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Abstract

Onset-embedded words (e.g. cap in captain) present a problem for
accounts of spoken word recognition since information coming after
the offset of the embedded word may be required for identification. We
demonstrate that training a simple recurrent network to activate a
representation of all the words in a sequence allows the network to
learn to recognise onset-embedded words without requiring a training
set that is already lexically segmented. We discuss the relationship
between our model and other accounts of lexical segmentation and
word recognition, and compare the model’s performance to
psycholinguistic data on the recognition of onset-embedded words.

1 Introduction

A significant problem for both human and machine speech recognition is how to
determine the location of boundaries between lexical items or words. Connected
speech does not contain gaps between words analogous to the spaces in written text
[1], nor are there any explicit cues that reliably mark the position of boundaries
between words [2]. Accounts of how listeners segment the speech stream during
spoken word recognition can be divided into two broad classes. The first is based on
the use of sub-lexical cues that can identify word boundaries prior to, or in the
absence of, lexical access to words in the speech stream. Examples of cues that have
been suggested in the literature include, prosodic [3], metrical [4] or phonotactic [5]
regularities, or some combination of these [6,7]. However, since these cues are
unable (either singly or in combination) to reliably identify all word boundaries, a
second class of account has also been proposed suggesting that for adult listeners,
the recognition of individual words contributes to lexical segmentation. We will
focus on this second class of account here.

In theories of lexical access, most notably the cohort model [8], the recognition of
connected speech is argued to proceed in a maximally efficient manner, i.e. words are
identified as soon as they become uniquely specified in the speech stream. By this
account, many words can be recognised before their offset, and word boundaries can
be predicted for the offset of the current word. However, the presence of large
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numbers of words which are not unique at their offset [9] presents a challenge to
lexical accounts of segmentation. At the offset of a word such as cap, the
recognition system may be unable to distinguish this word from longer competitors
(such as captain or captive) and may therefore be unable to reliably locate a word
boundary. This seems to require that the recognition of onset-embedded words be
delayed until after a word boundary, when longer competitors can be ruled out. This
is supported by experiments showing that monosyllables are commonly not
recognised until after their acoustic offset [10,11]. Such results have been taken as
evidence that no sequential recognition system is capable of recognising onset-
embedded words.

1.1 Connectionist accounts of spoken word recognition

Connectionist models of spoken word recognition illustrate many of the problems
associated with different accounts of lexical segmentation. Simple recurrent networks
[12], trained to map sequences of phonetically coded segments to a lexical
representation of the current word [13, 14], show maximally efficient recognition of
words in connected speech. During recognition, the network produces parallel
activation of lexical representations for all the words that match the current input. So
for the input sequence /kæptI/ (matching both captain and captive), a network
trained to represent the lexical identity of words in the input will activate a blend of
the representations of both words. In producing this parallel activation, the network
activates the arithmetic mean of the output representations of all the words that
match the speech input. Consequently, the network only fully activates a single
lexical representation when the speech stream uniquely identifies a word.

However, since these networks are trained to activate a representation of the
current word in a sequence, they are unable to correctly identify onset-embedded
words such as cap. For these items, the speech stream only uniquely identifies such
words after a lexical boundary, by which point the network will be activating a
representation of the following word. Therefore at no point in the speech stream will
the network fully activate the lexical representation of an onset-embedded word.

An alternative account of the time course of lexical activation in spoken word
recognition is used in interactive activation models such as TRACE [15]. In these
models, mutually inhibitory connections between lexical units that share segments
produce partial activation of multiple candidates that match the speech input. Since
these inhibitory connections cross potential word boundaries, the network can use
following contexts (that rule out longer competitors) to account for the delayed
recognition of onset-embedded words.

However, the architecture used in TRACE is computationally inefficient since it
relies on duplicating units and connections to code for different time slices.
Consequently Shortlist [16] combines the bottom-up activation of lexical candidates
in a recurrent network with a competition network ‘re-wired on the fly’ to account for
the recognition of onset embedded words. Effective as this hybrid model may be [17],
it remains of interest whether the approach used in the recurrent network simulations
(where effects of competition are a result of the network evaluating the conditional
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probability of different words at each point in the speech stream) can also be used to
account for the delayed recognition of onset embedded words.

