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Recognising angiosperm clades in the Early Cretaceous fossil record

James A. Doyle*

Department of Evolution and Ecology, University of California, Davis, CA 95616, USA

(Received 29 November 2013; accepted 21 June 2014)

Studies of the earliest Cretaceous angiosperms in the 1970s made only broad comparisons with living taxa, but discoveries
of fossil flowers and increasingly robust molecular phylogenies of living angiosperms allow more secure recognition of
extant clades. The middle to late Albian rise of tricolpate pollen and the first local dominance of angiosperm leaves mark the
influx of near-basal lines of eudicots. Associated flowers indicate that palmately lobed ‘platanoids’ and Sapindopsis are both
stem relatives of Platanus, while Nelumbites was related to Nelumbo (also Proteales) and Spanomera to Buxaceae.
Monocots are attested by Aptian Liliacidites pollen and Acaciaephyllum leaves and Albian araceous inflorescences. Several
Albian–Cenomanian fossils belong to Magnoliidae in the revised monophyletic sense, including Archaeanthus in
Magnoliales and Virginianthus andMauldinia in Laurales, while late Barremian pollen tetrads (Walkeripollis) are related to
Winteraceae. In the basal ANITA grade, Nymphaeales are represented by Aptian and Albian flowers and whole plants
(Monetianthus, Carpestella and Pluricarpellatia). Epidermal similarities of lower Potomac leaves to woody members of the
ANITA grade are consistent with Albian flowers assignable to Austrobaileyales (Anacostia). Aptian to Cenomanian
mesofossils represent both crown group Chloranthaceae (Asteropollis plant) and stem relatives of Chloranthaceae and/or
Ceratophyllum (Canrightia, Zlatkocarpus, Pennipollis plant and possibly Appomattoxia).

Keywords: angiosperms; Cretaceous; palaeobotany; palynology; phylogeny

1. Introduction

The past five decades have seen a dramatic reawakening

of interest in the early fossil record of angiosperms, which

with some notable exceptions (e.g. Teixeira 1948;

Vakhrameev 1952) had been neglected following the

first studies of Early Cretaceous floras around the turn of

the last century. A major question in this field is what

living clades are represented among the oldest unques-

tioned angiosperms. Early palaeobotanists such as

Fontaine (1889) and Berry (1911), working on the

Potomac Group of the Atlantic Coastal Plain of the

United States (Aptian to early Cenomanian, Virginia and

Maryland), did not hesitate to assign angiosperm leaves to

living genera, such as Ficus or Sassafras, or to fossil

genera with names intended to suggest affinities with

living taxa, such as Ficophyllum, Proteaephyllum,

Vitiphyllum and Sapindopsis. However, serious doubt

was cast on these identifications in the 1960s and 1970s.

This was partly due to palynological studies on Cretaceous

rocks (e.g. Brenner 1963; Pacltová 1966; Muller 1968),

which showed that the first recognisable angiosperm

pollen was much less diverse and modern than implied by

the old leaf identifications and showed a progressive

increase in the diversity of morphological types from the

Barremian to the Cenomanian – first monosulcate, then

tricolpate, tricolporate and finally triporate (Figure 1). As

this pattern paralleled the sequence of pollen evolution

inferred from comparative morphological studies of

modern plants, it was taken by Doyle (1969) and Muller

(1970) as evidence that the main radiation of angiosperms

was going on during this interval, and as support for

existing ideas on the evolution of angiosperm pollen and

the related ‘magnoliid’ theory of angiosperm evolution.

This was considered evidence against the older view that

angiosperms originated and began to diversify much

earlier and were simply invading lowland basins of

deposition in the Early Cretaceous (e.g. Axelrod 1952,

1970).

In the 1970s, reinvestigations of the Potomac Group

angiosperm leaf record (Wolfe et al. 1975; Doyle and

Hickey 1976; Hickey and Doyle 1977) showed that early

angiosperm leaves were also less modern than previously

thought and showed a pattern of temporal diversification

similar to that seen in the pollen record (Figure 1). In

general, Doyle and Hickey (1976) avoided comparing

these leaves with living taxa, except to show that

morphological features seen in the fossil leaves occur in

living taxa that have pollen types known at the same level,

but Hickey and Doyle (1977) did make some broad

comparisons with major angiosperm groups. For example,

palmately lobed ‘platanoid’ fossils from the middle and

late Albian (Figure 1(p)) resemble leaves of Platanus,

which has reticulate tricolpate pollen of the type that was

becoming abundant at that time. In the lower Potomac

(Aptian?), there are leaves with monocot-like venation and

monosulcate pollen with monocot-like sculpture (Doyle
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1973; Figure 1(b,g)). Wolfe et al. (1975), Doyle and

Hickey (1976) and Hickey and Doyle (1977) argued that

most of the earliest leaves had features found in what were

then called ‘magnoliids’, in the paraphyletic sense of

Takhtajan (1969) and others, meaning those ‘dicots’ that

retain monosulcate and related pollen types. These

included several leaf types (e.g. Ficophyllum; Figure 1

(l)) with pinnate venation, like ‘woody magnoliids’ (now

assigned to Magnoliales, Laurales, Canellales and more

basal groups such as Amborella and Austrobaileyales),

and a few with palmate venation (e.g. Proteaephyllum

reniforme; Figure 1(i)), like ‘herbaceous magnoliids’ (now

placed in Nymphaeales and Piperales).

Since 1977, there have been several major advances

that allow more secure identification of early angiosperm

lines. First was the discovery of fossil flowers, preserved

as charcoal or lignite, by Friis, Crane and others, working

first on the Potomac Group and later on Cretaceous

sediments in Portugal (Crane et al. 1986; Friis et al. 1986,

2011; Friis, Pedersen, et al. 1994). Many of these flowers

are in the millimetre or ‘mesofossil’ size range. Not only

do flowers usually have more characters than pollen and

leaves, they can often be connected with the dispersed

pollen record through pollen in stamens or adhering to

stigmas. Second was the development of cladistic methods

for the analysis of phylogenetic relationships, and third

was the application of these and related methods to DNA

sequence data, which has resulted in a vast flood of new

information on relationships among living angiosperms.

Since the first large-scale analyses of sequences from

several genes combined (Mathews and Donoghue 1999;

Parkinson et al. 1999; Qiu et al. 1999; Soltis et al. 1999),

the results have held up remarkably well with studies of

many more genes (Soltis et al. 2005; Jansen et al. 2007;

Moore et al. 2007; APG III 2009). These analyses have

resolved many long-standing problems, such as where the

angiosperm phylogenetic tree is ‘rooted’, or which living

lines branched off first at the base of the tree: the New

Caledonian genus Amborella, Nymphaeales (water lilies)

and Austrobaileyales, all classified as magnoliids in older

systems, informally designated the ‘ANITA grade’. The

remaining 99.9% of angiosperm species, named Mesan-

giospermae (Cantino et al. 2007), belong to five major

clades: eudicots, including all groups with tricolpate and

derived types of pollen; monocots; a clade including most

traditional magnoliids, designated Magnoliidae in a new

sense (Cantino et al. 2007); the rootless aquatic genus

Ceratophyllum; and Chloranthaceae, which are character-

ised by unusually simple flowers. All five clades and

orders within them have strong statistical support, as

measured by bootstrap analysis, but relationships among

them are less strongly supported, and they vary from

analysis to analysis (Soltis et al. 2005; Qiu et al. 2010).

