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Abstract—This paper presents a mutual coupling based cali-
bration method for time-division-duplex massive MIMO systems,
which enables downlink precoding based on uplink channel
estimates. The entire calibration procedure is carried out solely
at the base station (BS) side by sounding all BS antenna pairs.
An Expectation-Maximization (EM) algorithm is derived, which
processes the measured channels in order to estimate calibration
coefficients. The EM algorithm outperforms current state-of-the-
art narrow-band calibration schemes in a mean squared error
(MSE) and sum-rate capacity sense. Like its predecessors, the
EM algorithm is general in the sense that it is not only suitable
to calibrate a co-located massive MIMO BS, but also very suitable
for calibrating multiple BSs in distributed MIMO systems.

The proposed method is validated with experimental evidence
obtained from a massive MIMO testbed. In addition, we address
the estimated narrow-band calibration coefficients as a stochastic
process across frequency, and study the subspace of this process
based on measurement data. With the insights of this study, we
propose an estimator which exploits the structure of the process
in order to reduce the calibration error across frequency. A model
for the calibration error is also proposed based on the asymptotic
properties of the estimator, and is validated with measurement
results.

Index Terms—Massive MIMO, reciprocity calibration, mutual
coupling, Expectation Maximization, validation, calibration error.

I. INTRODUCTION

M
ASSIVE Multiple-input Multiple-output (massive MIMO)

is an emerging technology with the potential to be

included in next generation wireless systems, such as fifth-

generation (5G) cellular systems. Massive MIMO departs from

traditional multi-user MIMO approaches by operating with a

large number of base station (BS) antennas, typically in the

order of hundreds or even thousands, to serve a relatively small

number of mobile terminals [1]. Such a system setup results in

a multitude of BS antennas that can be used in an advantageous

manner from multiple points of view [2].

One major challenge of operating with a large number

BS antennas is that it renders explicit channel estimation in

the downlink impractical. Basically, the overhead of channel

estimation in the downlink and feeding back the channel

estimate to the BS, scales linearly with the number of BS

antennas, and quickly becomes unsupportable in mobile time-

varying channels [3]. To deal with this challenge, the ap-

proach adopted is to operate in time-division-duplex (TDD)

mode, rely on channel reciprocity, and use uplink channel

state information (CSI) for downlink precoding purposes [4].

However, the presence of the analog front-end circuitry in

practical radio units complicates the situation and makes

the baseband-to-baseband channel non-reciprocal. Explained

briefly, the baseband representation of the received signals

[5] experience channels that are not only determined by the

propagation conditions, but also by the transceiver front-ends

at both sides of the radio link. While it is generally agreed that

the propagation channel is reciprocal [6], the transceiver radio

frequency (RF) chains at both ends of the link are generally not

[7]. Hence, in order to make use of the reciprocity assumption

and rely on the uplink CSI to compute precoding coefficients,

the non-reciprocal transceiver responses need to be calibrated.

Such a procedure is often termed reciprocity calibration, and

contains two steps: (i) estimation of calibration coefficients,

and (ii) compensation by applying those to the uplink channel

estimates.1

Reciprocity calibration of small scale TDD MIMO channels

has been a matter of study in recent years. Depending on

the system setup and requirements, the approach adopted can

take many forms. For example, [7] proposed a methodology

based on bi-directional measurements between the two ends

of a MIMO link to estimate suitable reciprocity calibration

coefficients. This calibration approach falls in the class of

”over-the-air” calibration schemes where users are involved

in the calibration process. A different approach is to rely

on dedicated hardware circuitry for calibration purposes, see

[8], [9]. Despite the possibilities of extending both mentioned

calibration approaches to a massive MIMO context, e.g., [10],

[11], recent calibration works suggest this is more difficult than

previously thought. For example, [12] questions the feasibility

of having dedicated circuits for calibration when the number

of transceivers to be calibrated grows large, and [13] argues

that the calibration protocols should preferably not rely on

mobile units. It thus appears that an increasing trend in massive

MIMO systems is to carry out the calibration entirely at the

BS side only through over-the-air measurements.

The first proposal in this vein was presented in [14]. The

work proposes an estimator for the calibration coefficients,

which only makes use of channel measurements between

BS antennas. More specifically, bi-directional channel mea-

surements between a given BS antenna, so-called reference

antenna, and all other antennas. This estimator was later

generalized in order to calibrate large-scale distributed MIMO

networks [13], [15]. The estimation problem is formulated as

1However, with the term reciprocity calibration, we will interchangeably
refer to the estimation step, compensation step, or both. The context will,
hopefully, make clear which of the previous cases is being addressed.
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constrained least-squares (LS) problem where the objective

function uses channel measurements from a set of arbitrary

antenna pairs of the network. The generality of this approach

spurred many publications dealing with particular cases [16]–

[18]. Parallel work in mutual coupling based calibration was

also conducted in [12]. An estimator for the calibration co-

efficients, which enables maximum ratio transmission (MRT),

was proposed for BS antenna arrays with special properties.

Although it appears that over-the-air reciprocity calibration

only involving the BS side is feasible, some matters need

further investigation. Firstly, the approaches available in the

literature for co-located BSs are not of great practical con-

venience. They either rely on antenna elements that need

to be (carefully) placed in front of the BS antenna array

solely for calibration purposes [14], or are only available

for a restrictive case of antenna arrays [12]. Secondly, most

estimators for calibration have been derived from empirical

standpoints, e.g., [12], [14], and respective extensions [15],

[17], [18]. It is not clear how far from fundamental estimation

performance bounds, or how close to Maximum likelihood

(ML) performance, such estimators are. Thirdly, most available

calibration approaches are proposed for narrow-band systems.

Such systems bandwidths are usually defined by the frequency

selectivity of the propagation channel, which is typically

much smaller than the frequency selectivity of the transceiver

responses. This results in similar calibration coefficients for

adjacent narrowband channels. Thus, it is of interest to model

the statistical dependency of such calibration coefficients, and

provide means to exploit this dependency in order to reduce the

calibration error across frequency. Lastly, there is little publicly

available work on validation of massive MIMO calibration

schemes. The need for validation is high, as it helps answering

many questions of practical nature. For example, [19] raises

the question whether the channel reciprocity assumption holds

when strong coupling between BS antennas exist, and [20]

questions if calibration assumptions similar to the ones used

in this work, hold for massive MIMO arrays.

A. Main Contributions of the Paper

Below, we summarize the main contributions of this work.

• We propose a convenient calibration method mainly re-

lying on mutual coupling between BS antennas to cali-

brate its non-reciprocal analog front-ends. We make no

assumptions other than channels due to mutual coupling

being reciprocal.

• We show that the narrow-band calibration coefficients can

be estimated by solving a joint penalized-ML estimation

problem. We provide an asymptotically efficient algo-

rithm to compute the joint solution, which is a particular

case of the EM algorithm.

• We validate our calibration method experimentally using

a software-defined radio massive MIMO testbed. More

specifically, we verify how the measured Error-Vector-

Magnitude (EVM) of the downlink equalized signals

decreases as the calibration accuracy increases, in a

setup where three closely spaced single-antenna users are

spatially multiplexed by one hundred BS antennas.

• We propose a non-white Gaussian model for the narrow-

band calibration error based on the properties of the

proposed estimator, and partially validate this model with

measurements.

B. Notation

The operators (·)∗, (·)T , (·)H , and (·)† denote element-

wise complex conjugate, transpose, Hermitian transpose, and

Moore-Penrose pseudo-inverse, respectively. The element in

the nth row and mth column of matrix A is denoted by[
A
]
n,m

. The operator E {·} denotes the expected value.

