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Abstract – This paper presents a new recognition and classification method for power quality (PQ) 

disturbances on the basis of pattern linguistic values. This method solves the difficulty of recognizing 

disturbances rapidly and accurately by using fuzzy logic. This method uses classification disturbance 

patterns to define the linguistic values of fuzzy input variables and used the input variables of 

corresponding disturbance pattern to set membership functions. This method also sets the fuzzy rules 

by analyzing the distribution regularities of the input variable values. One characteristic of this method 

is that the linguistic values of fuzzy input variables and the setting of membership functions are not 

only related to the input variables but also to the character of classification disturbance and the 

classification results. Furthermore, the number of fuzzy rules is equal to the number of disturbance 

patterns. By using this method for disturbance classification, the membership function and design of 

fuzzy rules are directly related to the objective of classification, thus effectively reducing the 

complexity of the design process and yielding accurate classification results. The classification results 

of the simulation and measured data verify the feasibility and effectiveness of this method. 
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1. Introduction 

 

PQ disturbances are increasing in severity in modern 

power networks because of the increasing use of power 

electronic devices, particularly for various nonlinearity, 

impact, and volatility loads. With the continual expansion 

of power networks and continuous improvement of 

requirements for PQ, research attention has focused on 

how to improve PQ to ensure power supply reliability. 

Hence, the classification of PQ disturbances is the necessary 

premise to evaluate and improve PQ. 

To realize the recognition and classification of PQ 

disturbances, the original waveform of disturbance signals 

should be transformed and reconstructed and effective 

features should be extracted. Common methods include 

short-time Fourier transform (STFT) [1], wavelet transform 

(WT) [2], S-transform (ST) [3], and sparse signal 

decomposition (SSD) [4]. Nevertheless, STFT has a 

single time-frequency resolution and does not satisfy the 

requirement that various disturbance patterns have different 

time-frequency resolutions in different frequency domains. 

Seemly, how to select the mother wavelet and the 

decomposition levels properly in WT is complex for 

obtaining a high accuracy and strong robustness. ST is the 

extension of continuous WT theory and can keep the 

absolute phase of every frequency when analyzing various 

resolutions. Recently, the sparse signal decomposition 

(SSD) technique with overcomplete hybrid dictionaries 

(OHDs) presents a new tool for signal expansion. However, 

a pending problem is how to construct the appropriate 

OHDs for the best approximation of certain signal patterns 

in the disturbances classification. Hence, the relevant 

features used to recognize the disturbances can be extracted 

simply and effectively by ST. 

After obtaining the features that represent the essential 

information of disturbance signals, methods such as support 

vector machine (SVM) [5-7], binary feature matrix [8], 

and hidden Markov model (HMM) [9] should be used to 

confirm the disturbance patterns of the signal samples. 

These methods have successfully realized the automatic 

recognition of PQ disturbances. However, because of the 

sensitivity of noise and insufficient data, the accuracy of 

disturbance patterns may be affected. Given the complexity 

and various types of PQ disturbance signals, the application 

of artificial neural network (ANN) [10-13] and fuzzy 

logic [14-22] has gotten increasing attention. ANN, which 

has strong adaptivity and fault tolerance, is a powerful 

tool for recognizing PQ disturbances and has already 

obtained remarkable research results. ANN and fuzzy 

logic are based on probabilistic neural network (PNN) in 

[10] and radial basis function neural network in [11], 

respectively, and realize high accurate classification. 

However, these neural network classifiers need substantial 

sample data and continuous training and studying. At the 

same time, controlling network size and avoiding the 

curse of dimensionality need to be taken seriously as 

considerations when using these types of methods. 

Similar to ANN classification, fuzzy classification is 
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also liable for expressing the nonlinearity information of 

disturbances with strong robustness. The difference is 

that fuzzy logic is the stimulation of human fuzzy 

thinking, whereas fuzzy classification is easy to merge and 

use with the related experience knowledge of humans. 

Moreover, the algorithm complexity is relatively low 

compared with the ANN classification. Therefore, fuzzy 

classification becomes another effective method of 

disturbance classification. A classifier of PQ disturbances 

based on a rule base using DT-fuzzy (DT-F) is proposed 

in [15], but the complexity of the rule base of DT-F may 

limit its applications. The classification of disturbances 

in [22] uses 5 features extracted by ST, and the 

simplified rule base is designed with 12 rules to reduce 

system complexity such as additional references. To ensure 

the effectiveness of simplified rules, fuzzy rules must 

closely relate to the other parts of the fuzzy reasoning 

process, particularly to the fuzzy set numbers of input 

fuzzy variables and the shape and position parameters of 

membership function. However, the design of these 

parameters and rules is actually independent in traditional 

fuzzy reasoning methods.  