Content and Sternon [18] show that adding a set of output units representing the
previous word in a sequence (as well as the current word) allows a simple recurrent
network to recognise onset-embedded words. The additional output task ensures
that the network continues to represent hypotheses regarding the identity of
previous words in the speech stream, and is therefore able to revise its output using
following context. This allows the network to display appropriately delayed
recognition of onset embedded words. However as in previous SRN simulations, the
target vector is changed at each word boundary. Thus the training regime requires
specification of the location of word boundaries in the speech stream, as well as the
identity and order of occurrence of the lexical items divided by these boundaries.
This is unrealistic since it assumes that the language learner has access to a lexically
segmented corpus in which correspondences between the speech stream and lexical
items are already known. The goal of the work that we shall be reporting here is to
investigate whether simple recurrent networks can be trained to lexically segment
speech and recognise onset-embedded words without requiring a pre-segmented
training set. We assume that in the early stages of vocabulary acquisition children
are mapping whole utterances onto their interpretation of the world.

2 Learning to segment connected speech

The simple recurrent networks [12] investigated here were given the task of mapping
sequences of phonemes to a representation of all the words contained in those
sequences [19]. To allow easier interpretation of the network’s output, this
representation is composed of localist lexical units, each representing a word in the
network’s vocabulary. However, in contrast to previous simulations, the training set
does not contain any explicit information about which segments in the speech stream
map onto lexical items (i.e. the locations of word boundaries is not given). Nor is
there any information about the order in which words occur in the training
sequences. The target activation for the network remains static throughout an
sequence; the network being trained to activate the lexical units for all the words in
the input. A psychological account of this mapping is that the network is building an
interpretation of each sequence of lexical items. By this account, the network must
preserve a representation of words that have already been identified, as well as
activating lexical representations for words as they occur in the input.

Since the network is unable to activate units representing the final words in a
sequence until those words have been presented in the input, we cannot expect the
network to learn the training set to perfection. However, as in networks learning to
predict the next segment in an utterance, distinctions between the task on which the
network is trained, and the performance of the network when tested may help provide
a fully elaborated psychological account [6]. In the case of the networks investigated
here, the immediate task for the network is to associate strings of phonemically
coded segments with a representation of the lexical items contained in that sequence.
During testing however, we will be interested in comparing the time-course of
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activation of individual lexical items with available psycholinguistic data on the
recognition of words in connected speech. The architecture of the network and the
training regime are illustrated in Figure 1.

An important issue in justifying any psychological model involving supervised
learning is to elaborate where the training information comes from. As in other
models of word learning [20] we assume that vocabulary acquisition involves
learning a mapping from form to meaning. However, in contrast to these accounts
(and previous models of spoken word recognition [13,14]) we do not assume that
correspondences between the speech stream and lexical or semantic representations
are available to the learner on a one to one basis. The assumption made in this model
is that a substantial part of the problem of vocabulary acquisition is to extract these
correspondences from experience of spoken words and the meanings of sequences
of those words [21]. The specific implementation of this assumption - that all words
in a sequence have lexical representations as targets during training - is less
theoretically vital. It is likely that only a subset of the words in any utterance have an
obvious interpretation during acquisition. Nonetheless the idea that
correspondences between the speech stream and lexical/semantic representations are
learnt from experience of sequences of words where meanings must be assigned to
lexical items (instead of being pre-specified) is an important part of this model.
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Figure 1: Simple recurrent network architecture used for these simulations showing a
snapshot of training activations during the segment /t/ in the sequence “lid tap

lock”.
Throughout each training sequence, the target for the network is to activate a

representation of all the words in that sequence, not just the current word.
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2.1 Training sets

