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Abstract— In this paper a method for distributed reciprocal
collision avoidance among multiple non-holonomic robots with
bike kinematics is presented. The proposed algorithm, bicycle
reciprocal collision avoidance (B-ORCA), builds on the concept
of optimal reciprocal collision avoidance (ORCA) for holonomic
robots but furthermore guarantees collision-free motions under
the kinematic constraints of car-like vehicles. The underlying
principle of the B-ORCA algorithm applies more generally to
other kinematic models, as it combines velocity obstacles with
generic tracking control. The theoretical results on collision
avoidance are validated by several simulation experiments
between multiple car-like robots.

I. INTRODUCTION AND RELATED WORK

In this paper, a novel collision avoidance strategy for a

group of car-like robots is presented. Various application

areas throughout research and industry have seen an ever-

growing interest in mobile robots. Industrial and service

robots are mostly non-holonomic, and often designed as

car-like vehicles. A particular example of car-like vehicles

deployed in an industrial setting are the MagneBikes [1],

compact robots with bicycle kinematics designed for the

collaborative inspection in power plants. This and all other

applications, where multiple car-like robots interact in their

workspaces, require reciprocal collision avoidance methods.

Moving a vehicle on a collision-free path is a well-

studied problem in robot navigation. The work in [2], [3]

and [4] presents representative examples of collision avoid-

ance methods for single mobile robots. Basically, similar

approaches as in the single robot cases can be applied

in the context of collision avoidance for multiple robots.

However, the increase in robot density and collaborative

interaction needs methods that scale well with the number

of robots and avoid collisions as well as oscillations. The

collision avoidance approaches are extended in [5] among

others for multiple robots by decoupling path planning and

coordination. In this line, [6] presented a method based

on velocity profiles and scheduling to navigate several cars

in a common environment. Collisions are then avoided but

some of the cars need to pause and stop completely to let

others move ahead freely. Other work investigated potential

fields [7] and cooperative control laws [8] to direct a group

of robots to their objectives while avoiding collisions. De-

centralized control helps lowering computational cost and

introduces additional robustness and flexibility to the multi-

robot system. The problem of navigating car-like robots in
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dynamic scenarios has also been studied, with a great interest

in navigation among humans [9]. A successful approach for

this kind of scenarios based on a dynamic window was

proposed in [10].

Our approach builds on Optimal Reciprocal Collision

Avoidance (ORCA) [11] for holonomic robots and extends

it to robots with car-like kinematics by using a trajectory

tracking control [12], which is specific for this type of kine-

matics. However, the concepts here proposed apply to other

kinematic models in general since the trajectory tracking

controller is seen as a module that can be replaced to adapt

the collision avoidance method to the particular kinematics of

other systems. ORCA is a collaborative collision avoidance

method based on velocity obstacles, where each holonomic

robot makes a similar collision avoidance reasoning and

collision-free motion is guaranteed without oscillations. Fur-

thermore, in our approach, ORCA could be substituted by

other sampling-based collision avoidance methods, such as

Reciprocal Velocity Obstacles [13] or Hybrid Reciprocal

Velocity Obstacles [14].

A formal extension of ORCA to differentially-driven

robots was presented by the authors in [15]. That work

shares with this paper the idea of extending ORCA to

robots with non-holonomic kinematics by tracking a holo-

nomic trajectory. ORCA was also extended to navigating

simple airplanes with car-like kinematics in 3D space [16],

where a set of trajectories is precomputed. Nevertheless,

safety is not fully guaranteed as collisions may arise in

the transient before reaching the desired velocity. In this

paper we introduce a formal approach where this is taken

into account by enlarging the radius of the robots. As an

alternative, [17] presented the acceleration velocity obstacles

for agents with holonomic acceleration capabilities, which

explicitly takes into account acceleration limits and results

in trajectories with continuous velocity (this was not the case

for RVO and ORCA). Nevertheless, it does not generalize to

general kinematics and cannot be directly applied to car-

like vehicles. In contrast, in our approach the continuity in

velocity and actuators is achieved thanks to the trajectory

tracking strategy.

