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Current domain-specific information extraction systems represent an important resource
for biomedical researchers, who need to process vast amounts of knowledge in a short

time. Automatic discourse causality recognition can further reduce their workload by

suggesting possible causal connections and aiding in the curation of pathway models.
We describe here an approach to the automatic identification of discourse causality trig-

gers in the biomedical domain using machine learning. We create several baselines and

experiment with and compare various parameter settings for three algorithms, i.e., Con-
ditional Random Fields (CRF), Support Vector Machines (SVM) and Random Forests

(RF). We also evaluate the impact of lexical, syntactic and semantic features on each
of the algorithms, showing that semantics improves the performance in all cases. We

test our comprehensive feature set on two corpora containing gold standard annotations

of causal relations, and demonstrate the need for more gold standard data. The best
performance of 79.35% F-score is achieved by CRFs when using all three feature types.
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1. Introduction

It has become increasingly important to be able to provide automated, efficient and

accurate means of retrieving and extracting user-oriented biomedical knowledge,

considering the ever-increasing amount of knowledge published daily in the form of

research articles.1,5 Based on this need, biomedical text mining has seen significant

recent advancements in the last few years,39 including named entity recognition,7

coreference resolution2,34 and relation19,28 and event extraction.21,20 Additionally,

biomedical text mining tools have been included in specifically-designed frameworks

and systems, in which biomedical researchers can easily build workflows to extract

information, such as Argo30 and U-Compare,11,14 or create and curate pathways

and link them to the literature, such as PathText.12 Using biomedical text mining

technology, text can now be enriched via the addition of semantic metadata and thus

can support tasks such as analysing molecular pathways32 and semantic searching.22

1
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However, most of the undertaken research is restricted to punctual facts that

are expressed in at most one sentence if not one clause. More complex tasks, such as

question answering and automatic summarisation, require the extraction of infor-

mation that spans across several sentences, together with the recognition of relations

that exist across sentence boundaries, in order to achieve high levels of performance.

These relations, such as causal, temporal and conditional, which characterise how

facts in text are related, create a coherent sequence of clauses and sentences, known

as discourse. Thus, the relations that connect facts in a logical manner are known

as discourse relations. These help readers to infer deeper, more complex knowledge

about the facts mentioned in the discourse. These relations can be either explicit or

implicit, depending whether or not they are expressed in text using overt discourse

connectives (also known as triggers). Take, for instance, the case in example (1),

where the trigger Therefore signals a justification between the two sentences: be-

cause “a normal response to mild acid pH from PmrB requires both a periplasmic

histidine and several glutamic acid residues”, the authors believe that the “regula-

tion of PmrB activity could involve protonation of some amino acids”.

(1) In the case of PmrB, a normal response to mild acid pH requires not only a

periplasmic histidine but also several glutamic acid residues.

Therefore, regulation of PmrB activity may involve protonation of one or more

of these amino acids.

Thus, by identifying these types of causal relations, search engines become able

to automatically discover possibly novel relations between biomedical entities, pro-

cesses and events or between experimental evidence and associated conclusions. This

can happen especially if the mechanism is applied to a collection of articles, some of

which might be overlooked by humans. However, phrases acting as causal triggers in

certain contexts may not denote causality in all cases. Therefore, a dictionary-based

approach is likely to produce a very high number of false positives. In this article,

we describe the first supervised machine-learning approaches to the automatic iden-

tification of triggers that actually denote causality. We show that by adding a deep

semantic layer of information, the performance can increase significantly, and that

more gold standard data is much needed for better results.

2. Related work

A large amount of work related to discourse parsing and discourse relation iden-

tification exists in the general domain, where researchers have not only identified

discourse connectives, but also developed end-to-end discourse parsers. Most work

is based on the Penn Discourse Treebank (PDTB),26 a corpus of lexically-grounded

annotations of discourse relations.

Some researchers have tackled the problem of identifying discourse connectives,

but without determining the discourse relation, as a disambiguation task.25 Using

almost exclusively syntactic features related to the trigger, they achieve an F-score
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of around 95%.

