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Abstract. We investigate a new graph invariant named reciprocal product–degree distance, defined as:

RDD∗ =
∑

{u,v}⊆V(G)
u,v

deg(u) · deg(v)
dist(u, v)

where deg(v) is the degree of the vertex v, and dist(u, v) is the distance between the vertices u and v in
the underlying graph. RDD∗ is a product–degree modification of the Harary index. We determine the
connected graph of given order with maximum RDD∗-value, and establish lower and upper bounds for
RDD∗. Also a Nordhaus–Gaddum–type relation for RDD∗ is obtained.

1. Introduction

Throughout this paper, we consider finite undirected simple connected graphs. Let G = (V,E) be such a
graph. We denote its order and size with |V| and |E| if no ambiguity can arise. The degree of a vertex u ∈ V
is the number of edges incident to u, denoted by degG(u). The maximum and minimum vertex degree in
the graph G will be denoted by ∆(G) and δ(G), respectively. The distance between two vertices u and v is
the length of a shortest path connecting them in G, denoted by distG(u, v). The maximum value of such
numbers, diam(G), is said to be the diameter of G.

The complement of G, denoted by G, is the graph with vertex set V(G), in which two distinct vertices
are adjacent if and only if they are not adjacent in G. Other terminology and notations needed will be
introduced as it naturally occurs, and we use [4] for those not defined here.

The motivation for studying the quantity that we intend to call reciprocal product–degree distance of a
graph, comes from the following observation. The sum of distances between all pairs of vertices in a graph
G, namely

W = W(G) =
∑

{u,v}⊆V(G)

distG(u, v) (1)
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was first time introduced by Wiener more that 60 years ago [31]. Initially, the Wiener index W(G) was
considered as a molecular–structure descriptor used in chemical applications, but soon it attracted the
interest of “pure” mathematicians [11, 12]; for details and additional references see the reviews [7, 35] and
the recent papers [22, 23, 34].

Eventually, a number of modifications of the Wiener index were proposed, which we present in the
following table:

W DD+ DD∗
H RDD+ RDD∗?

Table 1. A family of distance– and degree–based graph invariants.

In Table 1, W is the ordinary Wiener index, Eq. (1), whereas

DD+ = DD+(G) =
∑

{u,v}⊆V(G)

[
degG(u) + degG(v)

]
distG(u, v) (2)

DD∗ = DD∗(G) =
∑

{u,v}⊆V(G)

[
degG(u) · degG(v)

]
distG(u, v) (3)

H = H(G) =
∑
{u,v}⊆V(G)

u,v

1
distG(u, v)

(4)

RDD+ = RDD+(G) =
∑
{u,v}⊆V(G)

u,v

degG(u) + degG(v)
distG(u, v)

. (5)

The graph invariants defined via Eqs. (2)–(4) have all been much studied in the past. The invariant DD+

was first time introduced by Dobrynin and Kochetova [8] and named (sum)–degree distance. Later the same
quantity was examined under the name “Schulz index” [14]. For mathematical research on degree distance
see [1, 6, 10, 19, 29] and the references cited therein. A remarkable property of DD+ is that in the case of
trees of order n, the identity DD+ = 4W − n(n − 1) holds [20].

In [33] it was shown that also the multiplicative variant of the degree distance, namely DD∗ , Eq. (3),
obeys an analogous relation: DD∗ = 4W− (2n− 1)(n− 1). This latter quantity is sometimes referred to as the
“Gutman index” (see [2, 13, 21, 25, 26] and the references quoted therein), but here we call it product–degree
distance.

The greatest contributions to the Wiener index, Eq. (1), come from most distant vertex pairs. Because
in many applications of graph invariants it is preferred that the contribution of vertex pairs diminishes
with distance, the Wiener index was modified according to Eq. (4). This distance–based graph invariant is
called Harary index and was introduced in the 1990s by Plavšić et al. [28]. It also was subject of numerous
mathematical studies (see [5, 17, 30, 32, 33] and the references cited therein).

Recently, Hua and Zhang [18] introduced and examined the reciprocal sum–degree distance RDD+, which
is the first degree–distance–type modification of the Harary index, given by Eq. (5).

The graph invariants, defined via Eqs. (1)–(5), can be arranged as in Table 1. From this Table it is
immediately seen that one more such invariants is missing. This is the reciprocal product–degree distance,
defined as

RDD∗ = RDD∗(G) =
∑
{u,v}⊆V(G)

u,v

degG(u) · degG(v)
distG(u, v)

. (6)

Evidently, the reciprocal product–degree distance is related to the Harary index in the same way as
the product–degree distance is related to the Wiener index, cf. Table 1. To our best knowledge, this new
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invariant has not been studied so far. Therefore, in this paper we determine some of its basic properties,
including those quite elementary.

