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Abstract. One-way wave equations conveniently describe wave propagation in media with discontinuous and/or
rapid variations in one direction, but with smooth and slow variations in the complementary trans-
verse directions. In the past, reciprocity theorems have been developed in terms of one-way wave
fields. The boundaries of the integration volumes and the variations of the medium parameters
must adhere to strict conditions. The variations must have the smoothness required by pseudo-
differential operators, while the boundaries have to be flat. To extend the applicability to nonflat
boundaries, this paper formulates one-way wave equations and corresponding reciprocity theorems
in terms of curvilinear coordinates of the semiorthogonal (SO) type. In SO coordinate systems, one
of the covariant basis vectors is orthogonal to the others, which can be nonorthogonal among each
other. The same applies to the contravariant basis vectors. Furthermore, the orthogonal directions
coincide; that is, the orthogonal co- and contravariant basis vectors coincide. SO coordinates are
characterized by a local property of the basis vectors. An extra specification is necessary to make
them conform in any way to nonflat boundaries. This can be done in terms of so-called lateral
Cartesian (LC) coordinates. Cartesian coordinates are mapped to LC coordinates by applying an
invertible transformation to one coordinate while keeping the others the same. LC coordinates are
a straightforward means to describe or conform to nonflat boundaries. Applications of the extended
reciprocity theorems include removal of multiple reflections, removal of complex propagation effects,
wave field extrapolation, and synthesis of unrecorded data.
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1. Introduction. The subsurface of the Earth has a predominantly layered structure; the
variations with depth are much more rapid and contain more discontinuities than the variations
in the horizontal directions. In reflection seismology the depth direction is the preferred or
marching direction for wave propagation. To exploit this property, algorithms for processing
seismic reflection measurements are often formulated in terms of up- and down-going wave
fields. For media consisting of plane-parallel, homogeneous layers, such formulations are well
established [12, 23].

Similar principles have been used in imaging and in more general inverse scattering, applied
to electromagnetic and acoustic wave propagation [9, 22, 28, 34]. These formalisms are not
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Figure 1. Volume boundary for removal of surface-related multiple reflections, based on the assumption
that the pressure of the multiple contaminated state vanishes at the surface.

restricted to the horizontally layered media mentioned above, but the step of separation into
up- and down-going wave fields must still be performed at flat boundaries. In this paper
we first formulate wave field separation for nonflat boundaries, and second we formulate
reciprocity theorems in terms of separated wave fields. The latter are well suited to serve as
starting points for the formulation of the formalisms mentioned above for nonflat boundaries.

For laterally smooth media with discontinuities appearing only in the marching direction,
De Hoop [11] and Wapenaar [27] factorized the full wave equation into coupled one-way wave
equations for wave fields propagating in the marching direction and its opposite. As a second
step Wapenaar formulated reciprocity theorems in terms of the one-way wave fields under
flux normalization. In general, operators do not commute, which complicates solving the
roots of the characteristic polynomial associated with a matrix operator. However, De Hoop
and Wapenaar exploited the fact that the matrix operator governing the wave equation has a
zero diagonal.

Reciprocity theorems for the total wave fields can handle the scattering response from
arbitrarily varying media. The theorems are made up of volume integrals of products of pres-
sure and particle velocity wave fields. The products can be interpreted as acoustic Poynting
vectors of energy flow. The classic formulation of reciprocity theorems [5, 21] is based on two
different types of wave fields, the scalar pressure and vector velocity. Wapenaar [27] adapted
the classic formulation, in terms of two different types of wave fields, into a formulation in
terms of one “intermediate” type: flux normalized one-way wave fields.

In their classic formulation, reciprocity theorems are particularly useful in exploiting
Dirichlet or Neumann boundary conditions, that is, when the wave field or its derivative
is known. Reciprocity theorems for one-way wave fields are designed to exploit boundary
conditions in terms of incoming or outgoing wave fields. Similar principles can be derived
from the two types of theorems, but with different physical assumptions and limitations.

A typical geophysical application of reciprocity theorems is the formulation of the process-
ing steps of removal of surface-related multiple reflections [1, 5]. The particular reciprocity
theorem relates the multiple-free state and the multiple-contaminated state, and is derived
from the idealized Dirichlet boundary condition stating that the pressure vanishes at the sur-
face generating the multiples. The space outside the integration volume is assumed to be a
vacuum, and the surface is assumed to be flat; see Figure 1.
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Figure 2. Volume boundary for removal of surface-related multiple reflections, based on the fact that the
multiple-free state is purely up-going at and below the surface.

However, the multiple-free state obeys a more natural and less restrictive boundary condi-
tion: by definition the multiple-free state has no surface, so the wave field is purely outgoing;
there is no incoming field, not just at the surface but also below it. As a result there is a
degree of freedom in where to evaluate the boundary condition and the shape of the surface
on which to evaluate it. Wapenaar [31] and Frijlink [6] evaluate the boundary condition at a
horizontal level below the surface as in Figure 2; this horizontal level follows the global, flat
trend of the surface but does not require specific knowledge about its shape or the medium
above it.

Other geophysical applications include removal of the propagation effects of a complex
part of the medium [7], wave field extrapolation [28], and synthesis of unrecorded data [31,
32]. Formulations of all applications can be derived from reciprocity theorems for the usual
total wave fields; see [13] and [19]. A fundamental property that is exploited in each of the
applications is source receiver reciprocity [5, 21]. A consequence of flux normalization is that
transmission operators for up- and down-going wave fields obey source receiver reciprocity [30],
while transmission operators for other normalizations lack this property.

The factorization of the wave equation deployed by De Hoop [11] and Wapenaar [27],
or, rather, the diagonalization of the matrix operator governing the wave equation, requires
lateral smoothness as the factorization involves the square root of the Helmholtz operator,
which is a pseudodifferential operator; there are no smoothness restrictions on variations in
the marching direction. If the layer structure deviates from being plane-parallel, then these
operators will be applied erroneously to discontinuities related to the layer boundaries. The
aim of this paper is to factorize the wave equation in coordinate systems that conform to
nonplanar layer boundaries. The same smoothness condition for whose benefit we are trying to
devise coordinate systems conforming to nonplanar layer boundaries also limits the amount of
conformity that is possible. In general the layer boundaries themselves are not smooth enough
for the application of pseudodifferential operators (see Van den Berg and De Hoop [25]). Exact
conformation to layer boundaries is therefore impossible.

