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Abstract

Dengue virus is one of the most important arboviral pathogens and the causative agent of dengue fever, dengue
hemorrhagic fever, and dengue shock syndrome. It is transmitted between humans by the mosquitoes Aedes aegypti and
Aedes albopictus, and at least 2.5 billion people are at daily risk of infection. During their lifecycle, mosquitoes are exposed to
a variety of microbes, some of which are needed for their successful development into adulthood. However, recent studies
have suggested that the adult mosquito’s midgut microflora is critical in influencing the transmission of human pathogens.
In this study we assessed the reciprocal interactions between the mosquito’s midgut microbiota and dengue virus infection
that are, to a large extent, mediated by the mosquito’s innate immune system. We observed a marked decrease in
susceptibility to dengue virus infection when mosquitoes harbored certain field-derived bacterial isolates in their midgut.
Transcript abundance analysis of selected antimicrobial peptide genes suggested that the mosquito’s microbiota elicits a
basal immune activity that appears to act against dengue virus infection. Conversely, the elicitation of the mosquito
immune response by dengue virus infection itself influences the microbial load of the mosquito midgut. In sum, we show
that the mosquito’s microbiota influences dengue virus infection of the mosquito, which in turn activates its antibacterial
responses.
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Introduction

Dengue has become one of the most important arboviral

diseases, with infections rising at an alarming rate [1]. The dengue

virus is transmitted by two highly anthropophilic mosquitoes, Aedes

aegypti and Ae. albopictus. Although advances have been made

toward the development of a vaccine, no cure for dengue is

currently available [1]. Current methods are aimed at lowering the

vector population through insecticide use, but there are concerns

about the environmental impact of this approach as well as the

rapid development of resistance in mosquitoes [2]. These setbacks

have underscored the need for the development of additional

methods to control dengue transmission.

In the past decade, there has been a notable increase in

research aiming at the potential application of microbes to

control the transmission of vector-borne pathogens [3]. These

studies have been encouraged by the fact that pathogens and

microbes inhabit the same environment prior to infection (the

arthropod midgut) and on the observation that pathogen

infection is decreased in vectors harboring particular bacterial

symbionts.

In fact, the midgut is the site of multi-taxon interactions that

include the arthropod vector (host), vertebrate blood factors, the

pathogen (virus or parasite), and other symbiotic microbes.

Although there is growing interest in these associations, our

understanding of how these interactions at the molecular level and

how they affect vector physiology and influence vector competence

is still very basic. It has been shown that some of these interactions

involve insect immune factors such as lectins, antimicrobial

peptides, digestive enzymes, nitric oxide, and the prophenolox-

idase complex [4–6]. Other factors and mechanisms that have

been suggested to contribute to these interactions and to modulate

vector competence include: bacteria-derived cytolisins (hemoly-

sins), siderophores, proteases, anti-parasitic factors, and secondary

metabolites [4].

The purpose of the present study was to analyze the cultivable

endogenous microbial flora of field mosquitoes collected from

dengue-endemic areas in Panama and to assess their influence on
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the mosquito immune system and dengue virus infection. The

incidence of dengue in Panama is the fifth-highest in Central

America, and all four dengue virus serotypes are currently present

in the country [7]. Molecular and infection assays have revealed

intricate reciprocal interactions among the mosquito, the dengue

virus, and its microbiota, with some bacterial isolates significantly

affecting vector competence by reducing dengue virus infection of

the midgut. In turn, the activation of the mosquito immune system

by dengue virus infection alters the mosquito’s immune homeo-

stasis in the midgut, thereby affecting its microbiota.

Methods

Rearing and collection of field Ae. aegypti mosquitoes
The mosquito Ae. aegypti Rockefeller strain used in this study was

maintained on a 10% sugar solution at 27uC and 95% humidity

with a 12-h light/dark cycle according to standard procedures.

Sterile cotton, filter paper, and sterilized nets were used to

maintain maximum sterility of the cages.

The Ae. aegypti mosquitoes for this study were collected outdoors

with BG-sentinel mosquito traps and indoors with mosquito

aspirators from three regions: Panama Centro (Panama City,

Felipillo), Panama Oeste (Chorrera), and Chiriquı́ (David). These

sites were chosen on the basis of their prevalence of dengue fever

and dengue hemorrhagic fever cases in the last 3 years and on

mosquito surveys conducted by the Center for Mosquito

Surveillance, Ministry of Health (MINSA, from its Spanish

acronym). Peridomestic collection of mosquitoes in selected areas

was conducted in the early hours of the morning (5:30 to 6:30am)

and late afternoon (6:00 to 7:30pm). At least 10 mosquitoes per site

were collected and processed.