Recent studies have attempted to clarify the phyloge-

netic position of early angiosperms by integrating

mesofossil and molecular evidence through phylogenetic

analysis. The ideal procedure might be to combine

morphological and molecular data in a ‘total evidence’

analysis, with fossils scored as unknown for molecular

characters, but this has not been attempted because of

problems in representation of living taxa in molecular and

morphological data-sets (by species and by a mixture of

species and higher taxa, respectively) and choice of

molecular data. Instead, Doyle et al. (2008), Endress and

Figure 1. Stratigraphic sequence of major angiosperm pollen and leaf types in the Potomac Group of eastern North America (modified
from Doyle and Hickey 1976), with correlations of plant localities in other geographic areas and stratigraphic positions of other pollen and
floral fossils.
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Doyle (2009) and Doyle and Endress (2010, 2014) have

used a ‘molecular scaffold’ approach (Springer et al. 2001;

Hermsen and Hendricks 2008), where a morphological

data-set of living and fossil taxa is analysed with the

arrangement of living taxa fixed to a ‘backbone tree’ based

on molecular data. In the case of angiosperms, this may be

an acceptable approach, as many relationships are so

strongly supported by molecular data that they are highly

unlikely to be overturned by morphological data from

fossils. Variously modified versions of the same

morphological data-set have been used in similar analyses

by other authors (von Balthazar et al. 2008; Friis et al.

2009; Friis and Pedersen 2011; Mohr et al. 2013).

Because the arrangement of the five mesangiosperm

clades is more uncertain, these studies used two backbone

trees that cover the range of current hypotheses, which

differ most significantly in the position of Ceratophyllum

and Chloranthaceae. In the J/M backbone tree, based on

analyses of nearly complete chloroplast genomes by

Jansen et al. (2007) and Moore et al. (2007), Cerato-

phyllum is linked with eudicots and Chloranthaceae with

the magnoliids. In the D&E backbone tree, based on

combined analyses of morphological and molecular data

by Doyle and Endress (2000) and Endress and Doyle

(2009), Ceratophyllum and Chloranthaceae are linked with

each other and sister to the remaining mesangiosperms.

The Ceratophyllum–Chloranthaceae clade has also been

found in analyses of mitochondrial genes (Duvall et al.

2006; Qiu et al. 2010); slowly evolving chloroplast genes

(Moore et al. 2011), which should be most reliable for

detecting ancient splits; and low-copy nuclear genes

(Zhang et al. 2012).

The purpose of the present article is to review the

results of these analyses, beginning not with the oldest taxa

but with eudicots from the middle and late Albian, for

which the results are clearest, and ending with taxa that

pose more problems but are equally or more interesting.

Most parsimonious positions of most of the fossils on the

D&E backbone tree are shown in Figure 2; where a fossil

has several most parsimonious positions, one has been

Figure 2. Most parsimonious positions of Early Cretaceous and Cenomanian fossils on a phylogeny of living angiosperms (Doyle et al.
2008; Endress and Doyle 2009; Friis et al. 2009, 2011; Doyle and Endress 2010, 2014). When a fossil has more than one most
parsimonious position, one of these has been selected for purposes of discussion. Couperites and Archaefructus not included because of
their excessively uncertain phylogenetic positions. Nymph, Nymphaeales; Aust, Austrobaileyales; Chlor, Chloranthaceae; Piper,
Piperales; Ca, Canellales; Magnol, Magnoliales; plat, platanoid.
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selected for purposes of discussion. Ages of the localities

containing these fossils are discussed critically in Doyle

et al. (2008), Doyle and Endress (2010, 2014) and Massoni

et al. (in press). Many of these results are also discussed in

Doyle and Upchurch (in press), but with special emphasis

on progress in understanding the Potomac Group leaf

record.

2. Eudicots

One of the first major findings of molecular systematics

was that plants with tricolpate and derived pollen types,

which include nearly 75% of angiosperm species, form a

clade called eudicots (Doyle and Hotton 1991; Magallón

et al. 1999; Cantino et al. 2007). This conclusion contrasts

with the older view that such plants were polyphyletic (e.g.

Takhtajan 1969) but was anticipated by some morpho-

logical cladistic analyses (Dahlgren and Bremer 1985;

Donoghue and Doyle 1989). This means that the oldest

known tricolpate pollen, for example from the late

Barremian of England (Hughes and McDougall 1990) and

Africa (Doyle et al. 1977; Doyle 1992), is evidence for the

existence of this clade or the stem lineage leading to it.

Furthermore, studies of fossil flowers confirm and extend

earlier suggestions that many of the first common

angiosperm leaf types in the middle and late Albian

belong to lines that diverge near the base of the eudicots in

molecular trees, below the vast bulk of eudicots, which

typically have pentamerous flowers and well-differen-

tiated sepals and petals and have been called core eudicots

or Pentapetalae (Cantino et al. 2007).

A widespread Albian leaf type is Nelumbites

(Figures 1(n) and 3(a)), assigned by some earlier authors

to Menispermites, which resembled leaves of modern

Nelumbo ( ¼ Nelumbonaceae, lotus) in being peltate and

palmately veined but differed in being smaller and having

less regular venation (Berry 1911; Vakhrameev 1952;

Hickey and Doyle 1977; Upchurch et al. 1994). In many

pre-molecular classifications, Nelumbo was placed in

Nymphaeales, because of its aquatic habit and multiparted

flowers, but it has tricolpate pollen, and molecular data

indicate that it belongs to Proteales, a clade that diverges

one or two nodes above the base of the eudicots. Upchurch

et al. (1994) reported moulds of floral receptacles in a bed

dominated by Nelumbites that resembled those of Nelumbo

in being covered with pits for the carpels but differed in

being round rather than flat-topped. An analysis by Doyle

and Endress (2010; Figure 2) confirmed that Nelumbites

was most closely related to Nelumbo, but it was almost as

parsimonious to place it in Nymphaeales with Brasenia,

which also has peltate leaves. This uncertainty is largely a

function of the small number of characters preserved. A

character not used by Doyle and Endress (2010) that would

favour a relationship of Nelumbites to Nelumbo is the

shape of the leaf blade, which is like that of Nelumbo in

varying from round to wider than long, whereas the blade

in Brasenia is longer than wide (cf. Wang and Dilcher

2006).

Significantly, the two most common Potomac

angiosperm leaf types are related to another member of

Proteales, namely Platanus ( ¼ Platanaceae, sycamore or

plane tree). These include the palmately lobed platanoid

leaves already mentioned (Figure 1(p)), which are a

conspicuous feature of late Albian and Cenomanian floras

around the Northern Hemisphere, including the classic

Dakota flora of Kansas (Lesquereux 1892) and similar

floras in Kazakhstan (Vakhrameev 1952). Their platanac-

eous affinity was suspected based on similarities in

venation and co-occurrence with inflorescence axes

bearing Platanus-like heads (e.g. Hickey and Doyle

1977). Subsequently, Crane et al. (1986), Friis et al. (1988)

and Pedersen et al. (1994) showed that the heads were like

those of Platanus in consisting of unisexual flowers with

peltate stamens and free carpels, but apparently more

primitive (most notably in having a better-developed

perianth). A more surprising result was the discovery of

Crane et al. (1993) that pinnately dissected (nearly

compound) leaves known as Sapindopsis (Figure 1(o))

were from plants with heads made up of similar flowers

(Figure 3(b)). There had been suggestions that Sapindopsis

and the platanoids were related, based on similarities in

leaf architecture (Hickey and Wolfe 1975; Doyle and

Hickey 1976) and cuticle anatomy (Upchurch 1984a) and

the presence of heads in the same beds (Hickey and Doyle

1977). However, Hickey and Wolfe (1975) and Hickey and

Doyle (1977) had compared Sapindopsis with Rosidae,

where pinnately compound leaves are most common, and

argued that this supported a common origin of the now-

defunct subclass Hamamelididae (to which Platanus was

assigned) and Rosidae. This hypothesis would be

inconsistent with the finding that Sapindopsis had heads

of unisexual flowers, which would not be expected on the

line leading to Rosidae. The analysis of Doyle and Endress

(2010) strongly confirmed that both Sapindopsis and the

platanoids were extinct relatives of the Platanus, either as

two successive outgroups (with Sapindopsis diverging

first) or a sister clade.