Instead, the hypersurfaces enclosing integration volumes, and the conformal coordinates
describing them, are restricted to mimicking the smooth, large-scale trends of layer boundaries
similar to the example of multiple removal described above. Similar to the plane-parallel case,
said hypersurfaces have to be located in a part of the medium where the variations of the
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medium are smooth. The conforming hypersurface can never cross the actual layer boundary,
so the integration volume either fully includes or entirely excludes the layer boundary.

Straightforward-to-specify conformal coordinate systems are those proposed by Haines
and De Hoop [10]. We refer to these as lateral Cartesian (LC) coordinate systems, because
they have the lateral coordinates in common with the standard Cartesian case. The third
coordinate is, however, constant not at flat planes perpendicular to the lateral coordinates
but instead at the nonflat hypersurfaces as described above following the global trend of major
discontinuities in the medium parameter.

The main complication in diagonalizing the matrix operator mentioned earlier arises from
the fact that its entries do not commute. As long as the diagonal entries are zero, a diagonal-
ization is feasible. For nonorthogonal coordinates these diagonal entries become nonzero. The
underlying reason is that nonorthogonal coordinates have metric tensors that are not diagonal.
Hence the differential operators for such coordinates are more complex; see section 3.1 for a
brief overview and, for example, Fung and Tong [8] for a comprehensive treatment.

The off-diagonal elements of the LC metric tensor destroy the zero diagonal of the matrix
operator governing the acoustic wave equation that allowed the factorization proposed by
De Hoop [11] and Wapenaar [27]; see section 4. In terms of so-called semiorthogonal (SO)
coordinates the zero diagonal is conserved; see section 3.3 and also Sava and Fomel [18]. In
sections 5 and 6 we exploit this conservation to show that for SO coordinates the diagonal-
ization and subsequent manipulations of the wave equation as in [27] remain possible, finally
leading to reciprocity theorems for flux normalized one-way wave fields. The defining property
of SO coordinates does not offer a straightforward way to specify the coordinates themselves.
We therefore tie SO to LC coordinates as described in section 3.3. If decomposition into
incoming and outgoing components is required only at the volume boundaries but not in the
interior, then the smoothness conditions of pseudodifferential operators have to be met only
on those boundaries. Reciprocity theorems for this case will also be constructed in section 6.

Tables 1(a) and 1(b) list symbols used in this paper, including a short description plus
references to the defining expressions. Table 1(a) lists quantities related to coordinate systems
(besides coordinates, also basis vectors and metric tensors), while Table 1(b) lists miscella-
neous quantities.

2. Notation. In acoustic wave propagation the wave field quantities are the acoustic
pressure p and the particle velocity v = vlel. Here {e1, e2, e3} are the Cartesian basis vectors.
In this paper we use the summation convention to sum over repeated indices occurring twice
in a product, where one instance is a subscript and the other a superscript. Furthermore,
we use roman indices for summation over {1, 2, 3} and Greek indices for summation over just
{1, 2}. Note that the directional indices of the vector components vl appear as superscripts;
this is an example of the convention, employed in this paper, that vector components with
superscripts correspond to basis vectors with subscripts. Both p and v are functions of time t
and position x = (x1, x2, x3)

t; the t-superscript indicates a transposed vector.

We often isolate dependency on the coordinate x3 from the other two coordinates as in
p(x) = p(xL, x3), with xL = (x1, x2)

t. Curvilinear coordinates will be separated in a similar
fashion.

The function P (x, ω) denotes the complex-valued, space-frequency counterpart of the real-
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Table 1(a)
Table of coordinate-related symbols.

Symbol Description Defining
equations

ξ = (ξ1, ξ2, ξ3) curvilinear coordinates (3.1)

ξL = (ξ1, ξ2) lateral curvilinear coordinates

ξ̃ lateral Cartesian (LC) coordinates (3.10)

ξ semiorthogonal (SO) coordinates (3.15)

f function mapping ξ̃3 to x3 (3.10)

g, g̃, g
Metric tensor, elements gij = gi · gj .

(3.6)
The SO metric tensor is blockdiagonal:

g =

(
g
11

g
12

0

g
21

g
22

0

0 0 g
33

)
. (3.15)

The LC metric tensor g̃ is a full
3× 3 matrix.

gi, g̃i, g
i

Covariant basis vectors. LC instances
(3.2)

make up the Jacobian matrix

(g̃1, g̃2, g̃3) =

(
1 0 0
0 1 0

∂
ξ̃1

f ∂
ξ̃2

f ∂
ξ̃3

f

)
. (3.12)

The orthogonality relations implied by
the SO metric tensor g characterize

SO basis vectors.

gi, g̃i, gi contravariant basis vectors (3.3)

g, g̃, g = detg

ek Cartesian basis vectors

n, ñ,n
normal vectors to surfaces of constant

ξ3, ξ̃3, or ξ
3

(3.5)

valued, space-time function p(x, t). The two are related to each other by the Fourier transform

(2.1) P (x, ω) =

∫ +∞

−∞
p(x, t) exp(−jωt)dt

and its inverse

(2.2) p(x, t) = π−1�
[∫ +∞

0
P (x, ω) exp(jωt)dω

]
,

where j is the imaginary unit and the symbol � means taking the real part. Throughout
this paper we consider positive frequencies only. For notational convenience we suppress the
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Table 1(b)
Table of symbols.

Symbol Description Defining
equations

ω angular frequency (2.1)

Λ̂ one-way propagation operator (5.2), (5.7)

Θ̂ one-way scattering operator (5.5)

ρ mass density

Â wave operator
(4.9)
(4.14a)–(4.14c)

Â Helmholtz-type operator (5.6)

B̂ one-way wave operator (5.4), (5.5)

D̂ν scaled spatial derivative (4.10)

D
2-vector with force and volume injection
sources

(4.8)

J =
(
1 0
0 −1

)
(5.7)

K = ( 0 1
1 0 ) (4.16)

K compression modulus

L̂
±1 (de)composition operator,

(5.2), (5.8), (5.9)
only for SO coordinates

L̂ basic element of L̂
±1

(5.10)

N =
(

0 1
−1 0

)
(4.15)

P, p pressure (2.1), (2.2)

P
2-vector with flux normalized,

(5.4)
up- and down-going wave fields

� real part of complex number

S
2-vector with flux normalized,

(5.4)
up- and down-going source fields

V, V k, vl (components of) the particle velocity

V n inner product n ·V (4.3), (4.4)

Z 2-vector of P and V n (4.8)
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ξ2

ξ1

V

g2

g1

V
′2g2

V
′1g1

Figure 3. Covariant basis vectors g1 and g2. The vector gk is tangential to the curve resulting from
varying only ξk.

angular frequency ω from here on. With this convention the pressure appears as P (x) and
the components of the particle velocity as V k(x).

