
 Open access Proceedings Article DOI:10.1145/1321440.1321540

Recognition and classification of noun phrases in queries for effective retrieval
— Source link

Wei Zhang, Shuang Liu, Clement Yu, Chaojing Sun ...+2 more authors

Institutions: University of Illinois at Chicago, Ask.com, Broadcom, Microsoft ...+1 more institutions

Published on: 06 Nov 2007 - Conference on Information and Knowledge Management

Topics: Noun phrase, Phrase, Document retrieval and Proper noun

Related papers:

 An effective approach to document retrieval via utilizing WordNet and recognizing phrases

 A Markov random field model for term dependencies

 A language modeling approach to information retrieval

 Noun phrase recognition by system combination

 Towards Arabic Noun Phrase Extractor (ANPE) Using Information Retrieval Techniques

Share this paper:

View more about this paper here: https://typeset.io/papers/recognition-and-classification-of-noun-phrases-in-queries-
nw10jb4tyu

https://typeset.io/
https://www.doi.org/10.1145/1321440.1321540
https://typeset.io/papers/recognition-and-classification-of-noun-phrases-in-queries-nw10jb4tyu
https://typeset.io/authors/wei-zhang-4hzq629udu
https://typeset.io/authors/shuang-liu-27nwn0650s
https://typeset.io/authors/clement-yu-mdh0cu0n28
https://typeset.io/authors/chaojing-sun-pp861h1lfu
https://typeset.io/institutions/university-of-illinois-at-chicago-2kgm2xd9
https://typeset.io/institutions/ask-com-1lb5wxg5
https://typeset.io/institutions/broadcom-35waeg40
https://typeset.io/institutions/microsoft-2lvqci8u
https://typeset.io/conferences/conference-on-information-and-knowledge-management-3a3vye8c
https://typeset.io/topics/noun-phrase-1fftdbsj
https://typeset.io/topics/phrase-dokm9ybj
https://typeset.io/topics/document-retrieval-irynqcp4
https://typeset.io/topics/proper-noun-3qysq5vk
https://typeset.io/papers/an-effective-approach-to-document-retrieval-via-utilizing-z2lnz99mui
https://typeset.io/papers/a-markov-random-field-model-for-term-dependencies-1h28ggge6w
https://typeset.io/papers/a-language-modeling-approach-to-information-retrieval-4sgjii04y3
https://typeset.io/papers/noun-phrase-recognition-by-system-combination-4liqfp0k34
https://typeset.io/papers/towards-arabic-noun-phrase-extractor-anpe-using-information-ptd7set1fq
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/recognition-and-classification-of-noun-phrases-in-queries-nw10jb4tyu
https://twitter.com/intent/tweet?text=Recognition%20and%20classification%20of%20noun%20phrases%20in%20queries%20for%20effective%20retrieval&url=https://typeset.io/papers/recognition-and-classification-of-noun-phrases-in-queries-nw10jb4tyu
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/recognition-and-classification-of-noun-phrases-in-queries-nw10jb4tyu
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/recognition-and-classification-of-noun-phrases-in-queries-nw10jb4tyu
https://typeset.io/papers/recognition-and-classification-of-noun-phrases-in-queries-nw10jb4tyu

Recognition and Classification of Noun Phrases in Queries
for Effective Retrieval

1Wei Zhang, 2Shuang Liu, 1Clement Yu, 3Chaojing Sun, 4Fang Liu, 5Weiyi Meng
1
Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607, USA

{wzhang,yu}@cs.uic.edu
2
Ask.com

Edison, NJ 08837, USA

shuang.liu@ask.com

3
Broadcom Corporation

San Diego, CA 92128, USA

chaojing@gmail.com
4
Live Search, Microsoft

Redmond, WA 98052, USA

fangliu@microsoft.com

5
Department of Computer Science

Binghamton University
Binghamton, NY 13902, USA

meng@cs.binghamton.edu

ABSTRACT

It has been shown that using phrases properly in the document

retrieval leads to higher retrieval effectiveness. In this paper, we

define four types of noun phrases and present an algorithm for

recognizing these phrases in queries. The strengths of several

existing tools are combined for phrase recognition. Our algorithm

is tested using a set of 500 web queries from a query log, and a set

of 238 TREC queries. Experimental results show that our

algorithm yields high phrase recognition accuracy. We also use a

baseline noun phrase recognition algorithm to recognize phrases

from the TREC queries. A document retrieval experiment is

conducted using the TREC queries (1) without any phrases, (2)

with the phrases recognized from a baseline noun phrase

recognition algorithm, and (3) with the phrases recognized from

our algorithm respectively. The retrieval effectiveness of (3) is

better than that of (2), which is better than that of (1). This

demonstrates that utilizing phrases in queries does improve the

retrieval effectiveness, and better noun phrase recognition yields

higher retrieval performance.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content Analysis

and Indexing – dictionaries, linguistics processing. H.3.3

[Information Storage and Retrieval]: Information Search and

Retrieval – query formulation.

General Terms

Algorithms, Design, Experimentation.

Keywords

Information Retrieval, noun phrases, proper noun, dictionary

phrase, simple phrase, complex phrase, feedback, verification.

1. INTRODUCTION
The objective of this paper is to detect various types of multi-

word noun phrases in a query. In this paper, we consider the

queries that are short and similar to typical web search queries.

The detected noun phrases are used to interpret the original query

in order to improve retrieval effectiveness. Noun phrases are

classified into four categories: (1) proper noun; (2) dictionary

phrase; (3) simple phrase and (4) complex phrase. A proper noun

(PN) refers to the name given to a person, place, event, group or

organization, etc., for example, “Tom Smith”. Dictionary phrases

(DP) are the noun phrases defined in dictionaries, but not proper

nouns, for example, “computer monitor”. Both the simple noun

phrase (SNP) and complex noun phrase (CNP) are the noun

phrases that are grammatically correct, used in the daily language,

but not formally defined in dictionaries. We require SNP to

contain exactly 2 words and CNP to contain three or more words;

for example “small car” is an SNP and “local movie theater” is a

CNP. The reason for recognizing phrases in queries, and

classifying them into the four types, is that noun phrases are

known to be very helpful for document retrieval [1][4][16][28]. A

recent paper [20] shows that proper use of these four types of

phrases yields significantly higher effectiveness in document

retrieval than just using the individual query words. Zhou, et. al

[33] reported that the use of concepts, which are equivalent to

phrases, in biomedical IR also resulted in higher retrieval

effectiveness than just using individual query terms. Our work

converts the original query from a set of words to phrases in order

to improve document retrieval performance. In this paper, we

utilize the following tools:

(i) Wikipedia [32] is a comprehensive online encyclopedia. It is

used to recognize proper nouns and dictionary phrases.

(ii) WordNet [12] is an electronic dictionary. It is used to

recognize dictionary phrases and certain proper nouns.

(iii) Minipar [18] is used to recognize proper nouns.

(iv) Collins parser [9] is used to recognize SNP and CNP.

