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Abstract
Network-centric tools like NetFlow and security systems
like IDSes provide essential data about the availability,
reliability, and security of network devices and appli-
cations. However, the increased use of encryption and
tunnelling has reduced the visibility of monitoring ap-
plications into packet headers and payloads (e.g. 93% of
traffic on our enterprise network is IPSec encapsulated).
The result is the inability to collect the required infor-
mation using network-only measurements. To regain the
lost visibility we propose that measurement systems must
themselves apply the end-to-end principle: only endsys-
tems can correctly attach semantics to traffic they send
and receive. We present such an end-to-end monitoring
platform that ubiquitously records per-flow data and then
we show that this approach is feasible and practical using
data from our enterprise network.

1 Introduction
Network enabled applications are critical to the running
of large organisation. This places great importance on
monitoring methods that provide visibility into the net-
work. Tools such as NetFlow [4] are becoming essential
for efficient network management, and continuous net-
work monitoring platforms are the subject of ongoing
research [8, 12]. However, these tools assume that in-
network tools have direct access to packet headers and
payloads. Unfortunately, the composition of network
traffic is changing in ways that directly impact our ability
to solve security and network availability problems.

Two trends are particularly troubling for monitor-
ing approaches relying on a network-centric perspec-
tive. First, the use of encryption and tunnelling preclude
any inspection of payloads; use of tunnelling may also
prevent connection information from being determined.
Second, the complexity of network applications means
that tracking network application behaviour can require
visibility into traffic to many destinations using proto-

cols and ports that are expensive to differentiate from
other traffic [9]. This is particularly notable in modern
enterprise networks where many services are provided
over dynamically allocated ports. As a result, collecting
all the packets at an upstream router is often no longer
sufficient to report on the performance or diagnose prob-
lems of downstream network applications. Essentially,
network operators have contradictory requirements: se-
curity ‘in depth’ through mechanisms leading to opaque
traffic (e.g. IPSec) and fine-grained auditing only avail-
able through traffic inspection.

We propose to provide this fine-grained auditing ca-
pability without restricting the ability to deploy essen-
tial security mechanisms by using information collected
on endsystems to reconstruct an ‘end-to-end’ view of the
network. Each endsystem in a network runs a small dæ-
mon that uses spare disk capacity to log network activity.
Each desktop, laptop and server stores summaries of all
network traffic it sends or receives. A network operator
or management application can query some or all endsys-
tems, asking questions about the availability, reachabil-
ity, and performance of network resources and servers
throughout the organization. We initially target deploy-
ment in government or enterprise networks since these
exercise a high degree of control over endsystems. This
makes it feasible to deploy a standard operating system
image supporting the monitoring facility, and to control
data logging in a manner consistent with network secu-
rity and privacy policies.

Ubiquitous network monitoring using endsystems is
fundamentally different from other edge-based monitor-
ing: the goal is to passively record summaries of ev-
ery flow on the network rather than to collect availabil-
ity and performance statistics or actively probe the net-
work. Projects such as DIMES [5] and Neti@Home[14]
use endsystem agents to monitor network properties
(e.g. availability and reachability). The Anemone system
also collects endsystem data but combines it with routing
data to construct a view of the network [13].
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In contrast, ubiquitous endsystem network monitor-
ing is more closely related to in-network monitoring ap-
proaches like NetFlow [4] in that it provides summaries
of all traffic on a network. It also provides a far more de-
tailed view of traffic because endsystems can associate
network activity with host context such as the applica-
tion and user that sent a packet. This approach restores
much of the lost visibility and enables new applications
such as network auditing, better data centre management,
capacity planning, network forensics, and anomaly de-
tection. Using real data from an enterprise network we
present preliminary results showing that instrumenting,
collecting, and querying data from endsystems in a large
network is both feasible and practical.

2 Muddy Waters
For many older network applications it is possible to re-
construct an entire application’s session simply by ob-
serving the packets between a client and a server (e.g. tel-
net). The problem is that we have lost much of this vis-
ibility due to new network application requirements and
deployment practices. Some of this loss can be attributed
to new security and privacy features that have rendered a
significant amount of network traffic opaque. Further-
more, increasingly complex application communication
behaviour can make attributing traffic to specific applica-
tions complex and impractical.