From section 4 on we will use adjoint vectors in addition to transposed vectors. For a
given operator R̂, the transposed R̂t and adjoint R̂† are defined, respectively, by∫

R2

w(xL)R̂
tu(xL)d

2xL =

∫
R2

R̂w(xL)u(xL)d
2xL,∫

R2

w∗(xL)R̂
†u(xL)d

2xL =

∫
R2

R̂w∗(xL)u(xL)d
2xL.

For this paper three special cases are important: symmetric operators obey R̂t = R̂, skew
symmetric operators obey R̂t = −R̂, and self-adjoint operators obey R̂† = R̂. For example,
Berezansky, Sheftel, and Us [2, 3] give more details on linear integral operators.

3. Curvilinear coordinates.

3.1. Some general properties. We assume that there is a one-to-one, reversible mapping
between Cartesian and curvilinear coordinates ξ = (ξ1, ξ2, ξ3), according to

(3.1) ξk = ξk(x1, x2, x3) and xl = xl(ξ1, ξ2, ξ3)

for k, l = {1, 2, 3}. Whereas Cartesian coordinates have one set of basis vectors, curvilin-
ear coordinates in general have two; covariant and contravariant basis vectors are defined,
respectively, by

gk = (∂xi/∂ξk)ei and(3.2)

gl = (∂ξl/∂xi)ei,(3.3)

where i ∈ {1, 2, 3}; summation over i is implied in both (3.2) and (3.3). The covariant basis
vector g1 is tangent to curves characterized by constant ξ2,3, whereas the contravariant basis
vector g1 is perpendicular to a hypersurface characterized by constant ξ1. A two-dimensional
example is shown in Figures 3 and 4. The contravariant basis vectors displayed in Figure 4
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ξ2
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Figure 4. Contravariant basis vectors g1 and g2 with double arrowheads. The vector gk is orthogonal to
the surface of constant ξk.

have double arrowheads. The covariant basis vectors are in general not orthogonal with respect
to each other, and neither are the contravariant basis vectors. However, by definition each
individual contravariant basis vector gl is orthogonal to the covariant basis vectors gk if l �= k,
and if l does equal k, then their inner product is unity. Hence,

(3.4) gl · gk = δlk.

The first of two pivotal quantities in this paper is the cross-product defined by

(3.5) n = g1 × g2.

From (3.4) it can be seen that the vector n is parallel to g3, i.e., is perpendicular to a surface
of constant ξ3. However, n will turn out to be more convenient to use in reciprocity theorems.
The second pivotal quantity is the metric tensor g, or rather its inverse. These are 3 × 3
symmetric matrices. The nine matrix-elements of the metric tensor are defined by

(3.6) gkl = gk · gl.
Expressing the gradient and divergence in partial derivatives ∂/∂ξl requires the determinant
g = det g > 0 and the inverse g−1 of the metric tensor whose elements are given, respectively,
by

(3.7) gkl = gk · gl.

Equation (3.4) can be used to establish that the matrix made up by the elements gkl and that
made up by gkl are indeed each other’s inverse. See also Fung and Tong [8].

Scalar quantities in terms of curvilinear coordinates have a prime (′) superscript attached;
their Cartesian counterparts do not. In the case of pressure P the two different functions are
related by

(3.8) P (x1, x2, x3) = P ′(ξ1, ξ2, ξ3).
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x1,2

x3

Figure 5. Example of a multivalued and therefore irreversible mapping between Cartesian and LC coordi-
nates. The vertical dashed line is characterized by constant values of x1 and x2. If we attach a constant value
of ξ3 to the hypersurface, then three different values of x3 are mapped to the single ξ3-value.

For vector quantities such as the particle velocity V, a relation similar to (3.8) holds only for
the entire vector but not for the individual scalar components; i.e.,

(3.9) V = V iei = V ′ kgk,

whereas V ′ i(ξ1, ξ2, ξ3) �= V i(x1, x2, x3) in general.
In this paper we will use two particular types of curvilinear coordinates, lateral Cartesian

(LC) and semiorthogonal (SO), introduced, respectively, in sections 3.2 and 3.3.

3.2. Lateral Cartesian coordinates. The first type of curvilinear coordinate that we con-
sider is that of LC coordinates. The lateral coordinates are identical to their Cartesian coun-
terparts, but the third LC coordinate is assumed to be constant at hypersurfaces conforming to
the smooth, large-scale trends of layer boundaries. LC coordinates and functions or operators
depending on them will be identified by an overlying tilde, e.g., ξ̃:

(3.10) x1 = ξ̃1, x2 = ξ̃2, x3 = f(ξ̃1, ξ̃2, ξ̃3).

Like Haines and De Hoop [10] we let f be a function chosen such that nonflat hypersurfaces
are mapped to surfaces of constant ξ̃3. The coordinate mapping implied by (3.10) is reversible,
as long as the angle between each tangent of the hypersurfaces and the (x1, x2)-plane is less
than 90◦. However, hypersurfaces such as those shown in Figure 5 with tangents at 90◦ or
more map more than one value of x3 to one value of ξ̃3. Such hypersurfaces therefore cannot be
described by (3.10). A further limitation on the class of hypersurface that this approach can
handle is due to the involvement of square and fourth order roots of the Helmholtz operator,
both pseudodifferential operators which require smooth variations as a function of x1 and x2;
see sections 5 and 6. As indicated in the introduction, one can therefore put the volume
boundaries described by these hypersurfaces only where the variations of the medium obey
this requirement of smoothness.

The nontrivial part of inverting the coordinate transformation described by (3.10) requires
inverting f for constant x1 and x2. We describe this inversion for mapping x3 to ξ3 by
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e3

e1

g̃1

g̃3

g̃1

g̃3

Figure 6. Example of LC covariant basis vectors (single arrowhead) and contravariant basis vectors (double
arrowhead) for a Gaussian-shaped volume boundary, described by f = ξ̃3 + exp(−ξ̃21/2). The “hypersurface” of

constant ξ̃3 is represented by the dotted Gaussian curve.

finv. With this notation the inverse of the coordinate transformation from Cartesian to LC
coordinates is

(3.11) ξ̃1 = x1, ξ̃2 = x2, ξ̃3 = finv(x1, x2, x3).

In the shape of column vectors, the covariant basis vectors for LC coordinates make up
the Jacobian matrix

(3.12) (g̃1, g̃2, g̃3) =

⎛
⎝ 1 0 0

0 1 0
∂ξ̃1f ∂ξ̃2f ∂ξ̃3f

⎞
⎠ .

The corresponding contravariant basis vectors are

(g̃1, g̃2, g̃3) =

⎛
⎝1 0 ∂x1finv
0 1 ∂x2finv
0 0 ∂x3finv

⎞
⎠ .