(v) Google [14] is used to recognize some proper nouns and to

collect documents to provide some statistics. Actually,

Google is used as a large document collection. Any search

engine, which has the property of ranking documents that

have a set of query words in a small window size, ahead of

documents that either have a proper subset of the query

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CIKM’07, November 6--8, 2007, Lisboa, Portugal.

Copyright 2007 ACM 978-1-59593-803-9/07/0011...$5.00.

711

words, or have the words in a larger window, is sufficient for

our purpose.

We apply Wikipedia, WordNet, Minipar and Google to detect

PNs and DPs in the queries. We use a document collection to test

if these PN/DPs are really used in the real world. They are

discarded if not found in the documents. Then the SNPs and

CNPs are searched in the queries. These two types of phrases are

grammatically correct, used in daily language, but do not have

entries in dictionaries. Collins parser and some statistical

techniques are used to detect the SNP/CNPs. This includes

detecting the shorter noun phrases embedded in longer noun

phrases. For example, a query “Orlando travel agents” is a CNP.

“Travel agents” is a SNP. Both need to be recognized. Our

algorithm is tuned using a set of 400 web queries randomly

selected from a web query log. It is tested on another set of web

queries and a set of multi-word TREC query titles. The

contributions of this paper are

(i) The evaluation of various tools and their combinations for

their effectiveness on noun phrase detection task.

(ii) The analysis of the errors made by each tool.

(iii) The development of an algorithm that combines

different tools for noun phrase recognition in short queries.

(iv) An operational system that yields higher noun phrase

recognition accuracy than a baseline system.

(v) Experimental results show that recognizing phrases in queries

improves document retrieval effectiveness.

The rest of this paper is organized as follows. Section 2 describes

the PN/DP recognition algorithm. The SNP/CNP recognition is

explained in Section 3. Experimental results are reported in

Section 4. Section 5 reviews the related works. Conclusions are

given in Section 6.

2. RELATED WORKS
Phrases have been used in document retrieval [1][4][16][20].

Higher retrieval effectiveness over the individual word method

has been reported.

Lima et al [17] studied the proper noun and phrase recognition

problem. They used the EM algorithm to estimate the parameters

of a probabilistic context-free grammar (PCFG), given a large

Web query log and a hand-written context-free grammar. The

PCFG was utilized to compute the most probable parse for a

query, which was then employed for phrase recognition. They

studied on the company names, human names and other short

Web queries, where company and human names could fit in our

PN category, and other queries could fit in our SNP/CNP

categories.

Mihalcea and Moldovan [24] claimed that the implicit phrases

were recognized but technical details were not provided.

Florian, et al [13] presented a classifier-combination framework

for named entity recognition. Four statistical classifiers are

combined. Also, additional dictionary data and two more

classifiers are combined. The best f-scores on the training set and

the test set are 93% and 88% respectively. Florian’s system

mostly focuses on named entity (PN) recognition, while ours also

finds the ordinary phrases (SNP and CNP) because we aim to

provide general phrases to document retrieval systems.

Evans and Zhai [10] extracted meaningful short noun phrases

from documents by using both corpus statistics and linguistic

heuristics. The performance of their system on the noun phrase

recognition was not directly reported. Instead, they compared and

reported the document retrieval results of (1) using and (2) not

using the recognized noun phrases. The system was tested on

TREC-1993 queries 51-100. The setup (1) improves the

precisions at all the document levels over (2), 13% improvement

at 5-doc level, 6% at 10-doc level and 7% at 15-doc level, etc.

Lin [19] only uses Minipar and WordNet for conference name

recognition. We not only add another tool, Wikipedia, but also

expand the conference name to various types of proper nouns.

The following aspects of our work appear to be novel: (1) we

integrate different strategies into a unified algorithm to recognize

different types of noun phrases, (2) Minipar, Wordnet Wikipedia

and a large document collection are used jointly to find different

types of proper nouns. (3) Phrase verification is carried out at the

statistical level, validating whether a sequence of words is

commonly used as a whole in the real world. The document

collection is also used to determine which of two overlapping

phrases is the desired one.

3. PROPER NOUN AND DICTIONARY

PHRASE RECOGNITION
The PN/DP recognition algorithm recognizes proper nouns (PN)

and dictionary phrases (DP) in a query. The pseudo code is given

in Figure 1.

Figure 1. Algorithm for PN/DP recognition

From line 2 to line 20, given an n-word query p (w1 w2 … wn), the

PN/DP recognition starts from p itself (n-word candidate, a string

of n consecutive words in the original query); if failed, it searches

in the (n-1)-word sub-phrases of p; this process repeats until

712

reaching the 2-word candidates. We call the searches among the

x-word candidates the “level-x” search. A recognized PN/DP is

called a “level-x potential PN/DP”, because they still need to be

verified. We do not consider the case of two words, which are not

in consecutive position, forming a phrase. For example,

“computer price” is not examined as a candidate given a query

“computer monitor price”.

is_wiki_PN(p). In line 6, function is_wiki_PN(p) uses Wikipedia

to check if a phrase candidate p is a PN. A PN should be defined

in a dictionary if it is well known, and should have all of its

content words capitalized. When p is submitted to Wikipedia, a

definition page should be returned if p is defined. We require that

the first instance of p in the main body of that page have all its

content words capitalized, in order to label p as a Wikipedia PN.

We emphasize the “main body of the page” because the words in

the page title are usually capitalized regardless of their types.

is_wiki_DP(p) is similar to is_wiki_PN(p) but the p needs not to

be capitalized in the Wikipedia text in is_wiki_DP(p).

is_wn_PN(p). In line 6, this function uses WordNet as another

dictionary to check if p is a PN. If (1) WordNet recognizes p as a

defined noun phrase; (2) one of the p’s hypernyms in WordNet is

a city, province, country, organization, geographical area, person

or a syndrome; and (3) the content words of p in its WordNet

definition are capitalized, p is labeled as a WordNet PN.

is_wn_DP(p) recognizes p as a DP if it is defined in WordNet but

not qualified as a WordNet PN.

is_minipar_PN(p). In line 7, this function uses Minipar to check

if p is a PN. If Minipar gives p a “PN” label, or one of the labels

of “person”, “country”, “corpname”, “location”, “corpdesig”,

“fname”, “gname”, “date”, which refer to people, location,

organization, family name, given name and dates, respectively,

the p is labeled as a Minipar PN. Minipar is only used to

recognize PN but not for DP, because it is not a pure dictionary.

Some of its decisions are made based on grammatical rules.

is_Name(p). In line 7, this function uses a list of first names, a list

of last names, and several name-written patterns to detect names

of persons. This is necessary because the names of the ordinary

people are hardly defined in dictionaries. In our implementation,

we use the name lists from the U.S. Census Bureau, because

currently we only test our algorithm using documents written in

English. The patterns we adopt are “first name initial, last name”,

“first name initial, middle name initial, last name”, “first name,

middle name initial, last name”, “first name, last name”. This

function is fired if a whole query itself matches any of the

patterns, while other tools can not recognize any PN/DP in this

query. During the algorithm tuning, we tried to apply this function

to parts of the queries. But it gave us many false positives. So we

decided to only apply it to a whole query.

is_doc_PN(p). In line 7, this function detects the less-famous

proper names in a query, such as less well-known people,

organizations, or locations that are not indexed in dictionaries.