Isolation and characterization of mosquito midgut
bacteria
The collected mosquitoes were transported back to the

laboratory, chilled on ice, and identified at the species level using

a stereoscope and the taxonomic keys of Galindo and Adames [8]

and Rueda [9]. Following species confirmation, mosquitoes were

surfaced-sterilized by dipping and shaking them in 75% ethanol

for 2 min and rinsing them with 16 PBS twice for 1 min each.

Midguts were then dissected from each individual mosquito over a

sterile glass slide containing a drop of 16PBS, then transferred to

a microcentrifuge tube containing 150 ml of sterile PBS and

macerated for 30 sec. Three 10-fold serial dilutions were then

plated on LB agar and kept at room temperature for 48 h. Initial

isolation was based on morphology, color, and size of colony

(Figure S1), and then followed by molecular identification via 16s

rRNA gene sequencing. The primers used to amplify the 16s

rRNA gene were those reported by Cirimotich et al [10] : forward,

AGAGTTTGATCCTGGCTCAG; and reverse (degenerate),

TACGGYTACGCTTGTTACGACT. PCR conditions were

used according to the Platinum Pfx DNA Polymerase (Invitrogen)

protocol. PCR amplification was done with an initial denaturation

of 2 minutes at 94uC, and 40 cycles with a denaturation step at

94uC for 30 seconds, an annealing step at 58uC for 30 seconds

and an extension step at 72uC for 1 minute.

Bacterial 16s rRNA gene sequences were manually curated and

assembled from forward and reverse primer-generated sequences.

Curated sequences were then aligned and compared to available

bacterial sequences in GenBank and in the Ribosomal Database

Project (RDP Release 10, http://rdp.cme.msu.edu/). A bacterial

phylogenetic tree was constructed using the Ribosomal Database

Project ‘‘Tree Builder’’ program, which uses bootstrap sampling

and the Weighbor weighted neighbor-joining tree-building

algorithm to best estimate the phylogenetic position of a sequence.

Mosquito antibiotic treatment and reintroduction of
bacteria
Mosquitoes were rendered free of cultivable bacteria (designated

as aseptic) by maintaining them on a 10% sucrose solution with 20

units of penicillin and 20 mg of streptomycin from the first day

post-eclosion until 2 days prior to challenge. They were then

maintained for 1 day on sterile water and starved for 24 h prior to

dengue virus infection. Effectiveness of the antimicrobial treatment

was confirmed by colony forming unit (CFU) assays prior to blood-

feeding or bacterial challenge.

Two types of bacterial reintroduction were tested: via blood

meal and via sugar meal. Reintroduction of bacteria through the

blood meal was accomplished by first treating the mosquitoes with

antibiotics and then providing them with cotton balls moistened

with sterile water for 24 h post-antibiotic treatment. Mosquitoes

were starved overnight and fed on a mixture containing 50% of a

given bacterium suspended in 16 PBS (final concentration:

OD600=1, for controls only 16 PBS was added), 25% of MEM

(devoid of any antibiotics), 25% human commercial blood, and

10% human serum. Mosquitoes were cold-anesthetized, and the

fully fed mosquitoes were separated and provided with a dengue

virus-infectious blood meal 4 days after bacterial reintroduction.

Infection phenotype assays were performed as previously reported

[11] and as described below.

Following the bacterial reintroduction via blood meal, a subset

of bacteria showing an effect on dengue virus infection was further

tested through reintroduction via a sugar meal, which would more

closely resemble natural bacterial acquisition. The bacteria were

reintroduced through a sugar meal by first treating mosquitoes

with antibiotics for the first 2–3 days after emergence and then

providing them with a sterile 10% sugar meal for 24 h after

antibiotic treatment. Mosquitoes were then starved overnight and

fed on cotton strips moistened with a bacterial suspension diluted

in 3% sucrose solution and suspended in a 1.5-ml microcentrifuge

tube. Proteus sp. and Pantoea sp. were used at an OD600 of 1.00.

Bacterial concentrations used to infect mosquitoes were

Author Summary

Dengue virus is transmitted by Aedes mosquitoes. During
their lifecycle, mosquitoes are exposed to a variety of
microbes, and many of them inhabit the mosquito midgut,
thereby sharing the same environment with ingested
pathogens. The mosquito midgut is the site of multiple
reciprocal interactions between the mosquito, its com-
mensal bacteria, and ingested pathogens that will
ultimately influence the level of pathogen infection and
transmission. In this study the authors addressed the
reciprocal interactions between the Aedes immune system,
dengue virus and mosquito midgut microbiota using
molecular and microbiological assays. The study showed
that certain field-derived bacterial isolates of the mosquito
midgut exert a detrimental effect on dengue virus
infection. This effect is at least partly manifested through
the action of the mosquito immune system which is
activated by microbes. Conversely, dengue virus infection
induces immune responses in the mosquito midgut tissue
that act against the natural mosquito midgut microbiota.
This study contributes to our understanding of dengue
virus infection in Aedes mosquitoes, which may aid
towards the development of novel biocontrol strategies
to halt dengue transmission.
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determined on the basis of the average bacterial load for each

bacterial strain found in the midgut of field-collected mosquitoes.