Although every section of a fuzzy classification system 

is connected with each other and has a significant impact on 

disturbance classification results together, the classification 

system design process of each section still does not reflects 

the internal relations with each other among the existing 

methods. For example, the design process of linguistic 

value numbers and membership function parameters only 

relates to the values of input variables but not to the 

classification purpose. Many uncertain factors are present 

in the design process of fuzzy classification system, thus 

increasing the complexity of the design process and 

decreasing the classification accuracy. This paper attempts 

to improve the fuzzy reasoning approach and simplify the 

design process, which are suitable for solving the problems 

of PQ disturbances classification. Especially, the pattern 

of disturbances is defined as the linguistic values in the 

universe of input fuzzy variables; the corresponding 

membership function is obtained from the characteristics of 

input variables. 

The paper is organized as follows. Section 2 explains 

the principle and design of the proposed approach. 

Sections 3 and 4 show the feature extraction by using ST 

and the classification process based on the proposed 

method, respectively. Section 5 shows the performance of 

the classifier for simulation and measured data. Finally, 

Section 6 concludes. 

 

 

2. Classification Approach based on Pattern 

Linguistic Values 
 
In fuzzy logic, the results of fuzzy reasoning are affected 

by several reasons, e.g., the selection of input and output 

variables, setting of linguistic values, definition of 

membership function, design of fuzzy inference, and 

defuzzification approach. The membership function is the 

bridge between fuzzy logic and accurate data and has a 

great influence on the final results of fuzzy reasoning as the 

most important calculation step. 

The relationship between the membership function and 

value of fuzzy variables (also known as linguistic value) is 

always one-to-one, i.e., each value of the fuzzy variable 

corresponds to the membership function defined in the 

universe. In the traditional fuzzy logic approach, the value 

of fuzzy variables is related to its specific input values 

(shown as positive big, positive small, zero, negative small, 

and negative big in general). Furthermore, positive middle 

and negative middle may be used for fine universe dividing. 

On the basis of the aforementioned definition of the 

membership function, the number of fuzzy reasoning rules 

directly depends on the number of fuzzy sets of input fuzzy 

variables (also known as number of membership function). 

For example, in the fuzzy reasoning system with two 

inputs and a single output, if each input variable has 5 

fuzzy sets, the whole fuzzy rules will be 5*5 = 25, which is 

equal to an interval number in the universe. 

For the fuzzy inference system to classify PQ disturbances, 

the input variables are always more than two generally. 

Therefore, the whole fuzzy rules base will be complex and 

large. Considering the online real-time possibility and 

necessity, designed logic rules are needed to make a choice 

in the design of fuzzy classification system of PQ 

disturbances such that the system response speed is 

improved by reducing the rule number and amount of 

calculation. However, the choice principle is always 

needed to compromise and will be in a dilemma. Retaining 

too many rules lead to an increase in computational 

complexity and possible overfitting, whereas simplifying 

some rules lead to reduced correct rate. 

The mentioned design of the linguistic value and 

membership function is only related to the characteristic 

of input fuzzy variables. Thus, this approach is suitable 

for conventional fuzzy reasoning system with accurate 

output value to act on the controlled object. However, this 

approach is certainly not always the best approach for the 

classification system because it is the fuzzy reasoning 

system for classifying input variables that is used to 

obtain discrete classification results. Moreover, this 

approach does not continuously provide an accurate 

output value. On the basis of the above situation, if the 

classification requirements of the reasoning system 

output are considered, a new design approach of fuzzy 

 

Fig. 1. Fuzzy pattern classifier 
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reasoning system may be formed for the pattern 

classification application field.  

Most works present a two-stage method to overcome 

the PQ fuzzy classification problems, as shown in Fig. 1, 

where C1, C2, …, CN are identified as the PQ 

disturbance patterns. In the first stage, the time series 

data of disturbances is transformed into certain unique 

features by suitable mathematical transformation. In the 

second stage, the input variables of the fuzzy inference 

system are the aforementioned features and the output 

variables are classification results, which are the pattern 

of disturbances such as sag, swell, transients, notch, and 

harmonics. 

On the basis of the difference between the requirements 

of simplifying rules and the traditional fuzzy reasoning 

mechanism, a new fuzzy reasoning approach is proposed: 

in the universe of input fuzzy variables, the pattern of 

disturbances (e.g., sag, swell, etc.) is directly seen as 

linguistic values and defines the corresponding membership 

function according to the characteristics of input variables. 

On the basis of the aforementioned, the input variables are 

the features reflecting the disturbance characteristics of the 

PQ waveform. For each signal pattern, every feature will 

have a corresponding range of values that need to be 

covered with the membership function, which is necessary 

with an appropriate function expression, thus indicating the 

suitable generalization ability.  

