
RecNorm: Simultaneous Normalisation and
Classification applied to Speech Recognition

John S. Bridle
Royal Signals and Radar Est.
Great Malvern

UK WR143PS

Abstract

Stephen J. Cox
British Telecom Research Labs.

Ipswich

UK IP57RE

A particular form of neural network is described, which has terminals

for acoustic patterns, class labels and speaker parameters. A method of

training this network to "tune in" the speaker parameters to a particular
speaker is outlined, based on a trick for converting a supervised network

to an unsupervised mode. We describe experiments using this approach
in isolated word recognition based on whole-word hidden Markov models.

The results indicate an improvement over speaker-independent perfor

mance and, for unlabelled data, a performance close to that achieved on

labelled data.

1 INTRODUCTION

We are concerned to emulate some aspects of perception. In particular, the way that

a stimulus which is ambiguous, perhaps because of unknown lighting conditions, can
become unambiguous in the context of other such stimuli: the fact that they are

subject to tbe same unknown conditions gives our perceptual apparatus enough

constraints to solve tbe problem. Individual words are often ambiguous even to

human listeners. For instance a Cockney might say the word "ace" to sound the

same as a Standard English speaker's "ice". Similarly with "room" and "rum", or

"work" and "walk" ill other pairs of British English accents. If we heard one of these
ambiguous pronunciations, knowing nothing else about the speaker we could not tell

which word had been said. For current automatic speech recognition (ASR) systems
such effects are much more frequent, because we do not know bow to concentrate

on the important aspects of the signal locally, nor how to exploit the fact that some

unknown properties apply to w hole words, nor how to bring to bear on the task of

234

RecNorm 235

acoustic disambiguation all the information that is normally latent in the context

of the utterance.

Most attempts to construct ASR systems which can be used by many persons have
used so-called speaker-independent models. When decoding a short sequence of

words there is no way of imposing our knowledge that all the speech is uttered by

one person.

To enable adaptation using small amounts of speech from a new speaker we propose

to factor the speech knowledge into speaker-independent models, continous speaker
specific parameters and a transformation which modifies the models according to

the speaker parameters. (In this paper we shall only use transformations which can
just as easily be applied to the input patterns.) We are specially interested in the
possibility of estimating such parameters from quite small amounts of unlabelled

speech, such as a few short words or one longer word. Although the types of models

and transformations we have used are very simple, we hope the general approach

will be applicable to quite sophisticated models and transformations which will be
necessary for future high-performance speech recognition systems.

2 AN ADAPTIVE NETWORK APPROACH

2.1 GENERAL IDEA

Suppose we had a feed-forward network with three (vector-valued) terminals, which

encapsulates our knowledge of the relationship between acoustic patterns, X, class

labels (e.g. word identities) C, and speaker parameters, Q.

Training such a network seems difficult, because although we can supply (X ,C)
pairs, we do not know the appropriate values of Q. (We only know the names of
the speakers, or perhaps some phonetician's descriptive labels.)

In training the network we start with default values of Q, feed forward from X and

Q to C, bac.k-propagate derivatives to internal parameters of the network (weights,
transition probabilities, etc.) and also to the Qs, enforcing the constraint that the

Qs for anyone speaker stay equal. We can imagine one copy of the network for

each utterance, with the Q terminals of networks dealing with the same speaker
strapped together. One convenient implementation (for a small number of training

speakers) is to adapt one Q vector per speaker in a set of weights from one-from-N

coded speaker identity inputs to linear units, as we shall see later.

Once the network is trained we have two modes of use. If we have available one

or more known utterances by a new speaker, then we can "tune-in" to the speaker

(as during training) except that only the Q inputs are adjusted. The case of most
interest in this paper, however, is when we have a few unknown words from an

unknown speaker. We set up a Q-strapped set of networks, one for each word,

initialise the Q values to their defaults, propagate forwards to produce a set of

distributions across word labels, and then we use a technique which tends to sharpen

these distributions. In the simplest case, the sharpening process could be a matter

of: for each utterance pick the word label with the largest output, and assuming
it to be correct back-propagate derivatives to the common Q. In practice, we can

use a gentler method in which large outputs get most 'encouragement'. For some

236 Bridle and Cox

networks it is possible to show that such a "phantom target" procedure can lead

to hillclimbing on the likelihood of the data given an assumption about the form of

the generator of the data (see Appendix).