Re {·} and Im {·} return the real and imaginary part of their

arguments. The matrix I denotes the identity matrix, and

diag {a1, a2, . . . aM} denotes an M×M diagonal matrix with

diagonal entries given by a1, a2, . . . , aM . The operator ln
denotes the natural logarithm. The set of the complex numbers

and the set containing zero and the real positive numbers are

denoted by C and R≥0, respectively. The operator \ denotes

the relative set complement. Finally, ||·|| denotes the Frobenius

norm.

C. Paper Outline

The remaining sections of the paper are as follows. Section

II presents the signal models. Section III introduces the state-

of-the-art estimator for the calibration coefficients, proposes

a novel estimator, and provides a comparative analysis by

means of MSE and downlink sum-rate capacities. Section

IV validates the proposed calibration method experimentally.

Using the estimated calibration coefficients obtained from the

experiments, the purpose of Section V is twofold: i) it studies

several aspects of the calibration coefficients across 4.5 MHz

of transceiver bandwidth, ii) it proposes a model for the

calibration error of a narrowband system. Lastly, Section VI

summarizes the key takeaways from this work.

II. SIGNAL MODELS

This section starts by introducing the uplink and downlink

signal models, and shows how downlink precoding can be

performed using calibrated uplink channel estimates. Finally,

it models the channels between BS antennas which we use for

calibration purposes.

A. Uplink and Downlink Signal models

Let K single-antenna users simultaneously transmit a pilot

symbol in the uplink of a narrow-band MIMO system (e.g., a

particular sub-carrier of an OFDM-MIMO system). Collecting

the pilot symbols in the vector p = [p1 · · · pK ]T , the received

signal by an M -antenna base station can be written as

yUP = HUP p+w

= RBHPTU p+w. (1)

In (1), the matrix RB = diag
{
rB1 , · · · , rBM

}
models the

hardware response of M BS receive RF chains (one RF chain

per antenna), and the matrix TU = diag
{
tU1 , · · · , tUK

}
models

the hardware response of K transmit RF chains (one chain per
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user). HP is the propagation channel matrix, HUP is the, so-

called, uplink radio channel, and w is a vector modeling uplink

noise. Under the reciprocal assumption of the propagation

channel, the received downlink signal can be written as

yDL =HDL z
′ +w′

=RUH
T
PTB z′ +w′. (2)

In (2), the matrix RU = diag
{
rU1 , · · · , rUK

}
models the

hardware response of the receive RF chains of the K users,

and the matrix TB = diag
{
tB1 , · · · , tBM

}
models the hardware

response of M BS transmit RF chains. The entries of w′ model

downlink noise, HDL is the downlink radio channel, and z′ is

a vector with linearly precoded QAM symbols. In particular,

z′ = Px, where P is the precoding matrix, and the entries of

x contain QAM symbols.

B. Calibration Coefficients

Assume that an error free version of the uplink radio

channel, HUP, is available at the BS. The transpose of the

result of pre-multiplying HUP with the matrix αTBR
−1
B ,

where α ∈ C \ 0 and rm 6= 0, ∀ m, is a matrix G that, if

used for precoding purposes by means of a linear filtering, is

sufficient for spatially multiplexing terminals in the downlink

with reduced crosstalk. This can be visualized by expanding

G as

G =
((
αTBR

−1
B

)
HUP

)T

= αTUH
T
PTB

= αTUR
−1
U HDL. (3)

From (3) we have that G is effectively the true downlink

radio channel HDL pre-multiplied with a diagonal matrix with

unknown entries accounting for the user terminals responses

TUR
−1
U , and α. The row space of G is thus the same as of

the downlink radio channel HDL. This is a sufficient condition

to cancel inter-user interference if, for example, ZF precoding

is used (i.e., HDLG
† is a diagonal matrix).

From (3), it can also be seen that any non-zero complex

scalar α provides equally good calibration.2 Thus, the matrix

C =diag{c1, · · · , cM}
=TBR

−1
B (4)

is the, so-called, calibration matrix, and {cm} are the cali-

bration coefficients which can be estimated up to a common

complex scalar α. We remark that, although not strictly neces-

sary to build estimators, the concept of a reference transceiver

[14] can be used to deal with the ambiguity of estimating {cm}
up to α.3 The remainder of the paper deals with estimation

aspects of cm = tBm/r
B
m. Thus, for notational simplicity, we

write tm = tBm, rm = rBm, R = RB, and T = TB. Also, we

stack {cm} in the vector c = [c1 · · · cM ]T , for later use.

2This follows since both magnitude and phase of α are not relevant in this
calibration setup. The former holds since any real scaled channel estimate
provides the same precoder matrix P, if the precoder has a fixed norm. The
latter follows from (3), since the (uniform phases of the) diagonal entries of

TUR
−1
U

are unknown to the precoder in this calibration setup.
3Explained briefly, assuming cref = 1 and solving for {cm} \ cref, where

cref is the calibration coefficient associated with a reference transceiver.

C. Inter-BS Antennas Signal model

To estimate the calibration coefficients cm we sound the M
antennas one-by-one by transmitting a sounding signal from

each one and receiving on the other M − 1 silent antennas.

Let the sounding signal transmitted by antenna m be sm =
1, ∀ m, unless explicitly said otherwise. Also, let yn,m denote

the signal received at antenna n when transmitting at antenna

m. It follows that the received signals between any pair of

antennas can be written as
[
yn,m
ym,n

]
= hn,m

[
rntm 0
0 rmtn

] [
sm
sn

]
+

[
nn,m

nm,n

]
,

(5)

where

hn,m = h̄n,m + h̃n,m (6)

= |h̄n,m| exp(j2πφn,m) + h̃n,m (7)

models the (reciprocal) channels between BS antennas. The

first term h̄n,m describes a channel component due to mutual

coupling between antenna elements, often stronger for closely

spaced antennas, which we lay down a model for in Sec. II-D.

The terms |h̄n,m| and φn,m denote the magnitude and phase

of h̄n,m, respectively. The term h̃n,m, which absorbs all other

channel multipath contributions except for the mutual coupling

(e.g., reflections by scatterers in front of the BS) is modeled

by an i.i.d. zero-mean circularly symmetric complex Gaussian

random variable with variance σ2. Non-reciprocal channel

components are modeled by rm and tm which materially map

to the cascade of hardware components, mainly in the analog

front-end stage of the receiver and transmitter, respectively.

We assume i.i.d. circularly symmetric zero-mean complex

Gaussian noise contributions nm,n with variance N0. Letting[
Y
]
m,n

= ym,n, the received signals can be expressed more

compactly as

Y = RHT+N. (8)

Note that H = HT is assumed, and the diagonal entries in

the M ×M matrix Y are undefined.

D. Modeling Mutual Coupling

The purpose of this section is to provide a model for the

mutual coupling between antenna elements, i.e. h̄m,n, as a

function of their distance. Instead of pursuing a circuit theory

based approach to model the effect of mutual coupling [19],

our modeling approach uses S-parameter measurements from

a massive MIMO BS antenna array [21]. We note that this

model is used only for simulation purposes, and not to derive

any of the upcoming estimators of c.

1) Test Array Description: The antenna array considered

for modeling is a 2-dimensional planar structure with dual-

polarized patch elements spaced by half a wavelength. More

information about the antenna array can be found in [22].

The dimensional layout of the array adopted for this work

corresponds to the 4×25 rectangular grid in the upper part of

the array shown in Fig. 1. Only one antenna port is used per

antenna element. For a given antenna, the polarization port is

chosen such that its adjacent antennas - the antennas spaced

by half wavelength - are cross-polarized. This setting provides,
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Fig. 1. The massive MIMO lab setup used throughout this work. The BS is
on the left side where a ”T” shaped antenna array can be seen. Three closely
spaced user antennas stand the middle of the picture.
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Fig. 2. Measured coupling magnitudes |h̄n,m| between different antenna
pairs. The circles corresponds to measurements between co-polarized antenna
elements, and the crosses between cross polarized antenna elements. The
variable d corresponds to the physical distance between antenna elements.
The straight lines represent the corresponding linear LS fits.

so-called, polarization diversity, and reduces mutual coupling

effects between adjacent antennas since co-polarized antennas

couple stronger [21].