Alternatively the contravariant basis vectors can be derived from (3.4) and (3.12). For a
Gaussian-shaped volume boundary described by f = ξ̃3 + exp(−ξ̃21/2), Figure 6 shows the
covariant and contravariant basis vectors in a plane of constant x2. The contravariant basis
vectors have double arrowheads, the covariant basis vectors have single arrowheads, and the
“hypersurface” of constant ξ̃3 is represented by the dotted Gaussian curve.

In terms of LC coordinates, the normal direction n reads as

(3.13) ñ =
(
−∂ξ̃1f,−∂ξ̃2f, 1

)t
,

where the superscript t denotes transposition. The vector ñ is the direction perpendicular
to surfaces of constant ξ3 [10]. It is taken as the direction of decomposition, similar to e3
in Cartesian coordinates. But unlike its Cartesian analogue, ñ has a position-dependent
direction and length greater than one. In section 3.3 we will choose SO basis vectors such
that n in SO coordinates will coincide with ñ in LC coordinates. For this reason we also
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attach the meaning of marching direction to n defined by (3.5), although it is based on the
more arbitrary coordinates of (3.1) rather than on SO or LC coordinates. The SO coordinates
tied to LC coordinates will be used in section 6.

Note that, owing to the lower triangular structure of the Jacobian matrix given by (3.12),
the determinant g̃ of the metric tensor for LC coordinates equals

(3.14) g̃ = (∂ξ̃3f)
2,

and that both the metric tensor g̃ and its inverse g̃−1 are full 3 × 3 matrices. This latter
property sets them apart from SO coordinates.

3.3. Semiorthogonal coordinates. The second particular type of curvilinear coordinate
used in this paper is that of SO coordinates; these coordinates and functions or operators
depending on them are identified by a bar underneath, e.g., ξ. Their main advantage is a
reduction of analytical complexity, which will be exploited in section 5 for directional de-
composition into one-way, flux normalized wave fields. SO coordinates do not have compact
expressions like (3.10) in terms of Cartesian coordinates. Rather, the reduced complexity for
SO coordinates is due to the zeros appearing in the metric tensor.

In geophysical literature Sava and Fomel [18] used the term SO for coordinates character-
ized by a block diagonal metric tensor

(3.15) g =

⎛
⎝g

11
g
12

0

g
21

g
22

0

0 0 g
33

⎞
⎠ .

Remember that (3.4) implies that the contravariant basis vector g3 is by construction orthog-
onal to the covariant basis vectors g

1,2
. The zeros in (3.15) express that the lateral basis

vectors g
1,2

are also orthogonal to the basis vectors g
3
, and consequentially g3 and g

3
are

parallel. The orthogonality relations implied in (3.15) set SO basis vectors apart from LC
basis vectors. The latter are in general nonorthogonal; that is, g̃13 �= 0 and g̃23 �= 0. The SO
inverse metric tensor g−1 has the same block diagonal structure as g,

(3.16) g−1 =

⎛
⎝g11 g12 0

g21 g22 0

0 0 g33

⎞
⎠ ,

so the contravariant basis vectors g1,2 are similarly orthogonal to g3 and g
3
. In section 4 it

will become clear that SO coordinates allow a simpler formulation of the wave equation than
LC coordinates. However, SO coordinates are defined by the form of the associated metric
tensor, and the actual coordinates are still to be defined. In section 6 we will use a special
choice of SO coordinates in terms of LC coordinates. For constant ξ̃3 we take covariant basis
vectors

(3.17) g
1
= g̃1, g

2
= g̃2, and g

3
= n = ñ.

Since ñ is by construction orthogonal to g̃1,2 (recall the definition (3.5)), the basis vectors
in (3.17) satisfy the defining property of SO coordinates, (3.15). For the Gaussian-shaped
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e3

e1

g
1

g
3

Figure 7. Example of SO covariant basis vectors for a Gaussian-shaped volume boundary.

volume boundary shown in Figure 6, the resulting covariant SO basis vectors are displayed
in Figure 7. The metric tensor and determinant corresponding to the basis vectors of (3.17)
become, respectively,

g =

⎛
⎝ |g̃1|2 g̃2 · g̃1 0
g̃1 · g̃2 |g̃2|2 0

0 0 |ñ|2

⎞
⎠

and g = |ñ|4; recall (3.12) and (3.13).

4. The wave equation in curvilinear coordinates. In section 6 we will define reciprocity
theorems for flux normalized wave fields based on the acoustic Poynting vector P ′V integrated
over a hypersurface of constant ξ3; recall (3.10). The basic form of these integrals is

(4.1)

∫
ξ3=c

P ′V · (g1 × g2)dξ1dξ2 =

∫
ξ3=c

P ′V nd2ξL,

where ξL = (ξ1, ξ2) and

(4.2) V n = V · n;
also recall the definition (3.5) of n. In this section we will cast the wave equation in terms of
P and V n, which will serve as the basis for formulating directional decomposition in section 5.

Because n is not a unit vector, the function V n is merely proportional to the particle
velocity in the direction normal to a surface of constant ξ3 but not equal to it. Its usefulness
arises from the compact form it induces in reciprocity theorems based on (4.1). However, the
wave equation in curvilinear coordinates uses the three components V ′ i. To express V n in
terms of these components we first substitute (3.2) into (3.9), then substitute the result into
(4.2), and finally evaluate its inner product. Due to the definition of n, (3.5), only the inner
product n · g3 is nonzero, so that

(4.3) V n = (n · g3)V ′ 3.

For LC coordinates (3.12)–(3.14) allow V n to be expressed as Ṽ n = g̃1/2Ṽ ′ 3. The LC-based
choice of SO coordinates implied by (3.17) similarly results in V n = g1/2V 3. Instead of (4.2)
or (4.3) we will therefore work with

(4.4) V n = g1/2V ′ 3.
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The total wave field is completely determined by the pressure P ′ and the scalar particle
velocity V n. So without loss of generality the equations governing wave propagation can be
expressed exclusively in terms of these two quantities without the need of the lateral velocity
components V ′ 1 and V ′ 2. In the remainder of this paper quantities that depend on Cartesian
coordinates are not necessary anymore, so we are going to omit prime superscripts from here
on.