Initial assessment of sugar meal acquisition and the location of the

sugar meal following ingestion were made by providing a group of

mosquitoes with a sugar solution dyed with blue food colorant.

Midguts and crops of exposed mosquitoes were dissected at 6 and

24 h.

Cell culture maintenance and DENV-2 infections
Dengue virus serotype 2 (New Guinea C strain, DENV-2) was

propagated in the C6/36 cell line according to standard conditions

[11]. In brief, 0.5 ml of virus stock was used to infect a 75-cm2

flask of C6/36 cells at 80% confluence. Infection was allowed to

proceed for 5–7 days, at which time the cells were harvested with a

cell scraper and lysed by freezing and thawing in dry CO2 and a

37uC water bath, centrifuged at 800 g for 10 min, and mixed 1:1

with commercial human blood. The infectious blood meal was

maintained at 37uC for 30 min prior to feeding 5- to 7-day-old

mosquitoes.

Mosquito dissections and dengue virus titration of
infected midguts
Infected mosquitoes were collected at 7 days post-infection and

surface-sterilized by dipping them in 70% ethanol for 1 min, then

rinsing them twice in 16 PBS for 2 min each. Midgut dissection

was performed in one drop of 16 PBS under sterile conditions,

and the midgut was transferred to a microcentrifuge tube

containing 150 ml of MEM. Midguts were homogenized using a

Kontes pellet pestle motor and stored at 280uC until used for

virus titration.

Dengue virus titration of infected midguts was done as

previously reported [11,12].The infected midgut homogenates

were serially diluted and inoculated into C6/36 cells in 24-well

plates. After an incubation of 5 days at 32uC and 5% CO2, the

plates were fixed with 50%/50% methanol/acetone, and plaques

were assayed by peroxidase immunostaining using mouse

hyperimmune ascitic fluid specific for DENV-2 as the primary

antibody and a goat anti-mouse HRP conjugate as the secondary

antibody. Also, where indicated, dengue virus titration of infected

midguts was conducted in BHK-21 cells. At 5 days post-infection,

the 24-well plates were fixed and stained with crystal violet.

Plaques (formed by cells with cytopathic effect, CPE) were counted

and analyzed.

Real-time qPCR assays
Real-time PCR assays were conducted by first treating the RNA

samples with Turbo DNase (Ambion, Austin, Texas, United

States); they were then reverse-transcribed using M-MLV reverse

transcriptase (Promega, USA). The real-time PCR assays were

performed using the SYBR Green PCR Master Mix kit (Applied

Biosystems, Foster City, California, USA) in a 20-ml reaction

volume, and all samples were tested in duplicate. The ribosomal

protein S7 gene was used for normalization of the cDNA

templates. The primer sequences used in these assays are listed

in Table S1.

RNAi-based gene-silencing assays
RNA interference assays (RNAi-based gene silencing) were

conducted as previously reported [11]. In brief, 69 nl of dsRNA

(3 ug/ml) re-suspended in water was injected into the thorax of

cold-anesthetized 3- to 4-day-old female mosquitoes using a nano-

injector. Three days after injection and gene-silencing validation,

the mosquitoes were allowed to feed on a dengue virus-laden

blood meal. Dissection of midguts and virus titration were carried

out as described above. The primer sequences used are listed in

Table S2.

Statistical analysis
Real-time PCR assays were normalized and standardized

according to Willems et al. [13]. Mann-Whitney U-tests and

one-way ANOVA with Dunnett’s post-test were used when

appropriate. Statistical analyses were conducted using the

GraphPad Prism statistical software package (Prism 5.05; Graph-

Pad Software, Inc., San Diego, CA). Statistical significance is

indicated with asterisks: *, p,0.05; **, p,0.01; ***, p,0.001.

