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Abstract

Much of recent action recognition research is based on

space-time interest points extracted from video using a Bag

of Words (BOW) representation. It mainly relies on the dis-

criminative power of individual local space-time descrip-

tors, whilst ignoring potentially valuable information about

the global spatio-temporal distribution of interest points.

In this paper, we propose a novel action recognition ap-

proach which differs significantly from previous interest

points based approaches in that only the global spatio-

temporal distribution of the interest points are exploited.

This is achieved through extracting holistic features from

clouds of interest points accumulated over multiple tempo-

ral scales followed by automatic feature selection. Our ap-

proach avoids the non-trivial problems of selecting the op-

timal space-time descriptor, clustering algorithm for con-

structing a codebook, and selecting codebook size faced by

previous interest points based methods. Our model is able

to capture smooth motions, robust to view changes and oc-

clusions at a low computation cost. Experiments using the

KTH and WEIZMANN datasets demonstrate that our ap-

proach outperforms most existing methods.

1. Introduction

Human action recognition is one of the most active re-

search areas in computer vision with many real-world ap-

plications, such as human-computer interaction, video in-

dexing, video surveillance and sport events analysis. It is

a challenging problem as actions can be performed by sub-

jects of different size, appearance and pose. The problem

is compounded by the inevitable occlusion, illumination

change, shadow, and camera movement.

Early work on action recognition is based on tracking

[16, 1, 15, 19] or spatio-temporal shape template [7, 8,

21]. Both tracking and spatio-temporal shape template

construction require highly detailed silhouettes to be ex-

tracted, which may not be possible given a real-world noisy

video input. To address this problem, space-time interest

point based approaches have become increasingly popular

Figure 1. Examples of clouds of interest points. The clouds at

different temporal scales are highlighted in yellow boxes.

[3, 18, 11, 17]. These approaches are based on a Bag of

Words (BOW) feature representation that has been success-

fully applied to 2-D object categorisation and recognition.

Compared to tracking and spatio-temporal shape based ap-

proaches, they are more robust to noise, camera movement,

and low resolution inputs. Nevertheless, they rely solely

on the discriminative power of individual local space-time

descriptors. Information about the global spatio-temporal

distribution of the interest points is ignored. Consequently,

they are unable to capture smooth motions due to lack of

temporal information. Furthermore, their have to address

the non-trivial problems of selecting the optimal space-time

descriptor, clustering algorithm for constructing a codebook

and codebook size, which inevitably involve parameter tun-

ing. Such parameter settings are highly data dependent and

re-tuning is required for different video inputs.

In this paper, we propose a novel approach based on rep-

resenting action as clouds of interest points accumulated at

different temporal scales. Specifically, a new space-time in-

terest point detection method is developed to extract denser
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and more informative interest points compared to the ex-

isting interest point extraction methods [3, 18]. In particu-

lar, our model avoids spurious detection in both background

areas and highly textured static foreground areas unrepre-

sentative of the dynamic parts of actions concerned. The

extracted interest points are accumulated over time at dif-

ferent temporal scales to form point clouds. Examples of

the clouds of interest points of different temporal scales are

shown in Fig. 1. Holistic features are then computed from

these point clouds for action representation, which capture

explicitly and globally the spatial and temporal distribution

of salient local space-time patches. A simple yet effec-

tive feature selection method is then formulated to select

the most informative features for discriminating different

classes of actions.

Our approach differs significantly from the conventional

Bag of Words (BOW) based approaches in that a completely

different aspect of interest points from video is exploited.

More specifically, the conventional BOW methods are fo-

cused on what these interest points are and how often they

occur in the video (i.e. they rely primarily on the discrimi-

native power of individual local space-time descriptors). In-

formation about the spatial and temporal distribution of in-

terest points is lost. In contrast, our approach exploits only

the global spatio-temporal information about where the in-

terest points are and when they are detected. Without the

need to represent the detected interest points using local de-

scriptors and classify them into video-words, ad hoc and

arbitrary parameter tuning process is avoided. In addition,

our model is novel in capturing information about global

spatio-temporal distribution of interest points explicitly and

at different scales. It therefore is able to capture smooth

motions, robust to view changes and occlusions, and with a

low computation cost. The proposed approach is evaluated

using the KTH dataset [18] and the WEIZMANN dataset

[7]. Experimental results demonstrate that our model out-

performs most existing techniques.