First we focus our attention to the extremal properties of reciprocal product–degree distance and in
Section 2 characterize the connected graphs with maximum RDD∗. In Section 3, we establish lower and
upper bounds for RDD∗ in terms of other graph invariants, including DD∗, the second Zagreb index, the
second Zagreb co-index, Harary index, matching number, independence number and vertex-connectivity.
In Section 4, a Nordhaus–Gaddum–type inequality for RDD∗ is presented.

In what follows, for the sake of simplicity, instead of
∑

{u,v}⊆V(G)
u,v

we shall write
∑

{u,v}⊆V(G)

, always assuming that

u , v.

2. Connected Graphs with Maximum RDD∗-Value

Let G − e denote the graph formed from G by deleting an edge e ∈ E(G), and G + e denote the graph
obtained from G by adding to it an edge e < E(G).

A cut-edge is an edge in a graph whose deletion will increase the number of components.

Lemma 1. Let G be a connected graph of order at least three. The following holds:
(a) If G is not isomorphic to Kn , then RDD∗(G) < RDD∗(G + e) for any e ∈ E(G).
(b) If G has an edge e not being a cut-edge, then RDD∗(G) > RDD∗(G − e).

Proof. Suppose that G is not the complete graph. Then G must possess a pair of vertices u and v such that
uv ∈ E(G). It is obvious that distG(u, v) ≥ distG+uv(u, v) and distG(x, y) ≥ distG+uv(x, y) for any pair of vertices
x, y ∈ V(G). In addition, degG(w) ≤ degG+uv(w) for any vertex w ∈ V(G). By the definition of reciprocal
product-degree distance, we have RDD∗(G) < RDD∗(G + e). This completes the proof of (a).

If e is not a cut edge, then G − e is connected and not isomorphic to the complete graph. Thus by (a),
RDD∗(G − e) < RDD∗((G − e) + e) = RDD∗(G), as desired. �

By means of Lemma 1, we can characterize the connected graphs with maximum RDD∗-value. More
precisely, we arrive at the following result.

Theorem 1. Among all connected graphs of order n, the complete graph Kn attains the maximum RDD∗-
value n(n−1)3

2 .

Proof. If G is not the complete graph, then we can repeatedly add edges into G until we obtain Kn . By
Lemma 1, RDD∗(G) < RDD∗(Kn), with equality if and only if G � Kn . �

3. Relation with Other Graph Parameters

In this section, we present various bounds for the reciprocal product–degree distance in terms of other
graph parameters.

3.1. Relation with other topological indices

Theorem 2. Let G be a connected graph of order n. Then RDD∗(G) ≤ DD∗(G) with equality if and only if
G � Kn .
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Proof. Because 1/distG(u, v) ≤ distG(u, v) for any pair of vertices u, v of G,

RDD∗(G) ≤
∑

{u,v}⊆V(G)

[degG(u) degG(v)]distG(u, v) = DD∗(G) .

Thus RDD∗(G) ≤ DD∗(G), with equality if and only if distG = 1 for any pair of vertices u and v in G, or
equivalently, G � Kn . �

The second Zagreb index and second Zagreb co-index are, respectively, defined as [9, 16]:

M2(G) =
∑

uv∈E(G)

[degG(u) degG(v)] and M2(G) =
∑

uv∈E(G)

[degG(u) degG(v)] .

Theorem 3. Let G be a connected graph of order n. Then

RDD∗(G) ≥
[M2(G) + M2(G)]2

DD∗(G)

with equality if and only if G � Kn .

Proof. By the definition of reciprocal product–degree distance, and using the Cauchy–Schwarz inequality,
we get

DD∗(G) · RDD∗(G) =

 ∑
{u,v}⊆V(G)

[degG(u) degG(v)]distG(u, v)


×

 ∑
{u,v}⊆V(G)

[degG(u) degG(v)]
1

distG(u, v)


≥

 ∑
{u,v}⊆V(G)

[degG(u) degG(v)]


2

=

 ∑
uv∈E(G)

[degG(u) degG(v)] +
∑

uv∈E(G)

[degG(u) degG(v)]


2

= [M2(G) + M2(G)]2 .

Thus RDD∗(G) ≥ [M2(G)+M2(G)]2

DD∗(G) , with equality if and only if G � Kn . �

Theorem 4. Let G be a connected graph of order n. Then

RDD∗(G) ≤M2(G) + M2(G)

with equality if and only if G � Kn .

