
Reciprocal Collision Avoidance for Robots with Linear Dynamics

using LQR-Obstacles

Daman Bareiss Jur van den Berg

Abstract— In this paper we present a formal approach to
reciprocal collision avoidance for multiple mobile robots sharing
a common 2-D or 3-D workspace whose dynamics are subject to
linear differential constraints. Our approach defines a protocol
for robots to select their control input independently (i.e.
without coordination with other robots) while guaranteeing
collision-free motion for all robots, assuming the robots can
perfectly observe each other’s state. To this end, we extend the
concept of LQR-Obstacles (which is a generalization of Velocity
Obstacles to robots with dynamics for collision avoidance
among static obstacles) for reciprocal collision avoidance among
multiple robots. We implemented and tested our approach in
3-D simulation environments for reciprocal collision avoidance
of quadrotor helicopters, which have complex dynamics in 16-
D state spaces. Our results show that our approach enables
collision avoidance among over a hundred quadrotors in tight
workspaces at real-time computation rates.

I. INTRODUCTION

Collision avoidance is a fundamental problem in (mo-

bile) robotics. The problem can generally be defined in the

context of an autonomous mobile robot navigating in an

environment with obstacles and/or other moving entities,

where the robot employs a continuous sensing-control cycle.

In each cycle, the robot must compute an action based

on its local observations of the environment, such that it

stays free of collisions with the moving obstacles and the

other robots and progresses towards a goal. Many works in

robotics have addressed the problem of collision avoidance

with moving obstacles [5], [6], [8], [15]. However, such

approaches are insufficient for multi-robot settings, where the

robot encounters other robots that also make decisions based

on their surroundings: considering them as moving obstacles

overlooks the fact that they react to the robot in the same way

as the robot reacts to them, and inherently causes undesirable

oscillations in the motion of the robots [19]. Specifically

accounting for the reactive nature of the other robots while

not relying on coordination among robots is called reciprocal

collision avoidance, in which robots are typically given half

the responsibility of avoiding pairwise collisions. However,

approaches that in fact guarantee collision avoidance have so

far been limited to robots with specific and simple dynamics,

such as holonomic [20], differential-drive [1], [16], car-like

[2], and double-integrator [10], [21] robots.

In this paper, we present an approach for reciprocal

collision avoidance for multiple robots with arbitrary linear
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Fig. 1. Simulation results of two quadrotors reciprocally avoiding collisions
while exchanging positions with each other. The quadrotors choose to avoid
collisions by passing beside each other.

dynamics. Our approach takes an adapted, relative formu-

lation of the concept of LQR-Obstacles [22] (which is a

generalization of Velocity Obstacles [5] to robots with linear

dynamics) and extends it to reciprocal collision avoidance

among multiple robots, by following a generalization of the

approach of [21] (which only applied to robots with double-

integrator dynamics). Our approach works for any number

of robots with linear or linearizable dynamics and state

spaces of any dimension in both 2-D and 3-D environments,

and allows robots to fully navigate independently (without

explicit coordination with other robots, unlike [18]) while

guaranteeing collision-free motion for all robots, assuming

the robots can perfectly observe each other’s state.

While our approach is designed for linear dynamics sys-

tems in general, we will demonstrate the potential of our

approach on quadrotor helicopters, which operate in 3-D

environments and have complex underactuated dynamics in

16-D state spaces with a 4-D control input. Algorithms

and controllers have been developed allowing quadrotors

to fly aerobatic maneuvers, perching and landing, avoid

collisions with static and moving obstacles, fly in formation,

and collaboratively manipulate objects [4], [11]–[14], [17].

While some of these results involved multiple quadrotors

flying in a common workspace, their motions were typically

centrally coordinated to make sure that collisions among

quadrotors (or situations in which quadrotors fly in each

other’s downwash [9]) are avoided. Purely independent nav-

igation, where each quadrotor observes its environment by

itself and makes autonomous control decisions that guarantee

collision avoidance with other quadrotors without mutual

communication or coordination (much like humans do while

walking on campus), has to date not been achieved. Our

simulation results indicate that our approach can success-

fully compute smooth, collision-avoiding, and goal-directed

motions for more than one hundred quadrotors in tight

environments. Also, as each quadrotor computes its control

inputs independently, the computations can be performed in
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parallel and at real-time rates.