This is necessary as is_Name() only detects names of persons. A

phrase candidate p is searched in a document collection. If at least

three instances of p are found in documents, such that (1) All non-

stop words in these instances are capitalized, (2) None of the

instances is a sub-string of a longer string, which has all the non-

stop words in capitalized form. (3) At least one of the instances is

not a sub-string of a longer proper noun. Then we say p is a PN

recognized in a document collection. In our implementation, we

submit p to Google. The actual pages of the top 10 returned

documents serve as the document set.

We need to emphasize that we use Google as a huge document set

and use it to give essential statistics to our system when making a

decision. Any document retrieval system, which can return

documents that have a set of specified words appeared in the

smallest text window ahead of documents having the set of words

in larger window sizes, can be used. Using a large text corpus to

get statistics is common in IR. The system in [6] use locally

stored static corpus to do statistical computation for document

retrieval.

phrase_verification (p). In line 8, this function verifies the

existence of PN/DPs that are recognized by one of the above

functions. It is a simplified is_doc_PN(p). To verify a potential

PN p, This function looks for at least one instance of p in a

document collection, such that this instance satisfies the condition

(1) and (2) as described in is_doc_PN(p). The criteria is less strict

for phrase_verification(p) because p has been recognized by one

of the above functions. We use the documents returned by Google

as the document collection. For example, Minipar labels “vista

window company” as a PN. An instance of this phrase is found in

a document as “Vista Window Company is proud to …”. A DP

does not need to be verified by looking for instances in the

documents, because of the definition of DP.

pick_one_phrase(p1, p2) function. When PN/DPs overlap, two

resolving processes are conducted from line 12 to 28. First, from

line 13 to 18, we resolve the overlapped PN/DPs at the same

level. The function pick_one_phrase(p1, p2) at line 15 picks one

phrase from two partially overlapping PN/DPs p1 and p2. This

function searches all the words of p1 and p2 together in a

document collection, and counts the occurrences of p1 and p2 in

the documents. The one with the larger number of count is picked.

In implementation, we submit all the content words in p1 and p2

to Google. The top 10 returned documents form a document set.

For example, in a query “pocket watch chains”, “pocket watch” is

a Wikipedia DP and “watch chains” is a WordNet DP. The query

“pocket watch chains” is submitted to Google together to retrieve

documents. “Pocket watch” has 62 instances while “watch

chains” has 39 in stances in the returned documents. So “pocket

watch” is picked.

At line 19, all the sub-phrases that are contained within the

recognized PN/DPs are discarded. The intuition is that the words

in a PN/DP should not be decomposed.

From line 22 to 28, the overlapping problem between two PN/DPs

at different levels is solved. For example, a query is “starlite drive

in movie theatre”, Wikipedia recognizes “drive in movie theatre”

as a level-4 DP. Is_doc_PN(p) recognizes “starlite drive in” as a

level-3 PN. The pick_one_phrase(p1,p2) at line 24 solves the

overlapping problem. It is as same as the pick_one_phrase(p1, p2)

at line 15. “Starlite drive in” got 26 instances and “drive in movie

theatre” got 5. The former one is chosen. Line 26 is necessary

because it is possible that a discarded PN/DP candidate may still

contain shorter valid PN/DPs. For example, even “drive in movie

theatre” is discarded; its sub-phrase “movie theatre” can still be

recognized as a valid DP.

713

At line 29, the whole procedure (line 2 to 28) will run again as

long as there is candidate labeled as “not checked” at line 26.

4. SIMPLE AND COMPLEX PHRASE

RECOGNITION
Some noun phrases are not PN or DP, yet are grammatically

correct and are used in the English language. If such a noun

phrase contains exactly two words, we define it as a “simple noun

phrase” (SNP). If it has three or more words, we define it as a

“complex noun phrase” (CNP). For example, “white car” is a

noun phrase, but probably not defined in any dictionary. This type

of noun phrases is also useful to improve retrieval effectiveness.

We adopt Collins parser [9] to recognize them. Collins parser is a

language parser with phrase structure annotation ability. Brill

tagger [3] attaches part of speech (POS) tags to the query words,

because Collins parser needs them.

4.1 Punctuations and Headwords
Before the parser processes a query, the query is pre-processed. If

two words connected by a hyphen, they are either unchanged,

merged as a single word or the hyphen is replaced by space. The

one that is the most frequent one in a document set is chosen.

Other punctuation marks except the apostrophes are removed.

A headword (HW) of a phrase is the element that determines the

syntactic function of the whole phrase. In a noun phrase, the head

is the noun that refers to the same entity that the whole phrase

refers to [11]. It plays the same grammatical role as the whole

constituent [28]. For example, “art” is the HW of DP “performing

art”. Before actually recognizing SNP/CNP, the PN/DPs in a

query are replaced by their HWs. A PN/DP is sent to Collins

parser. The parser generates a parse tree. The root of the tree is

the corresponding HW. The (PN/DP, HW) mapping information

is stored for future PN/DP restoration. The HW replacement is

necessary because in some circumstances, the existence of the

whole PN/DP may cause parsing error. The HW replacement may

help the parser get the correct parse tree.

Example 1. In a query "download pieces of me", "piece of me" is

a PN. The whole query is a valid CNP. Without HW-replacement,

Collins parser considers "download pieces" and "of me" as two

phrases. With the HW-replacement, "pieces of me" is replaced by

its HW "pieces". "download pieces" is parsed as a noun phrase

(download/NN pieces/NN). After restoring the "pieces of me", the

whole title is correctly recognized as a noun phrase.

4.2 Implicit Phrase
A coordinate structure in texts involves several components that

are connected by “and” or “or”. This sometimes indicates that

there are implicit phrases in the text. For example, a query “main

and contributing factor” has two explicit phrases: the query itself

and “contributing factor”. But there is also an implicit phrase

“main factor”. This implicit phrase can not be recognized directly.

Given a query with coordinate structure, we use a set of

grammatical rules to find the implicit phrases.

4.2.1 Noun Phrase in a Coordinate Structure
Rule1: CONJ: - [Compi CC]n Comp’

Rule2: Comp’:- [Modi]
m Head

where CONJ is a coordinate phrase; CC designates either “and” or

“or”; Compi is an adjective or a noun; Comp’ is a noun phrase

with at least one modifier, and Head is the headword of Comp’.

For the noun phrase “main and contributing factor”, its Collins

parsing structure is shown in Figure 2. The node “CONJ/factor”

refers to a coordinate structure, which includes a noun phrase, an

adjective “main”, an “and” and a noun phrase “NP/factor”, while

the node “NP/factor” in turn includes an adjective “contributing”

and a noun “factor”. So the Comp1 is “main”, CC is “and”, and

Comp’ is “contributing factor”, Mod is “contributing”, Head is

“factor”, and both m and n are 1.