2. Related Work

Existing human action recognition methods can be

broadly classified into four categories: flow based [4],

spatio-temporal shape template based [7, 8, 21], interest

points based [3, 18, 11, 17, 10, 6, 22], and tracking based

[16, 1, 15, 19]. Flow based approaches construct action

templates based on optical flow computation [4, 5]. How-

ever, the features extracted from the flow templates are

sensitive to noise especially at the boundary of the seg-

mented human body. Spatio-temporal shape template based

approaches essentially treat the action recognition prob-

lem as a 3-D object recognition problem by representing

action using features extracted from spatio-temporal vol-

ume of an action sequence [7, 8, 21]. These techniques

require highly detailed silhouettes to be extracted, which

may not be possible given a real-world noisy video input.

In addition, the computational cost of space-time volume

based approaches is unacceptable for real-time applications.

Tracking based approaches [16, 1, 15, 19] suffer from the

same problems. Consequently, although 100% recognition

rate has been reported on the ‘clean’ WEIZMANN dataset,

these approaches mostly fail on a noisy dataset such as the

KTH dataset, which is featured with low resolution, strong

shadows, and camera movement rendering clean silhouette

extraction impossible.

To address this problem, Schüldt et al. [18] propose to

represent action using 3-D space-time interest points de-

tected from video. The detected points are clustered to

form a dictionary of prototypes or video-words. Each ac-

tion sequence is then represented by Bag of Words. Dollar

et al. [3] introduce a multidimensional linear filter detec-

tor, which results in the detection of denser interest points.

However, their methods ignore information about the global

spatio-temporal distribution of the interest points. Conse-

quently, they are unable to capture smooth motions due

to lack of temporal information. This also explains why

they generate poor results on the clean yet more ambigu-

ous WEIZMANN dataset whilst working reasonably well

on the KTH dataset.

To overcome the limitations of the conventional BOW

model, a number of recent attempts have been made to

utilise information about the spatio and temporal distri-

bution of interest points. Liu and Shah exploit the spa-

tial distribution of interest points using a modified correl-

ogram [10]. Gilbert et al. [6] encode spatial information

through concatenating video-words detected at different re-

gions. Zhang et al. [22] introduce the concept of motion

context to capture both spatial and temporal distribution of

video-words.

All these extensions, however, still suffer from some of

the inherent flaws of the original BOW method, in that ad

hoc and arbitrary processes are needed for selecting data de-

pendent optimal space-time descriptor, clustering algorithm

for constructing a codebook, and codebook size. In addi-

tion, spatial and temporal information about the distribution

of interest points are only exploited implicitly, locally, and

at a fixed temporal scale. In contrast, our model avoids data

specific parameter tuning and exploits spatio-temporal in-

formation explicitly and at multiple temporal scales there-

fore capturing both local and global temporal information

about interest points distribution.

3. Interest points Detection

Interest points are local spatio-temporal features consid-

ered to be salient or descriptive of the action captured in a

video. Among various interest point detection methods, the

one proposed by Dollar et al. [3] is perhaps the most widely

used for action recognition. Using their detector, intensity
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(a) Boxing (b) Hand waving (c) Running

Figure 2. Comparison between interest points detected using our

detector (green circle points) and the Dollar et al. [3] detector (red

square points).

variations in the temporal domain are detected using Gabor

filtering. The detected interest points correspond to local 3-

D patches that undergo complex motions. Specifically, the

response function of the Gabor filters is given as:

R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)
2 (1)

where g(x, y : σ) is the Gaussian smoothing kernel to be

applied in the spatial domain, and hev and hor are the 1D

Gabor filters applied temporally, defined as:

hev(t; τ, ω) = −cos(2πtω)e−t2/τ2

(2)

hod(t; τ, ω) = −sin(2πtω)e−t2/τ2

(3)

By setting ω = 4/τ , there are essentially two free parame-

ters τ and σ which roughly control the spatial and temporal

scales of the detector.

Despite its popularity, the Dollar detector has a number

of drawbacks: it ignores pure translational motions; since

it uses solely local information within a small region, it is

prone to false detection due to video noise; it also tends

to generate spurious detection background area surround-

ing object boundary and highly textured foreground areas;

it is particularly ineffective given slow object movement,

small camera movement, or camera zooming. Some of the

drawbacks are highlighted in the examples shown in Fig. 2.