The rest of this paper is organized as follows. In Section III

we review LQR-Obstacles, and in Section IV this concept is

extended for reciprocal collision avoidance among multiple

robots. We discuss implementation details and simulation

results in Section V, and conclude in Section VI.

II. NOTATION AND DEFINITIONS

We use the following notational conventions in this paper.

Vector sets A are denoted using calligraphics, vectors a are

denoted using boldface, matrices A are denoted using upper

case italics, and scalars a are denoted in lower-case italics.

Scalar and matrix multiplication, and Minkowski sums of

sets are defined as:

aX = {ax | x ∈ X}, AX = {Ax | x ∈ X}, (1)

X ⊕ Y = {x+ y | x ∈ X ,y ∈ Y}. (2)

It follows that A⊕ {a} denotes a translation of a set A by

a vector a.

We define the following concepts. Let X ⊂ R
n be the

state space of the robots, and let Rd, where typically d = 2
or d = 3, be the physical workspace the robots operate in.

Let us assume, with some loss of generality, that the position

pi ∈ R
d and the velocity vi ∈ R

d of robot i are part of its

state xi ∈ X , and that they are obtained by pi = Cxi and

vi = V xi, respectively, for given projective matrices C ∈
R

d×n and V ∈ R
d×n. Further, let us assume that only the

position of the robot determines its geometric appearance in

the workspace (and not its orientation, for instance), and let

Oi ⊂ R
d be the geometry of robot i relative to its reference

point (its position). Let U ⊂ R
m be the valid control input

space of the robots, which we assume is convex and defined

by the intersection of a set of linear constraints:

U =
⋂

k {u |aTk u < bk}, (3)

where ak ∈ R
m and bk ∈ R. Lastly, let the dynamics of

the robots be given by a deterministic discrete-time linear

model:

xi[t+ 1] = Axi[t] +Bui[t], (4)

where xi[t] ∈ X is the state and ui[t] ∈ U is the control input

of robot i at time t. Matrices A ∈ R
n×n and B ∈ R

n×m are

constant and the same for all robots.

These assumptions are reasonable for mobile robots,

which we focus on this paper. For a quadrotor helicopter,

for instance, the state may consist of its position, velocity,

orientation, and angular velocity, its control input may be

the thrust of each of the four rotors whose constraints are

defined by a maximum and minimum thrust for each of the

rotors, and its geometry can be described by an enclosing

sphere, such that its orientation is irrelevant for its geometric

appearance. A linear dynamics model can reasonably be

obtained for a quadrotor by linearizing its true dynamics

about the hover point.

III. COLLISION AVOIDANCE WITH LQR-OBSTACLES

The concept of LQR-Obstacle was introduced in [22] for

collision-avoidance of robots with linear dynamics with static

obstacles. It was defined as the set of target positions for

the robot that will result in a collision with the obstacles

if the robot is LQR-controlled towards that target. In this

section, we derive relative LQR-Obstacles that will be used

for reciprocal collision avoidance. It is defined here in terms

of the set of target velocities that will result in collision,

rather than the set of target positions.

A. LQR Feedback Control

Let v⋆
i ∈ R

d denote a target velocity robot i wishes

to reach. For systems with linear dynamics of Eq. (4), an

infinite-horizon LQR feedback controller can optimally con-

trol the robot towards this target velocity given a quadratic

cost function that trades-off reaching the target quickly

versus not applying extreme control inputs:
∑∞

t=0((V xi[t]− v⋆
i )

TQ(V xi[t]− v⋆
i ) + ui[t]

TRui[t]), (5)

where V maps a robot’s state to its velocity, and Q ∈ R
d×d

and R ∈ R
m×m are given constant weight matrices, for

which Q = QT ≥ 0 and R = RT > 0.