2) Modeling coupling gains between antennas: The chan-

nel magnitude |h̄n,m| between several pairs of cross and co-

polarized antennas were measured in an anechoic chamber

using a Vector Network Analyzer, at 3.7 GHz - the center

frequency of the array. Fig. 2 shows the measured channel

magnitudes. Different channel magnitudes for the very same

measured distance and polarization cases, are due mostly to

the relative orientation of the antenna pair with respect to

their polarization setup. For example, vertically (co-)polarized

antennas couple more strongly when they are oriented hori-

zontally. A linear LS fit was performed to model the coupling

gain |h̄n,m| as a function of antenna distance. The phase

φm,n = φn,m is modeled uniformly in [0, 1], as a clear

dependence with distance was not found.

III. ESTIMATION OF THE CALIBRATION COEFFICIENTS

In this section we deal with estimation aspects of the

calibration matrix C = TR−1. We introduce the state-of-

art estimator of C [13], [15], and propose a novel iterative

penalized-ML estimator.4 A comparative numerical analysis is

made by means of MSE and sum-rate capacity. We conclude

the section with two interesting remarks.

A. The Generalized Method of Moments estimator

Calibration of large-scale distributed MIMO systems using

a similar system model to (8) was performed in [13] and

[15].5 Based on the structure of the system model, the authors

identified that

E {yn,mcn − ym,ncm} = 0. (9)

Define gm,n , yn,mcn − ym,ncm, and g(c) =

[g1,2 . . . g1,M g2,3 . . . g2,M . . . gM−1,M ]
T

.6 An estimator for c

was proposed by solving

ĉGMM = arg min
c

s.t. fc(c)=1

gH(c)Wg(c) (10)

with W = I. Two constraints were suggested to avoid the

all-zero solution, namely fc(c) = c1 or fc(c) = ||c||2. By

setting the gradient with respect to c to zero, an estimator in

closed-form was given. Next, we provide a few remarks on

this estimation approach.

A fact not identified in [13] and [15], is that this estimator is

an instance of a estimation framework widely used for statisti-

cal inference in econometrics, namely the generalized method

of moments (GMM). The variable gm,n - whose expectation is

zero - is termed a moment condition within GMM literature

[23]. With a proper setting of the weighting matrix W, it

can be shown that the solution to (10) provides an estimator

that is asymptotically efficient [23]. However, no such claim

can be made in the low signal-to-noise (SNR) regime, where

an optimal form of W is not available in the literature. This

typically leads to empirical settings of W, e.g., W = I. As

a result, moment conditions comprising measurements with

low SNR constrain the performance since they are weighted

equally. It thus appears that an inherent problem of the GMM

estimator is the selection of W. Nevertheless, it provides a

closed-form estimator based on a cost function where nuisance

parameters for calibration, as hm,n, are conveniently left out.

B. Joint Maximum Penalized-Likelihood estimation

Here we address joint maximum penalized-likelihood es-

timation for c and for the equivalent channel Ψ , RHR.

Noting that (8) can be written as

Y = RHRC+N

= ΨC+N, (11)

4We note that the only assumption used to derive the estimators is H =
H

T . The generality of this assumption allows the estimators to be used in
other calibration setups than those of co-located MIMO systems, as it will be
pointed out later.

5In their work, hm,n denotes the propagation channel between antennas of
different BSs. The reciprocal model adopted for hm,n accounts for large-scale
and small-scale fading.

6The dependency of g(c) on yn,m is explicitly left out, for notational
convenience.
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the optimization problem can be put as

[ĉ, Ψ̂] = argmax
c,Ψ

ln p(Y|C,Ψ) + Pen(C,Ψ, ǫ′)

= argmin
c,Ψ

JML(Y,C,Ψ, ǫ) (12)

with JML(Y,C,Ψ, ǫ) = ||Y −ΨC||2 +Pen(C,Ψ, ǫ). Here,

p(Y|C,Ψ) denotes the probability density function (PDF) of

Y conditioned on C and Ψ, and Pen(C,Ψ, ǫ) is a penalty

term parametrized by ǫ = ǫ′N0 with ǫ ∈ R≥0.

There are many uses for the penalty term in ML formula-

tions [24]. Here, we use it mainly to control the convergence

rate of the algorithm (presented in Sec. III-C), and use ǫ
as a tuning parameter. With this in mind, we pursue Ridge

Regression and set the penalty term as7

Pen(C,Ψ, ǫ) = ǫ(||C||2 + ||Ψ||2). (13)

After some re-modeling, a vectorized version of (11) can

be written as

Ỹ = Ψeq(Ψ̃)c+ Ñ, (14)

or as

Y′ = Ceq(c)Ψ̃+N′, (15)

where Ψ̃ stacks all ψn,m = [Ψ]n,m into an (M2 −M)/2× 1
vector, and Ψeq(Ψ̃) and Ceq(c) are equivalent observation

matrices which are constructed from Ψ̃ and c, respectively.

The structure of these matrices is shown in Appendix A, but

it can be pointed out that Ψeq(Ψ̃) and Ceq(c) are a block

diagonal, where each block is a column vector.

From (15), it is seen that for a given Ceq(c), the penalized-

ML estimator of Ψ̃ is given by8

Ψ̃ML =
(
CH

eq(c)Ceq(c) + 2ǫI
)−1

CH
eq(c)Y

′. (16)

If in (15), we replace Ψ̃ by its estimate Ψ̃ML, then the

penalized ML solution for c is

ĉML = argmin
c

||Y′ −Ceq(c)
(
CH

eq(c)Ceq(c) + 2ǫI
)−1

×CH
eq(c)Y

′||2. (17)

It is possible to further simplify (17) for the case of

unpenalized ML estimation (ǫ = 0) and attack the opti-

mization problem with gradient-based methods [26]. We have

implemented the conjugate gradient method in a Fletcher-

Reeves setting with an optimized step-size through a line-

search. However, this turns out to be far less robust than, and

computationally more expensive to, the method provided next.

Therefore we omit to provide the gradient in closed form.

7Ridge Regression [25] is an empirical regression approach widely used in
many practical fields, e.g., Machine Learning [24], as it provides estimation
robustness when the model is subject to a number of degeneracies. This turns
out to the case in this work, and we point out why this occurs later. However,
we emphasize that the main reason of adding the penalty terms is to control
the convergence of the algorithm, which we also point out later why this
is the case. To finalize, we parametrize the penalty term (13) with a single
parameter in order simplify the convergence analysis and be able to extract
meaningful insights.

8The factor 2 in the regularization term of (16) appears since ψm,n =
ψn,m. Note that ǫ is considered as a constant during the optimization,
otherwise it is obvious that ǫ = 0 minimizes (13).

C. An EM Algorithm to find the joint Penalized-ML Estimate

Here we provide a robust and computational efficient al-

gorithm to find the joint penalized-ML estimate of c and Ψ.

Instead of pursuing an approach similar to the one used to

reach (17), the algorithm has its roots in the joint solution

found by setting the gradient of JML(Y,C,Ψ, ǫ) to zero.

Before presenting the algorithm, we therefore briefly address

this gradient approach.

Each entry of (11) is given by yn,m = ψn,mcm+nn,m. The

derivative of JML(Y,C,Ψ, ǫ) with respect to c∗m is given by

∂JML(Y,C,Ψ, ǫ)

∂c∗m
= ǫcm +

M∑

n=1
n 6=m

|ψn,m|2cm − yn,mψ
∗
n,m.