Basing on the above work, other researchers introduced new features and manage

to slightly improve the overall performance.16 They included features related to the

immediate context of the discourse trigger, such as the previous and next words,

their part-of-speech and syntactic interaction with the trigger itself. Also, they

added as a feature the entire path from the connective to the root of the parse tree.

A further two approaches consider the syntactic constituency and dependency

structure of the context of the trigger.37 Features include the path from the trigger

to the syntactic root, syntactic context features and conjunctive features in the case

of the syntactic approach, whilst the dependency approach relies on features such

as immediately neighbouring words and their part-of-speech, parents and siblings

of the connective and clause detection.

Another small increase in F-score, with just under 1% over Ref. 25 and even

less over Ref. 37 is reached by combining certain aspects of the surface level and

syntactic feature sets of these respective works.9

Until now, comparatively little work has been carried out on causal discourse

relations in the biomedical domain, although causal associations between biological

entities, events and processes are central to most claims of interest.13 The equivalent

of the PDTB for the biomedical domain is the BioDRB corpus,27 containing 16

types of discourse relations, e.g., temporal, causal and conditional. A slightly larger

corpus is BioCause,18 containing manually annotated causal discourse relations in

full-text open-access journal articles from the infectious diseases domain.

To the best of our knowledge, there is no previous work identifying discourse

causal relations in the biomedical domain. Using the BioDRB corpus as data, some

researchers have explored the identification of discourse connectives.31 They do not

distinguish, however, between the types of discourse relations and identify them

as discourse markers in general. Using mostly a set of orthographic features, they

obtain the best F-score of 75.7% using CRF, with SVM reaching only 65.7%. These

results were obtained by using only syntactic features, as semantic features were

shown to lower the performance. Also, they prove that there exist differences in

discourse triggers between the biomedical and general domains by training a model

on the BioDRB and evaluating it against PDTB and vice-versa.

The same conclusions were reached in another study,9 which manages to im-

prove these results by around 3%. They notice that the automatic named entity

recognition performed by ABNER35 lowers the overall performance, due to its use

of orthographic features, which thus become duplicated in the feature vector.

3. Methodology

In this section, we describe our data and the features of causal triggers. We also

explain our evaluation methodology.
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3.1. Data

The data for the experiments comes from the BioCause and BioDRB corpora. Bio-

Cause is a collection of 19 open-access full-text journal articles pertaining to the

biomedical subdomain of infectious diseases, manually annotated with 850 causal

relationships. Two types of spans of text are marked in the text, namely causal trig-

gers and causal arguments. Each causal relation is composed of three text-bound

annotations: a trigger, a cause or evidence argument and an effect argument. Some

causal relations have implicit triggers, so these are excluded from the current re-

search.

Fig. 1. Causal relation in the BioCause.

Figure 1 shows an example of discourse causality from BioCause, marking the

causal trigger and the two arguments with their respective relation. Named entities

are also marked in this example.

BioCause contains 381 unique explicit triggers, each being used, on average,

only 2.10 times. The number decreases to 347 unique triggers when they are lem-

matised, corresponding to an average usage of 2.30 times per trigger. Both count

settings demonstrate the diversity of causality-triggering phrases that are used in

the biomedical domain.

The BioDRB corpus spreads over 24 articles, and the number of purely causal

relations annotated in this corpus is 542. There are another 23 relations which are a

mixture between causality and one of either background, temporal, conjunction or

reinforcement relations. These relations are based on only 45 different trigger types.

3.2. Features

Three types of features have been employed in the development of this causality

trigger model, i.e., lexical, syntactic and semantic. These features are categorised

and described below.

3.2.1. Lexical features

The lexical features are built from the actual tokens present in text. Tokenisation

is performed by the GENIA tagger36 using the biomedical model. The first two

features represent the token’s surface expression and its base form.



October 8, 2013 19:9 WSPC/INSTRUCTION FILE ws-jbcb

Recognising Discourse Causality Triggers in the Biomedical Domain 5

Neighbouring tokens have also been considered. We included the token imme-

diately to the left and the one immediately to the right of the current token. This

decision is based on two observations. Firstly, in the case of tokens to the left, most

triggers are found either at the beginning of the sentence (311 instances) or are

preceded by a comma (238 instances). These two left contexts represent 69% of all

triggers. Secondly, for the tokens to the right, almost 45% of triggers are followed

by a determiner, such as the, a or an, (281 instances) or a comma (71 instances).