Given Fung’s expressions of the gradient and divergence in curvilinear coordinates [8], the
basic equations for wave propagation in acoustic, lossless media are

gkl∂ξlP + jωρV k = F k,(4.5)

g−1/2∂ξk(g
1/2V k) + jωK−1P = Q(4.6)

for k, l = {1, 2, 3}; here the medium is described by the density ρ and compression modulusK,
while F k and Q are, respectively, the force and volume injection sources. For our purpose, the
crucial difference between (4.5) and (4.6) on the one hand and their Cartesian counterparts
on the other is that in each component of (4.5) all three spatial derivatives occur. The process
and final result of eliminating two components of the particle velocity V from the system of
(4.5) and (4.6) is therefore more complex than in the Cartesian case.

Our goal is to express the system of (4.5) and (4.6) in the form

∂ξ3Z+ jωÂZ = D,(4.7)

where Zt = (P, V n),(4.8)

and Â =

(
Â11 Â12

Â21 Â22

)
.(4.9)

The 2-vector D contains all references to the source functions Q and F k. For the purpose of
this paper it is not essential to have an explicit expression for D. In the remainder of this
section the source functions will therefore be set to zero. We refer to Â as the wave operator;
its properties are the pivotal elements of this paper. The primary objective of formulating
(4.7) is to gather all occurrences of lateral partial derivatives ∂ξν (for ν = 1, 2) in one single
matrix operator.

Before starting the actual elimination process, we need to make two remarks. For algebraic
convenience a factor −(jω)−1 is absorbed into the lateral partial derivatives:

(4.10) D̂ν = −(jω)−1∂ξν .

The operators D̂ν have the interpretation of lateral slowness operators. These operators are
skew symmetric and self-adjoint; i.e.,

(4.11) D̂t
ν = −D̂ν and D̂†

ν = D̂ν .

First we eliminate V ′ 3 from (4.5) and (4.6) in favor of V n with (4.4):

g33∂ξ3P − jωg3νD̂νP +
jωρ

g1/2
V n = 0,(4.12a)

gμ3∂ξ3P − jωgμνD̂νP + jωρV μ = 0,(4.12b)

∂ξ3V
n +

jωg1/2

K
P − jωD̂μ(g

1/2V μ) = 0.(4.12c)
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The elements Â11 and Â12 can be found by inspection from (4.12a). Elimination of V μ from
(4.12c) requires substitution of (4.12b), but this still contains terms proportional to ∂ξ3P . We
therefore first eliminate these terms from (4.12b) with the preceding substitution of (4.12a):

(4.13) g1/2V μ =
g1/2

ρ

(
gμν − gμ3g3ν

g33

)
D̂νP +

gμ3

g33
V n.

After substitution of (4.13) into (4.12c) we can also find the other elements of Â by inspection.
Together with their symmetry properties the elements of Â read as

Â11 = −g3ν

g33
D̂ν = −Ât

22 = Â†
22,(4.14a)

Â12 =
ρ

g1/2g33
= Ât

12 = Â†
12,(4.14b)

Â21 =
g1/2

K
− D̂μ

[
g1/2

ρ

(
gμν − gμ3g3ν

g33

)
D̂ν ·

]

= Ât
21 = Â†

21.(4.14c)

Given the symmetry of the inverse metric tensor gkl and the fact that it is real-valued, the
symmetry of Â21 follows from the fact that D̂ν is skew symmetric and self-adjoint. The fact
that Â21 is self-adjoint is our motivation to work in lossless media. Collectively the symmetry
relations implied by (4.14a)–(4.14c) can be expressed as the so-called symplectic property;
that is, the matrix operator Â and its transposed Ât are related by the expression

(4.15) ÂtN = −NÂ with N =

(
0 1
−1 0

)
.

A similar relation holds for the adjoint matrix operator Â†:

(4.16) Â†K = KÂ with K =

(
0 1
1 0

)
.

The symmetry relations (4.15) and (4.16) are used in the appendix to derive the symmetry
relations of the one-way analogue of Â. The symmetry relations will be used in section 6 for
our final formulation of reciprocity theorems for one-way wave fields, but we will first introduce
one-way wave fields in section 5.

5. One-way wave equation for flux normalized wave fields in SO coordinates. The
properties of SO coordinates make the diagonal elements of Â defined by (4.14a) vanish:

(5.1) Â =

(
0 Â12

Â21 0

)
;

recall (3.15) and (3.16). Various authors have exploited this antidiagonal structure, for Carte-
sian coordinates [4, 11] and orthogonal coordinates [33], to factorize Â as

(5.2) Â = L̂ Λ̂ L̂
−1

.
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Here Λ̂ is a diagonal matrix operator, describing one-way wave propagation, while L̂ and its

inverse L̂
−1

are, respectively, composition and decomposition operators. Later in this section
we give explicit expressions for the diagonalization of Â formulated by (5.2), based on the
antidiagonal structure of Â. Given these expressions we will show that the components of the
vector P ,

(5.3) P =

(
P+

P−

)
= L̂

−1
Z,

can be interpreted as one-way wave fields propagating either in the positive or negative ξ
3
-

direction; in other words, we will show that (5.3) states directional decomposition in the
direction n. Similarly, the components of the vector

S =

(
S+

S−

)
= L̂

−1
D

are source fields emitted in either the positive or negative ξ
3
-direction.

In terms of these one-way wave fields the wave (4.7) can be rewritten as

(5.4)
[
∂ξ3 − B̂

]
P = S,

where the one-way operator B̂ is given by

(5.5) B̂ = −jωΛ̂+ Θ̂,

with Θ̂ = −L̂
−1(

∂ξ
3
L̂
)
. In the appendix we analyze the symmetry properties of L̂ and B̂,

which is relevant for section 6.
We formulate our definition of flux normalized wave field decomposition in terms of frac-

tional powers of the operator Â:

(5.6) Â = Â
1/2
12 Â21Â

1/2
12 .

The operator Â is symmetric and self-adjoint because its composites are also; recall the defi-
nitions (4.14c) and (4.14b). Note that for Cartesian coordinates Â is the Helmholtz operator,
for which reason we refer to Â as being of the Helmholtz type. Because the operator Â21

is self-adjoint by construction and Â12 is exclusively composed of real-valued and positive
functions, the operator Â can be represented in terms of its eigenvalues and eigenfunctions

[14, 15, 16, 17], from which it is possible to construct the root operators Â
1/2

and Â
±1/4

[29].
These root operators are symmetric but not self-adjoint.

Similar to the diagonalization of matrices with just plain numbers, the diagonalization of
matrix operators like Â defined by (5.1) is not uniquely defined. The remaining degree of
freedom is “eigenvector” normalization; see De Hoop [11] or Wapenaar [30] for some choices
and their physical interpretations. Here we use flux normalization. A derivation of this
normalization from basic principles is beyond the scope of this paper; we just state that (5.2)
is satisfied by substitution of

(5.7) Λ̂ = Â
1/2

J, where J =

(
1 0
0 −1

)
,
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plus operators for composition,

(5.8) L̂ = 2−1/2

(
L̂
−1

L̂
−1

L̂
t −L̂

t

)
,

and for decomposition,

(5.9) L̂
−1

= 2−1/2

(
L̂ L̂

t,−1

L̂ −L̂
t,−1

)
,

where the basic element L̂ is given by

(5.10) L̂ = Â
1/4

Â
−1/2
12 .