(18)

Setting (18) to zero and solving for cm yields

cm =


ǫ+

M∑

n=1
n 6=m

|ψn,m|2



−1
M∑

n=1
n 6=m

ψ∗
n,myn,m, (19)

which can be expressed in a vector form as

ĉML =
(
ΨH

eq(Ψ̃)Ψeq(Ψ̃) + ǫI
)−1

ΨH
eq(Ψ̃)Ỹ. (20)

In a similar fashion, setting the derivative of JML(Y,C,Ψ, ǫ)
with respect to ψ∗

n,m to zero and solving for ψn,m provides

ψn,m =
(
|cn|2 + |cm|2 + 2ǫ

)−1
(ym,nc

∗
n + yn,mc

∗
m) , (21)

which can be expressed in a vector form as (16). Equations

(19) and (21) show the analytical form for each entry of the

penalized-ML vector estimates, which will prove to be useful

during the complexity analysis. Combining the results from

(20) and (16) yield the joint solution

[
ĉML

Ψ̃ML

]
=




(
ΨH

eq(Ψ̃ML)Ψeq(Ψ̃ML) + ǫI
)−1

ΨH
eq(Ψ̃ML)Ỹ

(
CH

eq(ĉML)Ceq(ĉML) + 2ǫI
)−1

CH
eq(ĉML)Y

′




(22)

The particular structure of (22) suggests that a pragmatic

approach for solving can be pursued. More specifically, (22)

can be separated into two sub-problems, i.e., solving for ĉML

and Ψ̃ML separately. Since each of the solutions depend

on previous estimates, the joint solution can be computed

iteratively, by sequentially solving two separate regularized LS

problems, given an initial guess. Since each iteration estimates

c and Ψ̃ separately, this approach can be seen as an instance

of the EM algorithm [27], where the - often challenging -

Expectation step is performed by estimating only the first

moment of the nuisance parameters {ψm,n}. The convergence

of the algorithm can be analyzed using standard methods, such

as a distance between consecutive point estimates. The GMM

estimator can be used to compute a reliable initial guess for

iteration - in contrast to a purely random initialization. This is

often good practice to ensure convergence to a suitable local

optimum since JML(Y,C,Ψ, ǫ) is not a convex function of

its joint parameter space. For sake of clarity, Algorithm 1

summarizes the proposed iterative procedure.
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Algorithm 1 Expectation-Maximization

Require: Measurement matrix Y, convergence threshold ∆ML,
penalty parameter ǫ, initial guess ĉ

1: Initialization: set ∆ = δ where δ > ∆ML

2: while ∆ ≥ ∆ML do

3: Ψ̃ML =
(
C

H
eq(ĉ)Ceq(ĉ) + 2ǫI

)
−1

C
H
eq(ĉ)Y

′

4: ĉML =
(
Ψ

H
eq(Ψ̃ML)Ψeq(Ψ̃ML) + ǫI

)
−1

Ψ
H
eq(Ψ̃ML)Ỹ

5: ∆ = ||ĉML − ĉ||2

6: ĉ = ĉML

7: end while
Output: Calibration coefficients estimate ĉML

Observe that ǫ, i.e. the penalty term parameter in (13),

ends up regularizing both matrix inversions. This is of notable

importance from two points-of-view: i) from an estimation

(robustness) point-of-view, since the matrices to be inverted

are constructed from parameter estimates (and thus are subject

to estimation errors) and no favorable guarantee exists on

their condition number, e.g., see (35). ii) from a convergence

point-of-view, as it is well-known that the convergence rate

of regularized LS adaptive filters is inversely proportional to

their eigenvalue spread [28]; This property combo justifies

why Ridge Regression was pursued in the first place.

A side remark regarding an application of the EM algorithm

follows. We highlight that the calibration coefficients c and the

equivalent channels ψm,n = rmhm,nrn are jointly estimated.

As previously mentioned, this a feature is not present in the

GMM estimator. Noticeably, this feature makes the EM algo-

rithm robust and hence very suitable to calibrate distributed

MIMO systems since channel fading (i.e., high variations

of |hm,n|) often occurs [13]. As mentioned in Sec. III-A,

the system model used can be also representative to that of

distributed systems.

D. Complexity Analysis

The complexity of each iteration of Algorithm 1 is domi-

nated by steps 3 and 4. Fortunately the block diagonal structure

of the equivalent matrices allows for the inversions to be of

reduced complexity, as detailed next. From (21), each calcu-

lation of ψm,n requires a few multiplications and additions.

Since
(
M2 −M

)
/2 such calculations are needed to compute

(16), the complexity order of step 3 is O(M2). Similarly, the

complexity of step 4 is O(M2) which can be seen directly

from (19). The explanation of the O(M2) behavior is that

the complexity of each calibration coefficient cm is O(M),
and M such calibration coefficients need to be computed.

Overall, each iteration of the EM algorithm is of complexity

O(M2), and the algorithm’s complexity is O(NiteM
2), with

Nite being the number of iterations needed for convergence.

The number of iterations needed for convergence is studied in

Sec. III-E3.

As for the GMM estimator, the closed-form solutions pre-

sented in [13] and [15] have complexity orders of O(M3), as

they consist of an inverse of a Hermitian matrix of size M−1,

and of the eigenvector associated with the smallest eigenvalue

of a Hermitian matrix of size M .

On a practical note, we remark that the computational

complexity of both approaches does not stand as a prohibitive

factor for BS arrays using hundreds or even several thousands

of antennas. This is because calibration typically needs to be

performed on a hourly basis [14], [22].

E. Performance Assessment

1) Simulation setup for the MSE analysis: We simulate

reciprocity calibration over a 4 × 25 rectangular array as the

one in Fig. 1. The linear regression parameters obtained in

Sec. II-D2 are used to model the coupling gains h̄m,n. The

mth transceiver maps to the antenna in row arow and column

acol of the array as m = 25(arow − 1) + acol. The reference

transceiver index is set to ref = 38, as it is associated with

one of the most central antenna elements of the 2-D array.

The Cramér-Rao Lower Bound (CRLB) is computed to

verify the asymptotical properties of the estimators’ error [27].

From (6) and (8), it can be seen that if h̄m,n is assumed

to be known, the PDF of Y conditioned on R and T is a

multivariate Gaussian PDF. This makes the CRLB of c to have

a well known closed-form, which is computed in Appendix B.

The transmitter tm and receiver rm gains are set to

tm = (0.9 + 0.2m
M exp(−j2πm/M))/tref and rm = (0.9 +

0.2(M−m)
M exp(j2πm/M))/rref, respectively. We used this de-

terministic setting for the transceivers, as it allows for a direct

comparison of the parameter estimates’ MSE with the CRLB.

Moreover, this setting incorporates eventual mismatches within

the transceivers complex amplitude which are in line with the

magnitude variations measured from the transmitters/receivers

of our testbed, i.e., spread of around 10-percent around the

mean magnitude (and uniform phase). This spread is in line

with transceiver models adopted in other calibration works

[13].

The variance σ2 of the multipath propagation contribu-

tion during calibration is set to −60 dB. Our motivation

for this value is as follows. If the closest physical scatter

to the BS is situated, say, 15 meters away, then by Friis’

law [29] we have a path loss of around 10 log10(
4πd
λ ) =

10 log10(
4π(2×15m)

3×108/(3.7×109) ) = 73 dB per path. This number

does not account for further losses due to reflections and

scattering. Based on this, we use −60 dB as the power

(variance) of the resulting channel stemming from a large

number of such uncorrelated paths.