3.2.2. Syntactic features

The syntax, dependency and predicate argument structure are produced by the

Enju parser.23 Figure 2 depicts a partial lexical parse tree of a sentence which

starts with a causal trigger, namely Our results suggest that. From the lexical parse

trees, several types of features have been generated.

Fig. 2. Partial lexical parse tree of a sentence starting with a causal trigger.

The first two features represent the part-of-speech and syntactic category of a

token. For instance, Figure 2 shows that the token that has the part-of-speech IN.

These features are included due to the fact that either many triggers are lexicalised

as an adverb or conjunction, or are part of a verb phrase. For the same reason, the

syntactical category path from the root of the lexical parse tree to the token is also

included. The path also encodes, for each parent constituent, the position of the

token in its subtree, i.e., beginning (B), inside (I ) or end (E ); if the token is the

only leaf node of the constituent, this is marked differently, using a C. Thus, the

path of that, highlighted in the figure, is I-S/I-VP/B-CP/C-CX.

Secondly, for each token, we extracted the predicate argument structure and

checked whether a relation exists between the token and the previous and following

tokens. The values for this feature represent the argument number as allocated by

Enju.

Thirdly, the ancestors of each token to the third degree are instantiated as three

different features. In the case that such ancestors do not exist (i.e., the root of
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the lexical parse tree is less than three nodes away), a ”none” value is given. For

instance, the token that in Figure 2 has as its first three ancestors the constituents

marked with CX, CP and VP.

Finally, the lowest common ancestor in the lexical parse tree between the current

token and its left neighbour has been included. In the example, the lowest common

ancestor for that and suggest is VP.

These last two feature types have been used based on the observation that the

lowest common ancestor for all tokens in a causal trigger is S or VP in over 70% of

instances. Furthermore, the percentage of cases of triggers with V or ADV as the

lowest common ancestor is almost 9% in each case. Also, the average distance to

the lowest common ancestor is 3.

3.2.3. Semantic features

We have exploited several semantic knowledge sources to identify causal triggers

more accurately, as a mapping to concepts and named entities acts as a back-off

smoothing, thus increasing performance.

One semantic knowledge source is the BioCause corpus itself. All documents

annotated for causality in BioCause had been previously manually annotated with

biomedical named entity and event information. This was performed in the con-

text of various shared tasks, such as the BioNLP 2011 Shared Task on Infectious

Diseases.29 We therefore leverage this existing information to add another semantic

layer to the model. Moreover, another advantage of having a gold standard anno-

tation is the fact that it is now possible to separate the task of automatic causal

trigger recognition from automatic named entity recognition and event extraction.

The named entity and event annotation in the BioCause corpus is used to extract

information about whether a token is part of a named entity or event trigger. Fur-

thermore, the type of the named entity or event is included as a separate feature.

The second semantic knowledge source is WordNet.6 Using this resource, the

hypernym of every token in the text has been included as a feature. Only the first

sense of every token has been considered, as no sense disambiguation technique has

been employed.

Finally, tokens have been linked to the Unified Medical Language System

(UMLS)3 semantic types. Thus, we included a feature to say whether a token is

part of a UMLS type and another for its semantic type if the previous is true.

3.3. Experimental setup

We explored the use of various machine learning algorithms and various settings for

the task of identifying causal triggers.

On the one hand, we experimented with CRF,15 a probabilistic modelling frame-

work commonly used for sequence labelling tasks. In this work, we employed the
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CRFSuite implementation.a

On the other hand, we modelled trigger detection as a classification task, using

Support Vector Machines and Random Forests. More specifically, we employed the

implementation in Weka8,38 for RFs, and LibSVM4 for SVMs.

Furthermore, we evaluated the best model on BioCause and BioDRB, cross-

validated the models between BioCause and BioDRB and evaluated a model trained

on both corpora.

