Recognition and Segmentation of 3-D Human
Action Using HMM and Multi-class AdaBoost*

Fengjun Lv and Ramakant Nevatia

University of Southern California,
Institute for Robotics and Intelligent Systems,
Los Angeles, CA 90089-0273

{flv, nevatia}@usc.edu

Abstract. Our goal is to automatically segment and recognize basic
human actions, such as stand, walk and wave hands, from a sequence of
joint positions or pose angles. Such recognition is difficult due to high
dimensionality of the data and large spatial and temporal variations in
the same action. We decompose the high dimensional 3-D joint space
into a set of feature spaces where each feature corresponds to the mo-
tion of a single joint or combination of related multiple joints. For each
feature, the dynamics of each action class is learned with one HMM.
Given a sequence, the observation probability is computed in each HMM
and a weak classifier for that feature is formed based on those proba-
bilities. The weak classifiers with strong discriminative power are then
combined by the Multi-Class AdaBoost (AdaBoost.M2) algorithm. A
dynamic programming algorithm is applied to segment and recognize
actions simultaneously. Results of recognizing 22 actions on a large num-
ber of motion capture sequences as well as several annotated and au-
tomatically tracked sequences show the effectiveness of the proposed
algorithms.

1 Introduction and Related Work

Human action recognition and analysis has been of interest to researchers in
domains of computer vision [1] [2] [9] [3] [I0] [I2] for many years. The problem
can be defined as: given an input motion sequence, the computer should identify
the sequence of actions performed by the humans present in the video. While
some approaches process the video images directly as spatio-temporal volumes
[10] , it is common to first detect and track humans to infer their actions [3]
[12]. For finer action distinction, such as picking up an object, it may also be
necessary to track the joint positions. The methods may be further distinguished
by use of 2-D or 3-D joint positions.

In this paper, we describe a method for action recognition, given 3-D joint
positions. Of course, estimating such joint positions from an image sequence
is a difficult task in itself; we do not address this issue in this paper. We use

* This research was supported, in part, by the Advanced Research and Development
Activity of the U.S. Government under contract No. MDA904-03-C1786.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 359-1372] 2006.
© Springer-Verlag Berlin Heidelberg 2006

360 F. Lv and R. Nevatia

data from a Motion Capture (MoCap) systemlor from a video pose tracking
system. It may seem that the task of action recognition given 3-D joint positions
is trivial, but this is not the case, largely due to the high dimensionality (e.g.
67-D) of the pose space. The high dimensionality not only creates a computa-
tional complexity challenge but, more importantly, key features of the actions
are not apparent, the observed measurements may have significant spatial and
temporal variations for the same action when performed by different humans
or even by the same person. Furthermore, to achieve continuous action recogni-
tion, the sequence needs to be segmented into contiguous action segments; such
segmentation is as important as recognition itself and is often neglected in ac-
tion recognition research. Our method attempts to solve both the problem of
action segmentation and of recognition in presence of variations inherent in per-
formance of such actions. Even though we assume that 3-D positions are given,
we present results illustrating the effects of noise in the given data (for positions
derived from videos).

Previously reported action recognition methods can be divided into two cat-
egories with respect to the data types that they use: those based on 2-D image
sequences, e.g. [2] [9] [3] [10] [I2] and those based on 3-D motion streams, e.g. [1]
[7]. The above 2-D approaches can be further divided by the image features they
use: those based on object contours [2] [12], those base on motion descriptor such
as optical flow [3] or gradient matrix [I0] and those base on object trajectories
[9). A 3-D approach has many advantages over a 2-D approach as the dependence
on viewpoint and illumination has been removed. Nonetheless, many algorithms
use a 2-D approach because of the easy availability of video inputs and difficulty
of recovering 3-D information.

In the above 3-D approaches, [I] decomposes the original 3-D joint trajectories
into a collection of 2-D projected curves. Action recognition is based on the
distances to each of these curves. However, the predictors they use are static
constructs as the correlation between 2-D curves are lost after projection. In [7],
actions are represented by spatio-temporal motion templates, which correspond
to the evolution of 3-D joint coordinates. As matching results can be affected by
temporal scale change, each template is resampled and multiple-scale template
matching is performed.