The number of fuzzy rules is observably decreased and 

equal to the pattern number because of the benefit from the 

one-to-one correspondence between input fuzzy variable 

values and output classification results. In this paper, the 

proposed approach is called the fuzzy classification based 

on pattern linguistic values. 

 

3. Feature Extraction 

 

To distinguish and classify the different PQ disturbances 

occurring in power systems, the original signals should be 

processed by a time-frequency transform tool such as STFT, 

WT, and ST to extract relevant information about the signal. 

Certain unique features are extracted from the processed 

signal for a given PQ disturbance that may be further used 

for the automatic classification of the disturbance. 

ST is a reversible local time-frequency transform tool 

that is viewed as a frequency-dependent STFT or a 

continuous WT. Given the frequency-dependent Gaussian 

window used for the analysis of a signal data, the multi-

resolution ST has a rational distribution of frequency 

resolution and can be independent of each frequency 

component of the signal amplitude variation. Therefore, the 

independent multi-resolution ST has been proven to 

perform effectively. 

The multi-resolution ST of a signal h(t) is defined as 

follows: 
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where the parameter k sets the width of the Gaussian 

window for a given frequency. For k > 1, the frequency 

resolution improves and the time resolution deteriorates. 

The reverse occurs with k < 1. 

The PQ signal h(t) can be expressed in discrete form as 

h (KT ), k = 0,1,2,…N-1, with T as the sampling time 

interval. By using (1), the ST of a discrete time series 

h (KT ) is obtained by expressing f→n /NT and τ→n /jT as 

Table 1. PQ disturbance models 

Pattern of signals Class symbol Equation Parameters 

Normal C1 ( ) cos( )v t A tω=
 

1(pu), 50 Hz, 2A f fω= = = π
 

Sag C2 { }2 1( ) 1 ( ) ( ) cos( )v t A k u t u t tω⎡ ⎤= − −⎣ ⎦
 

2 10.1 0.9 9k T t t T−≤ ≤ ； ≤ ≤
 

Swell C3 { }2 1( ) 1 ( ) ( ) cos( )v t A k u t u t tω⎡ ⎤= + −⎣ ⎦
 

2 10.1 0.8 9k T t t T−≤ ≤ ； ≤ ≤
 

Interruption C4 { }2 1( ) 1 ( ) ( ) cos( )v t A k u t u t tω⎡ ⎤= − −⎣ ⎦
 

2 1
0.9 1 9k T t t T−≤ ≤； ≤ ≤

 

Harmonics C5 3 5 7( ) cos( ) cos(3 ) c cos(5 ) + cos(7 )v t A t h t h t h tω ω ω ω= + +
 

0.05 0.25, 3, 5, 7;ih i =≤ ≤
 

Flicker C6 ( ) [1 cos( )] cos( )v t A t tα βω ω= +
 

0.1 α 0.2; 0.1 β 0.5≤ ≤ ≤ ≤  

Transient C7 1 1

2 1

( ) [cos( ) exp( ( ) / )cos( ( ))
( ( ) ( ))]

v t A t k t t t tn
u t u t
ω τ ω= + − − −

× −  
12

0.1 0.8; 0.0015;

100 Hz 1300 Hz; 9

k

T t t Tn

τ
ω

=
−

≤ ≤

≤ ≤ ≤ ≤

Spike C8 1 2( ) sin sgn(sin ) [ ( - ) - ( - )]v t t t A u t t u t tω ω= +  1 20.0048 0.01 , 0.0052 0.01 ,

0,1, , 0.5 1.5

t i t i

i A

= + = +
= ≤ ≤

 

Notch C9 1 2( ) sin - sgn(sin ) [ ( - ) - ( - )]v t t t A u t t u t tω ω=  1 20.0045 0.01 , 0.0055 0.01 ,

0,1, , 0.1 0.4

t i t i

i A

= + = +
= ≤ ≤

 

Sag+harmonic C10 
{ }

( )
2 1

5 73

( ) ( )( ) 1

cos( ) cos(3 ) ccos(5 ) + cos(7 )

u t u tv t A k

t h t h t h tω ω ω ω
⎡ ⎤⎣ ⎦−= −
+ +

2 10.1 0.9 9

0.05 0.25, 3,5, 7;i

k T t t T

h i

−
=

≤ ≤ ； ≤ ≤
≤ ≤

 

Swell+harmonic C11 
{ }

( )
2 1

5 73

( ) ( )( ) 1

cos( ) cos(3 ) ccos(5 ) + cos(7 )

u t u tv t A k

t h t h t h tω ω ω ω
⎡ ⎤⎣ ⎦−= +
+ +

2 10.1 0.8 9

0.05 0.15, 3,5,7;i

k T t t T

h i

−
=

≤ ≤ ； ≤ ≤
≤ ≤
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follows: 
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where j, m, and n = 0, 1,… N − 1. 