The feedback control policy that minimizes Eq. (5) can be

derived as a function of the target velocity:

ui[t] = −Lxi[t] + Ev⋆
i , (6)

where

L = (R+BTSB)−1BTSA, E = (R+BTSB)−1BTT,

and S = ST ≥ 0 and T are solutions to the equations:

S = V TQV +ATSA−ATSB(R+BTSB)−1BTSA,

T = V TQ+ATT −ATSB(R+BTSB)−1BTT.

We can construct the closed-loop dynamics of the robots

in terms of its target velocity rather than its low-level control

input, by substituting Eq. (6) into (4):

xi[t+ 1] = Ãxi[t] + B̃v⋆
i , (7)

where

Ã = A−BL, B̃ = BE.

Given a current state xi = xi[0] of robot i and a constant

target velocity v⋆
i , the state of the robot at a given time t > 0

is then given by solving the difference equation that defines

the closed-loop dynamics (Eq. (7)):

xi[t] = F [t]xi +G[t]v⋆
i , (8)

where

F [t] = Ãt, G[t] =
∑t−1

k=0 Ã
kB̃.

With the closed-loop dynamics, the target velocity v⋆
i can

be seen as a higher-level form of control input. Since it is

more reasonable to assume that v⋆
i will stay constant over

a short period of time than the low-level control input ui,

we use the closed-loop dynamics to define (relative) LQR-

Obstacles below and use it for collision-avoidance.
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Fig. 2. The LQR-Obstacle LQRτ
ij(xij) for two quadrotors i and j.

Robot i was given a current position of pi = (0, 0, 0)T , and a current
velocity of vi = (−2, 0, 0)T . Robot j was given a current position of
pj = (4, 6,−4)T , and a current velocity of vj = (−1,−2, 2)T . The
time horizon τ in this example is 6 seconds.

B. Relative LQR-Obstacles

Let us look at a pair of robots i and j. The state of robot i
relative to the state of robot j is denoted xij [t], and defined

as xij [t] = xi[t] − xj [t]. The robots i and j collide if their

relative position Cxij [t] (recall that C maps a robot’s state

to its position) is contained within the Minkowski difference

Oij = Oj ⊕−Oi of the robot’s geometries, i.e.:

Cxij [t] ∈ Oij . (9)

Let the relative target velocity of robots i and j be defined

as v⋆
ij = v⋆

i − v⋆
j . Given a current relative state xij of the

robots and a constant relative target velocity v⋆
ij , the relative

state of the robots at a given time t > 0 is similar to Eq. (8)

and given by xij [t] = F [t]xij+G[t]v⋆
ij , which follows from

the fact that the dynamics are linear and the same for all

robots. Substituting this into Eq. (9), robots i and j collide

at time t if:

CF [t]xij + CG[t]v⋆
ij ∈ Oij

⇐⇒ v⋆
ij ∈ (CG[t])−1(Oij ⊕ {−CF [t]xij}), (10)

with the assumption that CG[t] is an invertible matrix. Now,

the relative LQR-Obstacle LQRτ
ij(xij) of robots i and j

with current relative state xij is defined as the set of all

relative target velocities v⋆
ij that result in a collision within

τ time into the future:

LQRτ
ij(xij) =

⋃τ

t=1(CG[t])−1(Oij ⊕ {−CF [t]xij}). (11)

Hence, if the geometry of each of the robots is defined by a

sphere (or an ellipsoid), the relative LQR-obstacle is a union

of ellipsoids (see Fig. 2).

C. Avoiding Collisions with Passive Robots

The relative LQR-obstacle as defined above can be used by

robot i to avoid collisions with a robot j as follows: assuming

that the current state of robot i is xi and that robot i can

observe the current state xj of robot j and knows robot j’s

target velocity v⋆
j , robot i must choose its target velocity

v⋆
i outside the relative LQR-obstacle translated by j’s target

velocity in order to avoid collisions (within τ time):

v⋆
i 6∈ LQRτ

ij(xi − xj)⊕ {v⋆
j}. (12)

While it may be reasonable to assume that robot i can

estimate robot j’s current state (e.g., using a Kalman filter)

it is not reasonable to assume that robot i knows robot

j’s intent, i.e. its target velocity. In this case, robot i can

make the assumption that robot j’s current velocity is its

target velocity, i.e. v⋆
j ≈ V xj , and choose its own target

velocity accordingly. This is a reasonable approach if robot

i recomputes its target velocity every sensing-control cycle.