To overcome these shortcomings, we propose here a dif-

ferent interest point detector. The shortcomings of the Dol-

lar detector are caused mostly by its design of spatial and

temporal filters and the way these filters are combined to

give the final response. In particular, the 1-D Gabor filter

(a) (b)

Figure 3. Examples of the 2D Gabor filters oriented along (a) 22
◦

and (b) 67
◦.

applied in the temporal domain is sensitive to both back-

ground noise and highly textured object foreground areas

regardless their relevance to capturing the dynamics of ac-

tions observed. To overcome this problem, the proposed

detector explores different filters for detecting salient space-

time local areas undergoing complex motions. More specif-

ically, our detector consists of two steps: 1) frame differ-

encing for focus of attention and region of interest detec-

tion, and 2) Gabor filtering on the detected regions of in-

terest using 2D Gabor filters of different orientations. This

two-steps approach facilitates saliency detection in both the

temporal and spatial domains to give a combined filter re-

sponse. The 2D Gabor filters are composed of two parts.

The first part s(x, y; i) represents the real part of a complex

sinusoid, known as the carrier:

s(x, y; i) = cos(2π(µ0x + υ0y) + θi) (4)

where θi defines the orientation of the filter and 5 orienta-

tions are considered: θi=1,..,5 = {0◦, 22◦, 45◦, 67◦, 90◦},

and µ0 and υ0 are the spatial frequencies of the sinusoid

controlling the scale of the filter. The second part of the

filter G(x, y) represents a 2D Gaussian-shaped function,

known as the envelope:

G(x, y) = exp



−

x2

ρ2 + y2

ρ2

2



 (5)

where ρ is the parameter that controls the width of G(x, y).
We have µ0 = υ0 = 1

2ρ ; therefore the only parameter con-

trolling the scale is ρ, which is set to 11 pixels in this study.

Fig. 2 shows examples of our interest point detection re-

sults using the KTH dataset. It is evident that the detected

interest points are much more meaningful and descriptive

compared to those detected using the Dollar detector. In

particular, the interest points detected by our approach tend

to correspond to the main contributing body parts to the ac-

tion being performed whilst those detected by Dollar detect

often drift to static body parts of high texture or background

with strong edges.
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(a) Boxing (b) Hand clapping (c) Hand waving (e) Running (f) Walking (g) Gallop sideways

Figure 4. Examples of clouds of space-time interest points. We have S = 6 and Ns = 5. In each frame the red rectangle represents the

foreground area, the green points are the extracted interest points, and the yellow rectangles illustrate clouds of different scales.

4. Action Representation

4.1. Clouds of Interest Points

Suppose an action video sequence V consisting of T im-

age frames, represented as V = [I1, . . . , It, . . . , IT ], where

It is the tth image frame. For the image frame It, a total

of S interest point clouds of different temporal scales are

formed. They are denoted as [C1

t , . . . ,C
s
t , . . . ,C

S
t ]. More

specifically, the cloud of the s-th scale is constructed by ac-

cumulating the interest points detected over the past s×Ns

frames, where Ns is the difference between two consecutive

scales (in the number of frames). Examples of the clouds of

interest points extracted from the KTH and WEIZMANN

datasets are shown in Fig. 4. It is evident that different

types of actions exhibit interest point clouds of very differ-

ent shape, relative location, and distribution. It is also evi-

dent that interest point clouds of different scales capture dif-

ferent aspects of the human motion which potentially have

different levels of discriminative power. This will be ad-

dressed by feature selection detailed in Sec. 4.3.

4.2. Feature Extraction

For each image It, two sets of features are extracted.

These features are significantly different from the local de-

scriptors computed by the conventional interest point based

approaches. The former are global and holistic, while the

latter, computed from a cuboid centred at each interest

point, are local.

The first set is concerned with the shape and speed of

the foreground object. To reliably detect and segment a

foreground object given camera movement and zooming,

strong shadow, and noisy input is a non-trivial task. This is

accomplished by the following procedure. Firstly, regions

of interest are detected via frame differencing. Secondly, a

series of 2-D Gabor filters are applied to the image frame.

Thirdly, the responses of these filters are fused together with

the frame differencing result. Finally, a Prewitt edge detec-

tor [13] is employed to segment the object from the detected

foreground area. Once the object is segmented from the

frame, two features are computed: Or
t measuring the height

and width ratio of the object, and OSp
t measuring the abso-

lute speed of the object.