For consistency with the reference antenna concept used in

the CRLB computations, the MSE of the EM algorithm output

ĉML, is defined as

MSEm = E
{
|cm − [ĉML]m,1 / [ĉML]ref,1 |2

}
, (23)

since the estimated ”reference” coefficient [ĉML]ref,1 is not

necessarily equal to 1. This is because the concept of ref-

erence antenna is not used by the EM algorithm. As for the

GMM estimator, the constraint provided in [15] is adopted,

i.e., cref = 1 in (10), which is already coherent with the

computed CRLB. The results are averaged over 1000 Monte-

Carlo simulations, and the threshold ∆ML is set to 10−6 which,

based on our experience, ensures that convergence is reached
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in many parameter settings. The initial guess for the EM

algorithm is produced by the GMM estimator.

2) Estimators’ MSE vs CRLB: Fig. 3 compares the MSE of

the estimators with the CRLB for two transceiver cases. Both

estimators appear to be asymptotically efficient. Noticeably,

the performance gains of the EM algorithm can be grossly

superior to the GMM (up to 10 dB), as it approaches the CRLB

at much smaller values of N0. As mentioned previously, this

is mainly because the GMM estimator does not appropriately

weight moment conditions with less quality.

Two remarks about the CRLB itself are now in place. i) As

mentioned in Appendix B, the assumptions used during the

CRLB computations, could result in an underestimated CRLB.

Indeed, the results in Fig. 3 suggest that the assumptions used

during the CRLB computations do not affect its final value

since the estimators’ MSE asymptotically converges to the

computed CRLB. This is convenient since (asymptotically)

efficient estimators can still be built with limited information.

ii) It was assumed that φm,n - the phase of h̄m,n - is known

during the CRLB computations, although it is originally mod-

eled as a random variable in Sec.II-D2. However, if φm,n

is assumed to be known, the CRLB is independent of the

value of φm,n. This is because a phase rotation in µn,m, does

not influence (42), due to the structure of Σ−1. Thus, any

realization of hm,n - from the model proposed in Sec. II-D -

provides the same CRLB result.

From the previous two remarks and standard estimation

theory [27], it follows that the (narrowband) calibration er-

ror - in the high SNR regime - produced by the studied

estimators can be well modeled as a multivariate zero-mean

Gaussian distribution with covariance matrix given by the

transformed inverse Fisher information matrix, found in (38).

The Gaussianity of the calibration error is further verified

(experimentally) in Sec. V-D.

3) Convergence of the EM algorithm: The convergence is

analyzed for N0 = −40 dB, which from Fig. 3 appears to

be a region where EM-based estimation provides significant

gains compared to GMM. Fig. 4 illustrates the role played by

the regularization constant ǫ in terms of convergence rate and

MSE. Noticeably, the higher ǫ the faster the algorithm appears

to converge. The number of iterations until convergence Nite

is seen to be much smaller than M with large enough ǫ (i.e.,

around 5 iterations when ǫ = 0.1).9 However, increasing ǫ
indefinitely is not an option as it degrades the performance.

Moreover, the results also indicate that proper tuning of ǫ can

provide MSE gains compared to the unregularized case which

is asymptotically efficient (notice that this does not conflict

with the CRLB theorem, as an estimator built with ǫ 6= 0 is

not necessarily unbiased). This was - to some extent - expected

due the benefits of Ridge Regression as discussed in Sec.III-C.

With that, we identify that a fine tuning of ǫ can provide

many-fold improvements. We note that in the literature there

is a number of approaches available that deal with optimiza-

tion of regularization constants in standard (non-iterative) LS

problems [24]. However, they are not directly applicable to

9If, instead, the initial guess is chosen randomly (e.g., calibration coeffi-
cients with unit-norm and i.i.d. uniform phases) then our simulations indicate
that the order of Nite is O(M).

this work as they typically optimize single error metrics, and

are in general computationally expensive. Here, our main use

for ǫ is to accelerate the convergence and provide estimation

robustness to the algorithm, all achieved at no complexity cost.

For this matter, we treat ǫ as a hyperparameter (an approach

widely adopted in regularized LS adaptive filtering [28]).

Further investigation on fully automatizing the EM algorithm

is an interesting matter of future work.

For the remainder of the paper, we set ǫ = 0 and proceed

accordingly, for simplicity.

4) Simulation Setup for Sum-rate Capacity Analysis : The

same parameter setting as in Sec. III-E1 is kept in this setup,

and the remaining simulation framework is defined next.

We assume that the uplink channel HUP is perfectly know

to the BS, and that there are two noise sources in the system.

The first noise source is downlink additive noise modeled

by w′, see (2). Here, w′ have i.i.d. zero-mean circularly

symmetric complex Gaussian distributed random entries with

variance Nw equal to 1. The same model is used for the entries

of the downlink channel matrix HDL. The second noise source

is the error during estimation of c (i.e., calibration error). With

that, the precoded signal z′ = Px is subject to calibration

errors. The transmit power constraint E
{
||z′||2

}
= K is used.

Also, we set K = 10 single antenna users, and assume

tUk = tBk and rUk = rBk for sake of simplicity.

The sum-rate capacities [30] are evaluated for different

calibration cases. More specifically, when no calibration is

employed (i.e., ĉm = 1), when calibration is performed

with the GMM or the EM algorithm, for the case of perfect

calibration (i.e., ĉm = cm), and as a baseline, when precoding

is performed using the true downlink channel HDL. The

analysis is performed with N0 = −40 dB, for the reasons

mentioned during the convergence analysis.

5) Sum-rate Capacity Results: Fig. 5 shows the obtained

sum-rates cumulative distribution functions (CDFs) for differ-

ent precoding schemes [2]. Similarly to the MSE results, EM-

based calibration provides significant gains compared to the

GMM case. The magnitude of these gains obviously depend

on both the calibration (and communication system) setup. For

example, there are no sum-rate differences when N0 → 0 or

N0 → ∞, as both GMM and EM approaches converge to that

of perfect calibration, or to the uncalibrated case, respectively.

Thus, it in only in a certain region of N0 values that EM based

calibration provides gains.10

It is interesting that - for this setup - there is no fundamental

loss in capacity between this calibration approach (i.e., precod-

ing with perfectly calibrated uplink CSI) and precoding with

the true downlink CSI. Quantifying this loss is out of scope

of this work, however, the interested reader is referred to [32]

for an overview on the loss of different types of reciprocity

calibration. We now finalize the section with two interesting

remarks.

10Our analysis based on a wide range of parameter values also indicates
that, in general, stricter calibration requirements need to be met in order
to release the full potential of ZF compared to MRT precoding (i.e., no
sum-rate difference compared to the perfect calibrated case). Noticeably, this
observation is in line with previous calibration studies [31].
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Fig. 3. MSE of the GMM estimator and the EM algorithm (with ǫ = 0), versus their CRLB (solid line), for 2 extreme transceiver cases. Namely, a transceiver
associated with an antenna at the edge of the array, and a transceiver associated with an antenna adjacent to the reference. The CRLB plotted by a dashed
line is discussed in Sec. III-F.
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F. Remark 1: Calibration with Reduced Measurement Sets

There are several benefits of using a reduced measurement

set for calibration (e.g., by only relying on high quality

measurements). This is possible as long as (11) is not under-

determined. As an illustrative example, the dashed line in

Fig. 3 shows the CRLB when a reduced measurements set

- comprising the measurements between antenna pairs whose

elements are distanced by at most 1/
√
2 wavelengths - is used.

The number of measurement signals in this case drops from

M(M − 1) to less than 8M , since one antenna signals to, at

most, 8 other antennas. The performance loss turns out to be

insignificant, i.e. 2 dB for the neighbor case and 4 dB for the

edge case, considering the number of signals discarded. This

indicates that the channels between neighbor antennas, which

are dominated by mutual coupling, are the most important for

calibration. Thus, there is an interesting trade-off between the

asymptotic performance of an estimator and its computational

complexity (proportional to the number of measurements).