Figure 2. noun phrases in coordinate structure

When this set of rules is fired, the new phrases are generated as:

NPi:- Compi NN (i =1, 2, …, n)

In the example, the new phrase “main factor” is generated.

4.2.2 Coordinate Structure in a Noun Phrase
Rule 1: NP :- CONJ NP’

Rule 2: CONJ :- [Compi CC]n
 Compn

where NP is a noun phrase containing a coordinate noun phrase

CONJ, and a noun or noun phrase NP’, CC refers to either “or” or

“and”; Compi represents a component noun phrase or adjective

phrase. In the noun phrase “physical or mental impairment”, NP’

is “impairment”, Comp1 is “physical”, CC is “and”; and Comp2 is

“mental”. The parse tree is shown in Figure 3.

 Figure 3: Coordinate structure in noun phrases

When this set of rules is fired, new phrases are generated as:

NPi :- Compi NP’ (i = 1, 2, …, n)

In the above example, new simple phrases “physical impairment”

and “mental impairment” are generated.

4.2.3 Noun Phrase with Coordinate Structure and

Prepositional Phrase
Rule 1: NP :- CONJ PP

Rule 2: CONJ :- [Compi CC]n
 Compn

where NP is a noun phrase which contains a coordinate noun

phrase, PP is a prepositional phrase, CC designates “or” or “and”;

and Compi represents a component noun phrase. For the noun

phrase “systematic explorations and scientific investigations of

Antarctica”, PP is “of Antarctica”, Comp1 is “systematic

714

explorations”, CC is “and”; and Comp2 is “scientific

investigations”. When this set of rules is fired, new phrases are:

NPi :- Compi PP (i = 1, 2, …, n)

In the example, phrases “systematic explorations of Antarctica”

and “scientific investigations of Antarctica” are generated.

In some cases, the coordinate noun phrase itself may satisfy 2 or

more set of rules, for example “[main and contributing factor] in

ship loss” satisfies the rule in 6.3, while “main and contributing

factor” satisfies rule in 6.1. Thus, the new phrases are “main

factor in ship loss” and “contributing factor in ship loss” as shown

in Figure 2.

4.3 Recognize SNP and CNP
After the punctuations, headwords and coordinate structure in a

query are processed, the Collins parser is used to recognize the

SNP and CNP in the query. The pseudo code of the whole

algorithm is given in Figure 4.

Figure 4. Algorithm for SNP/CNP recognition

Generating Collins noun phrases. At line 6, Collins parser

analyzes a modified query and returns a parse tree. The phrases,

such as noun phrases, verb phrases and adjective phrases, are

annotated in the tree. The noun phrases are picked at line 7.

They are labeled as the Collins NPs. In line 9, the sub-phrases

of these Collins NPs are also collected as Collins NPs. This is

to avoid missing some noun phrases that are not recognized by

the parser. For example, in Figure 3, given a query “best

compact sedan”, the parse tree on the left is given by Collins

parser. It captures the whole query as a noun phrase, but does

not capture the embedded SNP “compact sedan”. The correct

parsing is given on the right hand side of Figure 5. The

adjective “compact” modifies the noun “sedan”. The adjective

“best” modifies the noun phrase “compact sedan”.

Figure 5: Collins parser fails to generate correct parse tree

The reason why we want to obtain an embedded simple phrase,

such as “compact sedan” from a complex phrase such as “best

compact sedan”, is that a relevant document may not contain the

complex phrase but may contain the simple phrase. Such a

document can still have a similarity allocated to the simple phrase,

which is part of the similarity allocated to the complex phrase.

Verify Collins phrase. From line 10 to l5, if a Collins phrase t is

verified by verify_collinsP(t), it becomes a “verified Collins

phrase”. The idea is that: The noun phrases in the parse tree are

grammatically correct. But the parser can not tell if the phrases

are meaningful in the real world text. A phrase to be verified must

(1) not intersect with a recognized PN/DP, or (2) be a phrase that

contains a recognized PN/DP and additional words. For example,

“Spider Man tickets” contains a PN “Spider Man” and an

additional word “tickets”. If a potential noun phrase partially

overlaps with a PN/DP, we prefer the PN/DP. For example, the

query “blood pressure level” has two shorter phrases of “blood

pressure” and “pressure level”. The former is a DP. So “pressure

level” is discarded and will not go for verification.

When a two-word phrase p is fed to verify_collinsP(t), the

function searches p in a document collection to examine the

existence of p. If an instance of p is found, such that this instance

plus its boundary words is not a sub-phrase of the query, p

becomes a verified Collins phrase. For example, to verify “tourist

bus” in “free tourist bus”, at least one instance of “tourist bus”

should not have the word “free” before it.

If p has three or more words, it could be written in various ways.

For example, “colin farrell wallpaper” can be written as

“wallpaper of colin farrell”. We verify these phrases as follows:

(1) Search the exact p in the document set. If p is found, and if

this instance plus its boundary words is not a sub-phrase of the

query, p is verified.

(2) Otherwise, we look for a narrow text window in the

documents. This window should contain all the content words

of p. But the ordering of these words in the window can be

different from that in p. If such a window is found, we label p

as verified. The more words p contains, the wider the text

window will be.

In our implementation, a phrase p is submitted to Google. The top

20 retrieved documents are used as the document collection.

Solving the phrase-overlapping problem. From 16 to 28, the

problem, in which two verified Collins phrases overlap, is

resolved. From line 17 to 21, two overlapped phrases having the

same number of words are handled. pick_one_phrase(t1, t2) at

line 18 counts the occurrences of t1 and t2 respectively as

described in Section 2, except that it does not care about the

capitalization of the words. The one with a higher count is

preferred. From line 22 to 27, the cross-level overlapping problem

is solved. We adopt a lower level priority strategy: if two verified

715

Collins phrases from different levels overlap, the one at the lower

level (has fewer words) is preferred, because during the tuning we

found this is better than picking the higher level phrase. The

cross-level overlapping solving process does not include the

original query (|Q|-level) since the original query overlaps with all

of its sub-phrases.

From line 29 to 32, a verified Collins phrase is labeled as SNP if

it has 2 words. Otherwise it is labeled as a CNP. We use Example

2 as an illustration.

Example 2: Collins parser labeled the query “sony dvd

handycam” as noun phrase. Its sub-phrases “sony dvd” and “dvd

handycam” were also added as Collins NPs. All three pass the

verification_collinsP(t). “Sony dvd” and “dvd handycam” were

examined by pick_one_phrase(). In the context of “sony dvd

handycam”, “sony dvd” not followed by “handycam” was found

1 time, while “dvd handycam” not following “sony” was found

12 times. Thus “dvd handycam” was chosen. No cross-level

overlap solving was fired. The algorithm stopped.

5. EXPERIEMENTAL RESULTS
We tune our algorithm using a set of 400 multi-word web queries,

randomly selected from a search engine company’s web query

log, which has more than 170 thousand queries. The algorithm is

then tested using another set of web queries from the same query

log, and a set of TREC (Text REtrieval Conference) queries.