Given the current state xi of robot i and a target velocity

v⋆
i , the corresponding low-level control input for the current

control cycle is given by the control policy of Eq. (6). Hence,

the constraints on the control input of Eq. (3) transform into

constraints on the target velocity v⋆
i of robot i. The resulting

set of valid target velocities is denoted V⋆(xi) ⊂ R
d, and

defined by:

V⋆(xi) =
⋂

k {v
⋆
i |a

T
kEv⋆

i < bk + aTk Lxi}. (13)

Hence, robot i can avoid collisions with multiple other

robots while making sure that the control-input constraints

are satisfied by selecting in each sensing-control cycle a

valid target velocity outside the union of LQR-obstacles with

respect to each other robot:

v⋆
i ∈ V⋆(xi) \

⋃

j 6=i(LQRτ
ij(xi − xj)⊕ {V xj}). (14)

This approach works well if robot i is the only robot

that observes the other robots and takes appropriate action

to avoid them, i.e. robot i is active and the others are

passive. If other robots j would be active as well, and

simultaneously use the same approach to avoid collisions

with robot i, oscillations in their motions occur [19]. This

is because both robots determine their target velocity based

on the (constantly violated) assumption that the other robot

continues moving as it currently does. In other words, both

robots take 100% of the responsibility to avoid collisions. To

prevent these oscillations from occurring, the robots have to

adopt an approach that takes into account that other robots

react on them as well as they react on others, and, informally

speaking, only take 50% of the responsibility of avoiding

pairwise collisions. This is known as reciprocal collision

avoidance [19], and will be discussed in the next section

in the context of LQR-Obstacles.

IV. RECIPROCAL COLLISION AVOIDANCE

In this section we extend the concept of LQR-Obstacles

for reciprocal collision avoidance. We first discuss how a pair

of robots reciprocally avoid collisions, and then extend the

analysis to multiple robots and static obstacles.

A. A Pair of Robots

Let us consider a pair of robots i and j. We assume both

robots can observe their own and each other’s current states

xi and xj , and hence the current relative state xij = xi−xj .

In order for robots i and j to reciprocally avoid collisions,

target velocities v⋆
i and v⋆

j must be chosen for both robots

simultaneously such that the relative target velocity v⋆
ij =

v⋆
i − v⋆

j is outside the relative LQR-Obstacle, i.e. v⋆
ij 6∈

LQRτ
ij(xij). The general approach is to assign i and j a set
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of potential target velocities RCAτ
ij and RCAτ

ji, respectively,

such that:
(

(RCAτ
ij ∩ V⋆(xi))⊕−(RCAτ

ji ∩ V⋆(xj))
)

∩

LQRτ
ij(xij) = ∅

(15)

Hence, if robot i selects a target velocity v⋆
i from RCAτ

ij

such the control input constraints are satisfied, and robot j
selects a target velocity v⋆

j from RCAτ
ji such the control

input constraints are satisfied, it is guaranteed that v⋆
ij 6∈

LQRτ
ij(xij) and that the robots will not collide.

There are infinitely many pairs of sets of potential target

velocities RCAτ
ij and RCAτ

ji for which these requirements

hold. We want to select a pair of sets that is fair, i.e. both

robots share the responsibility of avoiding collisions equally,

large, i.e. both robots have a large amount of target velocities

they can choose from, and defined such that both i and j
can determine their own set of potential target velocities

without mutual coordination. The sets RCAτ
ij and RCAτ

ji

are constructed as follows.