Another benefit of using reduced measurement sets is a pos-

sible reduction of resource overhead dedicated for calibration.

This can be very important from a system deployment point-

of-view. To finalize, we remark that ML closed form estimators
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can be also reached when reduced measurement sets are used.

This can be the case for the current (general) calibration setup

when a reduced set of measurements is used, or for the case of

working with a full set of measurements when the calibration

setup is a special case. An example of the latter is given next.

G. Remark 2: Closed-form Unpenalized ML Calibration for

Linear arrays

Consider an M -antenna linear array, and let m index the

antennas in ascending order starting at one edge of the

linear array. Assume that mutual coupling only exists between

adjacent antenna elements, and that the channel between any

other antenna pairs is weak enough so that it can be neglected

without any noticeable impact on performance. We summarize

our findings in Proposition 1.

Proposition 1: Using a reference antenna as a starting point,

say c1 = 1, the unpenalized ML solution for any cℓ+1, with

1 ≤ ℓ ≤M − 1, can be obtained sequentially by

ĉℓ+1 = ĉℓ
y∗ℓ+1,ℓyℓ,ℓ+1

|yℓ+1,ℓ|2
. (24)

Proof: See Appendix C.

We can also deduce the following interesting corollary.

Corollary 1: For any of the two constraints considered in

(10), the GMM (vector) estimator coincides with (24) up to a

common complex scalar.

Proof: See Appendix C.

IV. VALIDATION OF THE CALIBRATION METHOD IN A

MASSIVE MIMO TESTBED

In this section, we detail the experiment performed to vali-

date the proposed mutual coupling based calibration method.

More specifically, we implemented it in a software-defined

radio testbed, and performed a TDD transmission from 100

BS antennas to 3 single antenna terminals.

Note that the analysis conducted in this section and in Sec.

V is measurement based. As stationarity is assumed in the

analysis, we monitored the system temperature throughout the

measurements and verified no significant changes. We also

made an effort to keep static propagation conditions, and

performed the experiments at late hours in our lab with no

people around.

A. Brief Description of the Testbed

Here we briefly outline the relevant features of the testbed

for this work. Further information can be found in [22].

1) Antenna/Transceiver setup: The BS operates with 100

antennas, each antenna connected to one distinct transceiver.

For simplicity, the same transceiver settings (e.g., power

amplifier gain and automatic gain control) are used in both

calibration and data communication stages for all radio units.

This ensures that the analog front-ends yield the same response

during both stages, thus the estimated calibration coefficients

are valid during the communication stage.

TABLE I
HIGH-LEVEL OFDM PARAMETERS

Parameter Variable Value

Carrier frequency fc 3.7 GHz
Sampling Rate Fs 7.68 MS/s
FFT Size NFFT 2048
# Used sub-carriers NSUB 1200

2) Synchronization of the radios: Time and Frequency

synchronization is achieved by distributing reference signals

to all radio units. However, this does not guarantee phase

alignment between all BS transceiver radio chains which

motivates reciprocity calibration.

B. Communication Protocol used

Once the measurements to construct the observation matrix

Y are performed, c is estimated using the unpenalized EM

algorithm. The following sequence of events is then performed

periodically:

1) Uplink Channel Estimation and Calibration: Users si-

multaneously transmit frequency orthogonal pilot symbols.

The BS performs LS-based channel estimation, and interpo-

lates the estimates between pilot symbols. Reciprocity cali-

bration is then performed independently per subcarrier, i.e. as

in (3), for coherence purposes with Sec. II. This calibrated

version of the downlink channel is then used to construct a

ZF precoder.

2) Downlink channel estimation and data transmission:

Downlink pilot symbols are precoded in the downlink and

each user performs LS-based channel estimation. Using the

estimates, each user recovers the payload data using a one-tap

equalizer.

We note that 4-QAM signaling per OFDM sub-carrier is

used for uplink channel estimation and data transmission. The

main parameters are shown in Table I. Further information on

the signaling protocol (e.g., uplink/downlink frame structure

or uplink pilot design) is found on [22].

C. Measurement Description

The setup used in our experiments is shown in Figure 1.

Although not being a typical propagation scenario found in

cellular systems, this extreme setup - closely located users

under strong line-of-sight conditions - requires high calibration

requirements to be met if spatial separation of users is to be

achieved. In addition, we use ZF precoding as it is known to

be very sensitive to calibration errors [32].

The EVM [33] of the downlink equalized received samples

at each mobile station was evaluated, and used as performance

metric for validation purposes. The rationale is that, with

multiple mobile terminals, calibration errors are translated

into downlink inter-user interference (and loss of array gain),

which increases the EVM. Letting r be the downlink equalized

received sample when symbol s is transmitted, the EVM is

defined as

EVM = E

{ |r − s|2
|s|2

}
, (25)
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where the expectation is taken over all system noise sources

(e.g., hardware impairments and thermal noise). Our estimate

of (25) was obtained by averaging realizations of |r−s|2/|s|2
over all OFDM sub-carriers and over received OFDM sym-

bols.

We estimated the EVM for different energy values of the

uplink pilots and calibration signals. We do so in order to

be able to extract insightful remarks for the analysis of the

results. In particular, letting EPilot = E {pkp∗k} in (1) denote

the energy of the uplink pilot, which, for simplicity, is the same

for all users, and let ECal denote the energy of the sounding

signal sm in (5), we estimated the EVM for a 2-dimensional

grid of EPilot and ECal. The results reported next are given

with respect to the relative energies ErPilot = EPilot/E
max
Pilot

and ErCal = ECal/E
max
Cal , where Emax

Pilot and Emax
Cal are the

maximum energies of the uplink pilot and calibration signal

used in the experiments. Other systems parameters (e.g.,

transmit power in the downlink) were empirically set and kept

constant throughout the experiment.

D. Validation Results

Fig. 6 shows the measured EVMs for the 3 user terminals in

our experiment. Before discussing the results, we remark that

analyzing the EVM when ErCal is reduced beyond −30 dB is

not of fundamental interest, as it approaches the uncalibrated

case (where high EVMs are to be expected). Overall, a positive

trend is observed with increasing ErCal until −10 dB. This

reflects the BS ability of spatially separating users which

increases with increasing the calibration quality. The fact that

downlink EVMs down to −10 dB are achieved, which are

much smaller than the EVMs when ErCal = −30 dB, i.e.

close to the uncalibrated case, motivates our validation claim.

It is possible to observe a saturation of the EVMs at

high enough ErCal and ErPilot for all user cases. This is

an expected effect in practical systems. Explained briefly,

system impairments other than the calibration or the uplink

channel estimation error, become the dominant error sources

that bound the EVM performance11. Remarkably, this satu-

ration effect implies that the calibration SNR - available in

a practical array as ours - is sufficiently large not to be the

main impairment to constrain the system performance. Mutual

coupling channels are thus reliable (and reciprocal enough), so

that they can be used for signaling in order to calibrate the

system.12

V. ASPECTS OF WIDEBAND CALIBRATION AND ERROR

MODELING

A short summary of this section follows. Using the mea-

surements from the Sec. IV, we treat the estimated calibration

11Mobile terminals error sources (e.g., in-phase and quadrature imbalance
or thermal noise) qualify for such impairments. For a given downlink transmit
power, it is straightforward to understand how such impairments bound the
downlink EVMs regardless of the calibration and uplink estimation quality.

12We note there exists an interesting theoretical trade-off between the
calibration quality and the capacity of downlink channels with respect to
the strength of mutual coupling. In practice, the proposed calibration method
can be used in compact antenna arrays with very low coupling (say −30
dB between adjacent elements) provided that the transmit power during
calibration is sufficient to provide good enough estimation SNR. In such a
setup, the impact of coupling in the capacity is negligible.

coefficients across OFDM sub-carriers as realizations of a

discrete stochastic process. Using low rank approximation

theory, we propose a parametrized low dimensional basis that

characterizes the subspace spanned by this process accurately.