In contrast to purely deterministic methods, in [18] a

method for recursive probabilistic velocity obstacles is stud-

ied, and in [19] collision-free trajectories are found by using

Gaussian processes.

The remainder of the paper is structured as follows.

Section II gives an overview of our collision avoidance

algorithm. Section III describes the kinematics of the robot,

whereas Section IV presents the trajectory tracking controller

and Section V gives an overview of optimal reciprocal



collision avoidance for holonomic robots. In Section VI the

B-ORCA algorithm is described in detail. In Section VII the

simulation experiments are discussed. Finally, Section VIII

concludes and gives an outlook on our future work.

II. OVERVIEW OF THE B-ORCA ALGORITHM

Bicycle reciprocal collision avoidance (B-ORCA) presents

an efficient method for avoiding collisions in a scenario

with multiple car-like robots. The method is fully distributed

and the information required by each robot in order to

avoid collisions includes the position, velocity and radius

of its neighbors. The B-ORCA algorithm does not only

offer oscillation-free reciprocal collision avoidance among

multiple possibly heterogeneous robot units (i.e. the robot

kinematics may not be of the same type), but also avoids

collisions with dynamic and static obstacles.

Likewise to [15], the main idea is that a robot with

given kinematic constraints is able to track a holonomic

trajectory within a certain maximum error bound. Therefore,

by enlarging the radius of the robot by this bound, it can be

treated as holonomic. In this case, a collision-free trajectory

is efficiently computed following [11]. By using a standard

trajectory tracking controller [12] and precomputing the

maximum tracking errors, a set of holonomic trajectories is

obtained that can be tracked within the given maximum error

bound. This set is introduced as a further constraint in the

selection of collision-free inputs for the robot. Furthermore,

the controller of [12] guarantees continuity in the driving

velocity and acceleration of the robot, as well as in the

steering angle, and respects the kinematic limits (maximum

driving velocity, driving acceleration, steering angle and

steering velocity) of the vehicle. Nevertheless, likewise to

ORCA, a circular robot-shape is required.

III. ROBOT KINEMATIC MODEL

In this work the robots are considered to be non-holonomic

car-like vehicles. A simplified car model with a fixed rear

wheel and a steerable front wheel, as shown in Figure 1,

is used. The generalized coordinates are q = (x, y, θ, φ),
where x, y represent the position of the rear wheel, θ the

orientation of the car and φ the steering angle. If the car

of length L has rear-wheel driving, the kinematic model is

given (in accordance with [12]) by
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where v1 and v2 are the driving and steering velocity inputs,

respectively. The model singularity at φ = ±π/2 is avoided

by restricting the range of the steering angle to |φ| < φmax <
π/2. Furthermore, both inputs are limited to |v1| ≤ vmax

1
and

|v2| ≤ vmax
2

, as well as the driving acceleration |v̇1| ≤ amax
1

.

The parameters of the bicycle robots (see Section IV-D)

used in the simulation experiments of this work are those

of the inspection robot MagneBike as described in [20] and

those of a faster car-like vehicle.

Fig. 1. Schema of a car-like robot, with extended radius ǫ and desired
velocity vd . Its middle point is denoted by p.

IV. TRAJECTORY TRACKING

One of the underlying concepts of the B-ORCA algorithm

is that a car-like robot tracks a constant-speed straight-line

trajectory while staying within a known tracking error.

A. Trajectory tracking controller

The trajectory tracking controller [12] is obtained by

applying full-state linearization via dynamic feedback to the

non-linear system of Equation (1).