To establish that the combined effect of (5.3), (5.9), and (5.10) indeed represents decom-
position into one-way wave fields, we analyze the energy flux in the normal direction n. In
the time domain the energy flow is given by the acoustic Poynting vector in that direction, a
product of pressure and particle velocity in that direction. As time-domain products do not
translate to products in the frequency domain, we analyze the following steady states in the
manner of Haines and De Hoop [10]:

�[P ejωt ] and �[V n ejωt ].

Averaged over a time period 2π/ω, the steady state Poynting vector reads as

〈F · n〉avg =

∫ 2π/ω

0
�[P ejωt ]�[V n ejωt ] dt

= (P ∗ V n + P V n,∗)/4 = Z†KZ/4.(5.11)

For a wave field propagating in the positive ξ
3
-direction, 〈F · n〉avg must be positive. That

same wave field should also lead to zero amplitudes for wave fields propagating in the negative
ξ
3
-direction, or rather P− = 0. In (5.9) the latter condition translates into

L̂P − L̂
t,−1

V n = 0

⇔ V n = Â
−1/2
12 Â

1/2
Â

−1/2
12 P.(5.12)

To arrive at (5.12), we eliminate L̂ with (5.10). Upon substitution of (5.12) into (5.11), we see
that the two conditions for a wave field propagating in the positive ξ

3
-direction, 〈F ·n〉avg ≥ 0

and P− = 0, can be combined into the inequality

(5.13)

∫
ξ
3

u† (Â
1/2

+ Â
1/2,†

)u d2ξ
L
≥ 0

for u = Â
−1/2
12 P .
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0

Re

Im

Figure 8. In the complex plane the spectrum of the operator Â is represented by the thick black line.

0
Re

Im

Figure 9. In the complex plane the spectrum of the operator Â
1/2

is represented by the thick black line.

To verify inequality (5.13), we analyze the spectra of Â and Â
1/2

. Because Â is self-adjoint,
it has real eigenvalues; see Figure 8 for its representation in the complex plane. On the one

hand, the negative eigenvalues of Â correspond to imaginary eigenvalues of Â
1/2

and Â
1/2,†

;
see also Figure 9. These imaginary eigenvalues will always have opposite values, so they do
not contribute to the inner product on the left-hand side of inequality (5.13). A positive and
real eigenvalue of Â, on the other hand, corresponds to positive and real eigenvalues of the

square root operator Â
1/2

and its adjoint Â
1/2,†

. Hence inequality (5.13) is satisfied so that
P+ indeed represents a wave field propagating in the positive ξ

3
-direction.

A similar analysis starting from the two conditions 〈F ·n〉avg < 0 and P+ = 0 shows that
P− represents a wave field propagating in the negative ξ

3
-direction.

6. Reciprocity theorems. This section describes two different approaches to formulating
reciprocity theorems for one-way wave fields. In both approaches we consider two surfaces
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characterized by constant values ξ3 = a, b with a < b, which we denote by

Sc = {ξ | ξ3 = c} for c = a, b.

The volume enclosed by Sa and Sb is denoted by V[a, b]. For volumes and boundary surfaces
in LC coordinate systems, Haines and De Hoop [10] already formulated reciprocity theorems
in terms of total wave fields. The basis of their convolution-type reciprocity theorems in terms
of pressure P and particle velocity V n is the interaction quantity

(6.1) Z̃t
ANZ̃B = P̃AṼ

n
B − P̃BṼ

n
A ,

relating two states A and B. In general the two states have different medium parameters and
source functions. In the case of the multiple removal example described in the introduction,
state A describes the recorded data with surface-related multiple reflections, and state B the
desired multiple-free data; the medium of state A contains the multiple-generating surface,
while state B does not. The source functions are taken to be identical. The qualification
“convolution type” is inspired by the fact that frequency-domain products in (6.1) corre-
spond to time-domain convolutions. In the same spirit, Haines and De Hoop also formulated
correlation-type reciprocity theorems based on the interaction quantity

(6.2) Z̃†
AKZ̃B = P̃ ∗

AṼ
n
B + P̃BṼ

n,∗
A .

The reason for analyzing the particular quantities Z̃t
ANZ̃B and Z̃†

AKZ̃B is that they
allow the evaluation of Dirichlet and Neumann conditions. We start from similar interaction
quantities for incoming and outgoing boundary conditions on flux normalized wave fields of
the convolution type

(6.3) P t
ANPB = P+

AP
−
B − P−

AP
+
B

and of the correlation type

(6.4) P †
AJPB = P+,∗

A P+
B − P−,∗

A P−
B .

We will use the interaction quantity P t
ANPB as the basis for reciprocity theorems in terms

of flux normalized, one-way wave fields. Integration over the surface Sc makes (6.1) and (6.3)
equal except for a minus sign:

(6.5)

∫
Sc

Zt
ANZBd

2ξL = −
∫
Sc

P t
ANPBd

2ξL.

After transforming (6.1) from LC to SO coordinates, the validity of (6.5) can be verified in two
steps. First, eliminate both occurrences of Z with (5.3), through which the operators Lt and L
appear, respectively, to the left and right of N. Second, the operators simplify on account of
(A.1b). A similar relation can be established between (6.2) and (6.4). One similarly begins
by transforming (6.2) from LC to SO coordinates and eliminating both occurrences of Z with
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Table 2
State table for SO coordinates in the entire integration volume.

State A State B

Field PA PB

Wave operator B̂A B̂B

Source SA SB

(5.3). The final step in simplifying the operators L† and L is accomplished by substitution of
(A.3b):

(6.6)

∫
Sc

Z†
AKZBd

2ξL ≈
∫
Sc

P†
AJPBd

2ξL.

The approximation sign indicates that evanescent wave fields are neglected. This is a common
approximation in one-way imaging schemes.

We will first extend the reciprocity theorems for one-way wave fields of Wapenaar [27],
which are expressed in terms of Cartesian coordinates and with flat volume boundaries charac-
terized by constant x3, to SO coordinates and volume boundaries characterized by constant ξ

3
.

This requires the existence of a one-to-one map between SO and Cartesian coordinates in the
entire integration volume.