Based on the reduced basis, we propose a wideband estima-

tor that averages out the calibration error across frequency.

Using the wideband estimator results, we validate the nar-

rowband calibration error model proposed in Sec. III-E2. We

remark that our experiment makes use of a bandwidth of

FsNsub/NFFT = 4.5MHz.

A. Wideband Remarks for the Calibration Coefficients

Denote the calibration coefficient of BS antenna m at the

kth OFDM sub-carrier as Cm[k] = tkm/r
k
m. The variable

Ĉm[k] is the estimate of Cm[k] at sub-carrier k - obtained,

e.g., with the EM algorithm - and is modeled as

Ĉm[k] =Cm[k] + Em[k]

=|Cm[k]| exp(j2πζm[k]) + Em[k] (26)

where Em[k] is an i.i.d. random process representing the

calibration error which is assumed zero-mean and independent

of Cm[k]. Let the random phasor process exp(j2πζm[k]) in

(26) absorb the phase shift stemming from the arbitrary time

that a local oscillator needs to lock to a reference signal. Such

phase shift is often modeled as uniformly distributed, and thus

E {exp(j2πζm[k])} = 0. (27)

Moreover, since local oscillators associated with different

transceivers lock at arbitrary times, it is safe to assume

E {exp(j2πζm[k1]) exp(−j2πζn[k2])} = 0, m 6= n. (28)

Not making further assumptions on the statistics of Ĉm[k], we

now proceed with a series expansion, but before doing so we

make one last remark. The series expansion conducted next

is performed based on measurements from the 100 testbed

transceivers, and serves as an example approach to obtain

a suitable basis for Ĉm[k]. This can well apply to mass-

production transceiver manufactures that can reliably estimate

the statistical properties of the hardware produced. However,

as our testbed operates with relatively high-end transceivers

- compared to the ones expected to integrate commercial

massive MIMO BSs - the dimensionality of the subspace

verified in our analysis might be underestimated. Intuitively,

the higher transceiver quality, the less basis functions are

needed to accurately describe Ĉm[k]. Nevertheless, the up-

coming remarks apply for smaller bandwidths - than 4.5MHz

- depending on the properties of the transceivers.

B. Principal Component Analysis

From the assumption (27), it follows that the element at the

v1th row and v2th column of the covariance matrix Km of

Ĉm[k] is defined as

[Km][v1,v2] = E
{
Ĉm[v1] Ĉ

∗
m[v2]

}
. (29)
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Fig. 6. Measured EVM at each of the three user terminals during a massive MIMO downlink transmission.

From the assumption (28), it follows that the principal compo-

nents of Ĉm[k] are obtained by singular value decomposition

(SVD) of Km only [34]. Let the SVD of Km be written as

Km =

NSUB∑

i=1

um
i λ

m
i (um

i )H , (30)

where {um
i }NSUB

i=1 are the principal components, and λmi is the

power (variance) of the coefficient obtained from projecting

Ĉm[k] into um
i . We use the convention λm1 ≥ λm2 · · · ≥

λmNSUB
, and um

i =
[
[umi [1], · · · , umi [NSUB]

]T
. Fig. 7 shows

several coefficients and basis functions of the expansion, that

were estimated based on 100 realizations of Ĉm[k], each

measured with ErCal = 5 dB (which from Fig. 6 provides

a relatively high calibration SNR). Noticeably, it appears

that all processes (one per transceiver) live mostly in a one-

dimensional sub-space and thus can be well described by their

first principal component um
1 . This fact also indicates that

the contribution of the calibration error in the expansion is

small, and thus the first principal component of Ĉm[k] is also

representative for the true coefficients Cm[k].

Visual inspection indicates that both magnitude and phase

of the first principal component can be well approximated

with a linear slope across frequency. The inherent error of

this approximation is very small compared to the magnitude

of the process itself. We note that this linear trend holds for

any transceiver of the array (not only for the ones shown in

Fig. 7).

C. Wideband Modeling and Estimation

The previous analysis indicates that any first principal

component can be well described by a linear magnitude slope

γm, and a linear phase ξm across frequency. Such properties

are well captured by the Laplace kernel exp((γm+j2πξm)k),
for small values of |γm| (since the range of k is finite). The

final parameter to model a realization of the process is the

complex offset Am. With that, the general model (26) can
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Ĉ

1
0
[k
]

-20

-15

-10

-5

 

Narrowband estimates

Wideband estimates

Fig. 8. A realization of the narrow-band estimator Ĉm[k], and the proposed

wideband estimator Ĉi[k]
WB.

thus be re-written as

Ĉm[k] = Am exp((γm + j2πξm)k) + wm[k], (31)

where wm[k] is a random process that absorbs: the calibration

error Em[k], the error due to the low rank approximation,

and the error due to the linear modeling of the first principal

component um
1 . Given an observation {Ĉm[k]}NSUB

k=1 , the ML

estimator of Am, ξm and γm, namely, Âm, ξ̂m and γ̂m is

straightforward to derive [27]. Thus, we define the wideband

estimator of Ĉm[k] as

Ĉm[k]WB = Âm exp((γ̂m + j2πξ̂m)k). (32)

For illustration purposes, a realization of the ML wideband

estimator Ĉm[k]WB is contrasted with that of the narrow-band

estimator Ĉm[k] in Fig. 8. The obtained error reduction is

evident.

D. A Model for the Calibration Error

Here, we use the wideband estimator results to verify the

Gaussianity of the narrow-band calibration error proposed
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in Sec. III-E2. This is done under the two following main

assumptions.

1) The residual process Em[k] = Ĉm[k] − Cm[k] is well

described by Êm[k] = Ĉm[k]− Ĉm[k]WB. This is reasonable

if E
{
|Ĉm[k]WB − Cm[k]|2

}
≪ E

{
|Ĉm[k]− Cm[k]|2

}
. To

justify, the estimation gains scale linearly in the number

of realizations [27], which is NSUB = 1200 in this case.

Assuming that: the estimation error is independent across

realizations, the underlying model (31) describes the first

principal component well, and the low rank approximation

error is minuscule, there are gains of 10 log10NSUB ≈ 30 dB

which justify the first main assumption.

2) The residual process Em[k] is ergodic.13 This is met if

Em[k] is stationary and the ensemble of NSUB samples is

representative for statistical modeling. The former holds for

small OFDM bandwidths (e.g., 4.5 MHz) as the hardware

impairments do not vary significantly across the band. The

latter is also met, as we have NSUB = 1200 narrow-band

estimators whose estimated errors {Êm[k]}NSUB

k=1 were found

to be mutually uncorrelated.

Fig. 9 shows the empirical CDF of both real and imaginary

parts of {Êm[k]}NSUB

k=1 - which we found to the uncorrelated

- for two transceiver cases. Each of the empirical CDFs is

contrasted with a zero-mean Gaussian distribution of equal

variance. Overall, the empirical CDFs for both transceivers

resemble a Gaussian CDF extremely well. The Gaussianity

of the calibration error was further verified by passing a

Kolmogorov-Smirnov test with 0.05 significance level [35].

We note that these observations hold not only for the two

transceivers in Fig. 9, but for all transceivers of the array.

Noticeably, the empirical distribution of the calibration error

is in line with the asymptotic properties of ML estimators, i.e.

the error can be modeled by an additive zero-mean Gaussian

multivariate. The final element for a full characterization is

its covariance matrix, relating the errors across antennas.