The two system outputs and their derivatives are given by

z =

[

x
y

]

, ż =

[

ξ1 cos θ
ξ1 sin θ

]

,

z̈ =

[

−ξ2
1
tanφ sin θ/L+ ξ2 cos(θ)

ξ2
1
tanφ cos θ/L+ ξ2 sin(θ)

]

, (2)

with ξ1 and ξ2 two integrators added to the system. It can

be seen that the dynamic controller takes the form

v1 = ξ1

v2 = −3ξ2 cosφ
2 tanφ/ξ1 − Lr1 cosφ

2sinθ/ξ2
1

+Lr2 cosφ
2 cos θ/ξ2

1

ξ̇1 = ξ2

ξ̇2 = ξ3
1
tanφ2/L2 + r1 cos θ + r2 sin θ, (3)

where the feedback terms ri (i = 1, 2) are given by

ri =
...
z d,i + ka,i(z̈d,i − z̈i) + kv,i(żd,i− żi) + kp,i(zd,i − zi),

(4)

where zd, żd, z̈d and
...
z d are computed for the desired

trajectory to track (see Section IV-B). The feedback gains

are such that the polynomials

λ3 + ka,iλ
2 + kv,iλ+ kp,i, i = 1, 2, (5)

are Hurwitz (all roots of the polynomial are real negative).



−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

v
d,x

 [m/s]

Maximum tracking error for v
0
= −4m/s ; φ = −25

o

 

v
d
,y

 [
m

/s
]

−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

v
d,x

 [m/s]

Maximum tracking error for v
0
= −4m/s ; φ = 0

o

 

v
d
,y

 [
m

/s
]

−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

v
d,x

 [m/s]

Maximum tracking error for v
0
= 0m/s ; φ = 0

o

 

v
d
,y

 [
m

/s
]

5

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 2. Maximum tracking errors in [m] for a desired trajectory given by vd ∈ V and saturated at 5m. From left to right, the initial driving velocity v0
and the steering angle φ vary from (v0, φ) = (−4m/s, −25 ◦) , (−4m/s, 0 ◦) to (0m/s, 0 ◦). Images best viewed in color.

Furthermore, recall [12] that this controller allows for

parking maneuvers. Constraints in maximum steering angle,

driving and steering velocity inputs and driving acceleration

are directly added by saturating the respective variables (φ,

ξ1, v2 and ξ2).

B. Tracking of constant-speed straight-line trajectory

Due to position and rotation invariance, consider a car

initially centered at the origin (p(0) = 0) and with orientation

θ(0) = 0. Consider a desired straight-line trajectory given

by a constant velocity vd and passing through p(0). Denote

vd = ‖vd‖ and θd = atan2 (vd). The feedback terms of

Equation (4) are then given by

r1(t) = −ka,1z̈1(t) + kv,1(vd cos θd − ż1(t))

+kp,1((vdt− s1L/2) cos θd − z1(t))

r2(t) = −ka,2z̈2(t) + kv,2(vd sin θd − ż2(t))

+kp,2((vdt− s1L/2) sin θd − z2(t)), (6)

where s1 = 1 if the car to be tracked is considered to move

forward and s1 = −1 otherwise. This ambiguity appears

because the trajectory to be tracked is given with respect to

the center of the robot, whilst the controller is designed for

rear-wheel tracking.

The initial conditions of the variables are given by

z(0) =

[

L
2
cos θ(0)

L
2
sin θ(0)

]

; ξ(0) =

[

v0
a0

]

(7)

where v0 = v1(0) and a0 = v̇1(0) are the driving velocity

and acceleration respectively. In our implementation, we

choose s1 = sign (cos θd cos θICR + sin θd sin θICR) where

θICR = sign (φ)(π/2 − |atan (2/| tanφ|)|) + θ(0) is the

angle between the abscissa and the perpendicular to the line

formed by the instantaneous center of rotation (ICR) and the

middle point p(0) of the vehicle at initial time. As a further

simplification, in our experiments, we consider a0 = 0, thus

guaranteeing continuity in velocity but not in acceleration.

Despite the initialization, it may occur that the tracking

robot and the tracked virtual car move with opposite ori-

entations, i.e. one forward and one backward. This would

lead to perfect tracking of the rear wheel but large error in

the tracking of the reference robot center point. In order to

compensate, if this situation is detected (cos θd cos θ(t) +
sin θd sin θ(t) < 1), the velocity of the tracked point zd
is temporally increased, or decreased respectively, until the

orientation of the reference car is reversed. Note that the

center point of the reference car always moves at speed vd.