Results

The cultivable mosquito midgut microbiome
To investigate the cultivable bacterial species composition of

midguts from field-caught adult female Ae. aegypti, we conducted

mosquito collections in dengue-endemic areas of Panama. The

field-captured mosquitoes were surfaced-sterilized and dissected,

and their midguts were homogenized and plated on rich culture

medium. We isolated 40 distinct bacterial isolates on the basis of

colony morphology and successfully characterized 34 of them. The

bacteria isolated from the midguts of the field-collected mosquitoes

were mostly Gram-negative, with no overrepresentation of a single

genus (Table 1, Figure 1). Six bacterial genera have been

previously isolated from mosquitoes, Asaia spp. [14,15], Aeromonas

spp., Enterobacter spp. [16], Paenibacillus spp. [16], Proteus spp. [17],

and Comamonas spp. [18]. The isolated bacteria belonged to six

phylogenetic classes, with the most dominant being the Gamma-

proteobacteria, the Betaproteobacteria, the Bacilli, and the

Alphaproteobacteria (Figure 2A).

Certain field mosquito midgut-associated bacterial
species significantly impair dengue virus infection
To investigate whether certain bacteria isolated from field

mosquitoes might influence dengue virus infection of the midgut,

we conducted bacterial reintroduction assays through a blood

meal or sugar meal (Figure 2B and Figure 2C) prior to dengue

virus infection. Recolonization of mosquito midguts, previously

rendered aseptic through antibiotic treatment, with single-isolate

bacteria through a blood meal led to a marked decrease in viral

titers in the midgut at 7 days post-bloodmeal (PBM). Introduction

of two bacteria species (Proteus sp. Prpsp_P and Paenibacillus sp

Pnsp_P) separately into the mosquito midguts resulted in a

significantly lower level of dengue virus infection, while introduc-

tion of other species (among them Pantoea sp. Pasp_P and

Comamonas sp. Cosp_P) produced no significant difference in

dengue virus titer from that of control group mosquitoes

(Figure 3A).

Next we wanted to assess the impact of selected bacteria on

dengue virus infection when introduced through a nectar meal,

since this would be the most likely route of introduction in the field

and exposure in a potential future symbiotic biocontrol strategy.

The current perception is that the ingested nectar meal is stored in

the mosquito crop and then relocated to the midgut for digestion

[19,20]. To determine the location of the ingested sugar meal in

the mosquito’s digestive system, we exposed mosquitoes to a food

color-dyed sugar meal. Following a 6-h exposure to the dyed-sugar

meal, the blue sugar meal could be observed in the crop and

midgut of some mosquitoes, while the remaining mosquitoes

showed the presence of the sugar meal only in the midgut (Figure

S2). At the end of a 24-h exposure, all mosquitoes were found to

have food color-dyed sugar meal in both the midgut and crop.

Mosquito, Dengue, Microbiota Interactions
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To assess the successful colonization of the mosquito midgut by the

reintroduced bacteria, mosquito midguts were dissected, homoge-

nized, and plated on LB agar at 3 days post-bacterial acquisition and

prior to the time point at which dengue virus infection normally

occurs. We observed a high prevalence of Proteus sp. Prsp_P (100%)

and a somewhat lower prevalence (69%) of Pantoea sp. Pasp_P in the

midgut of the mosquitoes (Figure 2B and Figure 2C).

Reintroduction of Proteus sp Prsp_P into the midgut through a

sugar meal led to a significant decrease in dengue virus titers, but

no significant effect on dengue virus infection was observed in

mosquitoes colonized by Pantoea sp. Pasp_P (Figures 3B).

Midgut bacteria from field-derived mosquitoes induces
local and systemic immune gene expession
Reintroduction of isolated bacteria into the antibiotic-treated

(aseptic) mosquitoes’ midguts elicited changes in transcript

abundace of a number of antimicrobial peptide genes, including

cecropin, gambicin and attacin in the midgut (Figure 4A) and the

Table 1. Phylogenetic affiliations of cultivable bacterial isolates.

Bacterial Division (class) Genus Closest relative

Gram

staining % Identity Source

Geographic

Region

Actinobacteria Micrococcus sp. Micrococcus sp. MOLA Gram (+) 99% Field-mosquito Panama Metro

Alphaproteobacteria Acetobacter sp. Acetobacter ghanensis strain 430A Gram (2) 99% Field-mosquito Panama Metro

Alphaproteobacteria Asaia sp. Asaia Krungthepensis isolate AE76 Gram (2) 99% Field-mosquito Panama Metro

Alphaproteobacteria Asaia sp. Asaia Krungthepensis Gram (2) 99% Field-mosquito Panama Metro

Alphaproteobacteria Asaia sp. Asaia bogorensis Gram (2) 99% Field-mosquito Chorrera

Alphaproteobacteria Asaia sp. Asaia bogorensis Gram (2) 99% Lab-mosquito Maryland, USA