Finally, we apply the recognized phrases from TREC queries to

TREC document retrieval tasks, comparing the retrieval

effectiveness of the IR system when (1) not utilizing phrases in

the queries at all, (2) using phrases recognized by a baseline

phrase recognition algorithm, and (3) using the phrases

recognized by our algorithm. The results of the noun phrase

recognition experiments are reported in recall, precision and f-

score [29]. For a phrase type T, the precision (P) is the number of

the correctly identified T phrases by our algorithm divided by the

total number of the identified T phrases by our algorithm. Recall

(R) is the number of the correctly identified T phrases by our

algorithm divided by the total number of the T phrases in the

golden standard. The F-score is defined as 2PR/(P+R). The results

of the document retrieval experiments are reported as Mean

Average Precision (MAP) and Geometric Mean Average

Precision (GMAP) scores[31].

5.1 Testing Algorithm Using Web Queries
We randomly selected another 500 multi-word queries from the

same query log used for selecting the tuning set. These two sets

do not overlap. These 500 queries contain 205 2-word queries,

163 3-word queries, 86 4-word queries, 30 5-word queries and 16

6-word queries. Each of three graduate students labeled all of the

PNs, DPs, SNPs and CNPs in the queries. Disagreements were

solved by majority voting. These labeled phrases were set as the

golden standard.

5.1.1 Overall Phrase Recognition Performance
Table 1 shows the noun phrase recognition performance of our

algorithm using this 500-web-query set. In the PN row, three

major reasons for the errors are: First, the web queries contain

many less well-known proper names such as names of people,

small companies and organizations. They are not defined in

dictionaries. There are also not enough number of instances in the

documents for them to be verified. This affects the recall. The

second reason is the informal writing of the PNs, such as

incomplete name and unofficial names. For example, a query

“zenon z2” refers to a TV show “Zenon: the Zequel”. The query

used an unofficial name “z2”. This incorrect title can not be

verified. The third reason for the errors in PN is the capitalization

of the words in the documents. In the procedure of is_doc_PN(p),

we require the content words of a potential PN be capitalized in

the documents. In some cases, non-PN phrases also have all of

their content words capitalized to emphasize them. They satisify

the procedure is_doc_PN(p), becoming the false positive PNs,

which affects the precision. For example, “Return Policy” is such

a phrase because some companies emphasize it as an important

issue. The cases involving un-official names and the emphases by

capitalizing certain words require further study.

Table 1: Scores of our algorithm on the 500-web-query set

 # in set Recognized Correct Recall Precision F-score

PN 263 258 243 0.9240 0.9419 0.9328

DP 102 103 102 1 0.9903 0.9951

SNP 167 183 149 0.8922 0.8142 0.8514

CNP 292 268 252 0.8630 0.9403 0.9000

The DP row has one false positive case. The query is “young

models” that refers to young persons posing for purpose of art or

fashion. Wikipedia has an entry “young model” that is about a

mathematical model.

In the SNP row, an error type is that is_doc_PN() falsely

recognizes some SNPs as PNs. This lowers the recall. The “return

policy” is such an example. Another error type is that some PNs

are recognized as SNPs. The third error type is that the

pick_one_phrase() function made wrong choices. Both the

second and the third error types lower the precision.

In the CNP row, the major error type is that some CNPs partially

overlap with recognized SNPs, while we adopt a SNP-has-higher-

priority strategy, the CNPs are discarded. This affects the recall.

5.1.2 Impact of Individual Tools on the Algorithm
In order to analyze the impact of each individual tool on our

algorithm, we test the performances of these tools individually.

Tables 2 to 5 show the performance of the individual tools in PN,

DP, SNP and CNP recognition tasks respectively. In tables 2 to 5,

the “Full” lines refer to the corresponding data in Table 1.

In Table 2, 5 tools are tested in the PN recognition respectively.

Minipar got low recall (0.2000). Minipar uses grammatical rules

to parse text, which needs context information for correct parsing.

But the web queries are too short to provide enough contexts.

Table2. Scores of individual tools on PN recognition task

Tool Recognized Correct Recall Precision F-score

Minipar 63 53 0.2000 0.8413 0.3232

WordNet 82 67 0.2548 0.8171 0.3884

Wikipedia 195 180 0.6844 0.9231 0.7860

Doc_set 217 182 0.6868 0.8387 0.7552

Name list 29 26 0.0981 0.8966 0.1769

Full 258 243 0.9240 0.9419 0.9328

The recall of WordNet alone is low (0.2548) because it only

recognizes PNs that are defined in its database. Given that many

of the PNs do not have entries in WordNet, they are missed.

Wikipedia is an open dictionary. Its open editing architecture

makes its data updated with the current affairs of the world.

716

That’s why it got a much higher recall value (0.6844) than the

non-open tools of Minipar, WordNet and Name List.

The name list tool got the lowest recall (0.0981) but it is expected,

since it only recognizes people names. Its 0.8966 precision

demonstrates its effectiveness.

Is_doc_PN(p) alone gets high recall as Wikipedia does, actually

the highest (.6868) among the 5 tools. Since we use the document

set returned from Google, the documents are also kept up to date.

These 5 tools all got reasonable precisions (0.81 to 0.89).

Wikipedia has the highest precision 0.9231 because it has high

quality contents. The results show that a single tool usually has a

low recall. One single tool is not enough to recognize most of the

PNs in the web queries, since the web queries cover very wide

topics. Different tools must be used together to achieve desirable

result.

Table 3. Scores of individual tools on DP recognition task

Tool Recognized Correct Recall Precision F-score

WordNet 62 40 0.3922 0.6452 0.4878

Wikipedia 104 97 0.9510 0.9327 0.9417

Full 103 102 1 0.9903 0.9951

In Table 3, two individual tools are tested in the DP recognition

task. The recall of WordNet is low (0.3922) due to the relatively

small amount of term definitions it has, comparing to the various

topics in the web queries. The precision of WordNet is also low

(0.6452). In many cases, WordNet does not recognize a valid

PN/DP. But a sub-phrase of this unrecognized PN/DP is still a

valid DP. This sub-phrase is recognized, becoming a false

positive. For example, “brookdale community college” is a PN not

recognized by WordNet. But “community college” is recognized.

Wikipedia alone gets recall of 0.9510 in DP recognition, which is

due to its open editing architecture and large data collection. Its

precision is 0.9327 because it has the same situation as that of

WordNet: a sub-phrase of an unrecognized PN/DP is incorrectly

recognized as a DP.

Table 4. Scores of individual tools on SNP recognition task

Tool Recognized Correct Recall Precision F-score

Collins0 118 96 0.5749 0.8136 0.6737

Collins1 243 157 0.9401 0.6461 0.7659

Collins2 238 157 0.9401 0.6597 0.7753

Full 183 149 0.8922 0.8142 0.8514

Collins0: Collins phrase (baseline)

Collins1: Collins 0 + sub-phrase

Collins2: Collins 1 + verify_collinsP

Full: Collins 2 + overlap resolving

Table 4 shows the performances of the individual tools on SNP

recognition. The Collins0 row uses Collins parser alone as a

baseline. The phrases labeled directly by the parser are the results

of Collins0. The sub-phrases of these directly labeled Collins

phrases are not included (Line 9 Figure 4). The verify_collinsP(p)

(Line 14 Figure 4) and the overlapping solving technique (Line

16-28 Figure 4) are not applied. We only remove the phrases that

overlap with recognized PN/DPs. The result shows the

effectiveness of the Collins parser alone. The 0.8136 precision is

acceptable. The 0.5749 recall is low. This shows that the Collins

parser alone is not enough for SNP recognition.