C. Achievable velocities

Given the initial conditions of the robot (initial driving

velocity v0 and steering angle φ) and the desired velocity

vd ∈ V ⊂ R
2, its trajectory subject to the controller

presented in this section is simulated and the maximum

tracking error in the robot center point is computed. For given

φ and v0, the set of precomputed tracking errors for vd ∈ V
is denoted by Eφ,v0 . Consider

Vφ,v0,ε = {vd ∈ V | Eφ,v0(vd) ≤ ε}, (8)

the subset of V of velocities that can be tracked with an

error lower than ε (computed with respect to the robot center

point).

We consider the discretizations V = [−vmax
1

: ∆v1 :
vmax
1

]2, φ ∈ Φ = [−φmax : ∆φ : φmax] and v0 ∈ V0 =
[−vmax

1
: ∆v1 : vmax

1
]2. For φ ∈ Φ, v0 ∈ V0 and vd ∈ V ,

the trajectories of the car-like robot are simulated, and the

maximum tracking errors precomputed and stored in a look-

up table. Note that this computation is expensive, but is done

off-line and only once for the kinematics of a given robot.

In our simulations, the feedback gains of Equation (5) are

computed such that all roots equal to -1 (MagneBike) and

-2.5 (fast car).

In Figure 2, the maximum tracking errors obtained for

the kinematics of the fast car are visualized for (v0, φ) =
(−4m/s, −25 ◦) , (−4m/s, 0 ◦) and (0m/s, 0 ◦). Note that due

to symmetry, the tracking errors only need to be computed

for one half of the full range of steering angles φ, e.g. φ ∈
[−φmax, 0 ◦]. However, the same does not hold true for the

driving velocities.

Figure 3 shows the tracking errors for the MagneBike

robot. Here continuity in speed is not imposed, which results
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Fig. 3. Maximum tracking errors in [m] for a desired trajectory given by
vd ∈ V , here shown for φ = −45 ◦. In the case of MagneBike, v0 is set
to s1vd , and thus precomputation includes varying steering angles only.

in sets that are clearly different from the sets of the car

illustrated in Figure 2 (see also Section IV-D below).

It is observed that the areas of best tracking are strongly

related to the steering angle of the front wheel, which has

an impact in the maneuverability of the robot.

D. Parameters for the simulated vehicles

The parameters for the simulated vehicles are as follows.

1) Car: φmax = 30o, vmax
1

= 5m/s, vmax
2

= 30o/s,

amax
1

= 2m/s2, L = 2m, ∆φ = 1o, ∆v1 = 0.25m/s.

2) MagneBike: φmax = 85o, vmax
1

= 0.045m/s, vmax
2

=
33o/s, L = 0.25m, ∆φ = 5o, ∆v1 = 0.0025m/s.

For the MagneBike, unconstrained acceleration is considered.

To allow for discontinuities in driving velocity, in Equa-

tion (7), the initial conditions may be rewritten as ξ(0) =
[s1vd, 0].

V. RECIPROCAL COLLISION AVOIDANCE FOR

HOLONOMIC ROBOTS

B-ORCA relies on the concept of Optimal Reciprocal

Collision Avoidance (ORCA) for holonomic robots presented

by [11]. In this section an overview of ORCA is given.

Consider a group of N disk-shaped robots with radius ri
at position pi and with current velocity vi. Further consider

each robot has a preferred velocity v
pref
i towards its goal

position.

The velocity obstacle for robot i ∈ [1, N ] induced by any

other robot j 6= i is defined as the set of relative velocities

v̄ = vi − vj leading to a collision within a time-horizon τ

V Oτ
i|j =

{

v̄ | ∃t ∈ [0, τ ] , t · v̄ ∈ D(pj − pi, ri + rj)
}

,
(9)

where D(p, r) = {q | ‖q − p‖ < r} is the open ball of radius

r centered at p. The set of collision-free velocities ORCAτ
i|j

for robot i with respect to robot j can be geometrically

constructed from V Oτ
i|j . First, the minimum change in

velocity

u = (argmin
v̄∈∂V Oτ

i|j

‖v̄ − (vopti − v
opt
j )‖)− (vopt

i − v
opt
j ) , (10)