According to molecular analyses, the sister group of

Platanus is the Southern Hemisphere family Proteaceae,

which has triporate pollen of a type that appears in the

Cenomanian of Africa and Brazil (Triorites africaensis:

Jardiné and Magloire 1965; Ward and Doyle 1994;

Dettmann and Jarzen 1996; Sauquet et al. 2009). As the

two other lines in Proteales occur in the middle Albian, the

tree implies that the line leading to Proteaceae also existed

by this time, but presumably it still had tricolpate pollen.

Another eudicot line is represented by Spanomera,

from the late Albian and early Cenomanian of Maryland

(Drinnan et al. 1991), which had reduced unisexual flowers

4 J.A. Doyle
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grouped into bisexual inflorescences (Figure 3(c)), as in

living Buxaceae, and striate tricolpate pollen (Striatopollis

paraneus and Striatopollis vermimurus). Similar but more

fragmentary remains are known from the early Albian of

Portugal (Pedersen et al. 2007). The analysis of Doyle and

Endress (2010) confirmed that Spanomera was related to

Buxaceae, although it could almost as well be located a

node lower. These results also fit the view that the oldest

known eudicots belonged to lines that diverged near the

beginning of the radiation of the clade. Spanomera has not

been associated with leaves, but by plotting leaf characters

in the Doyle and Endress (2010) data-set on the tree, we

can predict that it had ovate leaves with palmate venation

and chloranthoid teeth, like ‘Populus’ potomacensis

(Figure 1(m)) in the middle–late Albian part of the

Potomac Group.

Dissected leaves such as Vitiphyllum (Figure 1(h)) and

Potomacapnos (Jud and Hickey 2013) from the lower

Potomac Group (Zone I, Aptian to early Albian?),

Leefructus from the Barremian–Aptian Yixian Formation

of NE China (Sun et al. 2011) and morphotype ‘LC-

Microphyll trifoliate’ from the Aptian of Argentina

(Puebla 2009) are suggestive of Ranunculales, the sister

group of all other eudicots, in their ternate organisation, a

feature of many members of this order (Hickey and Wolfe

1975; Doyle 2007). However, similar but more finally

dissected leaves also occur in Archaefructus, an aquatic

plant of highly debated affinities from the Yixian

Formation (Sun et al. 1998, 2002; Friis et al. 2003;

Endress and Doyle 2009), discussed further below. The

fact that Leefructus and the Argentine leaves (though not

Vitiphyllum) predate the appearance of definite tricolpate

Figure 3. Cretaceous angiosperm fossils discussed in the text (images reproduced with permission from the publications cited). (a)
Nelumbites extenuinervis, leaf (Doyle and Hickey 1976); (b) Friisicarpus brookensis, female flowers associated with Sapindopsis
variabilis leaves (Friis et al. 2011); (c) Spanomera mauldinensis, reconstruction of inflorescence with lateral male flower above and
terminal female flower below (Friis et al. 2011); (d) Archaeanthus linnenbergeri, reconstruction of leaf and flower in fruit stage (Dilcher
and Crane 1984); (e) Virginianthus calycanthoides, flower (Friis et al. 2011); (f)Mauldinia mirabilis, reconstruction of inflorescence unit
with five flowers (Friis et al. 2011); (g)Walkeripollis gabonensis, pollen tetrad, SEM (Doyle et al. 1990); (h)Monetianthus mirus, flower
(Friis et al. 2011); (i) Pluricarpellatia peltata, rhizome with roots, leaves and flower in fruit stage (Friis et al. 2011); (j) Anacostia teixeiri,
carpel with enclosed seed and broken portion of seed coat, SEM (Friis et al. 2011); (k) Asteropollis plant, female flower (Friis et al. 2011);
(l) Canrightia resinifera, reconstruction of flower (Friis et al. 2011); (m) Pennipollis plant: Pennistemon portugallicus, fragment of male
inflorescence, and Pennicarpus tenuis, carpel (Friis et al. 2011); (n) Appomattoxia ancistrophora, carpel and seed (Friis et al. 2011).
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pollen in their geographic areas suggests the possibility

that they represent either stem relatives of eudicots or

some unrelated extinct group(s), as discussed by Doyle

(2012). Parsimony analysis implies that dissected leaves

arose within the eudicots (Doyle 2007), but a likelihood-

based analysis by Geeta et al. (2012) indicated that they

were most likely ancestral in the clade.

Core eudicots or Pentapetalae, with basically penta-

merous flowers, are probably represented among the

tricolporate pollen types that appear and begin to diversify

in the late Albian. Such pollen appears to be basic for the

two main subclades of Pentapetalae, Rosidae and

Asteridae, although both tricolpate and tricolporate pollen

occurs in some of the more basal lines, such as

Saxifragales and Caryophyllales (Doyle 2005; Furness

et al. 2007). A typical pentamerous flower from the latest

Albian Rose Creek locality in the Dakota Formation of

Nebraska (Basinger and Dilcher 1984) probably belongs to

crown group Pentapetalae, but it has not been analysed

phylogenetically.

3. Monocots

The next-largest mesangiosperm clade is the monocots.

Two kinds of fossils from the lower Potomac Group

(Aptian) have been interpreted as monocots (Doyle 1973;

Hickey and Doyle 1977; Walker and Walker 1984): boat-

shaped monosulcate pollen of the Liliacidites type

(Figure 1(b)), with ‘graded’ reticulate sculpture that is

finer at the ends of the grain and coarser in the middle; and

Acaciaephyllum (Figure 1(g)), best known as a leafy stem

bearing narrow leaves with apically fusing venation. These

fossils were questioned as monocots by Gandolfo et al.

(2000), in part because of cases where the name

Liliacidites was used for pollen without the typical

sculpture pattern and leaf architectural similarities

between Acaciaephyllum and living and fossil Gnetales,

but their relationship to monocots was reaffirmed by

phylogenetic analyses of Doyle et al. (2008). Sculpture of

the Liliacidites type is restricted to monocots today

(although far from universal among them), and the

combination of spiral phyllotaxis, narrow blade, presence

of a median vein, and apically fusing, low-angle secondary

veins distinguishes Acaciaephyllum both from other

angiosperms with palmate venation and from superficially

similar leaves in Gnetales.