The second set of features are extracted from the inter-

est point clouds of different scales. These features are thus

scale dependent. Particularly, from the s-th scale cloud, 8

features are computed and denoted as

[Cr
s , CSp

s , CD
s , CV d

s , CHd
s , CHr

s , CWr
s , COr

s ] (6)

Note that subscript t is omitted for clarity. Specifically, Cr
s

is the height and width ratio of the cloud. CSp
s is the ab-

solute speed of the cloud. CD
s is the density of the inter-

est point within the cloud, which is computed as the total

number of points normalised by the area of the cloud. CV d
s

and CHd
s measure the spatial relationship between the cloud

and the detected object area. Specifically, CV d
s is the ver-

tical distance between the geometrical centre (centroid) of

the object area and the cloud, and CHd
s is the distance in

the horizontal direction. CHr
s and CWr

s are the height ra-

tio and width ratio between the object area and the cloud

respectively. The amount of overlap between the two ar-

eas is measured by COr
s . Overall, the 8 features can be put

into two categories: Cr
s , CSp

s , and CD
s measure the shape,

speed and density of cloud itself; the rest 5 features capture

the relative shape and location information between the ob-

ject and the cloud areas. To make these features insensitive
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to outliers in the detected interest points, an outlier filter

is deployed before the feature extraction, which evaluates

the interest point distribution over 4 consecutive frames and

removes those points that are too far away from the distri-

bution boundaries.

Now each frame is represented using 8S + 2 features

where S is the total number of scales (i.e. 8 features for each

scale plus 2 scale-independent features Or
t and OSp

t ). To

represent the whole action sequence, a total of (8S +2)×T
features need be used which leads to a feature space of a

very high dimension that can cause overfitting giving poor

recognition performance. To reduce the dimensionality of

the feature space, and more importantly, to make our repre-

sentation less sensitive to feature noise and invariant to the

duration T of each action sequence, a histogram of Nb bins

is constructed for each of the 8S +2 features collected over

time via linear quantization. Consequently, each action se-

quence is represented as 8S+2 histograms or (8S+2)×Nb

features whilst Nb ≪ T . This reduced feature space dimen-

sion is still very high. Moreover, there are uninformative

and redundant features one would wish to eliminate from

the feature set. To that end, a simple and intuitive yet effec-

tive feature selection method is formulated as follows.

4.3. Feature Selection

We introduce a feature selection method that measures

the relevance of each feature according to how much its

value varies within each action class and across different

classes. Specifically, a feature is deemed as being informa-

tive and relevant to the recognition task if its value varies

little for actions of the same class but varies significantly

for actions of different classes. First, given a training set of

K action classes, for the i-th feature fi in the k-th class, we

compute its mean and standard deviation within the class as

µk
fi

and σk
fi

respectively. The relevant measure for feature

fi is then denoted as Rfi
and computed as:

Rfi
=

√

1

K

∑K
k=1

(µk
fi
− 1

K

∑K
k=1

µk
fi

)2

1

K

∑K
k=1

σk
fi

(7)

The numerator and denominator of the above equation cor-

respond to the standard deviation of the intra class mean,

and the inter class mean of the intra class standard devi-

ations respectively. The former measures how the feature

value varies across different classes (the higher the value is,

the more informative the feature fi is); the latter tells us how

the value varies within each class (the lower the value, the

more informative the feature). Overall features with higher

Rfi
values are preferred over those with lower ones. Fi-

nally, all features are ranked according to their Rfi
and a

decision is made as to what percentage of the features are to

be kept for recognition.

Even though this feature selection method is relevance

based, it does not consider explicitly mutual information,

such as in [14]. In our model, different features are selected

separately as if they are independent of each other. It has

been shown that combining good features does not guar-

antee good recognition performance [14]. This suggests

that one would want to select features collectively. How-

ever, in our case the feature search space is potentially very

high for exhaustive search. Even a sequential-search based

approximation scheme can be overly expensive. A signifi-

cant advantage of our method is its extremely low computa-

tional cost. We show empirically through experiments that

our method is more effective than a far more sophisticated

method using mutual information [14].

5. Experiments

5.1. Datasets

KTH Dataset – The KTH dataset was provided by Schuldt

et al. [18] in 2004 and is the largest public human activ-

ity video dataset. It contains 6 types of actions (boxing,

hand clapping, hand waving, jogging, running and walking)

performed by 25 subjects in 4 different scenarios including

indoor, outdoor, changes in clothing and variations in scale.

Each video clip contains one subject performing a single

action. Each subject is captured in a total of 23 or 24 clips,

giving a total of 599 video clips. Each clip is sampled at

25Hz and lasts between 10 to 15 seconds with image frame

size of 160×120 (see examples in Fig. 5).