Fig. 4. Constraints in velocity space generated by ORCAτ
i|j

from multiple

robots. The region of collision-free velocities ORCAτ
i is highlighted and

v∗i is displayed.

which needs to be added to v̄ to avoid a collision, is

computed. v
opt
i is the optimization velocity, set to the current

velocity vi of the robot. From our experience with ORCA,

this choice gives good results. It can further be seen that

ORCAτ
i|j = {vi|(vi − (vopti + λi,ju)) · n ≥ 0} (11)

where n denotes the outward normal of the boundary of

V Oτ
i|j at (vopt

i − v
opt
j ) + u, and λi,j defines how much

each robot gets involved in avoiding a collision (where

λi,j + λj,i = 1). λi,j = λj,i = 0.5 means both robots

help to equal amounts to avoid colliding with each other;

λi,j = 1 means robot i fully avoids collisions with a dynamic

obstacle j. Likewise, the velocity obstacle can be computed

for static obstacles [11].

ORCAτ
i , the set of collision-free velocities for robot i is

then given by

ORCAτ
i = D(0, V max

i ) ∩
⋂

j 6=i

ORCAτ
i|j , (12)

Figure 4 shows the set ORCAτ
i for a configuration with

multiple robots.

The optimal collision-free velocity for robot i is given by

v∗
i = argmin

v∈ORCAτ
i

‖v − v
pref
i ‖. (13)

This optimization with linear constraints can be efficiently

solved, returning a convex and compact set ORCAτ
i and a

collision-free velocity v∗
i . In order to avoid reciprocal dances,

one of the sides of V Oτ
i|j may slightly be enlarged to avoid

the symmetry. In our case, V Oτ
i|j is enlarged by 0.001m/s

to one side.

VI. THE B-ORCA ALGORITHM

The B-ORCA method first of all precomputes the tracking

errors Eφ,v0 with respect to the straight-line trajectories

defined by the velocity vectors vd ∈ V for all possible

initial steering angles φ ∈ Φ and initial velocities v0 ∈
V0 following Section IV-B. In this step the kinematics of

the robot are taken into account. As the velocities to be

tracked are considered relative to a robot’s orientation, the



Fig. 5. Trajectories of ten car-like robots exchanging antipodal positions on a circle. Left: Experiment 1 with car-like vehicles. Middle: Experiment 1
with MagneBikes. Right: Experiment 2, where one car is non-reactive (straight-line trajectory in red), thus ignoring the other robots.

previously obtained tracking errors are not only invariant to

the position of the robot but also to its current orientation. In

the following, Eφi,v0 is expressed in a relative frame oriented

with θi, whilst ORCAτ
i is computed in the global reference

frame.

In every iteration of the collision avoidance stage, each

robot reads out its sensors and gains knowledge about

its internal state, given by its position pi, orientation θi,
steering angle φi, current velocity vi, preferred velocity

v
pref
i , current driving velocity v0 = v1, radius ri and desired

radius extension ε̂i. Furthermore, each robot obtains from

its neighbors via communication or sensing their position

pj , current velocity (or velocity estimate) vj and extended

radius rj + εj .

Given a group of N robots, with known aggressiveness

λi,j , fixed maximum time to collision τmax and sensing

range dmax, assume a known fixed update rate of the

controller of dtc and of the sensing of dts, with dtc << dts.

The following steps are computed independently by each

robot in every iteration:

1) A preferred velocity v
pref
i towards the goal is obtained.

2) The extended radius ri + εi is set to ri +
minj (ε̂i, (d(i, j)− ri − rj)/2), where d(i, j) denotes

the distance (middle points) from robot i to robot j.

3) All robots (including robot i) within dmax are consid-

ered as holonomic robots of radius rj + εj . Following

Section V the set ORCAτ
i is computed.

4) A new collision-free velocity vi is computed, such that

it is closest to v
pref
i and such that it verifies vi ∈

ORCAτ
i ∩ Vφi,v0,εi . Thus,

vi = argmin
v∈ORCAτ

i
∩Vφi,v0,εi

‖v − v
pref
i ‖. (14)

5) The trajectory given by vi is tracked with control

update rate dtc, as described in Section IV.