Alphaproteobacteria Asaia sp. Asaia bogorensis Gram (2) 100% Field-mosquito Chorrera

Alphaproteobacteria Roseomonas sp. Roseomonas sp. QQDP511 Gram (2) 98% Field-mosquito Panama Metro

Bacilli Bacillus sp. Bacillus subtilis strain 22 Gram (+) 99% Field-mosquito Panama Metro

Bacilli Bacillus sp. Bacillus subtilis Gram (+) 99% Field-mosquito Chorrera

Bacilli Staphylococcus Staphylococcus capprae Gram (+) 99% Field-mosquito David

Bacilli Staphylococcus Staphylococcus capprae Gram (+) 99% Field-mosquito Panama Metro

Bacilli Lactococcus sp. Lactococcus lactis CV56 Gram (+) 99% Field-mosquito Chorrera

Bacilli Lactococcus sp. Lactococcus lactis Gram (+) 99% Field-mosquito Chorrera

Bacilli Paenibacillus sp Paenibacillus sp. GP26-03 Gram (+) 99% Field-mosquito Panama Metro

Betaproteobacteria Chromobacterium sp. Chromobacterium haemolyticum Gram (2) 98% Field-mosquito Chorrera

Betaproteobacteria Comamonas sp. Comamonas testosteroni Gram (2) 97% Field-mosquito Panama Metro

Betaproteobacteria Comamonas sp. Comamonas testosteroni Gram (2) 99% Field-mosquito Panama Metro

Betaproteobacteria Shinella Shinella kummerowiae Gram (2) 98% Field-mosquito Panama Metro

Flavobacteria Elizabethkingia sp. Elizabethkingia meningoseptica Gram (2) 99% Lab-mosquito Maryland, USA

Flavobacteria Chryseobacterium sp. Chryseobacterium sp. ISE14 Gram (2) 98% Field-mosquito Panama Metro

Gammaproteobacteria Acinetobacter sp. Acinetobacter sp.18N3 Gram (2) 99% Field-mosquito Chorrera

Gammaproteobacteria Aeromonas sp. Aeromonas hydrophila strain S1 Gram (2) 99% Field-mosquito Chorrera

Gammaproteobacteria Aeromonas sp. Aeromonas sp. WC56 Gram (2) 199% Field-mosquito Chorrera

Gammaproteobacteria Enterobacter sp. Enterobacter hormaechei Gram (2) 99% Field-mosquito Chorrera

Gammaproteobacteria Enterobacter sp. Enterobacter hormaechei subsp. Steigerwaltii Gram (2) 99% Field-mosquito Panama Metro

Gammaproteobacteria Enterobacter sp. Enterobacter ludwigii strain GTR Gram (2) 99% Field-mosquito Panama Metro

Gammaproteobacteria Shigella sp. Shigella sp. SZ012 Gram (2) 99% Field-mosquito David

Gammaproteobacteria Pantoea sp. Pantoea dispersa ND4 Gram (2) 99% Field-mosquito Panama Metro

Gammaproteobacteria Pantoea sp. Pantoea agglomerans strain AR_PINLBH4 Gram (2) 99% Lab-mosquito Maryland, USA

Gammaproteobacteria Pantoea sp. Pantoea dispersa 5BJN1 Gram (2) 99% Field-mosquito Panama Metro

Gammaproteobacteria Proteus sp. Proteus mirabilis Gram (2) 100% Field-mosquito Chorrera, Panama
Metro

Gammaproteobacteria Proteus sp. Proteus penneri Gram (2) 99% Field-mosquito Chorrera

Gammaproteobacteria Pseudomonas sp. Pseudomonas sp. M2L4 Gram (2) 99% Field-mosquito Chorrera

Gammaproteobacteria Pseudomonas sp. Pseudomonas stutzeri strain 1-1 Gram (2) 98% Field-mosquito Panama Metro

Gammaproteobacteria Serratia sp. Serratia marcescens strain N1.14 Gram (2) 99% Field-mosquito Panama Metro

Gammaproteobacteria Serratia sp. Serratia marcescens strain P3 Gram (2) 99% Lab-mosquito Maryland, USA

Gammaproteobacteria Leclercia sp. Leclercia sp. 1185/07 Gram (2) 99% Field-mosquito David

16S ribosomal RNA (rRNA) gene sequences was used to study phylogenetic affiliations of midgut bacteria.
doi:10.1371/journal.pntd.0001561.t001
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Figure 1. Phylogenetic tree of the field and laboratory-reared Ae. aegypti cultivable midgut microbiota. Red dots: Gram-negative, blue
dots: Gram-positive. Phylogenetic tree constructed from the alignment of complete 16s rRNA sequences using the Weighbor weighted neighbor-
joining algorithm from the Ribosomal Database Project, with Fusobacterium simiae as an out-group. The phylogenetic tree was generated using
MEGA (v5).
doi:10.1371/journal.pntd.0001561.g001
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abdominal fat body tissue (Figure 4B). This result suggests that

modulation of immune gene transcript abundance by the

reintroduced bacteria could have a detrimental effect on dengue

virus infection.