2.2 SIMPLE NETWORK ILLUSTRATION

We have explored these ideas using a very simple network based on that in figure
1. It can be viewed either as a feedforward network with radial (minus Euclidean
distance squared) units and a generalised-logistic (Softmax) output non-linearity,
or as a Gaussian classifier in which the covariance matrices are unit diagonal (see

[Bri90bJ). Training is done by gradient-based optimisation, using back-propagation
of partial derivatives. During training the criterion is based on relative entropy

(likelihood of the targets given the network outputs) [Bri90c). (Such di~criminative

training can lead to different results from the usual model-based methods [Bri90b],
which in this case would set the reference points at the data means for each class.)

This simple classifier network is preceded by a full linear transformation (6 param

eters), so the equivalent model-based classifier has Gaussian distributions with the
same arbitrary covariance matrix for each class. We use the biasses of the linear

units as speaker parameters, so the weights from speaker identity inputs go straight

into the hidden units, ~ as figure 2 .

During adaptation to a new speaker from unlabelled tokens, the speaker parameters

of the transformation are allowed to adapt, but the ("phantom") targets are derived

from the outputs themselves (the targets are just double the outputs) so that the
largest outputs are encouraged.

In figure 3 we see the adaptation of the positions of the reference points of the
radial units in figure 2 when the input points are essentially the 6 reference points

displaced to one side (to represent one example of each word spoken by a new
speaker). Adaptation based on tentative classifications pulls the reference points
towards a position where the inputs can be given confident, consistent labels.

3 SPEECH RECOGNITION EXPERIMENTS

We have applied these ideas to the problem of recognising a few short, confusable

words from a known set, all spoken by the same unknown speaker. If our method

works we should be able to recognise each word better (on average) if we also look
at a few other unknown words from the same speaker.

The dataset [SaI89], which had been recorded previously for other purposes, com

prised the British English isolated pronounciations of the names of the letters of
the alphabet, each spoken 3 times by each speaker. The 104 speakers were divided

into two groups of 52 (Train and Test), balanced for age and sex. Initial acoustic

analysis produced 28-component spectrum vectors, 100 per second. In place of the

2-D input patterns discussed above, each speech pattern was a variable-duration
sequence (typically 50) of 28-vectors.

In place of each simple Gaussian density class-models we used a set of Gaussian
densities and a matrix of probabilities of transitions between them. Each class

model is thus a hidden Markov model (HMM) of a word. We used 26 HMMs, each

Fig.1 Feedforward Network

Implementing Simple Gaussian

Classifier

Fig.3 Adaptation to 6 displaced

points

Radial
Units

RecNorm 237

Fig.2 Gaussian classifier network with

input transformation and speaker inputs

15%

14%

13%

12%

11%

10%
3 10 20 78

No Adapt. Words given
'Cheat'
mode

Fig.4 Average error rates for alphabet

word recognition

238 Bridle and Cox

with 15 states, each with a 3-component Gaussian mixture output distribution. For
further details see [CB90].

The equivalent to the evaluation of a Gaussian density in the simple network is
the Forward (or Alpha) computation of the likelihood of the data given a (hidden
Markov) model. This calculation can be thought of as being performed by a
recurrent network of a special form. When we include the Bayes inversion to
produce probabilities of the classes (this is a normalisation if we assume equal prior

probabilities) we obtain the equivalent of the simple network of figure 1, which we

call an Alphanet[Bri90a].

In place of the 2-component linear transformation in figure 2 we use a constrained

linear transformation based on [Hun81] Yi = ai~i-l + bi~i + Ci~i+l + dil where
~i, i = 1, ... 28, is the log spectrum amplitude in frequency channel i.

We tried three conditions:

• Bias Only: a = 0, b = 1, C = 0 (28 parameters)

• Fixed Shift: ai = a, bi = b, Ci = C (31 parameters)

• Variable Shift: the general c.ase (107 parameters)

Figure 4 shows average word error rates for the three types of transformation, for

different numbers of utterances taken together (N = 3,10,20,78). N = 1 is the
non-adaptive case. 'Cheat' Mode is a check on the power of the transformations:
for each test speaker, all 78 utterances were used to set the parameters of the
transformation, then recognition performance was measured using those parameters

of the same utterances.

We see:

• Use of unsupervised adaptation reduced the error rates.

• The reductions are not spectacular (15% errors to 12% errors, a reduction in
error rate by 20%.) but they are statistically significant and may be practically
significant too.

• The performance in 'Cheat' Mode is only a little better than in unsupervised
mode, so performance is being limited by the power of the transformation.

• The Fixed Shift transformation gives quite good results even on only 3 words
at a time.