Proof. From 1/distG(u, v) ≤ 1 it follows that

RDD∗(G) ≤

∑
{u,v}⊆V(G)

[degG(u) degG(v)]

=
∑

uv∈E(G)

[degG(u) degG(v)] +
∑

uv∈E(G)

[degG(u) degG(v)]

= M2(G) + M2(G) .
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Thus RDD∗(G) ≤ M2(G) + M2(G), with equality if and only if distG(u, v) = 1 for any pair of vertices u and v
in G, or equivalently, G � Kn . �

Theorem 5. Let G be a connected graph of order n. Then

δ(G)2H(G) ≤ RDD∗(G) ≤ 4(G)2H(G)

with equality (on both sides) if and only if G is a regular graph.

Proof. It is obvious that δ(G) ≤ degG(u) ≤ 4(G) for any vertex u in G. Hence,

δ(G)2
∑

{u,v}⊆V(G)

1
distG(u, v)

≤ RDD∗(G) ≤ 4(G)2
∑

{u,v}⊆V(G)

1
distG(u, v)

implying the proof, with equality if and only if G is regular. �

3.2. Relation with matching and independence number

A matching of a graph G is a set of edges with no shared endpoints. A maximal matching in a graph
is a matching whose cardinality cannot be increased by adding an edge. The matching number β(G) is the
number of edges in a maximum matching.

A component of a graph is said to be odd (resp., even) if it has odd (resp., even) number of vertices.
Indicate the number of odd components by o(G).

The following is an immediate consequence of the Tutte–Berge formula [24].

Lemma 2. (Lovász [24]) Let G be a connected graph of order n. Then

n − 2β = max{o(G − X) − |X| : X ⊂ V} .

Lemma 3. (Hacke [15]) The solutions of the real coefficient quartic equation ax4 +bx3 +cx2 +dx+ e = 0 (a , 0)
are given by:

x1 = −
b
4a

+
1
2

√
b2

4a2 −
2c
3a

+

3√2A
3aB

+
B

3 3√2a

−
1
2

√√√√√√√ b2

2a2 −
4c
3a
−

3√2A
3aB

−
B

3 3√2a
+

C

4a3

√
b2

4a2 −
2c
3a +

3√2A
3aB + B

3 3√2a

x2 = −
b
4a

+
1
2

√
b2

4a2 −
2c
3a

+

3√2A
3aB

+
B

3 3√2a

+
1
2

√√√√√√√ b2

2a2 −
4c
3a
−

3√2A
3aB

−
B

3 3√2a
+

C

4a3

√
b2

4a2 −
2c
3a +

3√2A
3aB + B

3 3√2a

x3 = −
b
4a
−

1
2

√
b2

4a2 −
2c
3a

+

3√2A
3aB

+
B

3 3√2a

+
1
2

√√√√√√√ b2

2a2 −
4c
3a
−

3√2A
3aB

−
B

3 3√2a
−

C

4a3

√
b2

4a2 −
2c
3a +

3√2A
3aB + B

3 3√2a
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x4 = −
b
4a
−

1
2

√
b2

4a2 −
2c
3a

+

3√2A
3aB

+
B

3 3√2a

−
1
2

√√√√√√√ b2

2a2 −
4c
3a
−

3√2A
3aB

−
B

3 3√2a
−

C

4a3

√
b2

4a2 −
2c
3a +

3√2A
3aB + B

3 3√2a

where A = c2
−3bd + 12ae, B =

3
√

D +
√

−4A3 + D2, C = −b3 + 4abc−8a2d, and D = 2c3
−9bcd + 27ad2 + 27b2e−

72ace.

Let Q1(n, β) denote the class of connected graphs of order n with matching number β.

Theorem 6. Let G be a connected graph of order n ≥ 4 with matching number β ∈ [2, b n
2 c]. Let σ1, σ2, and

σ3 be the positive roots of the equation

31
4

x4 +
6n − 101

4
x3
−

7n2
− 33n − 74

4
x2 +

n2
− 20n − 2

2
x +

5n2 + n
2

= 0 .

Each of the following holds:

(a) If β = b n
2 c, then RDD∗(G) ≤ n(n − 1)2, with equality if and only if G � Kn .

(b) If β ∈ (σ2, σ3) ∪ (σ4, b n
2 c − 1), then

RDD∗(G) ≤ 8β4
− 24β3 + (6n + 19)β2

−
18n + 3

2
β +

5n2 + n
4

with equality if and only if G � K1 + (K2β−1 ∪ Kn−2β) .

(c) If β = σi for i = 1, 2, 3, then

RDD∗(G) ≤ 8β4
− 24β3 + (6n + 19)β2

−
18n + 3

2

′

, β +
5n2 + n

4

=
1
4
β4
−

6n − 5
4

β3 +
7n2
− 9n + 2

4
β2
−

n2
− 2n + 1

2
β

with equality if and only if G � Kβ + Kn−β or G � K1 + (K2β−1 ∪ Kn−2β) .