Let V⋆
ij be the set of potential relative target velocities

satisfying the control input constraints:

V⋆
ij = V⋆(xi)⊕−V⋆(xj) (16)

This set is not disjoint with LQRτ
ij(xij) in general, so some

relative target velocities will result in collision. Now, let us

find a convex set C that is chosen such that:

(C ∩ V⋆
ij) ∩ LQRτ

ij(xij) = ∅ (17)

Hence, any relative target velocity in C that obeys the control

input constraints will not result in a collision.

Since for convex sets X holds that 1
2X ⊕ 1

2X = X ,

we “divide” C by two to determine the sets of potential

target velocities RCAτ
ij and RCAτ

ji for robot i and robot

j, respectively:

RCAτ
ij =

1
2 (C ⊕ {−vij})⊕ {vi}, (18)

RCAτ
ji = − 1

2 (C ⊕ {−vij})⊕ {vj}, (19)

where vi and vj are robot i’s and robot j’s current velocity,

and vij = vi − vj is the current relative velocity of robot i
and j. Here, we have “divided” the convex set of safe relative

target velocities C about the robots’ current relative velocity,

and centered each of the parts about the robots’ current

velocities. This is to make sure that a maximal amount of

potential target velocities are available around each of the

robot’s current velocity, from which (it is assumed) the robots

want to deviate as little as possible (for the lack of knowledge

of the robots about each other’s true intent).

Let us prove that the definition of RCAτ
ij and RCAτ

ji of

Eqs. (18) and (19) satisfy the requirement of Eq. (15):

(RCAτ
ij ∩ V⋆(xi))⊕−(RCAτ

ji ∩ V⋆(xj))

⊆ (RCAτ
ij ⊕−RCAτ

ji) ∩ (V⋆(xi)⊕−V⋆(xj))

=
(

1
2 (C ⊕ {−vij})⊕ {vi} ⊕

1
2 (C ⊕ {−vij})⊕ {−vj}

)

∩ V⋆
ij

= C ∩ V⋆
ij . (20)

Since (C ∩ V⋆
ij) ∩ LQRτ

ij(xij) = ∅ by definition (see Eq.

(17)), this implies Eq. (15).
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Fig. 3. (a) Examples of the set C in case vij is inside (top) and outside
(bottom) LQRτ

ij(xij) ∩ V⋆
ij . (b) The corresponding halfspaces RCAij

and RCAji.

The question that remains is how to construct the convex

set C such that (C ∩ V⋆
ij) ∩ LQRτ

ij(xij) = ∅. Ideally, we

want C to be the largest such set, but this is difficult to

achieve. Instead, we take the following approach. We define

C to be the halfspace that is tangent to the convex hull of

V⋆
ij ∩ LQRτ

ij(xij) at the closest point q on the boundary

of the convex hull to the current relative velocity vij of the

robots (see Fig. 3(a)). It then follows from the construction

that (C ∩ V⋆
ij) ∩ LQRτ

ij(xij) = ∅. We chose to take the

tangent point closest to the current relative velocity vij to

ensure that a maximal possible amount of potential target

velocities are available close to the current velocities of the

robots (assuming that the robots prefer to deviate as little as

possible from their current velocity).

Since C is a halfspace, it follows from Eq. (18) that

RCAτ
ij and RCAτ

ji are halfspaces too. Let w = q−vij , i.e.

the vector from the current relative velocity to the tangent

point of the halfspace C. If the robots are currently on

a collision course, i.e. vij ∈ LQRτ
ij(xij), the vector w

can be seen as the smallest change required to the relative

velocity vij to escape an imminent collision. Knowing that

the responsibility of avoiding the collision is to be shared

by both robots, robot i must change its velocity by at least
1
2w, and robot j by at least − 1

2w. If the robots are not on

a collision course, i.e. vij 6∈ LQRτ
ij(xij), the vector w is

the maximal change allowed to the relative velocity vij that

still prevents a collision, and robot i may change its velocity

by at most 1
2w, and robot j by at most − 1

2w. Indeed, the

sets RCAτ
ij and RCAτ

ji of safe target velocities for robot i
and robot j, respectively, are halfspaces located at vi +

1
2w

and vj −
1
2w, respectively, that require the robots to choose

a target velocity that make sure that collisions are avoided

(see Fig. 3(b)).