The Collins1 is Collins0 plus using the sub-phrases of the Collins

phrases in Collins0. The direct output of the parser misses many

correct phrases. We add the sub-phrases of these Collins phrases

as additional SNP candidates. This will bring in many incorrect

phrases so that the precision could be harmed. But we want to

find if these additional sub-phrases can improve the recall. The

incorrect and redundant phrases will be removed in “Collins2”

and “full” rows. We see the recall of “Collins1” increases

substantially from 0.5749 to 0.9401. The additional sub-phrases

do work. Unfortunately, the precision drops from 0.8136 to

0.6461. But the f-score is still improved from 0.6737 to 0.7659.

Collins2 is Collins1 plus verify_collinsP(), which tests if a phrase

is actually used in the real world. This verification removes 5

(243 to 238) incorrect phrases. The precision increases a little. It

gets the same number of correct phrases so the recall is not

changed.

“Full” is the full algorithm configuration. It is the Collins2 plus

the overlapping problem solving step. This step aims to further

remove the incorrect phrases introduced from the parser and the

sub-phrases. Comparing to Collins2, the precision increases from

0.6597 to 0.8142, which is the highest precision among the 4

configurations. The recall drops to a still acceptable degree of

0.8922 from 0.9401. The 0.8514 f-score is the highest among the

four. Thus the overlapping solving technique is necessary.

Table 5. Scores of individual tools on CNP recognition task

Tool Recognized Correct Recall Precision F-score

Collins0 257 238 0.8151 0.9261 0.8670

Collins1 374 286 0.9795 0.7647 0.8589

Collins2 359 273 0.9349 0.7604 0.8387

Full 268 252 0.8630 0.9403 0.9000

Table 5 shows the CNP recognition results of the 4 configurations

defined in Table 4. Collins0 is still the baseline. In Collins1, we

still see that the additional sub-phrases help increase the recall

(0.8151 to 0.9795) but harm the precision (0.9261 down to

0.7647). In Collins2, the verify_collinsP() does not help the

performance but even decreases it a little. The full configuration

greatly improves the precision (0.7604 to 0.9403) at a small cost

of the recall (0.9349 down to 0.8630). And the full configuration

has the highest f-score among the four. The behaviors of CNP

recognition are the same as those in SNP recognition.

5.2 Testing Algorithm Using TREC Queries
We also use a set of TREC queries to test our algorithm. There are

249 queries from the ad-hoc tracks of TREC-6, 7, 8, and the robust

tracks of TREC-12 and 13, 238 of which are multi-word queries.

These 238 queries contain 70 2-word queries, 143 3-word queries,

23 4-word queries and 2 5-word queries. Three graduate students

double-checked and labeled the PNs, DPs, SNPs and CNPs in these

238 queries as the golden standard. These TREC queries are not

new. Some TREC related documents, which describe these queries,

can be found in the top retrieved documents from Google when

searching these queries. These documents should not be used to

prove the existence of the phrases. So when we use Google to

collect documents, we set the restriction that the returned documents

must not contain the terms such as “TREC”, “query” and “phrase”.

This is done by adding “-TREC”, “-query” and “-phrase” as query

restrictions when searching in Google.

The overall performance of our system on the TREC query set is

reported in Table 6. The only error in the PN row is a falsely

recognized PN from is_doc_PN(p). The only error in the DPs is

due to a query “food and drug laws”, where the golden standard

717

indicates “food and drug” and the entire query is a CNP. Our

system recognizes "drug laws" as a DP. The errors in the SNP

row are mainly caused by the incorrect pick_one_phrase()

results. In the CNP row, some CNPs are missed because they can

not be verified in the phrase_verification(p).

Table 6. Scores of our algorithm on the 238-TREC-query set

 # in set Recognized Correct Recall Precision F-score

PN 32 33 32 1 0.9697 0.9846

DP 110 111 110 1 0.9910 0.9955

SNP 99 102 90 0.9091 0.8824 0.8955

CNP 159 146 146 0.9182 1 0.9574

We tested the performance of individual tools as we did in

Section 4.1. The results are shown in Table 7 through Table 10.

Table 7. Scores of individual tools on PN recognition task

Tool Recognized Correct Recall Precision F-score

Minipar 3 2 0.0625 0.6667 0.1143

WordNet 15 14 0.4375 0.9333 0.5957

Wikipedia 32 32 1 1 1

Doc_set 32 18 0.5625 0.5625 0.5625

Name list 0 0 0 0 0

Full 33 32 1 0.9697 0.9846

In Table 7, the “name list” tool did not recognize anything,

because there are 3 people’s names in the PNs, all of which are

foreign names. None of the “first name, last name” is found by

is_name(). Minipar only finds 2 correct PNs. This again shows

that lacking context greatly affects its performance. WordNet got

high precision but low recall. This is similar to its performance in

Table 2, because of limited number of definitions. Is_doc_PN()’s

performance in the TREC data set is worse than its performance

in the web data set as shown in Table 2. A major error type is that

a PN is not recognized but its sub-phrase is incorrectly recognized

as PN. Wikipedia had a perfect score because the PNs in TREC

queries are rather well known.

Table 8. Scores of individual tools on DP recognition task

Tool Recognized Correct Recall Precision F-score

WordNet 59 50 0.4545 0.8475 0.5917

Wikipedia 109 108 0.9818 0.9908 0.9863

Full 111 110 1 0.9910 0.9955

In Table 8, two individual components are used to recognize DP

respectively. WordNet’s low recall value means that its

performance is still affected by the limited entries. Wikipedia’s

performance is good and stable as it does in the PN recognition

experiment.

Table 9. Scores of individual tools on SNP recognition task

Tool Recognized Correct Recall Precision F-score

Collins0 55 49 0.4949 0.8909 0.6364

Collins1 156 98 0.9899 0.6282 0.7686

Collins2 155 98 0.9899 0.6323 0.7717

Full 102 90 0.9091 0.8824 0.8955

Table 9 shows the performances of the individual tools on SNP

recognition in the TREC query set. The four configurations are the

same as those defined in Table 4. The pattern of the performances

change is similar to that in Table 4. The pure Collins parser has

acceptable precision but low recall in Collins0 row. Additional sub-

phrases boost the recall but also damage the precision in Collins1.

Verify_collinsP() improves precision a little in Collins2. At last, the

full algorithm increases the precision at a small cost of the recall.

The full algorithm still has the best performance.