The fuzzy classifier on the basis of pattern linguistic 

value presented in this work is designed to recognize 11 

disturbances. Table 1 provides a detailed summary of all 

disturbances of patterns with the equations and controlling 

parameters [24, 25]. A total of 100 cases of each pattern 

with different parameters were generated and utilized by 

MATLAB 7.10.0. Another 100 cases of each pattern that 

are different from the training set were generated randomly 

for testing the proposed algorithm. The sampling frequency 

of the data set is 3.2 kHz, which is commonly used in 

practical applications, whereas the data length of each class 

of signals is 16 cycles. Certain unique features for all types 

of PQ disturbances are extracted from the S-matrix. 

Figs. 2 and 3 show the ST outputs for the disturbance 

signals of the voltage sag and transient, including the 

signal waveform, time-frequency contours (also known as 

S-matrix contours), amplitude, and frequency contents of 

the signals. For simplicity, only two types of 11 disturbance 

signals are shown here. 

The S-matrix contours provide the information regarding 

the time localization of the disturbance data. As shown in 

the figures, time localization occurs in the frequency 

domain instantly with the disturbance in the time scale. 

Both the amplitude and frequency variations of the 

disturbance signal are also calculated from the S-matrix 

contours. By comparing Fig. 2(d) shows that only one peak 

pertaining to the fundamental frequency appears, whereas 

Fig. 3(d) shows that two peaks characterize the high 

frequency content of the oscillatory transient signal. This 

finding indicates that the voltage sag and oscillatory 

transient are low and high frequency signals, respectively. 

This observation provides vital information for further 

analysis. 

Feature extraction is performed by applying standard 

statistical techniques to the S-matrix contours and 

directly on the S-matrix. The following four features (F1-

F4) extracted from the S-matrix are used as a basis for 

classification. 

F1 is the mean value of the amplitude versus time graph 

from the S-matrix near the fundamental frequency, 
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where N is the number of rows in the S-matrix. Given that 

the sampling frequency is 3.2 kHz and the fundamental 

frequency of the signals is 50 Hz, the frequency deviation 

between the adjacent two rows is 3.125 Hz. Hence, “near 

the fundamental frequency” is obtained from row 15 to 19 

of the S-matrix. 

F2 is the standard deviation of the magnitude versus 

time spectrum obtained from the S-matrix near the 

fundamental frequency, 

Fig. 3. (a) Transient waveform; (b) S-matrix contours of 

transient; (c) Magnitude-time curve from S-matrix; 

(d) Amplitude-frequency curve from S-matrix 

 

Fig. 2. (a) Voltage sag waveform; (b) S-matrix contours of 

sag; (c) Magnitude-time curve from S-matrix; (d) 

Amplitude-frequency curve from S-matrix 
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F3 is the harmonic distortion of the S-matrix. The 

denominator of F3 is the square root of the square sum of 

the peak near the fundamental frequency of the S-matrix 

(rows 12-33) for the normal sinusoidal signal, recorded as 

V. The numerator is the square root of the square sum of 

the signal to be classified, except the points near the peak 

of the fundamental frequency. 
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With the same denominator of F3, F4 is the ratio 

between the square root of the square sum of harmonics 

above 300 Hz and V, 
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After preliminary selection based on the essential 

characteristics of PQ signals and usually chosen features in 

application, the features for classification may need 

increasing, decreasing, or exchanging to guarantee the 

reliability of classification results. The four features in this 

paper are selected through the mentioned-above process 

until they are properly for classification of all patterns. The 

number of features proposed in this paper is less than most 

of the references under the same or similar condition. With 

the features being the inputs of a fuzzy classifier, fewer 

number of features generally indicates a simpler classifier 

structure (i.e., a simple fuzzy reasoning process and fewer 

fuzzy rules) and a smaller amount of calculation. 

 

 

4. Fuzzy Inference System 

 

The fuzzy sets and fuzzy rule base are the two key 

elements of a fuzzy inference system. A fuzzy set can be 

fully defined by its membership functions. A fuzzy rule 

base offers human-like reasoning capabilities and provides 

transparent inference mechanism, and each rule in fuzzy 

rule base must contain the antecedent part and consequent 

part. In the proposed method, four features extracted from 

ST for all signal patterns are fed to the fuzzy inference 

system with the improved Gaussian membership functions. 

A fuzzy rule base is then developed for exact classification 

of disturbance signals for 11 classes.  

Specifically, based on the distribution of membership 

functions, certain features are selected from F1- F4 to 

represent the essential information of each pattern for 

recognition, and fuzzy rules are defined as one-to-one 

correspondence between the input fuzzy variables and the 

output classification results. Besides, the antecedent part of 

fuzzy rules is calculated and the result is generated as the 

degree of fulfillment (DOF) of the antecedent part. After 

reasoning process from the antecedent part to consequent 

part, the maximum membership degree method is used to 

select the pattern with the maximum DOF of all signal 

patterns. And the selected pattern is used as the final 

classification result. 