The approaches cited above (except for [7]) assume that the given sequence
contains only one action performed throughout the length of the sequence; it
is not clear how and whether they could be extended to segment a video con-
taining sequence of actions and recognize the constituent actions. In [7] action
segmentation is obtained to some extent by classifying action at each frame
by considering a fixed length sequence preceding it; such segmentation is in-
accurate at the boundaries and over-segmentation may occur. Explicit action
segmentation is considered in the context of complex actions consisting of a se-
quence of simpler actions but only when a model of the sequence is available,
such as in [5]. We consider a sequence of actions where such models are not

! Part of data comes from mocap.cs.cmu.edu, which was created with funding from
NSF EIA-0196217.

Recognition and Segmentation of 3-D Human Action 361

known and actions may occur in any sequence (though some sequences may be
eliminated due to kinematic constraints; we do not consider such constraints in
this work).

Our approach is based on 3-D joint position trajectories. The actions we
consider are primitive components that may be composed to form more complex
actions. The actions are grouped according to the set of body parts that are
related to the action. In our approach, the high dimensional space of 3-D joint
positions is decomposed into a set of lower dimensional feature spaces where each
feature corresponds to the motion of a single joint or combination of related
multiple joints. For each feature, the dynamics of one action class is learned
with one continuous Hidden Markov Model (HMM) with outputs modeled by a
mixture of Gaussian. A weak classifier for that feature is formed based on the
corresponding HMM observation probabilities. Weak classifiers of the features
with strong discriminative power are then selected and combined by the Multi-
Class AdaBoost (AdaBoost.M2) algorithm to improve the overall accuracy.
A dynamic programming-based algorithm is applied to segment and recognize
actions simultaneously in a continuous sequence.

To our knowledge, there has been little work done in computer vision that
integrates HMM with AdaBoost. In [I3], an integration called “boosted HMM”
is proposed for lip reading. Their approach is different from ours in that they use
AdaBoost first to select frame level features and then use HMM to exploit long
term dynamics. This does not suit the action recognition problem well because
the full body motion is much more complex than the lip motion. Without the
dynamic information, the static features tend to cluster in the feature space
and thus can not discriminate different actions well; their combination (using
AdaBoost) is unlikely to alleviate the problem much. Another difference is that
[13] works with pre-segmented sequences only.

We show the results of our system on a large collection of motion capture
sequences with a large variety of actions and on some hand annotated as well
as automatically tracked video sequences. The recognition results are very good
and the method demonstrates tolerance to considerable amount of noise. We
also compare performance with our earlier work [7] which was based on a sim-
pler algorithm. Most importantly, the new approach can take a data stream
containing a sequence of actions and then segment and recognize the component
actions which is not possible with the earlier approach.

2 The Dataset and Feature Space Decomposition

We collected 1979 MoCap sequences consisting of 22 Actions from Internet.
We also generated some sequences of 3-D joint position from a 3-D annotation
software [0] and from an automatic 3-D tracking software [6]. The generated
data are much less accurate compared with MoCap. They are used in testing
only to show that our algorithm can work on real data and that training on
MoCap data transfers to video sequences; we do not claim to have solved the
tracking problem as well.

362 F. Lv and R. Nevatia

arm related action head ralated action

vrave hand -

I oint shake head
Pt~ svake v
\ # | lower arm
PR
| nrarm J ‘.

slﬂsland | lie2stand
standu climb uj \
" sitzlie
jump {lie dovin}
forward
'C I|325|t —_—
leg+torso related action
Lagens, [srtaroyncion | _(RRRBRINGHRRD |

Fig. 1. Categorization of actions that need to be recognized

Actions in these videos can be grouped into 3 categories according to the
involved primary body parts: {leg+torso, arm, head}. The categorization is
illustrated in Fig[ll Actions in the same group are mutually exclusive to each
other, but actions from different groups can be recognized simultaneously. This
allows us to execute logical queries such as find the sequence in which the subject
1s walking while his head is nodding.

Actions can also be classified based on whether the primary body parts move
or not. We view a stationary pose, e.g. stand or sit (white blocks in Figlll) as a
special type of action, with the constraint that duration of the action should be
long enough (longer than some threshold). The transitional actions (gray blocks)
transit from one stationary pose to another. The remainder (black blocks) consist
of periodic actions (e.g. walk, run) and other actions.

Different joint configurations (i.e. number of joints/bones, joint names and
joint hierarchy) are unified to one that consists of 23 joints. The joint positions
are normalized so that the motion is invariant to the absolute body position, the
initial body orientation and the body size.