WEIZMANN Dataset – The WEIZMANN dataset was

provided by Blank et al. [2] in 2005. It contains 90 video

clips from 9 different subjects. Again, each video clip con-

tains one subject performing a single action. There are

10 different action categories: walking, running, jumping,

gallop sideways, bending, one-hand-waving, two-hands-

waving, jumping in place, jumping jack, and skipping. Each

clip lasts about 2 seconds at 25Hz with image frame size of

180×144 (see examples in Fig. 5).

A robustness test dataset is also provided by the same

WEIZMANN group. It consists of 11 walking se-

quences with partial occlusions and non-rigid deformations

(e.g. walking in skirt, walking with a briefcase, knees up

walking, limping man, occluded legs, walking swinging a

bag, sleepwalking, walking with a dog). The dataset also

includes 9 walking sequences captured from different view-

points (from 0◦ to 81◦ with 9◦ increments from the horizon-

tal plane). This dataset is designed to test model robustness

under occlusion, view variation and non-rigid deformation

(see examples in Fig. 5).

5.2. Recognition Settings

Recognition was performed using Nearest Neighbour

Classifier (NNC) and Support Vector Machine (SVM), also

used widely elsewhere for action recognition. For NNC,

absolute distance was used. For SVM, the radial basis func-

tion kernel was used.

1952

Authorized licensed use limited to: SUNY Buffalo. Downloaded on August 27, 2009 at 19:40 from IEEE Xplore.  Restrictions apply. 



Figure 5. From top to bottom: example frames from KTH dataset, WEIZMANN dataset and WEIZMANN robustness test dataset.

Our approach was validated using Leave-One-Out

Cross-Validation (LOOCV). It involved employing a group

of clips from a single subject in a dataset as the testing data,

and the remaining clips as the training data. This was re-

peated so that each group of clips in the dataset is used once

as the testing data. More specifically, for the KTH dataset

the clips of 24 subjects were used for training and the clips

of the remaining subject were used for validation. For the

WEIZMANN dataset, the training set contains 8 subjects.

As for the WEIZMANN robustness test dataset, the whole

WEIZMANN action recognition dataset was used as train-

ing set. Each of the 20 robustness test sequences was clas-

sified as one of the 10 action classes.

For constructing the multi-scale interest point clouds, Ns

was set to 5 and the total number of scales was 6. This

gives to 50 features each represented as a 90-bin histogram

through linear quantisation (i.e. the features are represented

in a 4500 dimensional space). Our feature selection model

removed 20% of these features.

Note that the existing Bag of Words methods require

generating a codebook using a clustering algorithm such as

k-means which is sensitive to initialisation. Therefore typi-

cally results were reported in the literature based on average

of 20 trials. In our method no such initialisation issue exists,

so different trials will give an identical result.

5.3. Recognition Rate

Our experimental results show that NNC and SVM give

similar performance using our features, with NNC slightly

outperforming SVM. The results are shown in Fig. 6. In par-

ticular, we obtained a recognition rate of 93.17% for KTH

dataset and 96.66 % for WEIZMANN dataset. Table 1 also

compares our results with the existing approaches proposed

recently, which are not restricted to interest points based

methods. It shows that our results are close to the best re-

sult reported so far on each dataset, and outperforms most

METHOD KTH WEZIMANN

Our approach 93.17% 96.66%

Fathi et al. [5] 90.5% 100%

Zhang et al. [22] 91.33% 92.89%

Kläser et al. [9] 91.4% 84.3%

Niebles et al. [11] 83.3% 90.0%

Dollar et al. [3] 81.17% 85.2%

Liu et al. [10] 94.16% -

Zhao et al. [23] 91.17% -

Gilbert et al. [6] 89.92% -

Savarese et al. [17] 86.83% -

Nowozin et al.[12] 84.72% -

Table 1. Comparative results on the KTH and WEIZMANN

datasets.

recently proposed methods, especially those tested on both

datasets.

5.4. Robustness Test

We demonstrate the robustness of our method using the

WEIZMANN robustness test sequences. Examples of the

detected clouds of interest points are shown in Fig. 7. Only

1 of the 20 sequences was wrongly classified. This se-

quence contains a person walking with a dog and was recog-

nised as skipping. The most informative human body part

for the action (i.e. the legs) overlapped with another object

(the dog), which was also walking but in a very different

way (see Fig. 7(d)). This sequence is therefore challenging

for any existing recognition methods. In comparison, the

method in [2] also obtained the same result as us with the

same sequence miss-classified. Our method outperforms

the method in [20] which wrongly classified 2 sequences

as well as Dollar’s method [3] which, over 20 runs, classi-

fies less than one of the 20 sequences correctly on average.