4. Results and discussion

Several models have been developed and 10-fold cross-evaluated to examine the

complexity of the task and the impact of various feature types (lexical, syntactic,

semantic). Table 1 shows the performance evaluation of baseline systems and other

classifiers. It should be noted that the dataset is highly skewed, with a ratio of

positive examples to negative examples of approximately 1:52.

Table 1. Performance of various
classifiers in identifying causal con-

nectives

Classifier P R F1

Dict 0.08 1.00 0.15

Depend 0.08 0.77 0.14

Synt 0.15 0.20 0.17
Dict+Depend 0.14 0.75 0.24

Dict+Synt 0.22 0.20 0.21
CRF 0.89 0.74 0.79

SVM 0.88 0.61 0.70

RandFor 0.78 0.67 0.72

Several baselines have been devised. The first baseline is a dictionary-based

heuristic, named Dict. A lexicon is populated with all annotated causal triggers

and then this is used to tag all instances of its entries in the text as connectives.

The precision of this heuristic is very low, 8.36%, which leads to an F-score of

15.43%, considering that the recall is 100%. This is mainly due to words and/or

phrases which are rarely used as causal triggers, such as and, by and that.

Based on the previously mentioned observation about the lowest common an-

cestor for all tokens in a causal trigger, we built a baseline system that checks all

constituent nodes in the lexical parse tree for the S, V, VP and ADV tags and marks

them as causal triggers. The name of this system is Depend. Not only does Depend

obtain a slightly lower precision than Dict, but it also performs worse in terms of

ahttp://www.chokkan.org/software/crfsuite
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recall. The F-score is 13.68%, largely due to the high number of intermediate nodes

in the lexical parse tree that have VP as their category.

The third baseline is a syntax-based approach, Synt. We extracted the syntactic

patterns from all triggers, creating a set of 167 unique patterns. After experimenting

with possible combinations of patterns to search for, the best performing pattern

was found to be V-C (verb-complementiser), which occurs in 20.45% of triggers. It

gives a precision of 14.61% and a recall of 20.45%, thus resulting in an F-score of

17.04%.

We then combined Dict and Depend : we considered only constituents that have

the necessary category (S, V, VP or ADV) and include a trigger from the dictionary.

Although the recall decreases slightly, the precision increases to almost twice that

of both Dict and Depend. This produces a much better F-score of 24.03%. Similarly,

the combination of Dict and Synt results in a precision of 21.88%, a recall of 20.45%,

and thus in an F-score of 21.14%.

Table 2. Effect of feature types on the causal trigger recognition.

CRF RF SVM

Features P R F1 P R F1 P R F1

Lex 0.89 0.67 0.74 0.78 0.68 0.73 0.81 0.61 0.69

Syn 0.92 0.69 0.76 0.68 0.62 0.65 0.83 0.56 0.67

Sem 0.87 0.63 0.69 0.84 0.57 0.68 0.85 0.57 0.68
Lex+Syn 0.88 0.73 0.79 0.77 0.66 0.71 0.86 0.54 0.67

Lex+Sem 0.90 0.69 0.76 0.79 0.68 0.73 0.82 0.61 0.70

Syn+Sem 0.87 0.73 0.78 0.72 0.64 0.68 0.84 0.55 0.67
Lex+Syn+Sem 0.89 0.74 0.79 0.78 0.67 0.72 0.88 0.54 0.67

Table 2 shows the effect of different feature types on CRFs, RFs and SVMs.

In the case of CRFs, as can be observed, the best performances, in terms of F-

score, including the previously mentioned ones, are obtained when combining all

three types of features, i.e., lexical, syntactic and semantic. The best precision and

recall, however, are not necessarily achieved by using all three feature types. The

best precision is obtained by using the syntactic features only, reaching over 92%,

almost 3% higher than when all three feature types are used.

As can be noticed, the best performance of RFs is obtained when combining

lexical and semantic features. Due to the fact that causal triggers do not have

a semantic mapping to concepts in the named entity and UMLS annotations, the

trees in the random forest classifier can easily produce rules that distinguish triggers

from non-triggers. As such, the use of semantic features alone produce a very good

precision of 84.34%. Also, in all cases where semantic features are combined with

other feature types, the precision increases by 0.5% in the case of lexical features

and 3.5% in the case of syntactic features. However, the recall of semantic features

alone is the lowest. The best recall is obtained when using only lexical features.
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For SVMs, we have experimented with two kernels, namely polynomial (second

degree) and radial basis function (RBF) kernels. For each of these two kernels,

we have evaluated various combinations of parameter values for cost and weight.