When tested on a 120 talker telephone-line database of isolated digits collected
at British Telecom, the best unsupervised speaker adaptation technique gave a

37% decrease in error-rate (for both supervised and unsupervised adaptation on 5
utterances) using a simple front-end consisting of 8 MFCCs (mel frequency-scale
cepstrum coefficients). A more sophisticated front-end (using differential informa
tion and energy) improved the unadapted performance by 63% over the 8 MFCC

front-end. Using this front-end, the best unsupervised adaptation technique (on 5
utterances) decreased the error-rate by a further 25%

RecNorm 239

4 CONCLUSIONS

The results reported here show that simultaneous word recognition and speaker
normalisation can be made to work, that it improves performance over the cor
responding speaker-independent version, and that given 3 to 10 unknown words

performance can be almost as good as when the adaptation is done using knowl
edge of the word identities. The main extensions we are interested in are to use
non-linear transformations, and to learn low-dimensional but effective speaker pa
rameterisations.

A Unsupervised Adaptation using Phantom Targets

We aim to motivate the 'phantom target' trick of feeding back twice each output of
the network as a target.

Suppose we have a classifier network, with a 1-from-N output coding, and a Softmax
output nonlinearity. We write Qj for an output value, Vi for an input to the Softmax
output stage, 113 for the input to the network, c for a class and 8 for parameters
which we may want to adjust. A typical output value is

Qj (113,8) = e Vi (113,8) / LeVie (113,8).

Ie

The output values are interpretable as estimates of posterior probabilities: Qj ::::::
Pr(c = j 1113,8). For the next step we assume there are some implicit probability
density functions Pj (113,8) :::::: Pr(2 I c = j, 8) Assuming equal prior probabilities of
the classes for simplicity, Bayes rule gives

N

Qj(2, 8) = Pj(lI3, 8) / L Pie (113, 8),

1e=1

so we suppose that

P'(2 8) = _1_eVi(II3,8)
l' Zj(8) ,

where the normalisation is

Zj(8) = f eVi(II3,8)d2.

In the networks we use, the same normalisation applies to all the classes, so we write

zj(8) = z(8).

A maximum-likelihood approach to unsupervised adaptation maximises the likeli
hood of the data given the set of (equally probable) distributions, which is

N 1
P (113, 8) = L Pie (2, 8) N'

1e=1

It is simpler to maximise the log likelihood:

L(II3, 8) ~ log P(2,8) = log L Pie (2, 8)-log N = log L e VIe(2, 8) -log z(8)-log N.

Ie Ie

240 Bridle and Cox

We shall need

8L ____ l ___ eltj(z, 8) __ 1_ 8z(8) .

8ltj - Lie eVIe(z, 8) z(8) 8ltj(z,8)"

(The likelihood of the whole training set is the product of the likelihoods of the
individual patterns, and the log turns the product into a sum, so we can sum the

deri vati ves of Lover thf' training set.)

We can often assume that the normalisation is independent of 8, giving

8L eltj(z,8)
- ---- -- ------- -- = Qj(z, 8).
8Vj Lie eVIe(z, 8)

If we have a supervised backprop network using the relative entropy based criterion
(rather than squared error) [1], we are minimising J = - Lj Tj 10gQj, where Tj is

the target for the jth output. We know [Bri90b] that :~. = Qj - Tj , so if we set
J

Tj = 2Qj we have :t = --- g{; , and minimising J is equivalent to maximising L.
J J

For the simple Gaussian network of figure 1, this unsupervised adaptation, ap
plied to the reference points, can be understood as an on-line, gradient descent,
relative of the k-means cluster analysis procedure, or of the LBG vector quantiser
design method, or indeed of Kohonen's feature map (without the neighbourhood

constraints) .

Copyright © Controller HMSO London 1989

References

[Bri90a] J S Bridle. Alphanets: a recurrent 'neural' network architecture with
a hidden Markov model interpretation. Speech Communication, Special
"Neurospeech" issue, February 1990.

[Bri90b] J S Bridle. Probabilistic interpretation of feedforward classification net
work outputs, with relationships to statistical pattern recognition. In
F Fougelman-Soulie and J Herault, editors, N euro-computing: algorithms,

architectures and applications, NATO ASI Series on Systems and computer

science. Springer-Verlag, 1990.

[Bri90c] J S Bridle. Training stochastic model recognition algorithms as networks

can lead to maximum mutual information estimation of parameters. In
Advances in Neural Information Processing Systems 2. Morgan Kaufmann,

1990.

[CB90] S J Cox and J S Bridle. Simultaneous speaker normalisation and utterance
labelling using Bayesian/neural net techniques. In Proc. IEEE Int. ConJ.

Acoustics Speech and Signal Processing, 1990.

[Hun81] M J Hunt. Speaker adaptation for word-based speech recognition.
J. Acoust. Soc. Amer, 69:S41-S42, 1981. (abstract only).

[SaI89] J A S Salter. The RT5233 Alphabetic database for the Connex project.

Technical Report RT52/G231/89, BT Technology Executive, 1989.