For all the simulations reported here, the training set was constructed from an
artificial language containing 7 consonants and 3 vowels coded over a set of 6
phonetic features [22]. These segments were placed in a CVC syllable template used
to create a vocabulary of 20 lexical items. Of these 20 words, 14 were monosyllables
and 6 bisyllables. To allow investigation of the time course of recognition, lexical
items varied in the point at which they became unique from all other words in the
networks vocabulary. The simulations included ‘cohort’ pairs such as lick and lid,
that share the same onset and become unique on their final segment, as well as two
pairs of onset-embedded words (e.g. cap and captain) where the monosyllable is not
uniquely identifiable until following context rules out longer competitors. There were
also two pairs of offset-embedded words (lock and padlock ) to allow comparison of
the network’s sensitivity to preceding and following context in the recognition of
embedded words. These vocabulary items are shown in Table 1.

Type Word Phonology Word Phonology
Onset-Embedded Bi. captain /kæptIn/ bandit /bændIt/
Offset-Embedded Bi. topknot /topnot/ padlock /pædlok/
Non-Embedded Bi. landed /lændId/ picnic /pIknIk/

Onset-Embedded Mono. cap /kæp/ ban /bæn/
Offset-Embedded Mono. knot /not/ lock /lok/

Cohort Monosyllable dot /dot/ dock /dok/
lick /lIk/ lid /lId/

Non-Embedded Mono. tap /tæp/ bat /bæt/
knit /nIt/ cat /kæt/
pot /pot/ bid /bId/

Table 1: Vocabulary items used in these simulations

These 20 words were randomly selected without replacement to create sequences
of between 2 and 4 words in length, separated by a boundary marker (zero input and
output vectors). No attempt was made to capture higher-order distributional
regularities such as syntactic or constituent structure, however a subset of word
pairs were held back during training to allow testing of the networks generalisation
performance. These sequences of were presented to a simple recurrent network (6
inputs, 50 hidden units with copy-back connections, 20 outputs) trained to activate
lexical units for all the words in the current utterance. Weights were updated by the
standard back-propagation algorithm following the presentation of every input
segment (learning rate = 0.02, no momentum, cross-entropy error).

In preliminary simulations we found that changes to the bias weights on the
output units were considerably larger than those to weights connecting the output
and hidden units. This is caused by repeated weight updates with the same target
pattern. To allow larger learning rates in these simulations, bias weights were
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disconnected from the output units in subsequent simulations*. Training time apart,
results were comparable to simulations that included bias weights to the output
units.

2.2 Results

Ten simulations were carried out using the network architecture and training regime
described above. Each network was trained on 500 000 sequences using small,
random initial weights and different seeds for generating the training sequences.
Figure 2 shows the activation of target words for an example sequence averaged over
10 fully trained networks. As can be seen in the graph, the network partially activates
words as segments are presented at the input. Words become fully activated when
they are uniquely specified in the speech stream, and once identified remain active
until the end of the sequence. Such behaviour indicates that the network has learnt
to lexically segment the speech stream by associating sections of the speech with the
corresponding lexical units. During training, the network was not provided with
explicit cues to the location of word boundaries or with information about which
segments make up individual lexical items. However, by generalising its experience of
different sequences, the network has learnt correspondences between the speech
stream and lexical items. This is illustrated by the network’s identical pattern of
performance on sequences that were held back during training.

                                                                
* Thanks to Gary Cottrell for suggesting this
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Figure 2: Activation of target words during the sequence "lid tap lock".
The network activates words as they are presented in the input and preserves their

activation until the end of the sequence. Error bars are 1 standard deviation.
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2.2.1. Onset-embedded words

A systematic comparison of the partial activation observed for lexical items with
different competitor environments is shown in Figure 3. The left hand chart shows
the pattern of activation observed for items with cohort competitors (in this case lick
and lid). As can be seen, output activations in the network approximate the
conditional probabilities of partially matching lexical candidates [23]. Thus at the
onset of lid (where three candidates match the input) each competing word is
activated to just over 0.3. On presentation of the second segment, when two
candidates match, each item is activated to approximately 0.5. It is only at the offset
of lid that full activation is obtained at the appropriate lexical unit. Recent work using
cross-modal semantic priming [24] is consistent with this account since the
magnitude of priming observed for ambiguous word fragments is proportional to the
conditional probability of the prime word in that cohort environment.