2.1 Opaque Traffic

As the Internet has grown to support critical transactions
like the transfer of money, security and privacy require-
ments have come to the forefront of application develop-
ment and deployment. For example, many large organ-
isations support remote offices and home workers using
encrypted VPNs to tunnel traffic back to a central loca-
tion. Devices that want to monitor this traffic must be
placed before or after these tunnels or have access to any
keys required to decrypt the traffic.

Two situations arise as a result of this need to monitor
network usage. If an organization outsources the run-
ning of their network, then they must turn over any keys
to their service provider, trusting that the provider will
not disclose highly sensitive information. Alternatively,
if they keep their network in-house, they must increase
its cost and complexity by setting up tens or hundreds of
monitoring points as well as the infrastructure required
to collect and process the resulting data. Analysing a
snapshot of the configuration files from 534 routers in a
large enterprise network, we found 193 separate sites that
would require integration into such a system – a substan-
tial investment.

Problems with opaque traffic also exist within each of-
fice site network. To increase security within their LANs,
organisations may use mechanisms such as IPSec to pro-
vide authentication of application packets destined for
internal addresses. This claim is supported by analy-
sis of an 8-day packet trace collected at a remote of-
fice site in large enterprise network. The trace included
�14,000 host source addresses, �600 of which were on-
site. Over 93% of the collected packets were transport-
mode IPSec, and so encapsulated in an ESP header and
trailer. This observation differs significantly from pre-
viously reported traffic measurements in ISP and educa-
tional networks [9, 15], and highlights one of the signif-
icant differences between controlled environments like
enterprise networks and more open networks: even mon-
itoring devices sitting inside a local LAN may have very
limited visibility into network traffic.

2.2 Complex Application Behaviour

Even when a packet is not opaque, it may still be
impractical to extract application information and be-
haviour. Compatibility and security requirements often
result in applications that tunnel traffic using common
protocols such as HTTP and other transports over vary-
ing ports [2, 3].

Modern applications may also exhibit highly complex
communication relationships. For example, even an ap-
parently simple application such as email often no longer
operates straightforwardly between a given client and
server over a single protocol such as SMTP. Instead,
“checking your mail” can require connections to many
servers such as to an authentication server in order to
obtain appropriate credentials, to a mail server to au-
thenticate the user to a mailbox, and finally many other
connections to download different headers, mails, and at-
tachments. In addition, the mail application may concur-
rently be performing background tasks such as synchro-
nising address books, and maintaining calendar alerts. In
all, “checking your mail” can instantiate tens of connec-
tions to several servers, making it problematic to attribute
the relevant traffic to a single application.

In summary, increasingly opaque network traffic and
complex application behaviour introduce significant vis-
ibility problems for network-centric monitoring ap-
proaches. The question is how we can obtain insight into
the network in the face of these visibility problems.

3 End-to-End Network Monitoring
To provide the necessary visibility into network traffic
we propose an endsystem-based network management
platform that uses information collected at the edge to
construct a view of the network. Each endsystem in a
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network runs a small dæmon that uses spare disk ca-
pacity to log network activity. Each desktop, laptop and
server stores summaries of all network traffic it sends or
receives. A network operator or management applica-
tion can query some or all endsystems, asking questions
about the availability, reachability, and performance of
network resources throughout an organization.

To validate an endsystem-based monitoring approach
we constructed a prototype designed to be integrated
into the standard operating system distribution for a
large enterprise. We used the Windows built-in ker-
nel monitoring ETW [10] facility to report socket cre-
ation/destruction and data transmission/reception. A
user-space Windows service processed the ETW events
periodically outputting summaries of network data to
disk. We mapped each network invocation to a specific
application on the endsystem using process identifier in-
formation in the common ETW header. Flow tuples were
recorded according to the following schema: (sip, dip,
dport, sport, proto, process name, PID, bytes, packets,
timestamp). This enabled the system to find all the net-
work data associated with complex applications such as
Microsoft Outlook and to observe network packets be-
fore being encrypted in the VPN layer. A preliminary
evaluation of the prototype is described in Section 5.

4 Novel Uses
The fresh perspective provided by an end-to-end mon-
itoring platform enables a range of new network man-
agement applications. In contrast to existing monitor-
ing techniques, the platform provides fine-grained usage
information in multiple dimensions (host, user, applica-
tion, virtual machine) as well as the capacity to store this
data for significant periods of time.

Network auditing. An operator wishing to determine
who is using an expensive WAN link can query the sys-
tem to determine all the hosts, applications, and users
that have used the link over the past few weeks. The
system could even be used in a feedback loop to throt-
tle specific applications and hosts using more than their
allocated share of a given network resource.