13Ergodicity is necessary since each (independent) measurement of Ĉm[k]
takes about ten minutes with our test system (due to the locking time of the
local oscillator to the reference signal). As potential system temperature drifts
during the measurements can result in varying statistical properties, it is safer
to perform the analysis based on one solely realization of Em[k].
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A good approximation (at high SNR) is the inverse of the

transformed Fisher Information matrix in (38). Noticeably,

future calibration works can benefit from the convenience of

safely assuming a non-white Gaussian calibration error.

VI. CONCLUSIONS

We have proposed and validated a convenient calibration

method which rely on mutual coupling to enable the reci-

procity assumption in TDD massive MIMO systems. We

verified that in a practical antenna array, the channels due

to mutual coupling are reliable and reciprocal enough, so that

they can be used for signaling in order to calibrate the array.

The iterative ML algorithm is asymptotically efficient and

outperforms current state-of-the-art estimators in an MSE and

sum-rate capacity sense. Further improvements - in terms of

MSE and convergence rate - can be harvested by proper tuning

of its regularization hyperparameter.

The calibration error can be further reduced by proper

averaging over the radio bandwidth. More importantly, it did

not stand as the main impairment to constraint the performance

of the system, from our experiments. Our measurements also
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verified that the narrow-band calibration error (at high SNR)

is Gaussian distributed, which is coherent with the theory of

the estimator proposed. The convenience of safely assuming a

non-white Gaussian calibration error can, hopefully, open the

door for future analytical studies of calibrated TDD massive

MIMO systems.
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APPENDIX A: EQUIVALENT CHANNEL MATRICES

Here we show the structure of the equivalent

models. Define the column vector Ψm =
[ψ1,m . . . ψm−1,m ψm+1,m . . . ψM,m]

T
. The equivalent

channel matrix in (14) is written as

Ψeq(Ψ̃) = diag {Ψ1,Ψ2, . . . ,ΨM} . (33)

Now define

c̄n,m = [cn cm]T . (34)

Noting that ψm,n = ψn,m, the equivalent matrix and the

parameter vector in (15) are written as

Ceq(c) = diag {c̄1,2, · · · , c̄1,M , c̄2,3, · · · , c̄2,M , · · · } , (35)

and

Ψ̃ =
[
ψ2,1 . . . ψM,1 ψ3,2 . . . ψM,2 . . . ψM,M−1

]T
. (36)

APPENDIX B: THE CRAMÉR-RAO LOWER BOUND

Here we compute the CRLB for the calibration coefficients

{cm} \ cref. The exclusion of cref is justified in the end of the

calculations. This is achieved by assuming tref = rref = 1,

and treating cref = tref/rref as known for estimation purposes.

Define the (4M − 4)× 1 vector

θ=[Re{t1} Im{t1} Re{r1} Im{r1} Re{t2} . . . Im{rM}]T ,
(37)

where tref and rref do not enter. The CRLB for {cm} \ cref is

given by the diagonal entries of the transformed inverse Fisher

information matrix [27]

var(ĉm) ≥
[
q(θ)

∂θ
I−1(θ)

q(θ)

∂θ

H
]

m,m

, m 6= ref, (38)

where I(θ) is the Fisher information matrix of θ. The trans-

formation of θ into the calibration coefficients is given by

q(θ) =

[
Re{t1}+ j Im{t1}
Re{r1}+ j Im{r1}

. . .
Re{tM}+ j Im{tM}
Re{rM}+ j Im{rM}

]T
.

We now compute I(θ). Assuming that h̄m,n, σ2 and N0 are

at hand,14 the mean µn,m and the covariance matrix Σn,m of

yn,m = [yn,m ym,n]
T are given by

µn,m = E {yn,m} = h̄n,m [rntm rmtn]
T
, (39)

Σn,m = E
{
(yn,m − µn,m)(yn,m − µn,m)H

}

=

[
|rn|2|tm|2σ2 +N0 rntmr

∗
mt

∗
nσ

2

rmtnr
∗
nt

∗
mσ

2 |rm|2|tn|2σ2 +N0

]
. (40)

We can observe that the PDF of Y′′, where

Y′′ =
[
yT
1,2 . . .y

T
1,M yT

2,3 . . .y
T
2,M . . .yT

M−1,M

]T
,

conditioned on θ, follows a multivariate Gaussian distri-

bution, i.e., p(Y′′|θ) ∼ CN (µ,Σ), with mean µ =[
µT

1,2 . . .µ
T
1,MµT

2,3 . . .µ
T
2,M . . .µT

M−1,M

]T
and block diago-

nal covariance

Σ = diag {Σ1,2, · · · ,Σ1,M ,Σ2,3, · · · ,Σ2,M , · · · ,ΣM−1,M} .
(41)

With that, we have

[I(θ)]i,j = Tr

{
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

}
+2Re

{
∂µH

∂θi
Σ−1 ∂µ

∂θj

}
,

(42)

with 1 ≤ i ≤ (4M−4) and 1 ≤ j ≤ (4M−4). The remaining

computations of [I(θ)]i,j are straightforward and thus omitted.

We note that without the convention of tref = rref = 1 - and

thus θ is a 4M × 1 vector instead - it can be shown that the

map θ 7→ µ is not injective which renders I(θ) not invertible.

Thus, the convention of reference antenna is needed to be able

to compute the CRLB.

APPENDIX C - CLOSED-FORM UNPENALIZED ML

ESTIMATOR FOR LINEAR ARRAYS

Here we derive the closed-form unpenalized (i.e. ǫ = 0) ML

estimator for the linear array setup described in Sec. III-G. By

leaving out the terms that do not depend on c, it follows that,

after a few manipulations, the optimization problem of (17)

can be written as

{ĉm} =argmax
c

Y′HCeq(c)C
†
eq(c)Y

′

=argmax
{cm}

M−1∑

ℓ=1

fL(cℓ, cℓ+1,yℓ+1,ℓ), (43)

with

fL(cℓ, cℓ+1,yℓ+1,ℓ) = yH
ℓ+1,ℓc̄ℓ,ℓ+1c̄

H
ℓ,ℓ+1yℓ+1,ℓ/c̄

H
ℓ,ℓ+1c̄ℓ,ℓ+1.

See (34) for structure of c̄ℓ,ℓ+1, and (40) for structure of ym,n.

Our ability to solve (43) is due to the following property.

Property 1: For the function fL(cℓ, cℓ+1,yℓ+1,ℓ), the maxi-

mum over cℓ+1 equals ||yℓ+1,ℓ||2, and thus it does not depend

on cℓ.

14These assumptions are only used for the CRLB calculations, and were
not used to derive any of the estimators. A possible implication is that the
CRLB can be underestimated, but we will see that this is not the case from
the simulations’ results.
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Hence, the ML estimate of cℓ+1, i.e. ĉℓ+1, can be found for

a given cℓ. With that, the joint maximization problem (43) can

be split into

ĉℓ+1 = argmax
x

fL(ĉℓ, x,yℓ+1,ℓ).

This optimization is a particular case of the Rayleigh quotient

problem, and the solution is given in (24) when the reference

element (i.e., the starting point) is chosen to be c1.

We now provide a short proof for Corollary 1. For the

case of linear arrays with coupling solely between adjacent

antennas, the optimization problem in (10) can be written -

ignoring any constraint for now - as

ĉGMM = argmin
c

M−1∑

ℓ=1

fG(cℓ, cℓ+1,yℓ+1,ℓ) (44)

where fG(cℓ, cℓ+1,yℓ+1,ℓ) = |yℓ+1,ℓcℓ+1 − yℓ,ℓ+1cℓ|2. We

solve (44) using the following property.

Property 2: Letting ĉℓ be the ML estimator from (24), it

follows that

fG(ĉℓ, ĉℓ+1,yℓ+1,ℓ) = 0, ∀ℓ. (45)

Thus, the GMM solution (under any of the 2 constraints)

coincides with that of the ML up to a common complex scalar.

Uniqueness follows since the GMM cost function is quadratic.
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