 

4.1 Membership function 

 

According to (4)-(7), the value of F1-F4 for all cases can 

be obtained from the S-matrix and the universe of each 

feature can be calculated. Thereafter, on the basis of the 

distribution of feature values, the membership functions 

corresponding to the pattern linguistic value in the respective 

universe can be defined. The membership functions can 

also determine whether the pattern of 11 disturbances can 

be identified by using these features.  

The feature distribution range of all sample values for all 

patterns is the universe of this feature, and the feature 

distribution range of each pattern is the general range of 

membership function for this pattern. The following takes 

F1 for example. 

F1 is one of the input variables of the fuzzy classifier, 

and its linguistic value is directly set as the pattern of PQ 

disturbances, i.e., normal, sag, swell, interruption, harmonics, 

Table 2. Input variables of all membership functions 

Features 

Patterns 
F1 F2 F3 F4 

C1 F1Normal F2Normal F3Normal F4Normal 

C2 F1Sag F2Sag F3Sag F4Sag 

C3 F1Swell F2Swell F3Swell F4Swell 

C4 F1Interruption F2Interruption F3Interruption F4Interruption 

C5 F1Harmonics F2Harmonics F3Harmonics F4Harmonics 

C6 F1Flicker F2Flicker F3Flicker F4Flicker 

C7 F1Transient F2Transient F3Transient F4Transient 

C8 F1Spike F2Spike F3Spike F4Spike 

C9 F1Notch F2Notch F3Notch F4Notch 

C10 F1sag_Harmonic F2sag_Harmonic F3sag_Harmonic F4sag_Harmonic 

C11 F1swell_Harmonic F2swell_Harmonic F3swell_Harmonic F4swell_Harmonic 
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flicker, transient, spike, notch, sag with harmonic, and 

swell with harmonic, which are recorded as F1Normal, 

F1Sag, F1Swell, F1Interruption, F1Harmonics, F1Flicker, 

F1Transient, F1Spike, F1Notch, F1sag_Harmonic, and 

F1swell_Harmonic, respectively. The definition of all 

membership functions of input variables are shown in 

Table 2. 

Based on the requirements of disturbances classification, 

the membership functions with the flat-topped distribution 

are selected to ensure the aggregation degree of membership 

function for each pattern. The improved Gaussian 

membership function, which is simpler than other flat-

topped functions likely trapezoid and mountain shaped 

function, is used for classification. The improved Gaussian 

membership function is defined as follows: 
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where a, b, and σ are the shape parameters of membership 

function 
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where F1min and F1max are the minimum and maximum of 

this pattern of signals, respectively. In this case, the area of 

membership degree with 1 covers the 80% range from F1min 

to F1max, and the membership degree is approximately 0.75 

with F1 = F1max or F1min. 

All cases of F1 in the simulation are shown as Fig. 4, 

wherein the abscissa is the value of F1. To distinguish F1 

from the different PQ disturbances, the ordinate in Fig. 4 is 

defined as C1-C11, which corresponds to normal, sag, 

swell, interruption, harmonics, flicker, transient, spike, 

notch, sag with harmonic, and swell with harmonic from 

bottom to top. 

The universe of F1 is [0, 2] and is obtained by rounding 

down the minimum and rounding up the maximum of the 

variable range of F1 [5.40489E-4, 1.90017] in Fig. 4. As 

abovementioned, the number of linguistic values in its 

universe is 11, corresponding to the values of F1 for all 

patterns of disturbances. Therefore, depending on the 

minimum and maximum features of each pattern, the 

membership function of this linguistic value can be 

calculated by (9). For example, the minimum and maximum 

features of sag (shown as the ordinate value 1 in Fig. 4) are 

respectively 0.09971 and 0.90027 plugged into (9), the 

membership function of F1Sag is obtained as a = 0.179766, 

b=0.820214, and σ=0.1521064. By analogy, the membership 

functions of all linguistic values for F1 are obtained (Fig. 5).  

The membership functions of all linguistic values for 

F2-F4 can also be obtained (Fig. 6 - 8). By contrasting Fig. 

5 to Fig. 8, the distribution of membership function among 

different features is clearly different; thus, the distinct 

characteristics among different patterns of disturbance are 
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Fig. 4. Distribution of F1. 

 

 
Fig. 5. Membership functions for F1. Here, only the three 

patterns distinguished simply by F1 are marked for 

clarity. 

 

 
Fig. 6. Membership functions for F2. Here, only the one

pattern distinguished simply by F2 is marked for 

clarity. 
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clearly reflected. 