(d) If β ∈ [2, σ2] ∪ [σ3, σ4], then

RDD∗(G) ≤
1
4
β4
−

6n − 5
4

β3 +
7n2
− 9n + 2

4
β2
−

n2
− 2n + 1

2
β

with equality if and only if G � Kβ + Kn−β .

Proof. Let G′ be a connected graph with maximum RDD∗-value in Q1(n, β). By Lemma 2, there exists a
vertex subset X′ ⊂ V(G′) such that

n − 2β = max{o(G′ − X) − |X| : X ⊂ V} = o(G′ − X′) − |X′| .

For simplicity, let |X′| = s and o(G′ − X′) = t. Then n − 2β = t − s.

Case I. s = 0.
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It follows that G′ − X′ = G′ and then n − 2β = t ≤ 1 since G is connected. If t = 0, then G′ is an even
graph. Then β = n/2, by Lemma 1, and we obtain that G′ � Kn and RDD∗(G) =

n(n−1)3

2 . If t = 1, then β = n−1
2 .

As before, RDD∗(G) =
n(n−1)3

2 .

Case II. s ≥ 1.

Consequently, t ≥ 1. Otherwise, t = 0, then n − 2β = −s < 0, we have β > n
2 , which contradicts the

condition β ∈ [2, bn/2c]. Let Go
1 ,G

o
2 , . . . ,G

o
t be all odd components of G′ − X′. In order to obtain our result,

we state and prove the following three claims.

Claim 1. There is no even component in G′ − X′.

Assume the contrary, let Ge be an even component. Then the link (Ge
∼ Go

i )(a · b), obtained by joining a
vertex a ∈ V(Ge) and b ∈ V(Go

i ), is also an odd component in G′ − X′. We denote such a graph by G′′, for
which n − 2β(G′′) ≥ o(G′′ − X′) − |X′| = o(G′ − X′) − |X′| holds, i.e., β(G′′) ≤ β, implying that G′′ ∈ Q(n, β),
which contradicts to the choice of G′. �

Claim 2. Each odd component Go
i (1 ≤ i ≤ t), and the graph induced by X′, are complete.

Assume that Go
i is not complete. Then there must exist two non-adjacent vertices u, v in Go

i . By Lemma
1, one can get a graph G′+uv, which increases the RDD∗-value. This again is a contradiction with the choice
of G′. Similarly, we can prove that X′ is complete. �

Claim 3. Each vertex of Go
i is adjacent to those of X′.

This follows by a similar discussion, whose details we skip. �

Now we continue our proof. Without loss of generality, we let ni = |V(Go
i )| for i = 1, 2, . . . , t. Then by

Claims 1, 2, and 3 we have

G′ = Ks + (Kn1 ∪ Kn2 ∪ · · · ∪ Knt ) .

Let R̂DD∗(G1,G2) denote the contribution to the RDD∗-value between vertices of G1 and those of G2 .
Then we have

R̂DD∗(Kni ,Kni ) =
1
2

[
n4

i + (2s − 3)n3
i + (s2

− 4s + 3)n2
i − (s − 1)2ni

]
R̂DD∗(Kni ,Kn j ) =

1
2

ni n j(ni + s − 1)(n j + s − 1)

R̂DD∗(Kni ,Ks) = s(n − 1)n2
i + s(s − 1)(n − 1)ni

R̂DD∗(Ks,Ks) =
1
2

s(s − 1)(n − 1)2 .
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Hence, the reciprocal sum–degree distance of G′ can be represented as

RDD∗(G′) =

t∑
i=1

R̂DD∗(Kni ,Kni ) +

t∑
i=1

R̂DD∗(Kni ,Ks)

+
∑
i< j

R̂DD∗(Kni ,Kn j ) + R̂DD∗(Ks,Ks)

=
1
2

t∑
i=1

n4
i +

1
2

(2s − 3)
t∑

i=1

n3
i +

1
2

(s2 + (2n − 6)s + 3)
t∑

i=1

n2
i

+
1
2

((2n − 3)s2 + 2ns − 1)
t∑

i=1

ni +
1
2

s(s − 1)(n − 1)2

+
1
2

∑
i< j

ni n j(ni + s − 1)(n j + s − 1) .

Assume that 1 ≤ n1 ≤ n2 ≤ · · · ≤ nt . Let

G′′ = Ks + (Kn1 ∪ Kn2 ∪ · · · ∪ Kni−1 ∪ · · · ∪ Kn j+1 ∪ · · · ∪ Knt ) .

Then RDD∗(G′) − RDD∗(G′′) < 0. To see this, it is sufficient to prove Claim 4 below, which can be verified
by the transformation (ni,n j)→ (ni − 1,n j + 1).