We note that robot i and j can independently construct

their sets of potential target velocities RCAτ
ij and RCAτ

ji, re-

spectively, since the construction from j’s perspective, based

on LQRτ
ji(xji), results in exactly the same sets RCAτ

ij and

3835



Fig. 4. Example of the set CAτ
1

of safe target velocities for robot 1 among
six other robots.

RCAτ
ji (note that LQRτ

ji(xji) = −LQRτ
ij(xij)).

B. Multiple Robots

The set of safe target velocities RCAτ
ij for a robot i

to reciprocally avoid collisions with a robot j as defined

above can be used for independent navigation of multiple

robots sharing a common workspace as follows. Each robot

i independently performs a continual sensing-control cycle,

in which each cycle consists of the following steps.

First, the robot estimates its own current state xi and the

current states xj of the other robots j. Based on this infor-

mation, robot i determines the set of safe target velocities

RCAτ
ij with respect to each other robot j. The set of target

velocities for i that are safe with respect to all other robots is

the intersection of these sets. Accounting for static obstacles

and the control constraints of i, we get (see Fig. 4):

CAτ
i = V⋆(xi) ∩

⋂

j 6=i RCAτ
ij . (21)

Next the robot i determines its preferred velocity v
pref
i

(i.e. the velocity it would have chosen if no other robots

were around; we discuss below how such a velocity may

be determined from a given target position), and chooses a

target velocity v⋆
i from the set CAi of safe target velocities

that is closest to its preferred velocity:

v⋆
i = argmin{v ∈ CAτ

i } ‖v − v
pref
i ‖. (22)

Finally, the robot applies the low-level control input ui as

determined by Eq. (6), given xi and v⋆
i , and the process

continues with the next sensing-control cycle.

It should be noted that in situations where the robots

very densely occupy space it is possible that the set CAτ
i

becomes empty. In this case, our implementation selects the

“safest possible” target velocity v⋆
i , i.e. one that minimally

violates constraints [20]. However, this never occured in our

simulations even with 100 quadrotors in a tight space.

C. Determining the Preferred Velocity from a Target Position

Above, the preferred velocity v
pref
i was defined as the

velocity the the robot would have chosen as its target velocity

v⋆
i if no other robots would be around. If the robot is given

a specific target position p⋆
i , we can infer the target velocity

v⋆
i that leads the robot to its target position using an LQR-

controller. From Eq. (7) we have the closed-loop dynamics

of the robot, where v⋆
i (here endowed with a time subscript)

can be seen as a control input: xi[t+ 1] = Ãxi[t] + B̃v⋆
i [t].

The infinite-horizon LQR controller provides an optimal

control policy to determine v⋆
i [t] that lets the robot reach

the specified target position, given a quadratic cost function:

∑∞
t=0((Cxi[t]−p⋆

i )
TP (Cxi[t]−p⋆

i ) + ui[t]
TRui[t]), (23)

where ui[t] is the lower-level control input penalized by R
as given before, and P = PT ≥ 0 specifies the weight of

the cost of not being at the target position. Substituting the

low-level control policy of Eq. (6) into Eq. (23), we get:

∑∞
t=0(xi[t]

T Q̃xi[t] + v⋆
i [t]

T R̃v⋆
i [t] +

2v⋆
i [t]

T P̃xi[t] + 2xi[t]
T q̃), (24)

where:

Q̃ = CTPC + LTRL, R̃ = ETRE, (25)

P̃ = ETRL, q̃ = −CTPp⋆
i . (26)

Using this cost function and the closed-loop dynamics of

Eq. (7) in a derivation similar as in Section III-A, we get a

control policy for the target velocity v∗
i in terms of the target

position p⋆
i :

v⋆
i [t] = L̃xi[t] + Ẽp⋆

i . (27)

We use this policy to determine the preferred velocity

v
pref
i = L̃xi + Ẽp⋆

i in each sensing-control cycle given the

current state xi and the target position p⋆
i of robot i.