 

4.2 Fuzzy rules 

 

After defining the membership functions for the various 

fuzzy sets of the extracted features from the S-matrix, a fuzzy 

rule base is formed for the recognition of disturbances. For 

the automatic recognition of 11 classes of disturbance 

patterns, the number of fuzzy rules is equal to the number 

of disturbance classes because these disturbance classes are 

used to define the linguistic values of fuzzy input variables. 

In Fig. 5, the values of F1 for sag, swell, interruption, 

sag with harmonic, and swell with harmonic have significant 

differences from the other six types of PQ disturbances. 

Furthermore, interruption can be merely recognized 

depending on F1. The values of sag and sag with harmonic 

are clearly distinct from swell and swell with harmonic. 

However, the group of two similar signals is superimposed 

on each other (Fig. 8) and needs F4 to be classified. Thus, 

the aforementioned five patterns of classified signals can 

be identified by using F1 and F4. Others require more 

features to be identified because the value distribution of 

F1 focused on the narrow area near one. 

Fig. 6 shows that the values of flicker are different from 

normal, harmonics, spike, and notch such that flicker can 

be recognized by F2. Moreover, the values of normal and 

harmonics are clearly distinct from spike and notch. 

However, the group of two similar signals is superimposed 

on each other and needs F3 to be classified. Fig. 7 shows 

the values of normal and harmonics, with spike and notch 

obviously distinguished, respectively. Thus, the combination 

of F2 and F3 is used to classify the aforementioned four 

patterns of disturbances. The transient can be recognized 

depending on F4 (Fig. 8). 

On the basis of the proposed analysis, the following 

fuzzy if-then rules are used to build the fuzzy rule base. 

Each if-then rule contains two parts: the antecedent part 

and consequent part. If the signal data for classification 

satisfy the fuzzy sets in the antecedent part, the signal data 

also satisfy the output class in the consequent part. 

 

Fuzzy rule base: 

Rule-1 if [(F1 is F1Normal) and (F2 is F2Normal) and (F3 

is F3Normal)] then Signal is Normal 

Rule-2 if (F1 is F1Sag) then Signal is Sag 

Rule-3 if (F1 is F1Swell) then Signal is Swell 

Rule-4 if (F1 is F1Interruption) then Signal is Interruption 

Rule-5 if [(F1 is F1Harmonics) and (F2 is F2Harmonics) 

and (F3 is F3Harmonics) and (F4 is not 

F4Harmonics)] then Signal is Harmonics 

Rule-6 if [(F1 is F1Flicker) and (F2 is F2Flicker) and (F3 

is F3Flicker)] then Signal is Flicker 

Rule-7 if [(F1 is F1Transient) and (F2 is F2 Transient) and 

(F3 is F3Transient) and (F4 is F4Transient)] then 

Signal is Transient 

Rule-8 if [(F2 is F2Spike) and (F3 is F3Spike) and (F4 is 

F4Spike)] then Signal is Spike 

Rule-9 if [(F2 is F2Notch) and (F3 is F3Notch) and (F4 is 

F4Notch)] then Signal is Notch 

Rule-10 if (F1 is F1Sag_Harmonic) and (F4 is F4 

Sag_Harmonic) then Signal is Sag_Harmonic 

Rule-11 if (F1 is F1Swell_Harmonic) and (F4 is F4 

Swell_Harmonic) then Signal is Swell_Harmonic 

“Not” is the logical “negation” operation in Rule-5.  

In a rule, DOF of the antecedent part is calculated to 

implicate the antecedent part and consequent part, shown 

in (10). The output of rule is the class of PQ signals 

corresponding with the consequent part. 

 

Rule-1 DOF1=min(F1Normal, F2Normal, F3Normal) 

Rule-2 DOF2=F1Sag 

Rule-3 DOF3=F1Swell 

Rule-4 DOF4=F1Interruption 

Rule-5 DOF5=min(F1Harmonics, F2Harmonics, 

F3Harmonics, (1-F4Harmonics)) 

Rule-6 DOF6=min( F1Flicker, F2Flicker, F3Flicker) (10) 

Rule-7 DOF7=min(F1Transient, F2Transient, F3Transient, 

 

Fig. 7. Membership functions for F3. Here, only the two

patterns distinguished simply by F3 are marked for 

clarity. 

 

 

Fig. 8. Membership functions for F4. Here, only the two

patterns distinguished simply by F4 are marked for 

clarity. 
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F4Transient) 

Rule-8 DOF8=min(F2Spike, F3Spike, F4Spike) 

Rule-9 DOF9=min(F2Notch, F3Notch, F4Notch) 

Rule-10 DOF10=min(F1Sag_Harmonic, F4Sag_Harmonic) 

Rule-11 DOF11=min(F1Swell_Harmonic, 

F4Swell_Harmonic)  

 

To obtain the final output result of fuzzy rule base, the 

maximum membership degree approach is used to 

aggregate the consequents across all the rules. The output 

class of disturbance patterns using the proposed fuzzy 

recognition system is also provided. 