Claim 4. Each of the following functions

(a) F1(n1,n2, . . . ,nt) = n4
1 + n4

2 + · · · + n4
t

(b) F2(n1,n2, . . . ,nt) = n3
1 + n3

2 + · · · + n3
t

(c) F3(n1,n2, . . . ,nt) = n2
1 + n2

2 + · · · + n2
t

(d) F4(n1,n2, . . . ,nt) =
∑
i< j

ni n j(ni + s − 1)(n j + s − 1)

increases by replacing every pair (ni,n j) by ni − 1,n j + 1.

Proof of Claim 4. We will present the proof of parts (a) and (d), respectively. The other two parts can be
verified by similar arguments.

Let R1(ni,n j) = F1(n1,n2, . . . ,ni, . . . ,n j, . . . ,nt). Then

R1(ni,n j) − R1(ni − 1,n j + 1) = 4(n2
i + n2

j )(ni − n j − 6) + 4(ni − n j)(ni n j + 1) − 2 < 0 .

This implies that the transformation (ni,n j)→ (ni − 1,n j + 1) will increase the value of R1.
Without loss of generality, we may assume that R2(nk,nl) = F1(n1,n2, . . . ,nk, . . . ,nl, . . . ,nt). Then

R2(n1,n2) − R2(n1 − 1,n2 + 1)
= (n1 − n2 − 1)[2n3(n3 + s − 1) + 2nt(nt + s − 1)]
+ (n1 − n2 − 1)[−n1 n2 − (n1 + s − 1)(n2 + s − 1) − (n1 − n2 − 1)]
� (n1 − n2 − 1)Q(s) .

The first derivative of Q(s) is Q′(s) = −s2 + (2n3 + 2nt − n1 − n2 + 2)s + 2n2
3 + 2n2

t − 2n3 − 2nt − 2n1 n2 + 2n2 .
It is easy to prove that Q′(s) > 0 and Q(s) > 0 for 1 ≤ s ≤ 2n3+2nt−n1−n2+2

2 . By the same arguments, we can
obtain the proof of (d). �

By repeatedly using Claim 4, we find that RDD∗(G′) attains maximum if and only if n1 = n2 = · · · =

nt−1 = 1 and nt = 2β − 2s + 1. It follows that G′ � Ks + (K2β−2s+1 ∪ Kn+s−2β−1) .
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Simple calculations show that

R̂DD∗(K2β−2s+1,K2β−2s+1) =

(
2β − 2s + 1

2

)
(2β − s)2

R̂DD∗(Kn+s−2β−1,Kn+s−2β−1) =
1
2

(
n + s − 2β − 1

2

)
s2

R̂DD∗(K2β−2s+1,Kn+s−2β−1) =
1
2

(2β − 2s + 1)(n + s − 2β − 1)(2β − s)s

R̂DD∗(Ks,K2β−2s+1) = s(2β − 2s + 1)(2β − s)(n − 1)

R̂DD∗(Ks,Kn+s−2β−1) = s(n + s − 2β − 1)(n − 1)s

R̂DD∗(Ks,Ks) =
1
2

s(s − 1)(n − 1)2 .

Taking the above into account, it follows that

RDD∗(G′) = R̂DD∗(K2β−2s+1,K2β−2s+1) + R̂DD∗(Kn+s−2β−1,Kn+s−2β−1)

+ R̂DD∗(K2β−2s+1,Kn+s−2β−1) + R̂DD∗(Ks,K2β−2s+1)

+ R̂DD∗(Ks,Kn+s−2β−1) + R̂DD∗(Ks,Ks)

=
13
4

s4 +
18n − 72β − 25

4
s3 +

[
35β2 +

39 − 24n
2

β +
7n2
− 21n + 14

4

]
s2

−

[
28β3

− (6n − 16)β2
− (3n − 3)β +

n2
− 2n + 1

2

]
s + 8β4 + 4β3 .

Analyzing the function Φ on s

Φ(s) =
13
4

s4 +
18n − 72β − 25

4
s3 +

[
35β2 +

39 − 24n
2

β +
7n2
− 21n + 14

4

]
s2

−

[
28β3

− (6n − 16)β2
− (3n − 3)β +

n2
− 2n + 1

2

]
s + 8β4 + 4β3

it follows that s ≤ β, since t − s = n − 2β ≥ t + s − 2β. By taking derivatives, we have

Φ′(s) = 13s3 +
54n − 216β − 75

4
s2 +

[
70β2 +

39 − 24n
2

β +
7n2
− 21n + 14

2

]
s

−

[
28β3

− (6n − 16)β2
− (3n − 3)β +

n2
− 2n + 1

2

]
Φ′′(s) = 39s2 +

54n − 216β − 75
2

s +

[
70β2 + (39 − 24n)2β +

7n2
− 21n + 14

2

]
.