Since there are 23 joints and each has 3 coordinates (only y coordinate is used
for hip, the root joint), the whole body pose at each frame can be represented
by a 67-D vector (called a pose vector). We performed some experiments to
evaluate the effectiveness of using the 67-D pose vector on a simpler subset of
action classes Walk, Run, Stand, Fall, Jump, Sit down. We first used a Bayesian
network to classify static pose and found the classification accuracy to be less
than 50%. Then, we trained and tested a 3-state continuous HMM (the same as
one described in section B.]) and found the accuracy to be still low (below 60%).
These experiments do not conclusively prove that using the full pose vector is
undesirable but it is reasonable to think that relevant information can get lost
in the large pose vector.

Recognition and Segmentation of 3-D Human Action 363

Rather than enumerate all combinations of different components in the pose
vector (as in [I]), we design feature vectors, called just features from now on,
such that each feature corresponds to the pose of a single joint or combination
of multiple joints. Following is the list of different types of features that are
included.

Type 1: one coordinate of a joint, e.g. the vertical position of the hip

Type 2: coordinates of each non-root joint

Type 3: coordinates of 2 connected joints, e.g. neck and head

Type 4: coordinates of 3 connected joints, e.g. chest, neck and head

Type 5: coordinates of one pair of symmetric nodes, e.g. left hip and right hip
Type 6: coordinates of all leg and torso related joints

Type 7: coordinates of all arm related joints

Features are designed in this way based on our analysis of the actions and
the features that can distinguish them. Different types characterize different
levels of dynamics of an action. For example, Type 2,3 and 4 corresponds to
joint position, bone position and joint angle, respectively. Type 5 features are
useful for detecting periodic motions and type 6 and 7 features provide an overall
guidance for recognition. In total we have 141 features.

3 Integrated Multi-class AdaBoost HMM Classifiers

We now describe our action recognition methodology. It consists of a combina-
tion of HMM classifiers, which are treated as weak classifiers in the AdaBoost
terminology, and whose outputs are combined by a multi-class AdaBoost algo-
rithm (AdaBoost.M2). We first describe the HMM classifiers and then their
combination. The issue of segmenting the pose sequence into separate actions is
addressed separately in section Ml later.

3.1 Learning Weak Classifiers Using HMMs

We choose a hidden Markov model (HMM) to capture the dynamic information
in the feature vectors as experience shows them to be more powerful than models
such as Dynamic Time Warping or Motion Templates. An HMM is defined by
states, transition probabilities between them and probabilities of outputs given a
state. Well known algorithms []] are available to answer the following questions:

1. How to compute P(OJ)), the probability of occurrence of the observation
sequence O=010;...07 given model parameters A7 This problem can be
solved by the Forward-Backward procedure.

2. How to select the best state sequence I=iyis...ir such that P(O,I|\) is
maximized? This problem can be solved by the Viterbi algorithm.

3. How to learn model parameters A given O such that P(O|\) is maximized?
This problem can be solved by the Baum-Welch algorithm.

364 F. Lv and R. Nevatia

f 1 feature2 eee feature N = -
eature {_foaturs eatice N feature j .
() . AN | S frame T [[..OT.]

ha

action 1

action 2

e

action M

Fig. 2. The matrix of HMMs. Each HMM has 3 hidden states. Each state contains
a 3-component mixture of Gaussian. Once \; ;, the parameters of HMM; ; is learned,
the probability of the observation sequence O10:...Or is computed using the For-
ward procedure. The action with the maximum probability in the same column is
selected.

For the action classification problem, suppose there are M action classes and
N features (feature classes). For the j-th feature (j = 1,...,N), we learn one
HMM for each action class and the corresponding parameters \;, i = 1,...,M.
Given one observation sequence O, we compute P(O|)\) for each HMM using
the Forward-Backward procedure. Action classification based on feature j can
be solved by finding action class i that has the maximum value of P(O|);), as
shown in Eq[ll

action(O) = arg max (P(O|\;)) (1)

ivi=1,...,M

We call the set of these HMMs and the decision rule in Eq[Il as the weak
classifier for feature j (a term used in boosting algorithm literature). These M
action classes and N features form an M x N matrix of HMMs, as shown in
Figll We denote by HMM, ; the HMM of action i (i-th row) and feature j (j-th
column) and its corresponding parameters is A; ;. The set of HMMSs in column
j correspond to the weak classifier for feature j.