Table 10. Scores of individual tools on CNP recognition task

Tool Recognized Correct Recall Precision F-score

Collins0 155 152 0.9560 0.9806 0.9682

Collins1 164 154 0.9686 0.9390 0.9536

Collins2 156 146 0.9182 0.9359 0.9270

Full 146 146 0.9182 1 0.9574

Table 10 shows the CNP recognition results using the TREC query

set. The 0.9560 recall in baseline Collins0 is very high, because the

TREC queries have simpler grammar structures. They mainly

consist of nouns, while the web queries contain many verbs and

prepositions. Other than this, the performances of the four

configurations still follow the same pattern as those in Table 5. The

full configuration obtains 0.9182 recall and 100% precision.

5.3 Utilizing Noun Phrases for IR
This experiment is to test whether obtaining more correct phrases

yields higher information retrieval (IR) effectiveness. We

conducted three document retrieval experiments, comparing the

retrieval results using phrases recognized by our algorithm in

Section 4.2, to those recognized by a baseline system, and to not

using phrase at all. We use the IR system by Liu [20]. This system

allows both phrases and single terms in the query. The similarity

between the query and a document is represented as a pair of

(phrase-similarity, term-similarity). The phrase-similarity of a

document is defined as the sum of the idf (inverse document

frequency) weights of the phrases in common between the

document and the query. If a document does not have the

recognized phrase, its phrase-sim is 0. The term-similarity is the

usual term similarity between the query and the document, which

is computed by using Okapi formula [26]. Each query term

appeared in the document contributes to the term-similarity, no

matter it is in a query phrase or not. The phrase-similarity has

high priority than the term-similarity. Given a query, the retrieved

documents are ranked in descending order of their phrase

similarity values. When documents have the identical phrase

similarity value, they are ranked in descending order of their term

similarities. So given a query, two documents D1 and D2 have

similarities (x1, y1) and (x2, y2), respectively. D1 will be ranked

higher than D2 if (1) x1>x2, or (2) x1=x2 and y1>y2.

The 249 TREC queries are from 6 resources, the ad hoc tracks of

TREC 6, 7, 8 and the robust tracks of TREC 12, 13, 14. TREC 14

queries are executed on the AQUAINT data collection [31]; other

5 sets are executed on the TREC disks 4 and 5 except the

Congressional Records portion [30].

We simplify our phrase recognition algorithm to a weaker

“single-tool algorithm”. It serves as a baseline phrase recognition

algorithm. It utilizes just one tool to recognize one type of phrases,

while our full algorithm uses multiple tools for each phrase type.

In this single-tool algorithm, Wikipedia alone recognizes the PNs

and DPs, because it yields the best results in the PN/DP single-

tool experiments. The Collins parser alone recognizes SNPs and

CNPs, because it is the fundamental component in the SNP/CNP

part of our algorithm. The intuition is that our algorithm has better

phrase recognition capability than this baseline. Better phrases

should help retrieval system produce higher retrieval

effectiveness. From Tables 7, 8, 9 and 10 we can see that this

718

single-tool baseline algorithm has almost the same PN/DP/CNP

recognition ability as the full algorithm, and substantially worse

SNP recognition ability.

We conduct three experiments.

(1) Feed the queries to the IR system, without recognizing any

phrase. The output of the IR system should represent the

effectiveness of the system when using only individual terms.

Since the phrase similarity is always 0, the documents are

ranked in descending order of their term similarities.

(2) Recognize the phrases in the queries by using the “single-

tool” baseline algorithm. Then feed the queries and the

recognized phrases together to the IR system. The output

should show the effect done by the recognized phrases when

comparing to the output of (1).

(3) Recognize the phrases in the queries by using our complete

phrase recognition algorithm. Then feed the queries and the

recognized phrases together to the IR system. The output

should show the effect of recognizing phrases with higher

qualities, when comparing to the result of (2).

There are 11 single-term queries in the 249 queries. Their

retrieval results are also included in the final results. So the

difference between (1) and (2), and that between (2) and (3) are

just caused by the differences of the phrases.

The retrieval results are presented as mean average precision

(MAP) [30] and geometric mean average precision (GMAP) [31]

in Table 11. Comparing the scores of line 1 and 2 shows that all

of the 6 query sets, when using the phrases from the baseline

algorithm, get much higher scores than not using phrases at all

(MAP gains from 17% to 54%, GMAP gains from 15% to 55%).

This shows that the document retrieval, with the recognition of

the phrases, actually improves over just using single terms. Table

11 also shows that our full phrase recognition algorithm helps the

retrieval achieve higher scores than the baseline phrase

recognition algorithm does. The improvements are from 1.6% to

9.6% in MAP and 2.3% to over 26% in GMAP. This

demonstrates that better noun phrase recognition yields better

retrieval results.

Table 12. Compare our results to the highest TREC 13 MAP

System Old topic set New topic set Combined

TREC 13 0.317 0.401 0.333

Our algorithm 0.348 0.428 0.364

Improvement 9.78% 6.73% 9.31%

In TREC 13 [30], these 249 queries are used in the robust track.

200 of them from TREC 6, 7, 8 and 12 are called the “old topic

set”. The other 49 are called the “new topic set”. In [30], the best

MAP of the “old topic set” is 0.317. The best MAP of the “new

topic set” is 0.401. The combined score is 0.333. We calculated

the MAP scores for the old, new and the combined set for our

algorithm from Table 11. Table 12 shows the comparison between

our scores and the TREC 13 scores (Table 12 uses 3 digits

because TREC 13 robust track scores were reported in this format

[30]). The improvements of our scores over the best scores in

these topic sets are 9.78%, 6.73% and 9.31% respectively.

Furthermore, the 0.2931 MAP and the 0.3508 GMAP of the

TREC 14 query set (Table 11) are 5.7% and 26% higher than the

best corresponding scores reported in [31]. So our algorithm helps

the IR system achieve higher scores than the best officially

reported scores of the same query set and the document

collection.

5.4 Comparing to a Related Work
Lima et al [17] studied the proper noun and phrase recognition

problem. They reported 0.8786 precision and 0.9010 grammar

coverage ([17] used “grammar coverage”, which is an upper

bound of the recall) on 100 company names; 0.7770 precision and

0.8000 grammar coverage on 100 person names; 0.7983 to 0.8200

precision and 0.9160 to 0.9560 grammar coverage on 200 short

queries that have 1.59 words on the average, with an upper-bound

of f-score at 0.8827 (denoted by Q1); and 0.8049 to 0.8139

precision and 0.7800 to 0.8520 grammar coverage on 200 queries

that have at least 3 words with a 3.59 word average length, with

an upper-bound of f-score at 0.8325 (denoted by Q2). To compare

our result to theirs, we aggregate their company and person names

together as a PN set, and compare it to the PN row of Table 1. We

aggregate the 2-word DPs and the SNPs in Table 1 together

(0.9302 recall, 0.8727 precision, 0.9006 f-score) to compare to

their Q1 set. We aggregate the 3-or-more-word DPs (11 correct)

and the CNPs in Table 1 together (0.8680 recall, 0.9427 precision,

0.9038 f-score) to compare to their Q2 set. The results are shown

in Table 13..