Effects of dengue virus infection on the mosquito midgut
microbiota and antimicrobial peptide geen expression
Dengue virus infection of the mosquito’s midgut led to

significant decrease in the overall bacterial load (as assessed by

16s rRNA transcript levels) at 24 h, 7 days, and 14 days after

ingestion of a dengue virus-supplemented blood meal. Interest-

ingly, the difference in the bacterial 16s rRNA transcript levels

between dengue virus-infected and uninfected mosquitoes was less

prominent at 3 days post-infection (Figure 5A). Analysis of the

relative transcript abundance of the antimicrobial peptide genes

lysozyme C, and cecropin G revealed that cecropin G transcripts

were significantly elevated in dengue-infected mosquitoes at 7 days

post-infection but showed no difference from control levels at 10

days post-infection. Lysozyme C also showed a transient changes

in transcript abundace, with no difference from control levels at 7

days but significant changes at 10 days post-infection (Figure 5B).

Dengue infection responsive antimicrobial peptide
genes influences the mosquito midgut bacterial load
To assess the involvement of antimicrobial effector genes in

regulating the midgut microbiota, we employed an RNAi-based

gene silencing approach in conjunction with CFU assays.

Although not statistically significant,silencing of several effector

genes led to changes in the growth of the midgut bacterial

populations compared to the control group (GFP dsRNA-injected

mosquitoes) (Figure 6). This suggests that one function of these

immune factors is to maintain a basal level of immunity to control

microbial proliferation. Interestingly, we did not observe a

significant increase in the midgut bacterial load after silencing

the cecropin G and lysozyme C genes, suggesting that these factors

may play more specialized roles in immunity (Figure 7A and 7B).

Antimicrobial peptide genes influence mosquitoes’
susceptibility to dengue virus infection of the midgut
We used a RNAi-based gene silencing approach to assess the

effect of selected antimicrobial peptide genes on dengue virus

infection, some of which are known to be regulated by our field-

derived bacteria. This treatment led to an overall increase in

dengue virus titers in the mosquito midgut especially for lysozyme

C, suggesting that this gene might exert a significant inhibitory

effect, on dengue virus infectivity (Figure 8A). However, this effect

was lost when the mosquitoes were maintained aseptically with

antibiotics prior to receiving an infectious blood meal (Figure 8B).

This might indicate that the infection phenotype observed upon

lysozyme C–silencing reflects an indirect effect. It is possible that

lysozyme inhibit the growth of bacteria that are beneficial to the

virus, or, alternatively lysozyme may act against bacteria that

compete with other bacteria that have a detrimental effect on the

virus. The current analysis does not allow for a detailed

mechanistic insight on this.

Discussion

During their life span, insects harbor a variety of microbes in

their intestine, some of which are needed for successful growth to

adulthood, and some as aids in digestion, nutrition, and

reproduction [21] as well as protection against pathogens

[10,22–25]. This situation is especially true for mosquitoes that,

as larvae, develop in stagnant microbe-rich water, feeding on

various bacteria and fungi, and that as adults are exposed to

microbes, parasites, and viruses through plant nectars and ingested

blood. For example, it has been shown that antibiotic treated

aseptic Anopheles gambiae mosquitoes are more susceptible to

Plasmodium infection and possess a lower basal level of immune

gene transcripts than do An. gambiae with a normal microbial

population [26,27]. The basal level of immune activity appears to

be critical in defining the level of susceptibility to Plasmodium

infection [28].

Figure 2. Characteristics of cultivable bacteria from the midgut
of field-collected mosquitoes. (A). Proportions of bacterial phylo-
genetic classes in the mosquito midgut. (B). Bacterial load and (C)
Bacterial prevalence in the mosquito midgut at 3 days post-bacterial
acquisition via sugar meal. This coincides with the time when
mosquitoes were exposed to an infectious blood meal.
doi:10.1371/journal.pntd.0001561.g002
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With regard to virus-mosquito interactions, the intracellular

bacterium Wolbachia spp. has been shown in several studies to affect

dengue virus infection in Ae. aegyptimosquitoes [29] and infection with

the Japanese encephalitis virus in aseptic Culex bitaeniorhyncus [30]. We

have previously shown that mosquitoes with a reduced midgut

bacterial load (as a result of antibiotic treatment) can support higher

dengue infection levels than can septic mosquitoes [11]. Furthermore,

the antibiotic-treated aseptic mosquitoes display a lower basal level of

several Toll pathway-related genes transcripts. We have shown that

the Toll pathway is involved in the anti-dengue defense [11]. We

cannot, however, exclude other possible mechanisms by which the

bacteria may hinder virus infection in the mosquito.