In what follows, we establish:

Claim 5. Φ′′(s) > 0.
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Proof of Claim 5. The discriminant of Φ′′(s) is

4Φ′′ = 744β2
− (2088n − 2016)β + 183n2

− 387n +
1257

4
= Q1(β) .

Consider now the function

Q1(β) = 744β2
− (2088n − 2016)β + 183n2

− 387n +
1257

4
.

It is easy to verify that
4Q1 = 3815136n2

− 7267104n + 3129048 = Q2(n) .

The discriminant of Q2(n) is 4Q2 = 5.28108 × 1013
− 4.775097 × 1013 > 0. Thus, the greatest positive root of

Q2(n) = 0 is n0 =
7267104+

√
4Q2

7630272 . It is obvious that 4Q1 = Q2(n) > 0 when n > n0. In an analogous manner, we
get the greatest root of Q1(β) = 0 as

β+ =
2088n − 2016 +

√
Q2(n)

744 × 2
>

2088n +
√

2214144n
744 × 2

> n >
⌊n

2

⌋
− 1 .

For β ∈ [2,
⌊

n
2

⌋
− 1], we have Q1(β) = 4Φ′′ < 0, which completes the proof of Claim 5. �

By Claim 5, we know that Φ(s) is a strictly convex function for s ≤ β, and that its maximum is attained
at s = 1 or s = β:

Φ(1) = 8β4
− 24β3 + (6n + 19)β2

−
18n + 3

2
β +

5n2 + n
4

and

Φ(β) =
1
4
β4
−

6n − 5
4

β3 +
7n2
− 9n + 2

4
β2
−

n2
− 2n + 1

2
β .

After subtraction, we obtain

Φ(1) −Φ(β) =
31
4
β4 +

6n − 101
4

β3
−

7n2
− 33n − 74

4
β2 +

n2
− 20n − 2

4
β +

5n2 + n
2

.

Now, let us consider the function Ψ on β

Ψ(β) =
31
4
β4 +

6n − 101
4

β3
−

7n2
− 33n − 74

4
β2 +

n2
− 20n − 2

4
β +

5n2 + n
2

.

It is easy to see that Ψ(2) = − 1
2 (7n2

− 51n + 12) < 0 since 7n2
− 51n + 12 > 0 for n > 51+

√
2265

14 . Note that Ψ(β)
is continuous on the interval [2, b n

2 c − 1]. Then by Lemma 3, we have Ψ(β) < 0 for [2, σ2] ∪ [σ3, σ4]; Ψ(β) > 0
for (σ2, σ3) ∪ (σ4, b n

2 c − 1). This completes the proof of Theorem 6. �

Example 1. If n = 21 and β = 2, then K2 + K19 ∈ Q1(21, 2), and RDD∗(K2 + K19) = 2262. The formula of part
(d) in Theorem 6 also gives upper bound of 2262.

A subset I of V(G) is said to be an independent set of the graph G if the subgraph induced by I is an empty
graph. Then α = max{|I| : I is an independent set of G} is said to be the independence number of G.

Let Q2(n, α) be the class of connected graphs of order n with independence number α.

Theorem 7. Let G ∈ Q2(n, α). Then

RDD∗(G) ≤
1
4
α4 +

2n − 5
4

α3
−

5n2
− 6n − 2

4
α2 +

5n2
− 8n + 2

4
α +

n(n − 1)3

2

with equality if and only if G � Kα + Kn−α .
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Proof. Let G′ be a connected graph with maximum RDD∗-value inQ2(n, α). Let I be a maximal independent
set in G′ with |I| = α. Note that by Lemma 1, adding edges into a graph will increase its RDD∗-value.
Therefore, each vertex u in I must be adjacent to those in G′ − I. In addition, the subgraph induced by
vertices in G′ − I is complete in G′. Hence, G � Kα + Kn−α . By elementary computation we obtain that
RDD∗(Kα + Kn−α) coincides with the right–hand side of Eq. (8), which completes the proof. �

3.3. Relation with vertex–connectivity

Lemma 4. Let n, x, y, and κ be four positive integers such that y > x, x + y = n − κ and κ < 4n−2+
√

31n2−64n+4
3 .

Then the function

f (x, y) = 2(x3
− y3) + 3(x2 + y2) + 2(x − y) +

2κ − 3
2

[3(x2
− y2) + 3(x + y)]

+ xy2
− x2y +

1
2

(x − y)2
− xy + x − y

+
2κ2 + (3n − 11)κ + n − 7

2
(x − y + 1) +

3
2

has positive value at x = n−κ−1
2 .