To the best of our knowledge, no other action recognition

approach has reported result on this robustness test dataset.

Among the three methods we compared for robustness,
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(a) (b)

(c) (d)

Figure 6. Recognition performance of our approach measured us-

ing confusion matrices: (a) KTH dataset using NNC recognition

algorithm, accuracy: 93.17% (b) KTH dataset using SVM recog-

nition algorithm, accuracy: 92.5% (c) WEIZMANN dataset using

NNC recognition algorithm, accuracy: 96.66% (d) WEIZMANN

dataset using SVM recognition algorithm, accuracy: 95.55%

(a) Walking along 45
◦ degree (b) Sleepwalking

(c) Walking with occluded legs (d) Walking with a dog

Figure 7. Example of clouds of points detected in the sequences

used in the robustness test experiments.

the methods in [2] and [20] are based on space-time volume

representation, whilst the one in [3] is based on Bags of

Words (BOW) representation using interest points. Our ex-

periments show that by modelling explicitly global spatial

and temporal distribution of interest points, our approach is

significantly more robust than a conventional BOW based

(a) KTH dataset

(b) WEIZMANN dataset

Figure 8. Comparing our feature selection method with the mRMR

method in [14]. The two methods were compared with different

percentages of less-informative features were eliminated (from 0%

to 90 %).

method and is comparable to space-time volume based

methods. However, the space-time volume based methods

[2, 20] are more sensitive to input noise as they rely on ac-

curate silhouette extraction. They are thus expected to per-

form poorly on the more noisy KTH dataset.

5.5. Effect of Feature Selection

Fig. 8 shows how the recognition performance of our ap-

proach is affected when different amount of features are re-

moved using our feature selection method. Our method was

also compared with a more complex minimal-redundancy-

maximal-relevance (mRMR) algorithm proposed in [14].

Fig. 8 shows that our method outperforms the mRMR

method. A major attraction of the mRMR method, as com-

pared to other existing feature selection methods, is its low

computational cost. In comparison, our method takes less

than one tenth of the time used by the mRMR method for

selecting the same amount of features. It took 9.2 seconds

using our method for measuring and ranking 4500 features,

as compared to 131.5 seconds using mRMR on the same PC

Workstation setup.

To evaluate how much the feature selection step has con-

tributed to the final recognition performance, we carried out

experiment to evaluate our approach without feature selec-
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METHOD FEATURE SELEC. KTH WEIZMANN

Our approach NO 90.1% 93.2%

YES 93.17% 96.6%

Dollar et al. [3] NO 81.17% 85.2%

YES 86.6% 87.3%

Table 2. Evaluation of the effectiveness of the proposed feature

selection method.

tion. Table 2 shows that 2-3% increase in the recognition

rate was contributed by the feature selection step. Inter-

estingly, our experiment also shows that even with Dollar’s

original method, by simply introducing our feature selec-

tion step, a considerable increase of performance can be

achieved (see Table 2).

6. Conclusion

In this work we proposed a novel representational

scheme by modelling global spatial and temporal distribu-

tion of interest points for more accurate and robust action

recognition. Our method differs significantly from previ-

ous interest points based approaches in that only the global

spatio-temporal distribution of the interest points are ex-

ploited. This is achieved through extracting holistic fea-

tures from clouds of interest points accumulated over mul-

tiple temporal scales followed by automatic feature selec-

tion. Our approach avoids the non-trivial problem of and

the current rather ad hoc approach to selecting the optimal

interest point descriptor, clustering algorithm for construct-

ing a codebook, and codebook size faced employed by ex-

isting interest points based methods. Moreover, our model

is able to capture smooth motions, robust to view changes

and occlusions, and with a low computation cost. Our ex-

periments on the KTH and WEIZMANN datasets demon-

strate that modelling explicitly global spatial and temporal

distribution of interest points alone is highly discriminative

and more robust for recognising actions under occlusion

and non-rigid deformation. Ongoing work includes investi-

gating how our global spatio-temporal distribution features

can be fused with more conventional BOW features. We

also aim to extend this approach to action recognition in a

crowded environment.
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