Figure 3: Activation of targets and competitors
(a) Cohort competitors (lid/lick ) during the sequence “lid pot”

(b) Embedded words (cap/captain) during the sequence “cap lid”

The pattern of activation for cohort members is repeated almost identically in
Figure 3(b) for onset-embedded words. At the offset of the monosyllable, the
matching lexical items (cap and captain) are equally activated. It is only at the onset
of the following word (lid) that the network receives disambiguating input (since the
input mismatches with captain) and fully activates the target word cap. The network
displays the optimal pattern of activation for ambiguous inputs, regardless of
whether the ambiguity is resolved within a lexical item or following a word boundary.
Such behaviour is comparable to experimental results from gating [10] since the
network predicts that the identification of onset-embedded words requires post-
offset information. Efficient recognition of embedded words like cap therefore does
not require mutually inhibitory connections between competing lexical items.
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These simulations support an account of segmentation in which post-offset
mismatch with longer competitors plays an important role in the recognition of
embedded words. But what is the pattern of activation displayed by the network
when such mismatch is absent? Figure 4 shows the network’s response in two such
cases. The first example (4a) is where the network is presented with an item that
contains a word embedded at the onset (for example captain). In this case the
network strongly activates the longer competitor following the offset of the
embedded word. However, in the ‘lexical garden path’ case in Figure 4(b), where the
onset of the continuation matches the longer competitor, (e.g. cap tap) the network
is still able to revise its lexical hypotheses in response to mismatch between the
speech stream and the longer competitor. Further simulations showed that the
network retained the ability to correctly resolve these lexical garden paths even when
such sequences were not presented to the network during training. The disruption
produced at the onset of the second word (tap) has also been confirmed in gating
and cross-modal priming experiments using similar stimuli [25].

Figure 4: Activation of targets and competitors during sequences containing
(a) Bisyllables with embeddings (captain/cap) during “captain”

(b) Lexical ‘garden paths’ (cap/captain) during “cap tap”

2.2.2. Offset embedded words

The final set of results shown for these networks concern the identification of offset
embedded words. By the account proposed in the original cohort theory [8] (where
only words sharing the same onset are jointly activated) it would be predicted that
the network would not activate offset-embedded words (e.g. lock  in padlock ) during
recognition. Such a pattern of performance is illustrated in Figure 5. In contrast to the
networks performance for onset-embedded words, the network is clearly capable of
rejecting offset-embedded words during recognition.
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Figure 5: Activation of targets and competitors during sequences containing
(a) Bisyllables with offset embeddings (padlock/lock ) during “padlock”

(b) Offset embedded words (lock/padlock ) during “lid lock”

Empirical evidence on the activation of offset embedded words is unfortunately
less clear. Several studies [26,27] report obtaining significant priming from offset-
embedded words to an associatively related target (e.g. trombone primes RIB, via
bone) though other experiments have failed to replicate this finding [28,29]. However,
no results reported so far are inconsistent with the pattern shown in this network
(and in models such as TRACE), where offset-embedded words receive substantially
less activation that the longer words in which they are embedded.

3 Conclusions

The network described here learns to implement the maximal efficiency assumption in
recognising words in sequences. Unlike previous accounts using simple recurrent
networks [13,14], the network is able to deal with temporally ambiguous input not
only where the ambiguity is  resolved within a word, but also where post-offset
information is required for recognition (as is the case for onset-embedded words). In
recognising onset-embedded words the network displays an optimal compromise
between partial activation of words for which the input is still ambiguous and full
activation for unambiguous input. This holds even in cases where the network is
presented with lexical garden-path sequences, where segments after the offset of an
embedded word continue to match the longer competitor.