Although not yet analysed phylogenetically, inflor-

escences of sessile, ebracteate and dimerous flowers from

the probable early Albian of Portugal (Friis et al. 2010b;

Figure 1) provide evidence that monocots had begun to

diversify by this time, because the floral features listed are

apomorphies of Araceae, in the Alismatales, an order that

diverges one node above the base of the monocots (after

Acorus) in molecular trees. Another probable early

representative of Araceae is Spixianthus, based on aroid-

like leaves and a stem bearing roots and leaves from the

late Aptian Crato Formation of Brazil (Coiffard et al.

2013b).

4. Magnoliids

All groups of angiosperms other than eudicots and

monocots were formerly classified as magnoliids (e.g.

Takhtajan 1969), a name no longer used in this sense

because it would designate a paraphyletic grade. However,

molecular data indicate that most of these plants do belong

to one clade, called Magnoliidae in a revised sense

(Cantino et al. 2007), which includes Magnoliales,

Laurales, Canellales and Piperales. An increasing number

of these groups have been recognised in the Cretaceous

floral record, implying that they were actively radiating

alongside early eudicots and monocots.

Several mid-Cretaceous fossils appear to represent

Magnoliales. The most securely placed of these is

Archaeanthus (Figure 3(d)), from the latest Albian or

earliest Cenomanian of the Dakota Formation of Kansas

(Dilcher et al. 1976; Dilcher and Crane 1984). This plant is

known from isolated leaves with a bilobed apex, bracts,

tepals, and floral axes bearing numerous carpels and scars

that correspond in size and position to the numerous

stamens, three whorls of perianth parts and sheathing floral

bract in Magnoliaceae. The analysis of Doyle and Endress

(2010) strongly associated Archaeanthus with Magnolia-

ceae, either attached to the stem lineage of the family or

nested within it, linked with one or the other of its two

subgroups (Liriodendron and Magnolioideae ¼ Magnolia

s.l.). A recent analysis by Romanov and Dilcher (2013)

placed Archaeanthus in the crown group of Magnoliaceae,

as the sister group of Liriodendron. However, this analysis

treated lobation of the leaf apex and the leaf blade as two

characters, when they represent only one change from the

ancestral unlobed leaf, and it incorrectly identified the

whorled perianth phyllotaxis of Archaeanthus and

Liriodendron as a synapomorphy because it used the

distantly related genus Illicium (Austrobaileyales) as

outgroup rather than other Magnoliales, most of which

also have a whorled perianth (Massoni et al. in press).

Older fossils that probably belong to Magnoliales but

are less precisely located within the order are Endressinia

(Mohr and Bernardes-de-Oliveira 2004) and Schenker-

iphyllum (Mohr et al. 2013) from the late Aptian Crato

flora of NE Brazil, both represented by stems with leaves

and incompletely preserved flowers. Doyle and Endress

(2010) placed Endressinia below or within the clade

consisting of Degeneria, Galbulimima, Eupomatia and

Annonaceae, supported in part by similar inner staminodes

in these taxa, but an analysis by Mohr et al. (2013)

associated Endressinia and Schenkeriphyllum with each
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other as the sister group of Magnoliaceae, based on their

sheathing leaf bases and dry fruit. These conflicting results

have not been resolved, but the two studies agree in

indicating the existence of crown group Magnoliales in the

late Aptian. Two Potomac Group fossils that have been

compared with Magnoliales are large, boat-shaped

monosulcate pollen grains with granular infratectal

structure (Lethomasites, Aptian: Ward et al. 1989) and

laminar stamens containing smooth, boat-shaped mono-

sulcate pollen (dispersed stamen type 1, Albian: Crane

et al. 1994), but these comparisons are speculative given

the small number of characters involved.

Laurales are represented in the Albian–Cenomanian

by several floral types, which correspond to both relatively

plesiomorphic and more derived morphologies in the

order. Virginianthus, from the middle Albian of the

Potomac Group (Figure 3(e)), was assigned by Friis,

Eklund et al. (1994) to ‘stem group Calycanthaceae’

because it had a deep floral cup with numerous spiral

tepals, stamens, and staminodes on the rim and numerous

carpels inside, as in Calycanthaceae, the sister group of the

remaining Laurales, but monosulcate rather than dis-

ulculate pollen. In the analysis of Doyle et al. (2008),

Virginianthus was sister to Calycanthaceae in one most

parsimonious tree, but in the other it was attached to the

line to the remaining Laurales. At the other extreme is

Mauldinia (Drinnan et al. 1990; Figure 3(f)), known from

inflorescences made up of dichasial cymes of trimerous

flowers with one carpel and stamens with paired basal

glands and flap dehiscence, as in Lauraceae, and

associated wood (Paraphyllanthoxylon: Herendeen

1991), from the early Cenomanian of Maryland. Fossils

named Prisca from the Dakota Formation of Kansas (latest

Albian or early Cenomanian) that Retallack and Dilcher

(1981) interpreted as elongate floral axes are probably

inflorescences of similar or identical plants. Despite the

nearly lauraceous floral morphology, the analysis of Doyle

and Endress (2010) indicated that Mauldinia did not

belong to Lauraceae but was instead an extinct sister group

of Lauraceae and the related family Hernandiaceae, based

on its retention of ancestral features such as a more

differentiated perianth and endosperm in the mature seed.

Similar but less complete flowers from Virginia,

Potomacanthus and Cohongarootonia (von Balthazar

et al. 2007, 2011), appear to extend this line back to the

middle Albian. Leaves assigned to Laurales by Upchurch

and Dilcher (1990) are common in the late Albian of the

Dakota Formation, including both simple, pinnately

veined leaves (Pandemophyllum) and palmately lobed

leaves (Pabiania), formerly confused with platanoids,

which are superficially similar to Sassafras but more

plesiomorphic than extant Lauraceae in their fine venation

(Doyle and Upchurch in press).

The third magnoliid order, Canellales, includes

Winteraceae, which are famous for their vesselless

wood, and the small tropical family Canellaceae. This

clade is represented by tetrads of monoporate grains that

closely resemble pollen of living Winteraceae in their

aperture and exine structure but have finer sculpture, from

the late Barremian to Cenomanian of Gabon, Israel and

Argentina (Walker et al. 1983; Doyle et al. 1990; Barreda

and Archangelsky 2006; Schrank 2013). The phylogenetic

analysis of Doyle and Endress (2010) supported the

interpretation of the oldest pollen (Walkeripollis gabo-

nensis; Figure 3(g)) as representing stem relatives of

Winteraceae. These Early Cretaceous fossils were more

tropical in their distribution than Late Cretaceous, Tertiary,

and living Winteraceae, suggesting a later shift from

tropical to temperate climatic preferences (Doyle 2000).

So far no Early Cretaceous fossils have been described

that clearly represent the fourth magnoliid order,

Piperales. Friis et al. (1995, 2011) suggested that Albian

fruits described as Appomattoxia were piperalean, but as

discussed below phylogenetic analysis indicates that they

are more likely related to Amborella or Chloranthaceae

(Doyle and Endress 2014).

5. ANITA lines

Molecular trees predict that the basal ANITA lines

occurred in the Early Cretaceous, and there is increasing

fossil evidence that they did. The best-documented line is

Nymphaeales, consisting of Cabombaceae, Nymphaea-

ceae and the highly reduced Hydatellaceae (Trithuria),

which until recently were thought to be monocots (Saarela

et al. 2007). The phylogenetic position of Nymphaeales,

one node above the base of the angiosperms, implies that

they are an ancient line that went from the land into the

water, but it does not say when this shift occurred – it

could have been in the Early Cretaceous, earlier or

much later.