Data centre management. Fined-grained informa-
tion on network usage can be attributed to individual ap-
plications, machines and even specific virtual machines.
For example, one might use such a system to account net-
work usage to individual users on a server hosting multi-
ple virtual machines multiplexing a single IP address.

Capacity planning. By using historical data on net-
work usage by specific applications stored on many
endsystems, detailed models of application network us-
age can be built. These can predict the impact of service
changes such as distributing email servers among many
sites or concentrating them in a few datacentres.

Anomaly detection. Distribution of historical net-
work data across many endsystems also enables new ap-
plications that require detailed historical context. For ex-
ample, models of normal behaviour can be constructed
from this extensive distributed archive and deviations
from past behaviour detected. An operator could ask
for a detailed usage report of all abnormal applications
across an enterprise.

5 Feasibility Study
Having argued the need for, and utility of, a monitoring
system with better visibility, we now consider several key
implementation and deployment issues: (i) where might
an end-to-end monitoring system be deployed? (ii) how
many endsystems must be instrumented? (iii) what
data should be collected? (iv) how can that data ac-
cessed? (v) what is the performance impact on partici-
pating endsystems? and (vi) what are the security impli-
cations?

(i) System Deployment. One major challenge for
an endsystem monitoring platform is how to instru-
ment edge devices. In many large networks, access to
network-connected elements is strictly controlled by a
central organization. In particular, enterprise and govern-
ment networks typically have infrastructure groups that
generate and enforce policies that govern what machines
can be connected to what networks and what software
they must run. These highly controlled settings are the
perfect environment for end-system monitoring because
they are also often quite large and require tools that can
provide visibility across a whole network. For exam-
ple, our own enterprise network contains approximately
300,000 endsystems and 2,500 routers. While it is possi-
ble to construct an endsystem monitor in an academic or
ISP network there are significant additional deployment
challenges that must be addressed. Thus, we focus on
deployment in enterprise and government networks that
have control over software and a critical need for better
network visibility. We discuss the security and privacy
implications of collecting endsystem data later.

(ii) Deployment Coverage. Even under ideal circum-
stances there will inevitably be endsystems that simply
cannot easily be instrumented, such as printers and other
hardware running embedded software. Thus, a key factor
in the success of this approach is obtaining good visibil-
ity without requiring instrumentation of all endsystems
in a network. Even if complete instrumentation were
possible, deployment becomes significantly more likely
where incremental benefit can be observed.

If traffic were uniformly distributed between N
endsystems, then each additional instrumented endsys-
tem contributes another 1/N th to the global view. This
observation is initially discouraging as it suggests that a
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Figure 1: Fraction of traffic observed by endsystem monitoring as
increasing subsets of endsystems are instrumented. Error bars on the
random line show the 95% confidence intervals of the mean.

very high proportion of endsystems would have to par-
ticipate to obtain a high percentage of traffic. However,
if the traffic distribution is less symmetric, a smaller pro-
portion of participating systems may still lead to a useful
proportion of the traffic being observed.

To investigate the contribution of different endsystems
to the overall traffic we analysed the 8-day network trace
from a large enterprise network described in Section 2.
We computed the number of bytes and flows observed
by each endsystem for the entire trace and for different
applications. We define the byte coverage as the propor-
tion of the total number of bytes observed by the system
across the network within a given time period, and the
flow coverage similarly for network flows.

Figure 1 depicts the byte coverage as a function of
the number of endsystems instrumented. The optimal
line shows the coverage when endsystems were chosen
based on their contribution to the total, largest first. This
line shows that instrumenting just 1% of endsystems was
enough to monitor 99.999% bytes on the network. This
1% is dominated by servers of various types (e.g. backup,
file, email, proxies), common in such networks. Note
that in these controlled networks, traffic to and from
external addresses will typically traverse some kind of
proxy device. With simple modifications to track the
setup and teardown of connections for the proxied traffic,
these devices can provide excellent visibility into traffic
where one side of the connection is not itself part of the
controlled network.

The random line in Figure 1 shows the mean and 95%
confidence intervals across 100 trials when endsystems
are selected at random from the total host population. In
this case, the resulting coverage is slightly better than lin-
ear since both transmit and receive directions are moni-
tored, but variance is quite high due to the fact that if a
given trial includes just one of the top 1% endsystems,
it leads to a disproportionate improvement in coverage.
We also measured flow coverage since that is of interest

for a number of security applications. The results were
very similar to the byte coverage.