Figure 3. Bacterial influence of dengue virus infection in the mosquito midgut. Dengue virus (DENV-2) loads in mosquito midguts after the
introduction of a single-bacterium isolate (through blood meal (A) and sugar meal (B) into the mosquito midgut, as compared with control
mosquitoes (PBS). Data were analyzed using a one-way ANOVA, followed by Dunnett’s post-test; *, p,0.05; **, p,0.001.
doi:10.1371/journal.pntd.0001561.g003
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In order to assess this phenomenon in greater detail and select

bacteria that can mediate potent anti-dengue activity and meet

other criteria (easily cultivable and major representation in the

midgut microbiome) for the development of dengue biocontrol

strategies, we have now isolated and characterized cultivable

bacteria from the midguts of field mosquitoes collected in dengue-

endemic areas of Panama. Bacterial isolates from field collections

belonged to several phylogenetic classes, but no predominant

genus was observed. Many of these bacterial species have been

previously isolated from mosquitoes and may be better adapted to

the mosquito midgut environment. The diversity of microbes

isolated from field mosquitoes suggests a complex mosquito

midgut microbiome that is likely to affect the outcome of infection

and the mosquito’s midgut immune homeostasis. Our midgut

bacteria discovery method identified only live, replicating bacteria

that could grow aerobically on a rich culture medium, and this

approach likely explains some of the discrepancies between our

results and those of studies that have employed PCR-based

amplification of bacterial DNA, much of which may have been

derived from dead, minor, and/or transient microbial constituents

of the midgut microflora [15,31].

Reintroduction of some of these bacterial species through a

blood meal led to changes in susceptibility of the midgut tissue to

dengue infection. Furthermore, reintroduction of bacterial isolates

via a sugar meal into the midgut of Ae. aegypti mosquitoes resulted

in a significant decrease in dengue virus infection in the case of one

bacterial isolate, Proteus sp. Prsp_P.

These bacteria may either indirectly exert an anti-dengue effect

by boosting basal immunity or may directly influence the virus’

infectivity. The bacteria could, for example, act prior to dengue

virus infection of the midgut via bacterial metabolites that are

detrimental to the dengue virus, or act as a barrier for the virus

via steric hindrance, by growing along the midgut epithelium

[15].

In contrast to the effects produced by Proteus sp. Prsp_P,

reintroduction of Pantoea sp. Pasp_P had no effect on dengue virus

infection, perhaps because of the inability of this bacterium to

effectively colonize the mosquito’s midgut.

This could partially offset the anti-dengue effects that derive

from the elicitation of the mosquito’s immune system by this

bacterium. Alternatively, although Pasp_P shows a slightly higher

immune induction than Prsp_P, our gene expression assays only

addressed one time point of amp transcript abundance, and it is

quite likely that Prsp_P may elicit an overall stronger induction of

these genes over an extended time period. It is also possible that

Prsp_P induces some other unknown anti-viral factor stronger

than Pasp_P.

Furthermore, given that our introduction of bacteria was

performed with a single bacterial species at a time, it is possible

that lack of effect on dengue virus infection was because this

bacterium needs to act in synergy with other microbes of the

midgut. This type of synergistic effects may also alter some of our

observed ant-dengue activities for the other studied bacteria, when

combined with multiple bacterial species.

Our analyses of immune gene expression in mosquitoes exposed

to the studied bacteria revealed responses that were similar in their

direction of regulation but different in their magnitude. We

observed elevated immune gene transcripts in both the midgut and

fat body tissues, thus pointing to a local as well as a systemic

immune response. These two compartment-specific responses

could act in concert to limit dengue virus infection and

dissemination in the mosquito host. The transcript abundance of

the antimicrobial peptides we assayed has been shown to be

regulated by the immune signaling pathways that govern the

Figure 4. Antimicrobial peptide gene transcript abundance upon midgut exposure to selected bacterial isolates. Fold change in the
transcript abundance of selected antimicrobial peptide genes in the midgut (A) and fat body (B) of mosquitoes 2 days after the introduction, via a
sugar meal, of either Pantoea sp. Pasp_P, Proteus sp. Prsp_P, or Paenibacillus sp. Pnsp_P. Data was analyzed by one-way ANOVA with Dunnett’s post-
test; *, p,0.05.
doi:10.1371/journal.pntd.0001561.g004
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defense against dengue virus infection [11,32,33]. Thus, it is

possible that mosquito immune responseselicited by the bacteria

play a significant role in reducing the level of dengue infection in

the mosquito midgut. In fact, recently, a cecropin-like peptide with

anti-dengue virus properties was found to be elicited in the salivary

gland of dengue virus-infected mosquitoes [34] and cecropin-D

and defensin-C peptides have been shown to have anti-dengue

activity in the mosquito midgut [35].