Proof. Let p = n − κ for simplicity. Then

Q1(x) = f (x, p − x) = 6x3 + (9 − 9p)x2 + [7p2
− 18p + 6pκ + n − 1 + 2κ2 + (3n − 11)κ]x

− 2p3 + (8 − 3κ)p2
− [κ2 +

1
2

(3n − 17)κ +
1
2

n + 4]p

+
1
2

[2κ2 + (3n − 11)κ + n − 4] .

The first and second derivatives ofQ1(x) areQ′1(x) = 18x2 +(18−18p)x+7p2
−18p+6pκ+n−1+2κ2 +(3n−11)κ

and Q′′1 (x) = 36x + 18 − 18p. We distinguish the following two cases.
Case 1. x ≥ p−1

2 .
In this case,Q′′1 (x) = 36x+18−18p > 0, which shows thatQ′1(x) is an increasing function for x ≥ p−1

2 . Then

Q
′

1(x) ≥ Q′1( p−1
2 ) = − 3

2κ
2 + (4n − 2)κ + 5

2 n2
− 8n. It is easy to verify that Q′1( p−1

2 ) > 0 for κ < 4n−2+
√

31n2−64n+4
3 .

This implies that Q1(x) is increasing and therefore Q1(x) ≥ Q1( p−1
2 ). By elementary calculations, we get

Q1( p−1
2 ) = κ2 + 1

2 (3n − 11)κ + 2 > 0.

Case 2. 2 ≤ x < p−1
2 .

In this case, Q′′1 (x) = 36x + 18 − 18p < 0, which shows that Q′1(x) is a decreasing function for 2 ≤ x < p−1
2 .

ThenQ′1(x) ≥ Q′1( p−1
2 ) = − 3

2κ
2 +(4n−2)κ+ 5

2 n2
−8n. It is easy to verify thatQ′1( p−1

2 ) > 0 for κ < 4n−2+
√

31n2−64n+4
3 .

This implies that Q1(x) is increasing and therefore Q1(x) ≥ Q1( p−1
2 ). By elementary calculations, we get

Q1( p−1
2 ) = κ2 + 1

2 (3n − 11)κ + 2 > 0.
Based on the discussions above, Q1(x) attains a positive value at x = n−κ−1

2 . �

The vertex–connectivity κ(G) of a connected graph G is the minimum size of a vertex set S such that G−S
is disconnected or has one vertex.

Let Q3(n, κ) be the class of connected graphs of order n with vertex-connectivity κ.

Theorem 8. Let G ∈ Q3(n, κ). Then

RDD∗(G) ≤
1
2

n4
−

7
2

n3 +
κ3
− κ2 + 3κ + 18

2
n2 +

κ3
− 11κ − 20

2
n +

κ2 + 9κ + 8
2
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with equality if and only if G � Kκ + (K1 ∪ Kn−κ−1) .

Proof. Let G′ be a connected graph with maximum RDD∗-value in Q3(n, κ). Let C be a vertex-cut in G′ with
|C| = κ and G1,G2, . . . ,Gt (t ≥ 2) be the components of G′ − C. By Lemma 1, we have t = 2 and each Gi
for i = 1, 2 is complete. Otherwise, we could get a new graph with greater RDD∗-value by adding edges,
which would contradict to the choice of G′. The same argument leads us to the conclusion that each Gi is
complete for i = 1, 2, that the subgraph of G′ induced by C is complete, and that each vertex of G1 ∪ G2 is
adjacent to that of C.

Let n1 = |V(G1)|, n2 = |V(G2)|, then n = n1 + n2 + κ. From the above argument, we know that G′ �
Kκ + (Kn1 ∪Kn2 ) and that for x ∈ V(G1), y ∈ V(G2), z ∈ C, we have deg(x) = κ+ (n1 − 1), deg(y) = κ+ (n2 − 1),
and deg(z) = n − 1.

Without loss of generality, we assume that n2 ≥ n1 ≥ 2. If n1 = 1, then the result follows directly. By
elementary computation, we get

RDD∗(G′) =
1
2

(n4
1 + n4

2) +
(
k −

3
2

)
(n3

1 + n3
2) +

1
2

n2
1 n2

2

−
1
2

[2κ2 + (3n − 11)κ + n − 7]n1 n2 +
1
2
κ(κ − 1)(n − 1)2

+
1
2

(κ2
− 4κ + 3)(n − κ)2

−
1
2

(n − κ)(κ − 1)2

+ κ(κ − 1)(n − 1)(n − κ) + κ(n − 1)(n − κ)2 .