Recall that there are three action groups based on involved body parts. There-
fore, to recognize actions in a specific group, only related features need to be
considered. In other words, a feature can only classify related actions. For exam-
ple, feature neck,,.+head;,. can only classify action “nod” and “shake head”.
Therefore, there are three matrices of HMMs, corresponding to three action
groups. As HMMs in three groups are used in the same way; unless otherwise
stated, we do not specify which group that they belong to.

In our system, each HMM has 3 hidden states and each state is modeled by a
3-component mixture of Gaussian. The following parameters of each HMM are
learned by the Baum-Welch algorithm: (1) Prior probabilities of each state,
(2) Transition probabilities between states and (3) Parameters of each state s
(s=1,2,3): Mean vector fism, covariance matrix X ,,, and weight ws ,, of each
mixture component (Gaussian) (m=1,2,3).

Recognition and Segmentation of 3-D Human Action 365

The training and classification algorithm of weak classifiers are listed as
follows:

Algorithm 1. Training of weak classifiers

1. Given Q training samples {(x1,%1), ..., (@, Yq)) where z,, is a sequence with
action label y,,, y, € {1,..., M}, n=1,...,@Q, M is the number of action classes
2. Divide the Q samples into M groups such that each group contains samples
with the same label.
3. for j=1 to N (N is the number of features)
for i=1 to M
3.1 Crop the training samples in group i, such that they contain only
coordinates that belong to feature j
3.2 Train HMM; ; using Baum-Welch algorithm

Algorithm 2. Classification algorithm based on weak classifier j

1. Given an observation sequence O=010,...0r
2. for i=1 to M, Compute P(O|X; ;)
3. Return argmax (P(O|\;;))

wi=1,...,

Both Forward and Baum-Welch algorithm need to compute P(O;|s; = s),
the probability of observing O, given that state s at time t. Unlike a discrete
HMM, a continuous HMM uses a Probability Density Function (PDF) to es-
timate P(O|s; = s). This is because no point has a probability in a continu-
ous distribution, only regions do. For the Gaussian mixture model used here,
P(O¢|s¢ = s) is computed as follows:

3
S (wom 1 o= 3O po,m) B5 5 (O i)™ @)
- (2m)

a4 1
2
m=1 2 ‘Es,m‘

In practice, Log-likelihood log(P(O¢|s; = s)) is used to avoid numerical un-
derflow. Another consideration is that the probability of occurrence of the obser-
vation sequence O10s...0r tends to decrease exponentially as T increases. But
this causes no problem here because for feature j, the probability computed in
each of HMM; ; (i =1, ..., M) decreases comparably.

The complexity of Algorithm 2 is O(MN,,?T), where Ny; is the number of
states in HMM. Deciding automatically the appropriate value of Ng; is difficult
and therefore in practice, it is usually specified in advance. Our experiments show
that an HMM of 3 states with a 3-component mixture Gaussian can capture rich
dynamic information in the actions and can achieve desired high classification
rate. So the complexity of Algorithm 2 is approximately O(MT).

The complexity of Algorithm 1 is O(NNithtzLa”)7 where N;; is the number
of iterations in Baum-Welch algorithm and L,;; is the total length of training
samples of all action classes. In our experiment, Baum-Welch algorithm usu-
ally converges in less than 5 iterations. So the complexity of Algorithm 1 is
approximately O(N Lqy;).

366 F. Lv and R. Nevatia

3.2 Boosting Classifiers Using AdaBoost.M2

Experiments show that individual learned HMM classifiers have reasonably good
performance; for example, feature (all leg and torso related joints) alone can
correctly classify 62.1% of 16 leg and torso related action classes. However, we
expect much better performance from the final classifier. This can be done by
combining HMM classifiers, considered to be weak classifiers. This is made pos-
sible due to the fact that each weak classifier has different discriminative power
for different actions.

Inspired by success of boosting methods for many problems, particularly face
detection of Viola and Jones [I1], we use the AdaBoost [4] algorithm to combine
results of weak classifiers and to discard less effective classifiers to reduce the
computation cost. This algorithm works in an iterative way such that in each
iterationthe newly selected classifiers focus more and more on the difficult train-
ing samples. In this paper, we use AdaBoost.M2 [4], the multi-class version of
AdaBoost. Some limitations of AdaBoost.M2 for feature selection were stated
in [13]; we believe that those limitations hold only when the weak classifiers have
very limited discriminative power.