Both these kernels achieved similar results, indicating that the feature space is not

linearly separable and that the problem is highly complex.

The effect of feature types on the performance of SVMs is shown in Table 2.

As can be observed, the best performance is obtained when combining the lexical

and semantic feature types (69.85% F-score). The combination of all features pro-

duces the best precision, whilst the best recall is obtained by combining lexical and

semantic features.

As we expected, the majority of errors arise from sequences of tokens which

are only used infrequently as non-causal triggers. This applies to 107 trigger types,

whose number of false positives (FP) is higher than the number of true positives

(TP). In fact, 64 trigger types occur only once as a causal instance, whilst the aver-

age number of FPs for these types is 14.25. One such example is and, for which the

number of non-causal instances (2305) is much greater than that of causal instances

(1). Other examples of trigger types more commonly used as causal triggers, are

suggesting (9 TP, 54 FP), indicating (8 TP, 41 FP) and resulting in (6 TP, 14 FP).

For instance, example (2) contains two mentions of indicating, but neither of them

implies causality.

(2) Buffer treated control cells showed intense green staining with syto9 (in-

dicating viability) and a lack of PI staining (indicating no dead/dying cells or

DNA release).

We have also evaluated our feature set using the BioDRB corpus. This corpus

differs from the BioCause corpus in one important aspect: it does not contain any

semantic annotation related to named entities or events. This means that, for the

purpose of conducting experiments on the BioDRB in a similar manner, we need to

include a pre-processing step that recognises named entities.

For this, we used a simple method that augments the annotation with the named

entities present in the output of three named entity recognition tools (NERs), i.e.

Metamap, NeMine33 and OSCAR10. The types of entities in the output be each

of the three tools, together with the NE types present in the UK PubMed Central

(UKPMC)17, are summarised in Table 3.

UK PubMed Central is an article database that extends the functionality of

the original PubMed Central (PMC) repository.b Named entities in the UKPMC

database were identified using NeMine, a dictionary-based statistical named entity

recognition system. This system was later extended and used to recognise more

types, such as phenomena, processes, organs and symptoms.24 We used this most

bhttp://www.ncbi.nlm.nih.gov/pmc
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Table 3. Named entity types and their source.

Type UKPMC NeMine OSCAR

Gene X X
Protein X X
Gene—Protein X
Disease X X
Drug X X
Metabolite X X
Bacteria X
Diagnostic process X
General phenomenon X
Indicator X
Natural phenomenon X
Organ X
Pathologic function X
Symptom X
Therapeutic process X
Chemical molecule X
Chemical adjective X
Enzyme X
Reaction X

recent version of the software as our second source of more diverse entity types.

The Open-Source Chemistry Analysis Routines (OSCAR) software is a toolkit

for the recognition of named entities and data in chemistry publications. Currently

in its fourth version, it uses three types of chemical entity recognisers, namely

regular expressions, patterns and Maximum Entropy Markov models.

After augmenting the existing NEs by running the two NER tools on the corpus,

the outputs were combined to give a single “silver” annotation list. This operation

was performed by computing the mathematical union of the three individual anno-

tation sets, as shown in Eq. 1.

ASilver = AMetamap ∪ AOscar ∪ ANeMine ∪ AUKPMC (1)

For reasons of fairness, the gold standard semantic annotation in the BioCause

corpus has been removed and replaced with automatic NER results.

For the evaluation, we used the best performing algorithm and its parameter

settings, i.e. CRF with all three types of features. We created different models and

evaluated them in various ways, and the results of these tests are given in Table 4.

The first two columns of the table show the training corpus and the test corpus,

respectively, for that respective test. In the case of 10-fold cross validation, 10X is

used.

As can be observed, the model trained on the BioDRB corpus obtains a higher

precision than the one trained the BioCause. This is mainly due to the smaller set

of unique connectives present in the BioDRB. The recall is, however, lower, and,

overall, the F-score for the BioDRB model is 1% lower than the F-score for the

BioCause model.
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Table 4. Results of the evaluationwith BioDRB.