Table 13. Comparison between Lima et al. and us in F-Score

Phrase Type Lima et at. Us

PN 0.8395 0.9328

2-word 0.8827 0.9006

3-or-more-word 0.8325 0.9038

6. CONCLUSIONS
In this paper, noun phrases are classified into four types. We

provide an algorithm that recognizes them. The algorithm is

tested on a web query set and TREC query titles. High accuracies

of recognition are obtained. Utilizing an up-to-date dictionary for

recognizing proper names and well-defined phrase recognition

seems to be a good method. Looking for instances in a document

set is also good for less well-known proper names. Natural

language parser and finding phrase instances in documents are

good for recognizing SNP and CNP. Our document retrieval

experiments also show that recognizing and utilizing phrases in

Table 11. MAP and GMAP scores of IR experiments using different phrase recognition algorithms

TREC 6 TREC 7 TREC 8 TREC12 TREC13 TREC14

Phrase MAP GMAP MAP GMAP MAP GMAP MAP GMAP MAP GMAP MAP GMAP

1 No phrase 0.1950 0.1069 0.2246 0.1262 0.2388 0.1577 0.3269 0.2248 0.3341 0.2188 0.2451 0.1712

2 Single-tool 0.3003 0.1564 0.2998 0.1962 0.3180 0.2281 0.4148 0.3401 0.3912 0.2529 0.3286 0.2609

Increase 2 over 1 54% 46.30% 33.48% 55.47% 33.17% 44.64% 26.90% 51.29% 17.09% 15.58% 34.07% 52.39%

3 Our algorithm 0.3293 0.1981 0.3112 0.2160 0.3231 0.2334 0.4291 0.3538 0.4279 0.3036 0.3508 0.2931

Increase 3 over 2 9.66% 26.67% 3.80% 10.09% 1.60% 2.32% 3.45% 4.03% 9.38% 20.05% 6.76% 12.34%

719

the queries can substantially improve retrieval effectiveness;

furthermore, the quality of the phrases has a positive impact on

retrieval effectiveness.

7. ACKNOWLEDGMENTS
The authors thank the reviewers for their helpful comments. This

work is supported in part by NSF grants IIS-0738727 and IIS-

0738652, and by an AOL research grant. The views of this paper

are those of the authors, and do not represent those of NSF or

AOL.

8. REFERENCES
[1] A Arampatzis, T Tsoris, C Koster, and T van der Weide.

Phrase-based Information Retrieval. Information Processing

& Management, 34(6):693-707. 1998.

[2] D Bikel, S Miller, R Schwartz and R Weischedel. Nymble: a

High-Performance Learning Name-finder. In proc. of the

Conf. on Applied NLP. 1997.

[3] Eric Brill. Transformation-Based Error-Driven Learning and

Natural Language Processing: A Case Study in Part of

Speech Tagging. Computational Linguistics. 1995

[4] Bruce Croft, H Turtle, and D Lewis. The use of phrases and

structured queries in information retrieval. In Proc. of SIGIR.

1991.

[5] J Callan and T Mitamura. Knowledge-based extraction of

named entities. In Proc. of CIKM. 2002.

[6] Guihong Cao, Jian-Yun Nie, Jing Bai. Integrating Word

Relationships into Language Models. In Proc. of SIGIR.

2005.

[7] Nancy Chinchor. Overview of MUC-7. In Proc. of MUC.

1998.

[8] Ken Chow, Robert Luk, Kam-Fai Wong and Kui-Lam.

Kwok: Hybrid Term Indexing for Weighted Boolean and

Vector Space Models. Int. J. Comput. Proc. Oriental Lang.

14(2): 133-151, 2001.

[9] M. Collins, Head-driven statistical models for natural

language parsing. PhD thesis, U. of Pennsylvania, 1999.

[10] David Evans and Chengxiang Zhai. Noun-Phrase Analysis in

Unrestricted Text for Information Retrieval. In Proc. of ACL.

1996

[11] Glossary of linguistic terms, by E Loos, S Anderson, D Day,

P Jordan, and D Wingate (editors). SIL International. 2003

[12] C. Fellbaum. WordNet, An electronic Lexical Database. The

MIT Press, 1998.

[13] Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong

Zhang. Named Entity Recognition through Classifier

Combination. In Proc. of CoNLL. 2003.

[14] Google: http://www.Google.com/apis/

[15] David Grossman and Ophir Frieder. Ad Hoc Information

Retrieval: Algorithms and Heuristics. Kluwer. 1998.

[16] S Jones and M Staveley. Phrasier: A System for Interactive

Document Retrieval Using Keyphrases. In Proc. of SIGIR.

1999.

[17] E Lima and J Pedersen. Phrase Recognition and Expansion

for Short, Precision-biased Queries based on a Query log. In

Proc. of 22nd ACM SIGIR. 1999

[18] D Lin. PRINCIPAR - An Efficient, broad-coverage,

principle-based parser. In Proc. of COLING. 1994.

[19] D Lin. Using collocation statistics in information extraction.

In Proc. of Message Understanding Conference. 1998.

[20] S Liu, F Liu, C Yu and W Meng. An effective approach to

document retrieval via utilizing Wordnet and recognizing

phrases. In Proc. of SIGIR. 2004.

[21] I Mani and R MacMillan. Identifying Unknown Proper

Names in Newswire Text, In Corpus Processing for Lexical

Acquisition, MIT Press. 1995.

[22] Christopher Manning and Hinrich Schütze, Foundations of

statistical natural language processing, MIT Press. 1999

[23] M Marcus, G Kim, M Marcinkiewicz, R MacIntyre, A Bies,

M Ferguson, K Katz and B Schasberger. The Penn Treebank:

Annotating Predicate Argument Structure. In Proc. of the

Human Language Technology Workshop. 1994.

[24] R Mihalcea and D Moldovan. An Automatic Method for

Generating Sense Tagged Corpora. In Proc. of AAAI. 1999.

[25] G Miller. WordNet: An On-line Lexical Database, Special

Issue, International Journal of Lexicography. 1990.

[26] S Robertson and S Walker. Okapi/Keenbow at TREC-8. In

Proc. of TREC. 1999.

[27] Egidio Terra and Charles Clarke. Frequency Estimates for

Statistical Word Similarity Measures. HLT/NAACL. 2003.

[28] University of Glasgow, LILT project,

www.arts.gla.ac.uk/SESLL/EngLang/LILT/frameset.htm

[29] C. van Rijsbergen. Information Retrieval. Butterworth, 1979.

[30] E Voorhees. Overview of the TREC 2004 Robust Retrieval

Track. In Proc. of the 13th TREC. 2004.

[31] E Voorhees. Overview of the TREC 2005 Robust Retrieval

Track. In Proc. of the 14th TREC. 2005.

[32] Wikipedia: http://en.wikipedia.org

[33] Wei Zhou, Clement Yu, Neil Smalheiser, Vetle Torvik and

Hong Jie. Knowledge-intensive Conceptual Retrieval and

Passage Extraction of Biomedical Literature. In Proc. of 30th

SIGIR. 2007.

720