Finally, since per-application information is a signif-
icant benefit of our approach we also analyzed byte
and flow coverage for the top 10 applications (for bytes
transmitted and received). Again, the results were al-
most identical to Figure 1: because many enterprise ap-
plications are heavily client-server based, it is possible
to achieve excellent visibility into them all with just a
few instrumented machines. Even if enterprise network
workloads become peer-to-peer dominated in the future,
a significant shift away from centralized communication
models, the worst case is that each extra machine instru-
mented brings only a 1/N improvement (for N the num-
ber of end-systems on the network and assuming a com-
pletely uniform traffic distribution). Since many central-
ized applications like security proxies are not suited to
peer-to-peer topologies, it is likely that a balance of dif-
ferent topologies will likely persist.

(iii) Data Collection. One common method of storing
network data is to capture all packets using a packet snif-
fer, but this can result in unmanageably large datasets.
For example, even a moderately busy server transmitting
at 100 Mbps would result in recording gigabytes of data
per hour if just the IP and TCP headers were recorded.
Since the 1% of endsystems that provide the best cover-
age are often precisely the busiest 1% of endsystems, a
more scalable approach is highly desirable.

The problem of collecting and storing data is well-
known in network-centric monitoring. It is often infeasi-
ble for routers and other network devices to capture all
the packets that they forward so they typically aggre-
gate data, storing information about each flow rather than
each packet (e.g. NetFlow [4]). Flow records provide ex-
cellent compression since a connection with hundreds of
packets is synthesised into a single flow. The information
in such a flow record might include timestamps, protocol,
source, destination, number of packets in the flow, and
other fields traditionally available through packet inspec-
tion such as TCP headers. Thus, using flows rather than
packets provides nice tradeoff between resource cost and
network information.

Flows can also be augmented with endsystem infor-
mation. For example, the user executing the application,
the current round-trip time estimates from the TCP stack.
Furthermore, the monitoring software can be placed be-
fore encryption and tunneling layers so that the result-
ing flow records store both unobfuscated network activ-
ity with host contextual information. Application-level
encryption such as SSL may require additional instru-
mentation of system libraries or applications.

(iv) Accessing Distributed Data Stores. Assuming
that we can instrument and collect flows on 300,000 dif-
ferent endsystems, the question becomes how to access
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Figure 2: Maximum and mean observed flows per second. The three
dropout periods occurred due to crashes of our monitoring system.

these widely distributed data stores in a timely man-
ner. One approach is to collect and centrally store all
flow records from all endsystems. This approach clearly
doesn’t scale well when more than a handful of busy
endsystems are involved. Another possibility is to trans-
fer summaries of flows to a central location. The problem
is that because the total amount of data so large, decid-
ing what to summarise requires network applications and
operators to already know the questions they wish to ask.
This is not always possible. For example, when examin-
ing the artifacts left by a network intruder.

A more flexible approach is to provide a platform
allowing network management applications to insert
queries and receive aggregated responses in real-time.
Fortunately, a variety of distributed databases support-
ing access to network management data already ex-
ist [7, 16]. These systems have addressed scalability,
the maintenance the ACID property, support for active
database/trigger mechanisms, and the temporal nature of
network data. By making each data collection node a
member of a large distributed query system one could
access data from across the entire system in a timely
manner. For example, one could utilize the ability of
SDIMS [16] to build dynamic aggregation trees or use
hierarchical DHT rings [11] to multicast queries to spe-
cific sub-networks.

(v) Endsystem Performance. The busiest 1% of
endsystems are often the most useful to instrument so an
important concern is the impact of collecting and storing
flows on an endsystem. In general, three key resources
can be used: memory, CPU, and disk. Memory cost is a
function of the number of concurrently active flows, CPU
cost a function of of the number of packets observed, and
disk cost a function of the number of records stored. We
now estimate these costs using the packet trace described
in Section 2.

