity, provided that the dipole moment orders at the M-
point (or, trivially, at the Γ-point) or the quadrupole moment
orders at the X- or R-point. To maximise the likelihood of such a
situation, one should choose cations with both quadrupolar and
dipolar moments, of which there are many examples; e.g.,
hydrazinium, imidazolium, and methylammonium. Steric con-
siderations will stabilise orientational order of larger cations to
lower temperatures, and design rules for controlling the type of
quadrupolar order are now starting to emerge35. Hence, judicious
choice of a molecular cation with the correct type of multipole
moment may prove an important design strategy for engineering
hybrid improper ferroelectricity.

Discussion
Hence, we can conclude that, from a group-theoretical viewpoint,
perovskites with a molecular component are remarkably predis-
posed to crystallising in polar space groups. This attractive
property is a result of the large number of polar coupling schemes
generated by distortions accessible to molecular perovskites but
inaccessible to conventional inorganic perovskites. We have
identified specific combinations of structural distortions that lead
to acentric structures and have thereby suggested possible routes
for targeted material design. In particular, we highlight explicitly
a number of propolar candidates, where the replacement of JT-
inactive for JT-active transition-metal cations is likely to drive
polarity. We have also found that either A-site quadrupolar order
or the activation of columnar shifts—features that are unique to
molecular perovskites—can drive polarisation when coupled to
conventional (Pnma-type) distortions of the perovskite structure.
There are several examples of hybrid improper ferroelectric
coupling—although not always recognised as such—already
present in the literature and we fully anticipate further examples
will continue to emerge. Despite the fact that our analysis has
been focussed on polarisation in formate perovskite analogues,
the general rules developed here extend to all molecular

perovskites and to all applications where inversion symmetry
breaking is necessary. A recent example is the development of
non-linear optics based on dicyanamide perovskite chemistry54.

Methods
Group theoretical analysis. A hypothetical aristotype molecular perovskite was
employed as our model system, with the space group Pm�3m and the (monoatomic)
A-site cation at 1a (0, 0, 0), B-site cation at 2a 1

2
;

1
2
;

1
2

� �

, and X-site anion at 6f
1
2
;

1
2
; z

� �

. The formula is thus AB(X2)3. This was used as an input to the web-based
software ISODISTORT55, and the rigid-unit modes and orbital ordering patterns
could be identified by inspection.

Multipoles may be classified as transforming as irreps of the rotational group
SO(3). In the absence of any external perturbations to the rotational symmetry (i.e.,
a completely spherically symmetric crystal field), monopoles (angular component
of s orbital) transform as a singly degenerate irrep, dipoles (p) as triply degenerate,
quadrupoles (d) as 5-fold degenerate, etc. To determine the effect on the irreps of
lowering the symmetry of SO(3), such as what occurs at any site symmetry in any
crystallographic group, we can use descent of symmetry tables. For quadrupoles, if
one or more of the irreps enters the symmetric representation (A1g), then we may
consider the action of lowering the point group symmetry to have resulted in
multipolar order (and this is how we define quadrupolar order in the context of
this paper). In the aristotype ABX3 Pm�3m structure, quadrupoles (i.e., d-orbitals)
centred at A/B transform as Eg and T2g while at X they transform as A1g, B1g, B2g,
Eg. Hence, the problem of determining whether a given irrep of space group Pm�3m
implies quadrupolar order is reduced to determining whether its action as a
primary order parameter is sufficient to lower the point-group symmetry at A/B/X
such that an additional quadrupole (degree of freedom) enters the totally
symmetric representation.

In order to ensure that all relevant irreps for quadrupolar (or multipolar) orders
were considered, a dummy atom was placed on 48n (x, y, z) in order to mimic
electron density in the unit cell at the most general position. We use a setting where
the A-site is located at the origin of the perovskite unit cell (see Supplementary
Table 1 for conversion to the other setting). For each relevant point of the Brillouin
zone, we test in turn the action of an order parameter transforming as one of these
irreps, and list its effect on lowering the point group symmetry at A, B, and X, and
hence the degree of quadrupolar order to which they correspond. We start by
considering the Γ-point irreps, a process which corresponds to ascertaining the
relationship between lattice strain and multipolar order. Next, we consider high-
symmetry order parameter directions (OPDs) for the zone-boundary irreps which,
where possible, we choose such that there are no secondary order parameters. This
is important, since many primary order parameters transforming as zone-
boundary irreps will imply a lattice strain and hence indirectly induce quadrupolar
order at the Γ-point, but do not themselves correspond to such a ordering at the X/
M/R-points. Where it is not possible to find a high-symmetry OPD with associated

3D 3D

Unconventional tilt Multipolar orderJahn-Teller distortionColumnar shift

Aristotype

p4mm

pgpg

p4gmp2gm p2gm p2gm

Pna21 Pna21

Fig. 3 Inversion symmetry breaking in 2D molecular perovskites. Left: both unconventional tilting and columnar shifts yield the plane group p2gm, but with

different origins. When coupled together, the resulting plane group is pg, which lacks inversion symmetry. A conceptually related combination of octahedral

tilts and shifts is responsible for inversion symmetry breaking in [NH4]Cd(HCOO)3, which crystallises in Pna21. Right: a C-type cooperative Jahn–Teller

distortion lowers 2D molecular perovskite symmetry to p4gm, whereas antiferrohexapolar order gives a p2gm cell with a different origin. When combined,

the two distortions generate the polar plane group pg. This is a 2D analogue of the hybrid coupling found in GuaCu(HCOO)3
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isotropy subgroup without secondary order parameters (SOPs), a process of
elimination is used, subtracting the degree of quadrupolar ordering implied by each
SOP in turn. In such a manner it was possible to identify unambiguously which
irreps were associated with quadrupolar order.

Data availability. All data generated or analysed during this study are included in
this published article (and its Supplementary Information files).
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