 

 

5. Results and Discussion 

 

5.1 Simulation results 

 

To illustrate the feasibility of the proposed method, 100 

different cases of disturbances for each pattern are utilized. 

Furthermore, to have a better illustration of the robustness 

of the proposed method and to achieve the practical 

condition, signal cases are mixed with different Gaussian 

noise levels. Each example has signal-to-noise ratio (SNR) 

values of 20 and 50 dB. As an example, Table 3 shows the 

DOF of the antecedent part by using a random set of cases 

in rule base. Fig. 9 shows the classification accuracy of the 

proposed method for simulation. 

Results show that this method has high robustness and 

classification accuracy. The rule base and computation 

process in this method are simplified compared with the 

traditional fuzzy classification. 

 

5.2 Results of measured data 
 
To further evaluate the effectiveness of the proposed 

method, it is checked by some actual PQ disturbances. 

These disturbances are obtained from a PQ waveform library, 

including a number of common signature waveforms for 

various power system faults and PQ events. The waveforms 

in this library are available for download in the IEEE 

PQDIF (IEEE Std. 1159.3) format. A total of 20 cases of 

each type are extracted to be used as the inputs of the 

proposed method.  

Fig. 10 shows representative waveform of the measured 

data, whereas Fig. 11 shows the classification accuracy of 

the proposed method for measured data. Results show that 

this method has proper accuracy and can be applied. 

 

5.3 Performance comparison and discussion 

 

The performance of the proposed method and other 

literature methods are compared in Table 4. As seen in this 

table, the performance results of this method are desirable  

Table 3. DOF of the antecedent part using random data in fuzzy rule base (SNR = 20 dB) 

Patterns DOF1 DOF2 DOF3 DOF4 DOF5 DOF6 DOF7 DOF8 DOF9 DOF10 DOF11 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

C10 

C11 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.245 

0.896 

0.207 

0.248 

0.245 

0.246 

0.245 

0.213 

0.276 

0.759 

0.256 

0.245

0.232

0.899

0.178

0.246

0.244

0.245

0.280

0.217

0.261

0.761

0 

0.445 

0 

0.755 

0 

0 

0 

0 

0 

0 

0 

0.202 

0 

0 

0 

0.755 

0 

2.8×10-6

0 

0 

0 

0 

8.4×10-4

0 

0 

0 

0 

1 

0 

0 

6.4×10-24

0 

0 

0 

0 

0 

0 

0 

0 

0.767 

1.6×10-4

2.8×10-5

0 

0 

7.9×10-5

0 

0 

0 

9.2×10-5

9.2×10-31

5.8×10-5

0.758 

4.9×10-3

0 

0 

0.007 

0 

0 

0 

1.4×10-16 

3.8×10-31 

0 

4.7×10-7 

0.778 

0 

0 

0 

0.843 

1.4×10-15

0 

3.9×10-4 

8.7×10-8 

2.6×10-5 

1.5×10-4 

0.009 

0.997 

2.7×10-13

0 

1×10-16 

0.787 

4.6×10-9

5.9×10-27

2.3×10-8

1.3×10-14

2.1×10-3

0.021 

6.7×10-8

0.851 

 

0 200 400 600 800 1000 1200

1

2

3

4

5

6

7

8

9

10

11  SNR=50dB

 Samples

 

 

 Normal

 Sag

 Swell

 Interruption

 Harmonic

 Fliker

 Transient

 Spike

 Notch

 Sag+harmonic

 Swell+harmonic

C

C

C

C

C

C

C

C

C

C

C

P
at

te
rn

 o
f 

d
is

tu
rb

an
ce

s
 

 

(a) Overall accuracy is 99.82% 
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(b) Overall accuracy is 98.72% 

Fig. 9. Classification accuracies for simulation 
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in contrast with the classification accuracies proposed in 

other works. 

The advantage of the new fuzzy classification described 

in this article is the consideration of the combined 

disturbances and instantaneous disturbances, as some of 

them are not recognized in [8, 22]. The classification 

accuracy of [8, 22] is 98% and 99%, respectively; whereas 

the classification accuracy of this study is 98.7% for the 

simulation. Although the classification accuracy in [22] is 

slightly better, the partial results are obtained without 

noise; differently, the results in this study are obtained 

under the condition of noise level. Furthermore, the 

classification of disturbances is completed only by four 

features by using the proposed algorithm, which is the 

minimum of the feature numbers in Table 4. 