We rephrase the AdaBoost.M2 algorithm here to accommodate our specific
problem.

Algorithm 3. AdaBoost.M2 for action classification

1. Given Q training samples {(z1,%1), ..., (@, Yq)) where z,, is a sequence with
action label y,, yn € {1,..., M}, n=1,...,Q
2. Train weak classifiers using Algorithm 1 in section B.1]
3. Test these Q samples on each HMM; ;, record the value P(z,,|\; ;), i=1,...,M,
j=1,....N, n=1,...,Q
4. Let B = {(n,y) : n € {1,...,Q},y # yn} be the set of all mislabels; Let
DW(n,y) = 1/|B| for (n,y) € B be the initial distribution of mislabels
5. for k=1 to K (K is the number of iterations)
5.1 Select a weak classifier hy that has minimum
pseudo-loss e =5 S DWW (n,y)(1 — P(zn| Ay, ny) + Pl Ay,ni))
(n,y)€B
5.2 Set O, = e’:‘k/(l — e’:‘k)
5.3 Update D®): DEHD (p 4)) ZD(k)Z(kn’y) ﬁg(1+P(1nl/\y”'hk)_P(xnlAy’hk))

where Zj, is normalization constant so that D*+1) will be a distribution

K
6. Let f=>" (log 61)P (x| Ay n,). Return the final classifier h(x)= argmax (f)
k=1 r yef{l,...,M}
and likelihood H (z) = a
nd likeli (z) ye{q{__?fM}(f)

The idea of this algorithm can be interpreted intuitively as follows:(1) log ﬁlk
is the weight of the selected classifier hy. Intuitively, as P(2,|Ay, »,) increases
(which means hy labels z,, more accurately), the pseudo-loss €) decreases and
consequently log Blk increases. So in each iteration the new selected classifier has

the strongest discriminative power given current D®*). (2)D(’C)7 the distribution

Recognition and Segmentation of 3-D Human Action 367

of mislabels, represents the importance of distinguishing incorrect label y on
sample x,. As P(x,|Ay 5,) increases and P(z,|Ay, 5,) decreases (which means
that hy labels x,, less accurately), D) increases because g5, < é and thus 8 < 1.
By maintaining this distribution, the algorithm can focus not only on the hard-
to-classify samples but also on the hard-to-discriminate labels. This is the major
improvement over AdaBoost.M1, the first version of multi-class AdaBoost [4].

Care needs to be taken when applying AdaBoost.M2 on continuous HMMs
because it is critical in AdaBoost.M2 that the value of hypotheses generated by
weak classifiers not exceed 1 so that the pseudo-loss €y is in the range of [0,0.5].
However, for a continuous HMM, the observation probability P(zy|A; ;) com-
puted by the Forward procedure is based on a Gaussian function, as shown in
Eq2l Keep in mind this is the probability density function. Therefore, P(z,|\; ;)
can be greater than 1 in practice. If this occurs, all P(x,|A; ;) computed in step
3 of Algorithm 3 will be normalized by a scale factor such that the maximum
of all P(xy,|A; ;) does not exceed 1. (Theoretically, P(x,|); ;) can be an infinite
number, which indicates the sample should be definitely labeled as action 4, but
this does not occur in our experiments.)

Results show that after combining 15 weak classifiers by the boosting pro-
cedure, the final classifier achieves a classification rate of 92.3% on the leg and
torso related actions, showing the effectiveness of the algorithm.

4 The Segmentation Algorithm

Action classification method described in section [3] assumes that each input se-

quence belongs to one of the action classes. To achieve continuous action recog-

nition, a (long) sequence needs to be segmented into contiguous (shorter) action
segments. Such segmentation is as important as recognition itself.
Here is the definition of segmentation: Given an observation sequence

O = 0103...07, a segmentation of O can be represented by a 3-tuple S(1,7)=

(Ns, Sp, Clp).

e Ng: the number of segments, Ng € {1,...,T}

e s,: the set of start time of each segment, s, € {1,...,T}, p=1,...,Ng, s1 is
always 1 and we add an additional point sy441=T+1 to avoid exceeding the
array boundary

e a,: the corresponding action labels of each segment, a, € {1,..., M}

For a sub-sequence Oy O0y141...0¢2, we compute the following functions:

K

1
h(t1,t2) = argmax Z(log)P(Ou1...02| Ay 1) (3)
vell,., My i Bk
i 1
H(t1,t2) = 1 P 4
= s S og 3 PO Oaln) 0

h(t1,t2) and H(t1,t2) is the action label and likelihood computed by
Algorithm 3.