If ORCAτ
i ∩ Vφi,v0,εi = ∅, the time to collision τmax is

reduced (τmax = τmax/2), and steps 3) and 4) are repeated.

If τmax reaches a minimum admissible value τmin
max ≥

vmax
1

/amax
1

, the problem is considered unfeasible and robot

i decelerates at maximum acceleration. If this is the case

for robot i, all other robots must fully avoid collisions with

it in the coming time steps while its optimization remains

unfeasible; this is achieved by temporally setting λj,i = 1
for every other robot j.

A. Implementation details on step 4) of B-ORCA

Depending on the complexity of Vφi,v0,εi , two options are

discussed below.

1) Polygonal approximation of Vφi,v0,εi: Likewise to

[15], the set Vφi,v0,εi may be approximated by a convex

polygon Pφi,v0,εi ⊂ Vφi,v0,εi (or by two convex polygons

respectively). If the approximation is accurate, step 4) of B-

ORCA can be efficiently computed as an optimization with

linear constraints given by Pφi,v0,εi and ORCAτ
i . This is

the case for the sets depicted in Figure 2.

2) Sampling of Vφi,v0,εi : For complex sets Vφi,v0,εi

where a convex polygonal approximation is over-restrictive,

the optimization can be solved by sampling. This is the case

for the sets depicted in Figure 3.

As a naive approach, starting from the velocity v
pref
i

and searching the discrete space ORCAτ
i ∩ Vφi,v0,εi for

the closest velocity vi could computationally be expensive.

Nevertheless, vi can be efficiently computed. First, v∗
i is

obtained solving the optimization with linear constraints

given by Equation (14). Then, the procedure in step 4) of the

algorithm continues with a constrained wave expansion from

v∗
i as follows: An ordered list is initialized with v ∈ V as the

closest velocity to v∗
i according to a given distance metric,

and all its neighbors are added keeping ascending order in

distance. While the list is non-empty the first velocity v

of the list (with minimum distance to v∗i ) is checked. If v

verifies a set of linear constraints, i.e. v ∈ ORCAτ
i , the list

is expanded with the neighbor velocities of v. If v further

verifies the precomputed Eφi,v0(v) ≤ εi, i.e. v ∈ Vφi,v0,εi ,

then v is directly returned as the collision-free velocity vi.

This search method is bounded to the convex polygon

given by ORCAτ
i , and thus the optimal velocity is found

in a few steps unless ORCAτ
i ∩ Vφi,v0εi = ∅, where no

solution exists.

B. Remarks on the B-ORCA algorithm

Remark 1 (Collision-free): B-ORCA guarantees collision

-free trajectories. In each time-step, the planned straight-



line trajectories given by vi are collision-free for holonomic

robots of radius ri + εi. Further, the trajectory of each car-

like robot stays within εi of the planned straight line. This

guarantees that the distance between two robots is greater

than the sum of their radii, thus requiring step 2) of B-

ORCA. After each time-step a new collision-free trajectory

is computed, leading to more complex global paths.

Remark 2 (Kinematic continuity): B-ORCA guarantees

trajectories with continuity in (at least) velocity and steering

angle, and fully respects the kinematic constraints and limits

in actuators, velocities and accelerations. This properties

follow from the controller presented in Section IV.

Remark 3 (Convergence): Convergence to goal destina-

tions is not fully guaranteed in a reasonable time. Deadlock

situations may result when the robot’s collision-free velocity

closest to its preferred velocity tends to zero or Vφi,v0εi

is over-restricted. This can be resolved by choosing a new

preferred velocity given by a global path planner.

VII. SIMULATION RESULTS

A set of simulated experiments has been conducted to

show the performance of the proposed B-ORCA algorithm.

The simulated bicycles and car-like vehicles are governed by

the kinematics and parameters of Section III and Section IV.