Memory Cost. The memory cost on the host is domi-
nated by state required to store flow records before they
are exported to disk. To evaluate this cost we constructed

Per-endsystem write rate
Export Timer (s) Mean (kB/s) Maximum (kB/s)

1 1.445 2081.00
5 0.310 418.00

10 0.168 211.00
30 0.073 71.70
60 0.049 37.50

300 0.022 12.10
900 0.016 5.40

1800 0.016 5.40

Table 1: Per-endsystem maximum and mean rates at which records
must be written for a variety of export periods.

a flow database for each of the endsystems. We denote a
flow as a collection of packets with identical IP 5-tuple
and no inter-packet gap of greater than 90 seconds. Fig-
ure 2 depicts the observed maximum and mean flows per
second over all endsystems in the trace. Allowing a gen-
erous 256 bytes per in-memory flow record, the excep-
tional worst case memory consumption is under 2 MB,
with an average of �25 kB.

CPU Cost. To evaluate the per-endsystem CPU over-
head we constructed a prototype flow capture system us-
ing the ETW event system [10]. ETW is a low overhead
event posting infrastructure built into the Windows OS,
and so a straightforward usage where an event is posted
per-packet introduces overhead proportional to the num-
ber of packets per second processed by an endsystem.
We computed observed packets per second over all hosts,
and the peak was approximately 18,000 packets per sec-
ond and the mean just 35 packets per second. At this
rate of events, published figures for ETW [1] suggest an
overhead of a no more than a few percent on a reasonably
provisioned server.

Disk Cost. Finally, we consider disk cost by examin-
ing the number of flow records written to disk. Using the
number of unique flows observed in a given export period
as an estimate of the number of records that would need
to be written, Table 1 shows the disk bandwidth required.
For example, for a 1 second export period there are pe-
riods of high traffic volume requiring a large number of
records be written out. However, if the export timer is set
at 300 seconds, the worst case disk bandwidth required
is �4.5 MB in 300 seconds, an average rate of 12 kBps.
The maximum storage required by a single machine for
an entire week of records is �1.5 GB, and the average
storage just �64 kB. Given the capacity and cost of mod-
ern hard disks, these results indicate very low resource
overhead.

Initial results from our prototype system are very
promising. Costs are within acceptable limits for the
handful of key systems required for excellent visibility,
and well within limits for most users’ endsystems. More-
over, the costs described are not fixed performance re-
quirements and operators could be given the ability to ad-
just the level of resource usage. For example, one could
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add an additional sampling parameter to reduce the num-
ber of flows processed and stored or use adaptive flow
sampling approaches to further reduce load [6].

6 Security/Privacy Implications
Data available through such a system could potentially
support a number of interesting network security and
forensics applications. However, several security and
privacy questions arise when collecting sensitive network
traffic on many endsystems. Specific requirements will
depend heavily on the deployment environment, e.g. in
a corporate environment there are often regulations gov-
erning the protection of data. We now highlight a few
of the important issues and suggest how a basic cross-
validation strategy can help handle them.

To maintain endsystem integrity and communication
security, simple procedures such as privilege separation
for software, and encryption of queries may be used.
Queries should be authenticated by requiring that they be
properly signed by a designated authority, ensuring ma-
licious parties cannot easily discover information about
the network to their benefit, and helping prevent mali-
cious or naive users from instigating denial-of-service at-
tacks by introducing many excessively complex or long-
running queries. Nefarious insertion or removal of flow
data can be detected by asking a host to report on a
known quantity, and then validating with the other ends
of the flows. For example, a suspicious host could be
queried for the amount of data it transmitted and to
whom, and the receivers on the same network queried
to validate that they received the data that was sent.

Endsystem monitoring also provides additional pri-
vacy protection compared to other monitoring ap-
proaches. Since each endsystem logs only the data it
sends or receives, a node never has access to data that
it hasn’t already observed. Furthermore, each organisa-
tion can customize the data that is logged based on spe-
cific endpoints and applications. This is a significant ad-
vantage over in-network monitoring solutions where it is
difficult to apply privacy filters when the data is recorded
requiring that data be scrubbed later. And, an endsystem
monitoring solution enables selected highly trusted sys-
tems to have different privacy policies than other parts of
the network.

7 Conclusion
We believe that network centric monitoring approaches
will continue to lose visibility into the network as traf-
fic becomes more opaque and complex. Rather than di-
rectly instrument the network, we propose an end-to-end
monitoring platform that uses data collected on endsys-
tems to construct a view of the network. Endsystems

are able to provide significantly more visibility than net-
work devices which lack critical host context. An end-
to-end platform also enables many new applications like
auditing of network resources, better data centre manage-
ment, capacity planning, network forensics, and anomaly
detection. Our preliminary results using real data from
an enterprise network show that collecting and querying
data from endsystems in a large network is both feasible
and practical.
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