The most informative nymphaealean fossil is Mon-

etianthus, a flower from the early Albian of Portugal (Friis

et al. 2009; Figure 3(h)). It had numerous tepals and

stamens and a ring of 12 carpels, and X-ray microtomo-

graphy showed that the carpels had the typical laminar

placentation of Nymphaeales. Using the data-set of

Saarela et al. (2007), Friis et al. (2009) concluded that

Monetianthus was nested within Nymphaeaceae, as the

sister group of Barclaya and Nymphaeoideae (Nymphaea,

Victoria and Euryale), with which it shares an inferior

ovary. With a larger data-set, Doyle and Endress (2014)

obtained a similar result, with additional most parsimo-

nious positions sister to either Barclaya or Nymphaeoi-

deae. Von Balthazar et al. (2008) described a similar

but less well-preserved flower from the middle Albian of

Virginia as Carpestella. Its position was poorly resolved in

their phylogenetic analysis, but Doyle and Endress (2014)

found that it had the same three most parsimonious
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positions as Monetianthus. Because all living Nym-

phaeales are aquatic (except for an obvious reversal to wet

terrestrial habitats in Barclaya rotundifolia: Feild et al.

2004), this evidence that Albian fossils were crown group

members implies that the nymphaealean line had become

aquatic by this time.

More direct evidence for an aquatic habit is seen in

Pluricarpellatia (Mohr et al. 2008; Figure 3(i)), from the

lacustrine Crato Formation of Brazil (late Aptian:

Heimhofer and Hochuli 2010), which had cordate to

peltate leaves with long petioles attached to an herbaceous

rhizome and flowers (in the fruit stage) with several free

carpels. An analysis of vegetative characters by Taylor

(2008) indicated that Pluricarpellatia could be sister to

either Cabombaceae or Nymphaeales as a whole (not

including Trithuria), but Doyle and Endress (2014) found

that it could be sister to Cabombaceae, Brasenia (one of

the two genera of Cabombaceae) or Nymphaeaceae; the

ambiguity was due in part to uncertainty on the

arrangement of the carpels. An analysis by Coiffard

et al. (2013a) concluded that other Crato fossils with

stems, roots and palmately veined, cordate leaves but no

flowers (Jaguariba) were nested within Nymphaeaceae. A

variety of other cordate and peltate leaves that probably

represent Nymphaeales have been described from the

Albian of Jordan (Taylor et al. 2008) and the late Albian or

early Cenomanian of Kansas (Wang and Dilcher 2006).

It is possible that lower Potomac (Aptian–early Albian)

reniform leaves with palmate venation (Proteaephyllum

reniforme: Figure 1(i)) also represent Nymphaeales.

As several authors have noted (Nixon 2008; Coiffard

et al. 2013a; Doyle and Endress 2014), Early Cretaceous

Nymphaeales present a case of conflict between the fossil

record and molecular dating analyses, which use the

divergence of DNA sequences and fossil calibrations to

estimate the age of clades. Because these analyses are

based on DNA from living taxa, they necessarily provide

ages for crown clades only. Such an analysis by Yoo et al.

(2005) concluded that the crown group of Nymphaeaceae

and Cabombaceae (Hydatellaceae had not yet been

associated with the order) was less than a third the age

of the angiosperms, or Eocene (44.6Ma) on the

assumption that angiosperms were not much older than

the first unquestioned fossil pollen of angiosperms in the

Hauterivian. However, the analyses of Monetianthus,

Carpestella and Pluricarpellatia imply that this crown

group had originated by the end of the Aptian (ca.

112Ma), which would put the origin of angiosperms in the

Carboniferous. This could be taken to mean that

angiosperms do go back to the Palaeozoic, or that the

fossils are incorrectly placed, but it could also reflect

problems of molecular dating methods in dealing with

unequal rates of evolution (cf. Nixon 2008).

A more controversial fossil is Archaefructus, an

aquatic plant with finely dissected leaves and fertile axes

bearing loosely spaced stamens and carpels from the

Barremian or Aptian Yixian Formation of NE China (Sun

et al. 1998, 2002). A phylogenetic analysis by Sun et al.

(2002) attached Archaefructus to the stem lineage of living

angiosperms, but Friis et al. (2003) interpreted the fertile

axes as inflorescences of reduced flowers and argued that

Archaefructus was a crown group angiosperm that had

undergone floral reduction during adaptation to an aquatic

habitat. An analysis by Endress and Doyle (2009) placed it

in Nymphaeales, sister to Hydatellaceae, which show even

more extreme floral reduction. Wang and Zheng (2012)

reported that ovules of Archaefructus were borne on the

midrib of the carpel, as in Cabombaceae, which might

support this hypothesis. However, the Endress and Doyle

(2009) result depended on the interpretation of structures

extracted from the stamens as monosulcate pollen grains,

which was questioned by Friis et al. (2003, 2011) because

of their irregular size and shape. If pollen characters are

removed from the Endress and Doyle (2009) analysis, it is

more parsimonious to place Archaefructus in Ranuncu-

lales, near the base of the eudicots, which would be

consistent with its ternately dissected leaves. However, as

discussed by Doyle (2012), a position in crown eudicots is

hard to reconcile with the lack of tricolpate pollen in the

Yixian and other floras at the same latitude. Another

possibility, mentioned above, is that Archaefructus and

other ternately dissected Early Cretaceous leaves such as

Vitiphyllum (Figure 1(h)) represent stem relatives of

eudicots.

The other two ANITA lines, Amborella and Austro-

baileyales, are woody plants with pinnate leaf venation. In

the lower Potomac Group (Aptian–early Albian), there are

pinnately veined leaves such as Ficophyllum and Rogersia

that have unusually irregular venation, with variable

spacing, branching and looping of the secondary veins and

a continuum of finer vein orders (Figure 1(k,l)). Wolfe

et al. (1975), Doyle and Hickey (1976) and Hickey and

Doyle (1977) pointed out similar venation in Winteraceae,

now known to belong in the magnoliid clade, but it also

occurs in ANITA groups such as Illicium (Upchurch and

Dilcher 1990). In studying cuticle anatomy of the early

Potomac leaves, Upchurch (1984b) concluded that the

most similar living taxa were Amborella and Austrobai-

leya, 15 years before molecular data showed that these

were two of the most basal angiosperm lines. Some cuticle

types have features that suggest a position nested within

Austrobaileyales (Doyle and Upchurch in press). Other

leaves from the late Albian of the Dakota Formation may

also represent Austrobaileyales (as ‘Illiciales’: Upchurch

and Dilcher 1990).

Reproductive evidence for Austrobaileyales comes

from uniovulate fruits and multicarpellate floral axes

named Anacostia from the early and middle Albian of

Portugal and the Potomac Group (Friis et al. 1997;

Figure 3(j)). Pollen on the stigmas is of the type called
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Similipollis (Góczán and Juhász 1984), which varies

between monosulcate and trichotomosulcate and has finer

sculpture at the proximal and distal poles; because of the

graded sculpture, such pollen was once incorrectly

assigned to Liliacidites and monocots (Doyle 1973;

Walker and Walker 1984). The seed coat has an outer

palisade exotesta of thick-walled cells and a sclerotic

mesotesta of cells with sinuous walls, an anatomy

characteristic of Austrobaileyales, as illustrated in Illicium

by Oh et al. (2003). Phylogenetic analyses by Doyle et al.