368 F. Lv and R. Nevatia

Given a segmentation S of O10s...Or, a likelihood function L is defined as:

Ng
L(1,T,S(1,T)) = [H(spssp11 — 1) (5)

p=1
A maximal likelihood function L* is defined as:

L*(1.7) = max L(LT.S(1.T) (6)

The goal of the segmentation problem is to find the maximal likelihood
function L*(1,T) and the corresponding segmentation S*(1,7). Enumeration
of all possible values of (Ngs,s,,a,) is infeasible because of the combinatorial
complexity. However, the problem can be solved in O(7?) time by a dynamic
programming-based approach: Suppose a sub-sequence Oy;...Oy2 is initially la-
beled as h(t1,t2) and t is the optimal segmentation point in between (if Oy ...O42
should be segmented). If L*(¢t1,¢t — 1)L*(¢,¢2) is larger than H(t1,¢2), then
Oy1...042 should be segmented at ¢. The idea is shown in Eq[ll

L*(#1,12) = max(H (11, 2), L*(t1,¢ — 1)L*(t,2)) (7)

This recursive definition of L* is the basis of the following dynamic
programming-based algorithm.

Algorithm 4. Segmentation algorithm
/*L*(t1,12) abbr. as Lj; ;5, same for other variables*/

1. Given an observation sequence O=010s...07. l,,;y is the limit of minimum
length of a segment
2. Compute hy 42 and Hy g2, t1,t2 € {1,...,T} and 2 > ¢1 + I — 1
3. /*too short to be segmented*/
for I=l,in t0 2lpmin — 1
fortl=1to T —1+1
L>tk1,t1+l—1:Ht1’t1+lfl
Record the corresponding action labels
4. /*dynamic programming starts here*/
for 1=2l,,in, to T
fortl=1to T —1+1
L:1,t1+z_1:maX(Ht1,t1+l—1a mtaX(le,tflL:,tl+l—1))
where t1 + i <t <tl1+1—lpnn
Record the corresponding segmentation point and action labels
5. return L] ; and the corresponding ST -

We use l,,;n, here to avoid over segmentation as well as impose a constraint
on the stationary actions (or precisely, poses, e.g. stand) such that duration of
a stationary action should be long enough.

Recognition and Segmentation of 3-D Human Action 369

The complexity of the above algorithm is 73/6 in terms of computation of
Ly 41 L7 4141—1- The cost is still high if T' is very large. Significant speedup can
be achieved if there are pauses or stationary actions (which usually occur in a
long sequence), which can be easily detected beforehand by sliding a temporal
window and analyzing the mean and variance of motion within the sliding win-
dow. These pauses or stationary actions are then used to pre-segment the long
sequence into several shorter sequences.

The above step 2 requires computation of P(Oy;...042|)\), the probability of
observing each valid sub-sequence Oy;...0¢ by an HMM. To avoid repeated
computation of such P(O1...042|A) in the Forward procedure, we augment the
Forward procedure so that instead of returning the probability of observing
O¢1...042 only, we return the probabilities of observing each sub-sequence of
Oy1...04 starting from Oy .

5 Experimental Results

To validate the proposed action classification and segmentation algorithm, we
tested it on a large MoCap database as well as several annotated and automat-
ically tracked sequences to investigate the potential of its use with video data.
The results on these two types of data are shown in section E.I]and 5.2 In section
(3] we show a comparison with our earlier template matching based approach
algorithm [7] on the same dataset.

5.1 Results on MoCap Data

The 1979 MoCap sequences in our dataset contain 243,407 frames in total. We
manually segmented these sequences such that each segment contains a whole
course of one action. In total we have 3745 action segments. The distribution
of these segments in each action class is not uniform. Walk has 311 segments
while lie2stand has only 45 segments. The average number is 170. The length of
these segments are also different, ranging from 43 to 95 frames. The average is
65 frames.

In Experiment 1, we randomly selected half of segments of each action class
for training and the remainder for classification. In Experiment 2, we reduced
the amount of training data to 1/3. We repeated these experiments five times
and the average classification rate of each class is shown in Table [

The overall classification rate of each action group {leg+torso, arm, head} are
{92.3%,94.7%,97.2%} gxp.1 and {88.1%,91.9%, 94.9%} Ep.2, respectively.