For the second approach we will switch between LC and SO coordinates. Analogously
to the first approach, we let the volume boundaries coincide with constant values of ξ̃3, but
now we apply the wave field decomposition discussed in section 5 to the volume boundaries
only. This is possible because at the boundary surfaces Sa and Sb there is the map of LC
to SO coordinates implied by (3.17). But inside the integration volume the more flexible LC
coordinates will be used. A side effect of the coordinate mapping implied by (3.17) is that at
the volume boundaries Sa and Sb the SO-based wave field decomposition of section 5 can be
applied directly to wave fields modeled with the LC-based algorithm discussed by Haines and
De Hoop [10].

For the states given by Table 2, convolution-type reciprocity theorems can be derived
from the interaction quantity P t

ANPB . For a single value ξ
3
= c we integrate the interaction

quantity with respect to the lateral variables and differentiate with respect to ξ
3
. Substitution

of (5.4) for both states A and B then leads to

∂ξ
3

∫
Sc

P t
ANPBd

2ξ
L

=

∫
Sc

P t
A

[
B̂

t
AN+NB̂B

]
PBd

2ξ
L

+

∫
Sc

[
St

ANPB + P t
ANSB

]
d2ξ

L
.(6.7)

Note that in the case of identical media the terms proportional to B̂
t
A and B̂B cancel on

account of (A.4).
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Table 3
State table for SO coordinates on the boundary surfaces.

State A State B

Field Z̃A Z̃B

Wave operator ˆ̃A ˆ̃A

Source D̃A D̃B

Further integration of (6.7) over the interval a ≤ ξ
3
≤ b leads to a convolution-type

reciprocity theorem for one-way wave fields:∫
Sb

P t
ANPBd

2ξ
L
−
∫
Sa

P t
ANPBd

2ξ
L

=

∫
V[a,b]

P t
AN
[
B̂B − B̂A

]
PBd

3ξ

+

∫
V[a,b]

[
St

ANPB + P t
ANSB

]
d3ξ.(6.8)

Along the same lines the alternative interaction quantity P †
AJPB leads to a correlation-type

reciprocity theorem (correlation-type because the products in this quantity correspond to
time-domain correlations). For the constant value ξ

3
= c we have that

∂ξ
3

∫
Sc

P †
AJPBd

2ξ
L

=

∫
Sc

P †
A

[
B̂

†
AJ+ JB̂B

]
PBd

2ξ
L

+

∫
Sc

[
S†

AJPB + P †
AJSB

]
d2ξ

L
.(6.9)

Similarly as before, integration over the interval a ≤ ξ
3
≤ b leads to a correlation-type

reciprocity theorem for one-way wave fields:∫
Sb

P †
AJPBd

2ξ
L
−
∫
Sa

P †
AJPBd

2ξ
L

≈
∫
V[a,b]

P †
AJ
[
B̂B − B̂A

]
PBd

3ξ

+

∫
V[a,b]

[
S†

AJPB + P †
AJSB

]
d3ξ.(6.10)

Even for identical medium parameters the operator B̂
†
AJ+JB̂B is not exactly zero. Evanescent

wave fields have to be neglected for them to cancel; recall (A.9).
Our second approach deals with the states from Table 3 in terms of LC coordinates, with

identical medium parameters in both states throughout the integration volume. For volume
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boundaries characterized by either constant ξ̃3 = a or ξ̃3 = b, we transform LC into SO
coordinates with (3.17). The convenience of this transformation lies in the fact that we can
take ξ

ν
and ξ̃ν to be identical in the corresponding hypersurface, so that the lateral differential

operators are the same, i.e.,

∂ξ̃ν = ∂ξ
ν
.

The lateral dependencies of scalar functions such as the medium parameters ρ̃, K̃ and, more
importantly, the modeling results P̃ and Ṽ n, are therefore not affected by transitions from
LC coordinates to the SO coordinates as specified above: on the volume boundaries

P = P̃ and V n = Ṽ n.

In the manner of Haines and De Hoop [10] we consider the two states from Table 3 which
correspond to the same medium. This time we integrate the interaction quantity Z̃t

ANZ̃B

over ξ̃L and differentiate with respect to ξ̃3. Now we use (4.7) to eliminate ∂ξ3Z̃A and ∂ξ3Z̃B

and write

∂ξ̃3

∫
Sc

Z̃t
ANZ̃Bd

2ξ̃L

= −jω

∫
Sc

Z̃t
A

[ ˆ̃AtN+N ˆ̃A
]
Z̃Bd

2ξ̃L

+

∫
Sc

[
D̃t

ANZ̃B + Z̃t
AND̃B

]
d2ξ̃L.(6.11)

The terms proportional to ˆ̃At and ˆ̃A cancel on account of (4.15). Next we integrate (6.11)
with respect to ξ̃3 on the interval [a, b]; its left-hand side leads to two boundary terms, one
for each limit of the interval. Similarly to (6.5), the boundary terms can be expressed as

(6.12)

∫
Sc

Z̃t
ANZ̃Bd

2ξ̃L = −
∫
Sc

P̃ t
ANP̃Bd

2ξ̃L

for c = a, b. Note that on account of our choice of SO coordinates given by (3.17), there is no
need to distinguish between ξ̃ν and ξ

ν
. Hence, for LC coordinates we have the convolution-type

reciprocity theorem

∫
Sa

P̃ t
ANP̃Bd

2ξ̃L −
∫
Sb

P̃ t
ANP̃Bd

2ξ̃L

=

∫
V[a,b]

[
D̃t

ANZ̃B + Z̃t
AND̃B

]
d3ξ̃.(6.13)

If the source fields D̃A,B are zero inside the integration volume, then the volume integral
containing the source terms vanishes. So after evaluating the matrix-vector products in (6.13)
with P̃ t = (P̃+, P̃−) and the definition N from (4.15), the ingoing and outgoing wave fields
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at the boundaries ξ̃3 = a and ξ̃3 = b are related by∫
Sb

[
P̃+
A P̃−

B − P̃−
A P̃+

B

]
d2ξ̃L

=

∫
Sa

[
P̃+
A P̃−

B − P̃−
A P̃+

B

]
d2ξ̃L.(6.14)

Correlation-type reciprocity theorems are based on the interaction quantity Z̃†
AKZ̃B . The

terms proportional to ˆ̃A† and ˆ̃A cancel on account of (4.16). After integration over ξ̃3 on the
interval [a, b], the boundary terms can be approximated by

(6.15)

∫
ξ̃3=c

Z̃†
AKZ̃Bd

2ξ̃L ≈
∫
ξ̃3=c

P̃ †
AJP̃Bd

2ξ̃L,

similar to (6.6). The approximation in (6.15) is exclusively related to neglecting evanescent
wave fields. In the case of identical media, correlation-type reciprocity theorems for source-free
integration volumes therefore read as∫

Sb

[
(P̃+

A )∗P̃+
B − (P̃−

A )∗P̃−
B

]
d2ξ̃L

≈
∫
Sa

[
(P̃+

A )∗P̃+
B − (P̃−

A )∗P̃−
B

]
d2ξ̃L.(6.16)

As Â defined by (5.6), (4.14b), and (4.14c) is a pseudodifferential operator, our approach
of flux normalized decomposition is valid only if f in (3.10) varies smoothly as a function of
x1 and x2; see, for example, Van den Berg and De Hoop [25]. For our first approach this
requirement is necessary on the entire integration volume, but for our second approach it
is necessary only on the volume boundaries. An additional requirement is that there must
be a reversible mapping between Cartesian and LC/SO coordinates. Recall Figure 5 for an
example that does not have such a reversible mapping.