(2008) and Doyle and Endress (2014) nested Anacostia

within Austrobaileyales, sister to Illicium and Schisandra

or to Schisandra alone. The possibility that fruits called

Appomattoxia (Friis et al. 1995) are from relatives of

Amborella is discussed in the next section.

This evidence for ANITA lines in the Early Cretaceous

has an indirect relation to recent discussions on the age of

the angiosperms (cf. Doyle 2012). Most molecular dating

analyses indicate that crown group angiosperms originated

in the Jurassic or Triassic (e.g. Bell et al. 2010; Smith et al.

2010; Clarke et al. 2011), but this raises the question of

why they are not seen in the fossil record until the

Cretaceous. One hypothesis (Feild et al. 2004, 2009) is

based on the fact that the living ANITA lines (except for

Nymphaeales, which are derived in being aquatic) are

ecologically restricted to wet forest understorey habitats,

as in New Caledonia and Queensland today, and low in

diversity (only 0.1% of angiosperm species). This suggests

that pre-Cretaceous ANITA-grade angiosperms could

have escaped detection because wet habitats suitable for

them were geographically restricted, because arid and

semiarid conditions prevailed across most of the tropics

(Rees et al. 2000; Ziegler et al. 2003). The rise of

angiosperms observed in the Cretaceous might reflect the

origin and radiation of mesangiosperms, assuming that

these were able to escape from the original wet

understorey niche (as argued by Feild et al. 2004) and

had higher rates of diversification (as inferred by Magallón

and Sanderson 2001). However, the results summarised

here imply that the ANITA lines were also radiating at

least modestly in the Early Cretaceous, alongside

magnoliids, monocots, primitive eudicots and relatives

of Chloranthaceae. This could mean that external

environmental factors had inhibited the diversification of

angiosperms in general before the Cretaceous, or that

angiosperms are not as old as molecular analyses imply.

6. Chloranthaceae and relatives

The last two mesangiosperm clades, Chloranthaceae and

Ceratophyllum, are remarkable for their extremely simple

flowers. Of the four genera of Chloranthaceae (Endress

1987), Ascarina has spikes of either male flowers

consisting of one stamen (rarely 2–5) or female flowers

consisting of one carpel that contains one ovule.

Hedyosmum also has unisexual flowers with one stamen

or one carpel, but the female flowers have three reduced

tepals on top. Sarcandra and Chloranthus have bizarre

bisexual flowers that consist of one carpel and either one

stamen or a three-lobed androecium, respectively. In

Ceratophyllum, a floating aquatic with whorled dichot-

omous leaves and no roots, the male structures have been

variously interpreted as flowers with many stamens or

spikes of flowers consisting of one stamen, while the

female flowers consist of one uniovulate carpel; sterile

organs below the fertile parts are interpreted as bracts

(Endress and Doyle 2009). In both groups, the single ovule

is apical and orthotropous, with the number of integuments

reduced to one in Ceratophyllum. In analyses of

chloroplast genomes (Jansen et al. 2007; Moore et al.

2007), the two taxa are well separated, with Chlorantha-

ceae sister to magnoliids and Ceratophyllum sister to

eudicots. However, morphological data indicate that they

are sister groups (Endress and Doyle 2009; cf. Figure 2),

and this result has also been found in analyses of

mitochondrial genes (Duvall et al. 2006; Qiu et al. 2010),

slowly evolving chloroplast genes (Moore et al. 2011) and

low-copy nuclear genes (Zhang et al. 2012). Essentially,

such trees imply that Ceratophyllum was derived from

Chloranthaceae-like plants that became aquatic.

Before the advent of molecular systematics, there was

speculation that Chloranthaceae might provide an

alternative model for the first angiosperms (Burger 1977;

Leroy 1983; Endress 1987; Taylor and Hickey 1992;

Nixon et al. 1994), but this is refuted by molecular data,

which uniformly exclude the family from the basal

ANITA grade. The combined morphological and molecu-

lar analysis of Doyle and Endress (2000), which did not

include Ceratophyllum, placed Chloranthaceae at the base

of the mesangiosperm clade (Figure 2), in part because

they retain the ancestral ascidiate carpel typical of the

ANITA lines. However, in molecular trees where the two

taxa are sister groups, their position is variable.

It has been suggested that Chloranthaceae were an

important early angiosperm group since Couper (1958)

described the columellar monosulcate pollen genus

Clavatipollenites from the upper Wealden (Barremian)

of England and compared it with pollen of Ascarina. This

comparison was strengthened by electron microscopic

work (Doyle et al. 1975; Walker and Walker 1984), which

showed that the living and fossil taxa both have a tectal

reticulum with supratectal spinules, a thick nexine made

up of foot layer (underlain by endexine below the sulcus)

and a sculptured sulcus membrane. Chloranthaceae have

pinnately veined, toothed leaves, like some Potomac

fossils (Figure 1(j)), and Upchurch (1984b) showed that

these fossils resembled Chloranthaceae in cuticle anatomy

and chloranthoid tooth structure (Hickey and Wolfe 1975),

with median and lateral veins that fuse below an apical
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gland. Chloranthoid teeth alone are not diagnostic of

Chloranthaceae, because they also occur in some ANITA

groups (including Amborella) and basal eudicots and may

be ancestral in angiosperms (Hickey and Wolfe 1975;

Doyle 2007). Other leaf characters suggestive of

Chloranthaceae, including apparent opposite attachment

of leaves to stems, are discussed by Doyle and Upchurch

(in press).

Phylogenetic analyses have associated several meso-

fossil taxa with Chloranthaceae, both as crown group

members and as branches from the line leading to the

family. These analyses often yielded different results with

the two backbone trees, as might be expected from the fact

that these differ primarily in the positions of Chlorantha-

ceae and Ceratophyllum, and with chloranthoid fossils

added individually or several at once to the analysis.

Pedersen et al. (1991) associated pollen of the

Clavatipollenites type with early Cenomanian fruits called

Couperites, which resemble berries of Chloranthaceae in

containing a single pendent seed. However, the seed was

unlike that of Chloranthaceae in being anatropous rather

than orthotropous, suggesting that Couperites was outside

crown group Chloranthaceae, and it had a palisade

exotesta, as in most ANITA groups but not Chlorantha-

ceae. Analyses by Doyle and Endress (2014) indicated that

Couperites may or may not be related to Chloranthaceae.

With the chloroplast backbone tree (J/M), where

Chloranthaceae and Ceratophyllum are well separated,

Couperites was sister to Chloranthaceae, but with the

backbone tree where Chloranthaceae and Ceratophyllum

form a clade (D&E), it had four most parsimonious

positions – sister to Ascarina or the Ascarina–

Sarcandra–Chloranthus (ASC) clade, below both Chlor-

anthaceae and Ceratophyllum or sister to mesangiosperms

as a whole – and many other positions were only one step

less parsimonious. Still more positions within, below and

well separated from Chloranthaceae were found when

Couperites was added together with other chloranthoid

fossils. It should be noted that Clavatipollenites is a

relatively plesiomorphic and variable fossil genus that may

well be systematically heterogeneous, and is possible that

future associations of pollen and mesofossils will show

that other pollen types called Clavatipollenites are more

convincingly related to Chloranthaceae.