Let G′′ � Kκ + (Kn1−1 ∪ Kn2+1). We will confirm that replacing every pair (ni,n j) by (ni − 1,n j + 1), the
RDD∗-value will be increased. Actually,

RDD∗(G′′) − RDD∗(G′) =
1
2

[4(n3
2 − n3

1) + 6(n2
1 + n2

2) + 4(n2 − n1) + 2]

+
(
κ −

3
2

)
[3(n2

2 − n2
1) + 3(n1 + n2)]

+
1
2

[2n2
1 n2 − 2n1 n2

2 + (n1 − n2)2
− 2n1 n2 + 2(n2 − n1) + 1]

−
1
2

[2κ2 + (3n − 11)κ + n − 7](n1 − n2 − 1) .

Let n2 = x, n1 = y. Then by Lemma 4, RDD∗(G′′)−RDD∗(G′) > 0. This implies that G′ � Kκ+(K1∪Kn−κ−1).
By direct computation we get

RDD∗(Kκ + (K1 ∪ Kn−κ−1)) ≤
1
2

n4
−

7
2

n3 +
κ3
− κ2 + 3κ + 18

2
n2

+
κ3
− 11κ − 20

2
n +

κ2 + 9κ + 8
2

.

This completes the proof of Theorem 8. �

Example 2. If (n, κ,n1,n2) = (3, 1, 1, 1), then G′ = P3 ∈ Q3(3, 1) and RDD∗(G′) = 9
2 . The formula of right side

in Theorem 8 also gives upper bound of 9
2 .



G. Su et al. / Filomat 30:8 (2016), 2217–2231 2229

4. A Nordhaus–Gaddum–Type Relation for RDD∗

A coloring of a graph G is an assignment of colors to its vertices such that two adjacent vertices have
different colors. The minimum number of colors in a coloring of G is said to be its chromatic number and is
denoted by χ(G).

In 1956, Nordhaus and Gaddum [27] studied the chromatic number in a graph G and in its complement
G together. They proved:

Theorem 9. (Nordhaus and Gaddum, [27]) Let G be a connected graph of order n. Then

2
√

n ≤ χ(G) + χ(G) ≤ n + 1 and n ≤ χ(G) · χ(G) ≤
(n + 1)2

4
.

Furthermore, these bounds are best possible for infinitely many values of n.

Since then, any bound on the sum and/or the product of an invariant in a graph G and the same invariant
in the complement G is called a Nordhaus–Gaddum–type inequality or Nordhaus–Gaddum–type relation.

Many Nordhaus–Gaddum–type results have been obtained so far; see the recent survey [3]. Below we
state one more, pertaining to the reciprocal product–degree distance.

Zhang and Wu [36] obtained a Nordhaus–Gaddum–type result for the Wiener index. Three years later,
Zhou et al. gave the following analogous result for the Harary index [37].

Lemma 5. (Zhou et al. [37]) Let G be a connected graph of order n ≥ 5 with connected complement. Then

1 +
(n − 1)2

2
+ n

n−1∑
i=1

1
i
≤ H(G) + H(G) ≤

3n(n − 1)
4

with left equality if and only if G � Pn or G � Pn, and with right equality if and only if both G and G have
diameter 2.

Let Pn,κ be the set of connected graphs of order n whose complement is also connected, such that
diam(G) = diam(G) = κ for κ ≥ 2.

The main result in this section can be stated as:

Theorem 10. Let G be a connected graph of order n ≥ 5 with connected complement. Let R−(δ) =

min{δ(G)2, δ(G)2
} and R+(δ) = max{4(G)2,4(G)2

}. Then

R−(δ)

1 +
(n − 1)2

2
+ n

n−1∑
i=1

1
i

 ≤ RDD∗(G) + RDD∗(G) ≤
3n(n − 1)

4
R+(δ)

with left equality if and only if G � Pn , and with right equality if and only if Pn,2 .

Proof. Since G and G are connected, by Theorem 5 and Lemma 5,

RDD∗(G) + RDD∗(G) ≤ 4(G)2 H(G) + 4(G)2 H(G)

≤ max{4(G)2,4(G)2
}(H(G) + H(G))

≤
3n(n − 1)

4
max{4(G)2,4(G)2

} .

with right equality if and only if G and G are regular graphs such that diam(G) = diam(G) = 2, or
equivalently, G ∈ Pn,2 .
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By Theorem 5 and Lemma 5, we also get

RDD∗(G) + RDD∗(G) ≥ δ(G)2H(G) + δ(G)2H(G)

≥ min{δ(G)2, δ(G)2
}(H(G) + H(G))

≥ min{δ(G)2, δ(G)2
}

1 +
(n − 1)2

2
+ n

n−1∑
i=1

1
i

 .
with left equality if and only if G � Pn .

This completes the proof of Theorem 10. �
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