V. SIMULATION RESULTS

In this section we will discuss how the algorithm was

implemented in a quadrotor simulation environment and the

results from testing different scenarios with the developed

reciprocal collision avoidance method.

A. Quadrotor Dynamics

The quadrotor helicopters used in our simulations were

modeled after the Ascending Technologies’ ResearchPilot.

Its state x = (pT ,vT , rT ,wT , fT )T is 16-dimensional,

consisting of three-dimensional position p, velocity v, ori-

entation r (rotation about axis r by angle ||r||), and angular

velocity w, and the current thrusts f = (f1, f2, f3, f4)
T of

each of the rotors. The control input f⋆ is 4-dimensional

and consists of the desired thrusts for each of the rotors,

constrained by a minimum and maximum for each rotor. Its

dynamics are non-linear [14], and given by:

ṗ = v, (28)

v̇ =
[

0
0
−g

]

+ exp([r])
[

0
0

f1+f2+f3+f4

]

/m, (29)

ṙ = w +
1

2
[r]w + (1−

‖r‖

2 tan( 12‖r‖)
)
[r]2

‖r‖2
w, (30)

ẇ = J−1(
[ ℓ(f2−f4)

ℓ(f3−f1)
km(f1−f2+f3−f4)

]

− [w]Jw), (31)

ḟ = kf (f
⋆ − f), (32)

where g is the gravity, m the mass of the robot, J the robot’s

moment of inertia matrix, ℓ the length of the beams, and

km and kf scaling constants. The notation [a] for a vector

a ∈ R
3 refers to its skew-symmetric cross-product matrix.
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Fig. 5. A bound-
ing ellipse used as
the geometry Oi

of each quadrotor.

The matrices A and B of the dynamics

model of Eq. (4) are obtained by lin-

earizing the above non-linear dynamics

about the quadrotor’s hover point. The

projective matrices are given by C =
[I 0 · · · 0], and V = [0 I 0 · · · 0].
The geometry Oi of each quadrotor was

defined as a bouding ellipse elongated

along the z-axis (See Fig. 5) to prevent

quadrotors from entering each other’s im-

mediate downwash [9].

We note that the linearized model is

only used to construct the LQR-Obstacles;

our simulator uses the non-linear dynam-

ics. Also, realistic amounts of artificial noise are injected

in the motion and sensing of the robots in the simulator,

while the LQR-Obstacles are constructed assuming perfect

dynamics and sensing.

B. Implementation Details

Our algorithm was implemented in a simulator in C++.

Since the geometry of a quadrotor is an ellipsoid, each LQR-

Obstacle consists of a set of (transformed) ellipsoids. For

each pair of quadrotors i and j, we modeled their LQR-

Obstacle LQRτ
ij approximately using a set of points sampled

from the boundaries of the constituting ellipsoids. A convex

hull was computed (using the Qhull library [3]) of the

points that are within V⋆
ij to compute the vector w (using

an implementation of the GJK-method [7]). Based on this

vector w, the halfspace RCAτ
ij was computed. The set of

safe target velocities CAτ
i for each quadrotor i is as a result

the intersection of a set of 3-D halfspaces. The RVO2-3D

library [20] was used to determine the velocity v⋆
i in CAτ

i

that is closest to v
pref
i .

C. Simulation Results

Simulations were run for a variety of configurations to

demonstrate the performance of our algorithm (in all sce-

narios, a time-horizon of τ = 1.5 seconds was used in a

simulated sensing-control cycle of 30Hz). First, we show the

situation of the two quadrotors flying directly towards each

other for purpose of illustration. Two quadrotors begin some

distance apart along the x-axis and pass each other in the

xy-plane (Fig. 1).