A more secure record of Chloranthaceae consists of

female flowers (fruits) and inflorescences of unistaminate

male flowers with pollen of the Asteropollis type (Hedlund

and Norris 1968; Friis et al. 1999; Eklund et al. 2004;

Figure 3(k)), from the early Albian and possibly Aptian

(Torres Vedras). This pollen resembles Clavatipollenites

in exine structure but differs in having a four- or five-

branched sulcus, like pollen of Hedyosmum (Walker and

Walker 1984), and the fruits resemble those of

Hedyosmum in having three tepals on top. Like the study

of Eklund et al. (2004) on phylogeny of Chloranthaceae,

which used fewer outgroups, the analysis of Doyle and

Endress (2014) associated the Asteropollis plant with

Hedyosmum, and all positions outside the chloranthaceous

line were at least six steps worse. These results imply that

the crown group of Chloranthaceae had originated by the

early Albian. The analysis of Eklund et al. (2004), which

included 20 species of Hedyosmum, indicated that the

Asteropollis plant could be either sister to Hedyosmum or

nested within the basal grade in the genus. A sister group

position would be more consistent with evidence from

molecular dating that radiation of the crown group was

much more recent than origin of the stem lineage (Zhang

and Renner 2003; Antonelli and Sanmartı́n 2011; Zhang

et al. 2011), and with the appearance and expansion of

Hedyosmum-like pollen in the Miocene of South America

(Martı́nez et al. 2013).

Two other fossils are securely linked with Chlor-

anthaceae but differ substantially from all four living

genera. Canrightia, described by Friis and Pedersen

(2011) from the early Albian of Portugal (Figure 3(l)), is

significant in showing an intermediate stage in reduction

from the ancestral multiparted angiosperm flower. It was

like Chloranthaceae as a whole in having one orthotropous

ovule per carpel and like Hedyosmum in having a reduced

perianth, but it was bisexual and had approximately four

stamens and two to five fused carpels. Analyses by Friis

and Pedersen (2011) and Doyle and Endress (2014) placed

Canrightia on the stem lineage of Chloranthaceae or the

Chloranthaceae–Ceratophyllum clade, depending on the

backbone tree. As crown group Chloranthaceae existed by

the Albian, Canrightia must be an extinct side line, and

some of its features may be derived (autapomorphies),

such as the fused carpels. Zlatkocarpus, described by

Kvaček and Friis (2010) from the middle Cenomanian of

Bohemia, is known as spikes of female flowers that

differed from those of Ascarina in having a vestigial

adnate perianth, plus reticulate monosulcate pollen. In the

study of Doyle and Endress (2014), with the backbone tree

where Chloranthaceae and Ceratophyllum are linked

(D&E), Zlatkocarpus was nested within Chloranthaceae,

sister to the ASC clade, in which the perianth is lost; but

with the chloroplast backbone tree (J/M), it was sister to

the ASC clade, Hedyosmum or the whole family. More

basal positions were found when several chloranthoid

fossils were included, notably just above Canrightia on the

stem lineage of Chloranthaceae and Ceratophyllum with

the D&E backbone tree (Figure 2).

Another fossil, here called the Pennipollis plant, was

not compared with Chloranthaceae when its parts were

associated by Friis et al. (2000; Figure 3(m)). It is known

as isolated uniovulate carpels (Pennicarpus) and stamens

(Pennistemon), a fragment of a spike of flowers that consist

of one stamen, and pollen of the Pennipollis type.

Pennipollis, variously assigned by earlier workers to

Peromonolites, Liliacidites, Retimonocolpites and Bren-
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neripollis, is one of most common Aptian–Albian

angiosperm pollen types (Brenner 1963; Doyle et al.

1975; Penny 1988). It is distinctive in having an unusually

coarse reticulum that tends to detach from the nexine, as a

result of being underlain by fine granules rather than

columellae. Friis et al. (2000, 2011) compared the

Pennipollis plant with the monocot order Alismatales, in

which some members also have a non-columellar

reticulum. However, these monocots have a thin nexine,

whereas the nexine in Pennipollis is unusually thick, as in

Chloranthaceae. Instead, the analyses of Doyle et al.

(2008) and Doyle and Endress (2014) supported a sister

group relationship of the Pennipollis plant to Chlorantha-

ceae (with the J/M chloroplast backbone tree) or to

Chloranthaceae plus Ceratophyllum (with the D&E

backbone tree). Its best positions in monocots (linked

with Acorus and the alismatalean genus Aponogeton) were

seven to eight steps less parsimonious. Other results raise

the intriguing possibility that the Pennipollis plant was

more closely related to Ceratophyllum than to Chlor-

anthaceae. With the D&E backbone tree, it was only one

step less parsimonious to link the fossil with Ceratophyl-

lum, and this became one of its two most parsimonious

positions when it was added to the D&E tree along with

the Asteropollis plant, Canrightia and Zlatkocarpus, as

well as in two out of four trees found when Appomattoxia

was added as well (e.g. Figure 2).

Appomattoxia (Figure 3(n)) is based on uniovulate

carpels with hooked hairs and adhering monosulcate

pollen, first described from the middle Albian of Virginia

(Friis et al. 1995) and extended to the Aptian or earliest

Albian of Portugal (Friis et al. 2010a). Friis et al. (1995)

noted that similar fruits occur in the ranunculalean eudicot

Circaeaster (which differs in having tricolpate pollen),

while the seeds are like those of Piperaceae and

Saururaceae (Piperales) in being orthotropous and having

a sclerotic inner layer (interpreted as endotegmen) of the

seed coat. The pollen is of a type originally described

as Inaperturopollenites crisopolensis and later renamed

Tucanopollis, which is one of the most conspicuous

angiosperm elements in the Barremian and Aptian of

Brazil and Africa (Regali et al. 1974; Doyle et al. 1977;

Regali 1989). Similar forms are known from the Albian

and Cenomanian of Europe as Transitoripollis (Góczán

and Juhász 1984). Tucanopollis resembles Clavatipolle-

nites in having a sculptured sulcus, thick foot layer and

supratectal spinules, but the tectum differs in being

continuous.

When Doyle and Endress (2014) added Appomattoxia

to both backbone trees, its four most parsimonious

positions were sister to Nymphaeales and on the three

branches around the basal node connecting Amborella

with other angiosperms. However, positions sister to

Chloranthaceae or Chloranthaceae plus Ceratophyllum

were only one step worse. A feature not included by Doyle

and Endress (2014) that might support a relationship with

Amborella is the low verrucate sculpture of Appomattoxia

pollen and some dispersed grains assigned to Tucanopol-

lis, which could represent a step towards the more

prominent dome-like verrucae of Amborella (Sampson

1993; Hesse 2001). Given the record of Tucanopollis, this

might mean that relatives of Amborella, which is now

endemic to New Caledonia, were among the most common

angiosperms in the Barremian–Aptian of Northern

Gondwana. However, this may be difficult to accept in

view of evidence that most of Northern Gondwana was

semiarid or arid in the Early Cretaceous (Brenner 1976;

Doyle et al. 1982; Ziegler et al. 2003), whereas Amborella

and other woody ANITA groups are restricted to wet forest

understorey habitats (Feild et al. 2004, 2009).