Furthermore, the following parameters are chosen for the

simulations:

1) Car: τmax = 10s, τmin
max = 2s, dmax = 35m, dtc =

0.025s, dts = 0.2s and ε̂i = 1m.

2) MagneBike: τmax = 30s, τmin
max = 4s, dmax = 2m,

dtc = 0.1s, dts = 1s and ε̂i = 0.05m.

The desired extension ǫ̂ of the robots’ radii is selected

as a value that presents a good trade-off between radius

enlargement and maneuverability for the considered robots.

Although the aggressiveness λi,j can be variable, it is chosen

as λi,j = 0.5 for every pair of robots in the presented

simulations, and thus all robots take the same responsibility

in avoiding collisions.

Three experiments are presented in this work, all of them

performed with ten simulated vehicles of both types (cars

and MagneBikes), as follows:

• Experiment 1: Exchange of antipodal positions on a

circle.

• Experiment 2: Exchange of antipodal positions on a

circle; one robot acts as dynamic obstacle and does not

perform any collision avoidance. The remaining nine

robots take full responsibility (λi,j = 1) in avoiding it.

• Experiment 3: All robots start from random positions,

orientations and steering angles and move to random

goal positions.

In all of the experiments, uniform noise in position of

amplitude 0.1m for the cars and 0.01m for the MagneBikes

is added.

In the left of Figure 5 the trajectories of all ten simulated

cars, and in the middle of Figure 5 the trajectories of all ten

simulated MagneBikes are displayed for the first experiment.

Finally, on the right of Figure 5 the trajectories of the cars

are shown for the second experiment, where one of the cars

Fig. 6. Trajectories of ten car-like robots starting from a random
configuration and moving to random goal positions. The straight line and
dashed line trajectories represent the middle and rear-wheel points of the
cars, respectively. The robots are displayed in their initial configurations and
goal positions are represented by red circles.

is non-reactive and follows a straight-line trajectory towards

its goal.

These experiments all present extreme symmetry and are

thus challenging. B-ORCA performs best in more natural

scenarios, where robots are in any position with any ori-

entation and steering angle, and the velocity-based local

collision avoidance provides a simple solution. In Figure 6

the trajectories of the third experiment are shown. In this

case, the ten cars start from a random configuration and

evolve towards a set of random goals. The paths are again

smooth. The robots are stopped in the proximity of their

goals because the controller of Section IV is designed for

trajectory tracking. In order to have perfect convergence,

a position controller must be applied when reaching the

neighborhood of the goals.

In the accompanying video, all three experiments are

presented in full length for both vehicle types, where for

each robot three arrows are plotted, representing vprefi (red),

v∗i (blue) and vi (black).

We have further implemented the B-ORCA algorithm

under ROS1, and are currently experimenting on collision

avoidance with several real MagneBike robots [20], [1].

VIII. CONCLUSION AND FUTURE WORK

In this work, a distributed method for reciprocal local

collision avoidance among bicycle or car-like robots, so-

called B-ORCA, is presented, where each individual robot

does not need information about the kinematics of other

robots. The method guarantees collision-free motions and

achieves smooth trajectories as shown in simulated experi-

ments with ten MagneBike and ten car robots. The method

1www.ros.org



relies on the ORCA algorithm that computes a collision-

free velocity as if the robots were holonomic. The method

further relies on a trajectory tracking controller for car-like

vehicles, which could essentially be substituted by any other

tracking controller for kinematic constraints different than

those presented in this paper.

Furthermore, reciprocal collision-free motions are guar-

anteed in heterogeneous groups of robots with car-like

robots running B-ORCA, navigating in an environment with

differentially-driven robots running NH-ORCA [15] and

holonomic robots running ORCA [11]. Moreover, collisions

with both dynamic and static obstacles are avoided, except

in the cases of unfeasibility when due to the kinematic

constraints of the robot, no solution exists. Nevertheless, in

order to avoid deadlocks in a scenario with static obstacles,

a global path planner is required.

Further research is needed in solving deadlock situations

in extremely crowded situations. For less controlled envi-

ronments, or a full integration of sensing and actuation, the

method must also be extended to compensate for uncertain-

ties and communication delays.
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