As expected, the performance of Experiment 2 is lower, but not by much, in-
dicating that the algorithm is robust in terms of the amount of available training
data. Compared with Experiment 1, most of the first 3 best features (not shown
here due to limited space) for each action did not change (although the order
may be different). This shows consistency of AdaBoost.M2 in selecting good
classifiers.

Results show that individual learned HMM classifiers have reasonably good
performance; for example, in Experiment 1, one feature (all leg and torso re-
lated joints) alone can correctly classify 62.1% of leg and torso related action

370 F. Lv and R. Nevatia

Table 1. Classification rate of each action class

action walk run jupward j forward stand sit bow lie
Exp.l 94.1% 95.5% 92.2% 91.2% 91.8% 92.4% 89.8% 88.7%
Exp.2 89.0% 91.3% 87.3% 86.6% 87.9% 90.5% 86.0% 84.8%
action stand2sit sit2stand stand2bow bow2stand stand2lie lie2stand sit2lie lie2sit
Exp.1 89.7% 89.8% 89.0% 88.3% 92.4% 88.2% 91.2% 91.8%
Exp.2 84.7% 86.6% 84.8% 86.5% 88.7% 84.5% 86.6% 86.1%
action wave hand point lower arm lift arm nod shake head

Exp.1 95.8% 94.2% 92.7% 92.3% 97.9% 96.7%

Exp.2 91.3% 92.8% 89.2% 89.4% 95.1% 94.8%

classes. The effectiveness of AdaBoost.M2 in combining good features can be
clearly seen by a gain of about 30% (from 62.1% to 92.3%) in the classification
rate.

In Experiment 3, we tested our segmentation/recognition algorithm on 122
unsegmented long sequences (from testing set) with average length of 949 frames
(please see the supplementary material for some result videos). We use the clas-
sifier learned in Experiment 1 and we set [,,,;,,=20 frames to avoid over segmen-
tation. The algorithm achieves a recognition rate of 89.7% (in terms of frames).

In terms of speed, on a P4 2.4GHz PC, Experiment 1 took 153 minutes for
training and 42 minutes for classification (~47 fps). Experiment 2 took 76 min-
utes and 66 minutes (~41 fps). Experiment 3 took 68 minutes to segment 122
sequences (~28 fps). The results show that the classification as well as the seg-
mentation/recognition algorithm works in real time.

5.2 Results on Annotated and Tracked Data

In Experiment 4, we used a 3-D annotation software and a 3-D tracking soft-
ware developed in our group [6] to generate two annotated (994 frames in total)
and one automatically tracked (159 frames) sequence.

FigBl shows some key frames of one annotated sequence. The rendered anno-
tation results using a human character animation software called POSER (by
Curious Labs) are displayed on the right. The ground truth action and the rec-
ognized action are shown at the top and the bottom, respectively.

Results show that most of actions have been correctly recognized although
the segmentation is not perfect. Errors occur when the subject turns around
because we don’t model such actions in our action set. Carry was not recognized
for the same reason. Reach and crouch, however, were recognized as point and
sit, which are reasonable substitutions for reach and crouch.

The recognition rate on the annotated and tracked data is 88.5% and 84.3%,
respectively. This is satisfactory considering a substantial amount of jittery noise
contained in the data (root mean square position error rates of about 10 pix-
els (~10 c¢m) and joint angle errors of about 20°). The proposed algorithm, in

Recognition and Segmentation of 3-D Human Action 371

A0 el aackwardy S, urm around

szand
392 bow resch

o il el earry

sit2stand, poir

walk

Fig. 3. Key frames of one annotated video. Ground truth and recognition result is
shown in top-right and bottom-right, respectively.

general, is robust to these types of errors with short duration because of the
longer-term dynamics captured by the HMMs.

5.3 Comparison with Template Matching Based Algorithm

We tested our earlier template matching based algorithm in [7] using exactly the
same experimental setup. In [7], each action is represented by a template consist-
ing of a set of channels with weights. Each channel corresponds to the evolution
of one 3D joint coordinate and its weight is learned according to the Neyman-
Pearson criterion. y? function is used as the distance measurement between
the template and the testing sequences. The results of [7] are listed as follows:
Exp.1:{leg+torso:83.1%, arm:84.8%, head:88.4%}, Exp.2:{leg+torso:79.4%,
arm: 80.5%, head: 82.3%}, Exp.3:80.1%, Exp.4:{annotated: 82.3%,
tracked:80.6%}.