Furthermore, unlike previous simulations [18] the network is trained on input that
does not contain any information about the location of word boundaries. We are
therefore justified in claiming that the system is ‘learning’ lexical segmentation. At
least for this limited training set, correspondences between form and meaning do
provide a means by which a network could learn to identify individual words in
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connected speech. Further simulations are required to investigate whether this
method remains effective for more realistic vocabularies.

In making this claim we do not wish to suggest that this is the only means by
which segmentation can be learnt. The results obtained by self-supervised and
unsupervised methods [6,7] suggests that distributional analysis plays an important
role in discovering lexical units in connected speech. Indeed, empirical evidence
suggests that infants are capable of rapidly extracting distributional information from
artificial speech before they have any knowledge of individual words [30]. However
distributional analysis may operate more effectively in conjunction with mappings
that identify meaningful units in connected speech. Further simulations, not reported
here suggest that the architecture investigated here provides an ideal environment in
which to explore the relationship between distributional analysis and lexical
identification in the learning of segmentation. We show that adding a temporal auto-
encoder mapping (an output trained to predict the next segment in the input)
significantly speeds the network’s acquisition of the recognition task. Further
investigation of these networks’ training profiles may therefore help to clarify the
role of distributional analysis and pre-lexical segmentation cues in vocabulary
acquisition.

3.1 Representational assumptions

The ability of these networks to recognise onset-embedded words is a direct
consequence of using a target representation which preserves information about
previous words in the speech stream. Instead of this representation changing with
each word onset as in prior simulations [18], the target activation remains constant
throughout each sequence of words. By using a representation that is static with
respect to the speech stream, the network learns to segment speech into lexical units
through extracting correspondences between form and meaning across different
sequences. It is these correspondences that we consider to be the essence of lexical
representation.

In constructing the output representations for these simulations we have used
localist lexical units. Although the use of localist representations have considerable
benefits in terms of ease of interpretation, they also introduce the unrealistic
assumption that a word’s lexical representation is categorical and invariant.
Distributed output representations would allow the network to extract invariant
representations from noisy and contextually variable meanings.

However, it is no straightforward matter to re-implement networks of this type
using a distributed output representation. The useful property of localist lexical
representations is that they provide a simple solution to the problem of how to
activate multiple representations (of all the words in a sequence) whilst preserving
similarity between the representation of the same lexical item in different positions. In
a distributed scheme where lexical representations are non-orthogonal, multiple
activation produces blend states with accompanying limitations on representational
capacity [31]. To be able to use distributed representations we require some means of
reducing the overlap between the lexical representation of different words, while at
the same time preserving the similarity between the representation of the same lexical
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item occurring in different positions. One such method would be to use a role/filler
‘sentence gestalt’ output [19] or a tensor product representation [32]. Such
representations would also permit the incorporation of syntactic and constituent
structures into these networks.

3.2 Comparing competing accounts

Having demonstrated the success of our model in learning to recognise onset-
embedded words, it would be of interest to compare this model with previous
accounts of spoken word recognition that incorporate lexical level competition
[15,16]. This is made more difficult by the additional free parameters available in
interactive activation models. However, one prediction made by both TRACE and
Shortlist is that in recognising onset-embedded words greater competition between
units representing long words (e.g. competition between captain and captive) would
produce a short word advantage for input that was ambiguous between a short and a
long word*. As can be seen in Figure 3, the networks investigated here produce
lexical activations that approximate the conditional probabilities of all words that
match the input, regardless of length. So for onset-embedded words such as cap and
captain that occur with equal frequency in the training set, the network predicts
equal activation of both candidates at the offset of cap.

Empirical evidence on this issue is inconclusive at present, particularly given the
presence of acoustic cues such as vowel duration that distinguish the syllables of
short and long words [25]. Indeed it may be that providing a psychologically realistic
account of subjects sensitivity to duration differences in the speech stream presents
a substantial challenge to accounts both with and without lexical competition.
However the clear prediction made by recurrent network accounts (that responses to
ambiguous input represent conditional probabilities) suggests that these models will
reward future investigation. Further simulations are therefore required to investigate
whether recurrent network models are able to account for the range of experimental
data proposed as evidence for lexical competition.
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