The mosquito can be considered a holobiont unit, in which the

mosquito, its midgut microflora, and the dengue virus are involved

in complex reciprocal tripartite interactions. Our analysis of these

interactions has indicated that dengue infection in the mosquito is

able to elicit an immune response involving the elevated transcript

abundance of antimicrobial peptide genes such as cecropin,

attacin, and lysozyme C [11,32,33]. Even though the antiviral

activity of the mosquito’s antimicrobial peptides have yet to be

characterized, a cecropin-like peptide was recently found to have

anti-dengue virus activity [34]. In addition, antimicrobial peptides

are effective in controlling bacteria [36–38], and their elicitation

by dengue virus infection can therefore modulate the mosquito’s

Figure 5. Dengue virus infection modultaes the mosquito
midgut microbiota. (A) Total bacterial 16s RNA levels in the midguts
of dengue virus-infected mosquitoes relative to those of uninfected
mosquitoes. Bacterial loads were assessed by qPCR from pools of 10
midguts per replicate, and at least 4 independent biological replicates
were included. Data were analyzed by one-way ANOVA with Dunnett’s
post-test; *, p,0.05. (B) Antimicrobial peptide gene transcript
abundance in the midgut of dengue virus-infected mosquitoes relative
to uninfected mosquitoes at 7 days and 10 days post-infection. Data
were analyzed by Mann-Whitney U-test; *, p,0.05.
doi:10.1371/journal.pntd.0001561.g005

Figure 6. Effect of antimicrobial peptide gene silencing on
themidgut microbiota bacterial species composition. Bacterial
composition in the midguts of lysozyme C, cecropin and GFP silenced
mosquitoes at 3 days post-dsRNA injection. Two main bacterial types
were observed in each group of mosquitoes. Data represent the
microbial composition of 2 independent biological replicates (n = 20).
doi:10.1371/journal.pntd.0001561.g006

Figure 7. Bacterial loads in mosquito midguts following
antimicrobial peptide gene silencing. Bacterial load was assessed
by a (A) culture-independent method and (B) culture-dependent
method. Data were analyzed by one-way ANOVA with Dunnett’s post-
test; *, p,0.05.
doi:10.1371/journal.pntd.0001561.g007
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midgut microflora. Our observations agree with this assertion, in

that dengue virus-infected mosquito midguts displayed a lower

bacterial load (as measured by 16s rRNA) than did those of

uninfected mosquitoes.

In summary, our analysis of the reciprocal interactions between

the dengue virus, mosquito immune system, and bacteria isolated

from midguts of field mosquitoes collected in Panama has revealed

a marked decrease in viral load in mosquitoes infected with certain

natural bacterial isolates. Transcript abundance analysis of

selected antimicrobial peptide genes suggested that the mosquito’s

microbiota elicits an immune response that appears to act in part

to control dengue infection. In turn, the activation of the immune

system by dengue virus infection potentiates the mosquito’s

immune homeostasis and suppresses the microbiota of its midgut.

A better understanding of these complex reciprocal interactions

may facilitate the development of novel biocontrol strategies for

dengue transmission.

Supporting Information

Figure S1 Representative panel of bacterial isolates

identified by colony morphology and color. (A) Leclercia sp.

Lesp_P; (B) Pseudomonas sp. Pssp_P; (C) Pantoea sp. Pasp_P

(yellowish) and Serratia sp. (white); (D) Asaia sp. Asisp_L; (E)

Proteus sp. Prsp_P; (F) Micrococcus sp. Mcsp_P; (G) Pseudomonas

sp. Ps2sp_P (yellow) and Paenibacillus sp. Pnsp_P(white) and (H)

Chromobacterium sp. Csp_P.

(TIF)

Figure S2 Introduction of a sugar meal into the

mosquito midgut and crop. Comparison of mosquito midgut

and crop at 6 h after exposure to a food color-dyed sugar meal.

(TIF)

Table S1 PCR primers used in gene expression analy-

ses.

(PDF)

Table S2 PCR primers used to amplify gene segments

for the production of dsRNA segments.

(PDF)
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