The new algorithm has significantly better results. We note that the de-
tection results for the template matching based methods are inferior to those
originally reported in [7] because the sequences in this test are much more de-
manding and include walking styles with large variations such as staggering,
dribbling and catwalk. The method described in this paper outperforms tem-
plate matching not only because Boosted HMMs provide a more powerful way
to model such variations but also because it is less sensitive to temporal scale
changes.

Also note that the recognition algorithm in [7] does not segment long se-
quences in Experiment 3. It simply searches for the best matched template within
the preceding window. As action label at next frame may change, that leaves
many small misclassified fragments. In contrast, the segmentation based method
provide some global guidance for the process to make sure that the long sequence
is not over segmented.

372 F. Lv and R. Nevatia

6 Summary and Future Work

We have presented a learning-based algorithm for automatic recognition and
segmentation of 3d human actions. We first decompose 3D joint space into fea-
ture spaces. For each feature, we learn the dynamics of each action class using
one HMM. Given a sequence, the observation probability is computed in each
HMM and a weak classifier for that feature is formed and then combined by
the AdaBoost.M2 algorithm. A dynamic programming algorithm is applied to
segment and recognize actions simultaneously in a continuous sequence.

Our major contributions are a framework that boosts HMM-based classifiers
using multi-class AdaBoost and a dynamic programming-based action recogni-
tion and segmentation algorithm. Our future work plan includes adding more
complex actions.

References

1. L. Campbell and A. Bobick. Recognition of human body motion using phase space
constraints. In Proc. of ICC'V, pp. 624-630, 1995.

2. J. Davis and A. Bobick. The Representation and Recognition of Action Using
Temporal Templates. In Proc. of CVPR, pp. 928-934, 1997.

3. Alexei A. Efros, Alexander C. Berg, Greg Mori and Jitendra Malik. Recognizing
Action at a Distance. In Proc. of ICCV, pp. 726-733, 2003.

4. Y. Freund and R.E. Schapire. A decision theoretic generalization of on-line learning
and application to boosting. Journal of Computer and System Science 55(1), 1995,
pp- 119-139.

5. S. Hongeng and R. Nevatia. Large-Scale Event Detection Using Semi-Hidden
Markov Models In Proc. of ICCV, pp. 1455-1462, 2003.

6. M.W. Lee and R. Nevatia. Dynamic Human Pose Estimation using Markov chain
Monte Carlo Approach. In Proc. of the IEEE Workshop on Motion and Video
Computing (WACV/MOTIONO05), 2005.

7. F. Lv and R. Nevatia. 3D Human Action Recognition Using Spatio-Temporal Mo-
tion Templates. In Proc. of the IEEE Workshop on Human-Computer Interaction
(HCI105), 2005.

8. L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in
speech recognition. In Proc. of the IEEE, 77(2):257-286, 1989.

9. C. Rao, A. Yilmaz and M. Shah. View-Invariant Representation and Recognition
of Actions. In Int’l Journal of Computer Vision 50(2), Nov. 2002, pp. 203-226.

10. E. Shechtman and M. Irani. Space-Time Behavior Based Correlation. In Proc. of
CVPR, 1 pp. 405-412, 2005.

11. P. Viola and M. Jones. Rapid Object Detection Using a Boosted Cascade of Simple
Features. In Proc. of CVPR, pp. 511-518, 2001.

12. A. Yilmaz and M.Shah. Actions Sketch: A Novel Action Representation. In Proc.
of CVPR, I pp. 984-989, 2005.

13. P. Yin, I. Essa and J. M. Rehg. Asymmetrically Boosted HMM for Speech Reading
In Proc. of CVPR, 11 pp. 755-761, 2004.

	Introduction and Related Work
	The Dataset and Feature Space Decomposition
	Integrated Multi-class AdaBoost HMM Classifiers
	Learning Weak Classifiers Using HMMs
	Boosting Classifiers Using AdaBoost.M2

	The Segmentation Algorithm
	Experimental Results
	Results on MoCap Data
	Results on Annotated and Tracked Data
	Comparison with Template Matching Based Algorithm

	Summary and Future Work