7. Discussion and conclusions. The one-way reciprocity theorems, formulated by (6.8)
and (6.10), are general relations between one-way wave fields, sources, and medium param-
eters in two different states. Originally they were formulated in Cartesian coordinates, and
wave field decomposition (also known as wave splitting) was restricted to flat planes. After
specifying curvilinear coordinates in section 3, this paper describes in sections 4 and 5 how
the restriction can be relaxed. The reciprocity theorems formulated in section 6 allow for the
formulation of imaging and inverse scattering algorithms in terms of one-way wave fields on
domains delimited by nonflat boundaries. Geophysical applications whose validity is extended
to SO coordinates through (6.8) and (6.10) include inversion based on generalized primary
representations (Wapenaar [28]), prediction and elimination of multiple reflections (Verschuur,
Berkhout, and Wapenaar [26], Van Borselen, Fokkema, and Van den Berg [24], Amundsen [1],
Wapenaar, Thorbecke, and Draganov [32], and Frijlink, Van Borselen, and Sollner [6]), and
synthesis of unrecorded data (Wapenaar, Thorbecke, and Draganov [32], Schuster et al. [19],
Snieder, Sheiman, and Calvert [20], and Wapenaar, Slob, and Snieder [31]).
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As discussed in section 3.3, SO coordinates are characterized by their basis vectors; they
do not offer an actual coordinate system. This can be remedied by tying SO to LC coordinates.
An inherent, additional limitation is the requirement of smoothly varying medium parameters,
density, and compression modulus, throughout the integration volume, due to the involvement
of pseudodifferential operators. LC coordinates allow this requirement to be relaxed if

• the medium parameters can be taken to be identical in both states and
• decomposition into incoming and outgoing wave fields is required only at the bound-

aries of the integration volume. The fact remains that at these boundaries smoothly
varying medium parameters and conformity to interfaces in the subsurface are re-
quired. They can be positioned only in between these interfaces, avoiding intersection
with the major discontinuities. However, in the interior of the integration volume
these smoothness conditions are no longer required.

Appendix. Symmetry properties of the one-way wave equation for flux normalized wave
fields. As stated before, the directional decomposition defined by (5.7)–(5.10) is not unique.
Other choices for the “eigenvector” normalization [11] could have satisfied the argument of
(5.11)–(5.13) equally well. Our motivation for using flux normalized decomposition stems from
its symmetry properties; see De Hoop [11]. The definitions (5.8) and (5.9) of the composition
and decomposition operators imply that they are interrelated by

NL̂
t
N = L̂

−1
(A.1a)

⇔ L̂
t
NL̂ = −N.(A.1b)

To arrive at (A.1b) we multiplied (A.1a) from the left with N−1 = −N and from the right
with L̂. In section 6 we use these relations for convolution-type reciprocity theorems. Their
correlation-type counterparts are based on adjoint instead of transposed operators. However,
to obtain correlation-type analogues of the relations (A.1) it is necessary to neglect evanescent
wave fields. This approximation means that

(A.2) {Â±1/4}† = {Â±1/4}∗ ≈ Â
±1/4

(see Wapenaar and Grimbergen [29]). All further approximation signs occurring in this pa-
per arise from neglecting evanescent wave fields, an approximation that is routinely followed
in most seismic, one-way imaging schemes. With this approximation the (de)composition
operators are also interrelated by

JL̂
†
K ≈ L̂

−1
(A.3a)

⇔ L̂
†
KL̂ ≈ J.(A.3b)

The one-way operator B̂ defined by (5.5) has the same symplectic property as Â, that is,

(A.4) B̂
t
N = −NB̂.

We prove (A.4) separately for the two terms jωΛ̂ and Θ̂. For the former, matrix operator
(A.4) is satisfied because Λ̂ is symmetric and diagonal. For the latter, we first note that the
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product rule for differentiation applied to ∂ξ
3
(L̂

−1
L̂) = 0 yields

Θ̂ = −L̂
−1(

∂ξ
3
L̂
)
=
(
∂ξ

3
L̂
−1)

L̂

⇔ Θ̂
t
= L̂

t(
∂ξ

3
L̂
−1,t)

.(A.5)

To arrive at (A.5) we used the property that differentiation of L̂ with respect to ξ
3
commutes

with transposition, since the operator character of L̂ is exclusively related to ξ
1,2

. Next we use

(A.1a) to eliminate L̂
±1,t

on the right-hand side of (A.5) in favor of L̂
∓1

. After multiplication
of the result from the right with N, the observation that N2 equals the identity matrix allows
us to conclude that

(A.6) Θ̂
t
N = −NΘ̂,

by which (A.4) has been proved.

For correlation-type reciprocity theorems an adjoint-based analogue of (A.4) is necessary.
Its derivation is similar to that of (A.4), but it involves (A.3) instead of (A.1), and as a result,
evanescent wave fields are neglected. First we substitute (5.2) into (4.16). After left and right

multiplication with L̂
†
and L̂, respectively, substitution of (A.3b) yields

Λ̂
†
J ≈ JΛ̂

⇔ (jωΛ̂)†J ≈ −jωJΛ̂.(A.7)

For Θ̂ we multiply the complex conjugate of Θ̂
t
from the right with J. On account of (A.5)

we can use (A.3a) to eliminate the adjoints L̂
±1,†

in favor of L̂
∓1

. Since J2 and K2 are both
equal to identity, the elimination result reads as

(A.8) Θ̂
†
J ≈ −JΘ̂.

Equations (A.7) and (A.8) can finally be combined into

(A.9) B̂
†
J ≈ −JB̂.

The symmetry properties (A.1b), (A.3b), (A.4), and (A.9) are used in section 6.
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