Next, a scenario with 24 quadrotors was performed in

which the quadrotors were all given initial and target posi-

tions that would force them to move through the center of the

space, where a dense grouping of quadrotors is expected to

occur (Fig. 6). In addition, a simulation with 100 quadrotors

with random initial and target positions within a 10x10x10

meter space was run (Fig. 7). The results show that the

algorithm directed the quadrotors successfully towards their

individual goal positions, smoothly, while avoiding collisions

with one another. In none of the simulations we performed

collisions were observed (see also the attached video or

videos at http://arl.cs.utah.edu/research/rca/).
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Fig. 6. The simulation with 24 quadrotors was run in such a way that
a dense packing of quadrotors occurs in the center. Nine different steps
through the simulation are shown.

Isometric View Top View Side View

Fig. 7. Simulation of 100 quadrotors avoiding collisions with each other
in a 10x10x10 meter space. See also the attached video or videos at
http://arl.cs.utah.edu/research/rca/.

Performance: Our simulations were run on a desktop

machine running Windows 7 Professional 64-bit with an Intel

i7-2600 CPU and 8GB-RAM. To quantify the performance

of our approach, we report the average computation time of

each quadrotor to select a safe target velocity for itself in

each sensing-control cycle (recall that in our approach the

calculations are fully independent for each quadrotor). The

results can be seen in Fig. 8 for experiments involving up to

128 quadrotors with random initial and target positions in a

10x10x10 meter space. As expected, the average computation

time for each quadrotor is approximately linear in the number

of other quadrotors it has to avoid collisions with. As seen

in Fig. 8, the limit on the number of quadrotors that can be

avoided with the computations being performed in real-time

(33ms at a sensing-control cycle of 30Hz) is approximately

75. We note however, that for safe navigation it is not

necessary to consider that many quadrotors in the collision

avoidance. It would suffice to consider only a fixed number of

nearest neighbors, or only quadrotors within a certain range.

We also expect that the performance can be further improved

by optimizing the implementation.
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Fig. 8. The average computation time per quadrotor in each sensing-
control cycle for an increasing number of quadrotors in the workspace.
The horizontal, dashed line represents the amount of time per simulated
sensing-control cycle, and is the upper-bound on the required computation
time for real-time performance. It can be seen that when each quadrotor is
considering all other quadrotors for collision avoidance, up to approximately
80 quadrotors can be avoided in real-time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a method for reciprocal

collision avoidance for multiple robots subject to linear

differential constraints. In our approach each robot acts fully

independently (there is no coordination among robots) and

only need to continually observe each other’s current state.

Our quadrotor simulation results displayed that our approach

is able to let a group of robots reach their target position

from an initial position while smoothly avoiding collision

with the other robots. Even though our approach is based on

assumptions of perfect linear dynamics and perfect sensing, it

still provides reliable collision avoidance in situations where

these assumptions do not hold (our simulator used non-linear

dynamics with aritificial motion and sensing noise). This

is because our approach computes a new control for the

robots in each sensing-acting cycle, and as such adapts in

real-time to unpredicted situations. As an alternative, one

can explicitly take into account motion and sensing noise

by basing the approach on LQG-Obstacles [22] rather than

LQR-Obstacles as was done in this paper. Motivated by the

promising simulation results, we are currently implementing

our approach on real-world quadrotors.

Our approach has a number of limitations. First, our

approach requires that the state of the robot contains its

position and its velocity, and that the geometry of the robot

is fixed and only translates (i.e. it does not change with

rotation). This limits the applicability of our approach to

mobile robots, whose geometry can be approximated using

a bounding disk or sphere. Second, while our approach

can be extended for avoiding collisions with any static and

moving obstacles, the other robots with which collisions

are reciprocally avoided must in our current formulation

have exactly the same dynamics, in order to be able to

formulate the dynamics model of the robots’ relative motion.

Robots of different dynamics could be handled by using

an abstraction of their dynamics model. For instance, it is

known that quadrotors are dynamically capable of following

any trajectory that is created by controlling snap (the second

derivative of acceleration) within certain bounds. Since our

approach does allow for each robot having its individual

control constraints, collisions could be avoided among, for

instance, quadrotors of different sizes and thrust capabilities

by using such an abstract dynamics model.
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