Train Test P R F1

BioCause 10X 0.84 0.69 0.74
BioDRB 10X 0.88 0.67 0.73

BioCause BioDRB 0.68 0.61 0.63

BioDRB BioCause 0.77 0.57 0.61
BioCause+BioDRB 10X 0.81 0.66 0.71

The second type of evaluation is a cross validation between the two corpora:

training is carried out on one and testing on the other. In the first case, we trained

a model on BioCause and tested it on BioDRB. The second case is the opposite,

training on the BioDRB and testing on BioCause. There are significant differences

in precision and recall between the two tests, but the resulting F-scores are approxi-

matively equal. The precision is lower in the first case by 5%, whilst the recall is 4%

lower because of the wider variety of causal triggers that are present in BioCause

and do not occur in BioDRB.

Finally, we trained CRF on the combination of the BioCause and BioDRB

corpora. The results of the 10-fold cross-validation are slightly worse than those

achieved for each of the individual corpora, but much better than for the cross eval-

uation between the two corpora. It can be noticed that both precision and recall

are moderately lower than those obtained for each of the two corpora.

We also hypothesised that an increase in the size of the training data increases

the performance. Therefore, we extracted random subsets of the combined corpus

at various percentages. For each of the six corpus sizes, varying from 50% to 100%

in intervals of 10%, we created five random subsets. These subsets have been 10-

fold cross-validated using the best performing algorithm and its parameter settings,

CRF with all three types of features.

Fig. 3 shows the F-score achieved for each of the 30 evaluated subsets with

circles. Also depicted is a thick black line that shows the second-degree polynomial

increase of the F-score trend. The co-efficient of determination, R2, which shows

how closely the trendline fits with the data points, has the value of 0.9761, indicating

that the trend line is very reliable.

Furthermore, we tested the statistical significance of this increase by using the

Anova Single Factor test. At an α of 0.05, we obtained an Fstatistic = 15.12, much

larger than the corresponding Fcrit = 2.62, a fact which rejects the null hypothesis

that all the F-scores are equal in favour of the alternate hypothesis that at least two

of the means are different. The resulting p-value is 9.53E-7, which again allows us to

reject the null hypothesis. Taken together, these results strengthen our hypothesis

that the more data there is, the better the system performs.
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Fig. 3. F-score distribution and trend for the various subsets of the combination of BioCause and

BioDRB.

5. Concluding remarks

We have described our approach to automatically recognising triggers of causal dis-

course relations in biomedical scientific text. The complexity of this task has proven

to be very high, posing many challenges. Shallow approaches, such as dictionary

matching and lexical parse tree matching, perform extremely poorly, with F-scores

of approximately 15% each and 24% when combined, due to the high ambiguity of

causal triggers. We have explored various algorithms that automatically learn to

distinguish tokens into triggers or non-triggers and we have evaluated the impact

of multiple lexical, syntactic and semantic features. The performance obtained by

SVMs shows that the task of identifying causal triggers is indeed complex. The best

performing classifier is CRF-based and combines lexical, syntactical and semantic

features in order to obtain a final F-score of 79.35%.

Furthermore, we tested our feature set on another corpus, BioDRB, in order

to check whether a data insufficiency problem exists and, if so, estimate the op-

timal amount of necessary data. We discovered a polynomial increase in F-score

when the two datasets are combined. Thus, it might be necessary to produce more

gold standard data by employing experts or to develop a method for automatically

bootstrapping more data as accurately as possible.

As future work, more evaluations against the general domain need to be per-

formed, in order to establish the differences in expressing causality in the biomedical

domain. One possible source for this is the PDTB corpus. This will allow researchers

to easily take off-the-shelf end-to-end discourse parsers produced for the general do-

main and adapt them to biomedicine.

A more difficult task that needs attention is that of identifying implicit triggers.
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These occur much more rarely than explicit triggers, but their role is as important.

Finally, our system needs to be extended in order to identify the two arguments

of causal relations, the cause and effect, thus allowing the creation of a complete

discourse causality parser.
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