To evaluate the simulation performance between the 

proposed method and other recognition methods, a 

comparison among [4, 6, 10, 15] is performed. The 

classification accuracy of [4, 6, 10, 15] is 96.7, 97.1, 93.2, 

and 95.8%, respectively. Besides, the classification 

accuracy of this study and the mentioned investigations are 

mixed with the noise value of 20 dB. 

A comparison of the simulation results is made between 

the results of this article and the results of [14, 22] by using 

traditional fuzzy classification. The classification accuracy 

of [14] is 89.1% under the same noise condition, which is 

lower than that of this study. In [22], the reported results 

have high accuracy, but the accuracy increased up to 99.2% 

with the use of adaptive particle swarm optimization 

technique combined with fuzzy logic for optimizing 

membership functions of the concerned fuzzy sets. The 

proposed method without using optimization algorithms 

achieves proper classification accuracy, thus ensuring the 

effectiveness of recognition and reducing the difficulty of 

classification algorithm. 

Finally, to evaluate the practical performance of the 

(a) Waveform of voltage sag 

 

(b) Waveform of transient 

Fig. 10. Representative measured data of PQ disturbances 

meet IEEE Std. 1159.3 

 

Fig. 11. Classification accuracies for measured data. The 

overall accuracy is 98.6%. 

Table 4. Performance comparison with different methods 

Overall Accuracy (%) 
Reference Method 

Feature 

number 
Investigated PQ disturbance type Simulation 

(SNR=20dB)

Measured

data 

[4] SSD + DT 6 
Normal, sag, swell, interruption, harmonics, transient,  

flicker, notch, sag + harmonic, spike, swell + harmonic 
96.7 —  

[6] WT + SVM 16 
Sag, swell, interruption, harmonics, flicker, transients,  

sag + harmonic, swell + harmonic 
97.1 98.3 

[9] WT + HMM 6 Normal, sag, swell, harmonics, flicker, transients, 98.0 —  

[10] ST + PNN 4 
Normal, sag, swell, interruption, harmonics, transient,  

flicker, notch, sag + harmonic, spike, swell + harmonic 
93.2 —  

[14] 
WT + fuzzy k-nearest 

neighbour 
16 

Sag, swell, interruption, harmonics, transient, flicker, notch,  

sag + harmonic, spike, swell + harmonic 
89.1 96.3 

[15] ST + DT-F 6 
Sag, swell, interruption, harmonics, notch, flicker, transients,  

Sag + harmonic, spike, swell + harmonic 
95.8 95.2 

[22] 
ST + fuzzy expert 

systems with CF 
5 

Normal, sag, swell, interruption, harmonics, notch+harmonics,  

transient, flicker, sag + harmonic, spike + harmonics, swell + harmonic 
99.2 —  

[23] WT(MRA) + FFT 6 
Normal, sag + noise, interruption, swell + noise harmonics,  

harmonic+ noise sag, sag + harmonic, swell, swell + harmonic 
99.0 —  

In this  

article 

ST + fuzzy using 

pattern linguistic 

values 

4 
Normal, sag, swell, interruption, harmonics, transient, flicker,  

notch, sag + harmonic, spike, swell + harmonic 
98.7 98.6 
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proposed algorithm, a comparison among each method in 

Table 4 is performed, except for [4, 9, 10, 22, 23], by using 

measured data. The classification accuracy of [6, 14, 15] 

for measured data is 98.3, 96.3, and 95.2%, respectively, 

whereas the classification accuracy of this study is 98.6%. 

Thus, the proposed method has proper accuracy and passes 

the test with high accuracy for measured data. 

 

 

6. Conclusion 

 

In this paper, an attempt has been made to identify and 

classify PQ disturbances by using ST and classifier based 

on pattern linguistic value, which utilizes the internal 

relations between the parameters and rule base of the 

classifier. The design process of linguistic value numbers 

and membership function parameters does not only relate 

to the values of input variables but also to the classification 

purpose directly. Given that the number of linguistic values 

is equal to the number of disturbance patterns, the 

parameters of membership function are directly calculated 

from the relevant data of each pattern. Furthermore, the 

number of fuzzy rules is the same as the number of 

disturbance patterns and can be directly obtained from the 

analysis of the distribution of input values. 

The performance results for simulation and measured 

data show that the proposed method has the ability of 

recognizing and classifying different PQ disturbances 

efficiently even with insufficient and noisy data. The 

number of features used in this method is reduced to four, 

which is significantly less than other similar works. This 

method also reduces the dimensionality and complexity of 

the classifier. Furthermore, considering the characteristics 

and parameters of disturbances, the complexity of the 

fuzzy reasoning process and rule base are substantially 

reduced compared with the traditional fuzzy inference 

system. Moreover, the calculation is reduced in this 

study to ensure the classification effectiveness of the 

classifier. This work provides a great potential method 

for applications, particularly under the condition of 

unfavorable hardware resources. 
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