Another possibility emerged when Doyle and Endress

(2014) added Appomattoxia and the four most likely fossil

relatives of Chloranthaceae to the D&E tree, where

Chloranthaceae and Ceratophyllum form a clade. In two

of the four trees obtained, Appomattoxia was sister to

Nymphaeales, but in the third it was sister to

Ceratophyllum and Chloranthaceae, above Canrightia

and Zlatkocarpus, and in the fourth (cf. Figure 2) the

Pennipollis plant and Appomattoxia were successive

branches on the line leading to Ceratophyllum. One

reason such very different hypotheses on the affinities of

Appomattoxia are possible is that there is no direct

evidence on floral organisation of the plants that produced

the carpels (this is also true for the Pennipollis plant). If the

carpels were from a line attached near the base of the

angiosperm tree, they would most likely be parts of a

multicarpellate flower with numerous tepals (Endress and

Doyle 2009), but if they were from close relatives of

Ceratophyllum or Chloranthaceae, they would probably

represent whole female flowers (if they had a perianth,

it would have to be free from the carpel, not adnate to it,

as in Canrightia, Zlatkocarpus and Hedyosmum). Unfor-

tunately, the pollen of Ceratophyllum provides little

evidence on relationships with fossils, because it is

inaperturate and has an extremely reduced, structureless

exine (Takahashi 1995). Information on the vegetative

morphology of the plants that produced Appomattoxia

fruits and Tucanopollis pollen could also be decisive.

These results raise the question of whether there are

any known mid-Cretaceous megafossils that might

represent stem relatives of Ceratophyllum. Dilcher and

Wang (2009) described fruits and leafy stems from near

the Albian–Cenomanian boundary in Kansas that

resemble Ceratophyllum, implying that the Ceratophyllum

line had diverged by this time, but something less similar

to the modern genus could say more about its origin and

relationships with other groups. A candidate is Pseudoast-

erophyllites, from the Albian and Cenomanian of France

and Bohemia, which Kvaček et al. (2012) suggested was a

halophyte. Its leaves are opposite to whorled, as in
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Ceratophyllum, but simple and apparently succulent rather

than dissected. Remarkably, stamens with similar stomata

containing pollen similar (though not identical) to

Tucanopollis occur in close association, although not in

attachment. Another candidate is Montsechia, from

Barremian lake beds in Spain, which also had reduced

whorled or opposite leaves (Martı́n-Closas 2003; Gomez

et al. 2006; Krassilov 2011). It may easier to imagine

plants like these growing in local wet or saline habitats in

Northern Gondwana than Amborella relatives.

7. Conclusions

Phylogenetic analyses add a more precise and concrete

dimension to the broad picture of morphological

diversification of angiosperms in the mid-Cretaceous, by

identifying specific clades represented in the successive

grades of pollen and leaf evolution. General implications

of these analyses can be illustrated by placing the fossils

discussed here on the modern tree, with the branches

leading to them shaded to indicate how far diversification

is inferred to have proceeded in each of three broad

stratigraphic intervals (Figure 4). This shows that most of

the lines that split near the base of the molecular tree of

angiosperms can be recognised by the end of the Albian.

However, many of the younger fossils are attached higher

in the tree, consistent with the view that the angiosperms

were radiating at this time. The total number of

phylogenetic lines established by the late Albian may be

greater than might be expected based on their relatively

uniform reticulate monosulcate and tricolpate pollen.

However, similar plesiomorphic pollen types are widely

distributed among modern ‘basal’ lines, and there are none

of the glaring inconsistencies noted by early palynologists

between old identifications of fossil angiosperm leaves

with modern taxa and the level of advancement of pollen

types at the same horizons.

Early Cretaceous angiosperm clades include both lines

that flourished soon after their appearance but are now

relict and others that have been ecologically important

Figure 4. (Colour online) Tree in Figure 2, with colours indicating stratigraphic horizons where taxa first occur. Subdivisions
correspond to palynological zones and subzones I (Aptian–earliest Albian), IIA-B (middle–late Albian) and IIC-IV (latest Albian–
Cenomanian) in the Potomac Group and Raritan Formation of the Atlantic Coastal Plain. Barremian floras elsewhere are added to the first
interval; presumed later early Albian floras from Portugal, which apparently correlate with a hiatus in the Potomac sequence, are added to
the second interval. Abbreviations as in Figure 2.
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throughout their history. Although Chloranthaceae and

their extinct relatives may be overrepresented in the pollen

record because they were wind pollinated, the leaf and

mesofossil records suggest that chloranthoids were indeed

among the first common angiosperms, consistent with the

hypothesis that they were first line to ‘break out’ of the

ancestral wet forest understorey niche (Feild et al. 2004).

However, they are now of minor importance, despite the

mid-Tertiary resurgence of Hedyosmum inferred from

molecular dating (Zhang and Renner 2003; Antonelli and

Sanmartı́n 2011) and the fossil pollen record (Martı́nez

et al. 2013). There are intriguing hints that the

Ceratophyllum line had a similar history. Platanus is

now just one of many temperate woody taxa, but soon after

their appearance, plants related to Platanusmay have been

the most abundant angiosperms, at least in Laurasia, and

they continued to be prominent through the Late

Cretaceous. Buxales, which produced some if not all of

the striate tricolpate pollen in the Aptian–Albian of

Northern Gondwana and the Albian–Cenomanian of

Laurasia, may be similar. By contrast, groups in the second

category include Lauraceae and their stem relatives, which

have remained abundant from the late Albian to the present

day, and Araceae in the monocots, while Nymphaeales are

still important in their specialised aquatic habitat.

However, radiation of the huge ‘core’ clades of eudicots

and monocots that dominate the modern flora (Pentape-

talae and Petrosaviidae of Cantino et al. 2007) was

apparently a later Cretaceous phenomenon.
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from the pre-Albian Cretaceous of Equatorial Africa. Bull Cent Rech

Explor-Prod Elf-Aquitaine. 1:451–473.

Historical Biology 13

D
o
w

n
lo

ad
ed

 b
y
 [

P
ro

fe
ss

o
r 

Ja
m

es
 D

o
y
le

] 
at

 1
1
:5

6
 1

9
 D

ec
em

b
er

 2
0
1
4
 



Doyle JA, Endress PK. 2000. Morphological phylogenetic analysis of
basal angiosperms: comparison and combination with molecular
data. Int J Plant Sci. 161(Suppl):S121–S153.

Doyle JA, Endress PK. 2010. Integrating Early Cretaceous fossils into the
phylogeny of living angiosperms: Magnoliidae and eudicots. J Syst
Evol. 48:1–35.

Doyle JA, Endress PK. 2014. Integrating Early Cretaceous fossils into
the phylogeny of living angiosperms: ANITA lines and relatives of
Chloranthaceae. Int J Plant Sci. 175:555–600.

Doyle JA, Endress PK, Upchurch GR. 2008. Early Cretaceous monocots:
a phylogenetic evaluation. Acta Mus Natl Pragae Ser B Hist Nat.
64(2–4):59–87.

Doyle JA, Hickey LJ. 1976. Pollen and leaves from the mid-Cretaceous
Potomac Group and their bearing on early angiosperm evolution. In:
Beck CB, editor. Origin and early evolution of angiosperms. New
York (NY): Columbia University Press; p. 139–206.

Doyle JA, Hotton CL. 1991. Diversification of early angiosperm pollen in
a cladistic context. In: Blackmore S, Barnes SH, editors. Pollen and
spores: patterns of diversification. Oxford (UK): Clarendon Press;
p. 169–195.

Doyle JA, Hotton CL, Ward JV. 1990. Early Cretaceous tetrads,
zonasulculate pollen, and Winteraceae. I. Taxonomy, morphology,
and ultrastructure. Am J Bot. 77:1544–1557.
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