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Abstract—Accurate and compact representation of music
signals is a key component of large-scale content-based music
applications such as music content management and near
duplicate audio detection. This problem is not well solved yet
despite many research efforts in this field. In this paper, we
suggest mid-level summarization of music signals based on
chord progressions. More specially, in our proposed algorithm,
chord progressions are recognized from music signals based
on a supervised learning model, and recognition accuracy is
improved by locally probing n-best candidates. By investigating
the properties of chord progressions, we further calculate a
histogram from the probed chord progressions as a summary
of the music signal. We show that the chord progression-based
summarization is a powerful feature descriptor for representing
harmonic progressions and tonal structures of music signals.
The proposed algorithm is evaluated with content-based music
retrieval as a typical application. The experimental results
on a dataset with more than 70,000 songs confirm that our
algorithm can effectively improve summarization accuracy of
musical audio contents and retrieval performance, and enhance
music retrieval applications on large-scale audio databases.

Keywords-Chord progression-based summarization; locality
sensitive hashing; audio representing and computing; music-IR

I. INTRODUCTION

Music contents are now extremely popular on social
web sites. Titles and tags, delivering semantic information
of music songs, are used in retrieval and classification
in community-generated audio repository. However, they
are often noisy since users are likely to input incomplete,
ambiguous or even irrelevant text information. It is important
to provide the social web sites with a more robust retrieval
method. Directly searching acoustic music contents, as a
significant task, is able to effectively compensate for the
vacancy of reliable annotations and help improve the qual-
ity of retrieving and mining multimedia music data when
manually-labeled annotations are ambiguous or missing.

A crucial issue of content-based retrieval over a large
music audio database is how to find accurate and com-
pact representations for music signals so as to efficiently
compare them. Some significant research progress has been
made during the past few years. Music signals usually

are described by sequences of low-level features such as
short-time Fourier transform (STFT) [1], pitch [2], Mel-
frequency cepstral coefficient (MFCC) [3], and chroma
[4], [5]. Unfortunately, among most existing work, music
audio content analysis and summarizations, by means of
these low-level features, are inefficient and inflexible for a
scalable music information retrieval (MIR) task since music
knowledge is seldom considered. In comparison, mid-level
features (chord [6], rhythm, instrumentation) represented as
musical attributes are able to better extract music structures
from complex audio signals and retain semantic similarity.
Therefore, they are able to effectively and efficiently assist
content-based music matching and retrieval. However, chord
recognition accuracy is still relatively low in previous state-
of-the-art algorithms [7]–[11], which affects the performance
of chord-based music retrievals.

In this paper, we first discuss how to generate an accurate
summary from a music signal based on chord progressions.
To this end, we consider two aspects: improving accuracy
of chord progressions and computing a compact summary
from chord sequences. We have two significant contri-
butions: (1) Recognition accuracy of chord progressions,
under the SVMhmm (support vector machine-hidden markov
model) model [12], is greatly improved by exploiting multi-
probing. Particularly, by a modified Viterbi algorithm, n-best
chord progressions are locally probed and have different
likelihoods. (ii) The probed chord progressions are used
to create a histogram by the idea of locality sensitive
hashing (LSH) [13], where different weights are assigned to
chord progressions in terms of their likelihoods. Then, we
investigate the recognition accuracy of chord progressions,
the influence of multi-probing, and the properties of the
generated summaries.

We further discuss how to apply this harmonically-
related mid-level feature to the task of content-based music
matching and retrieval. Our experiments, implemented on
real-world large-scale datasets including more than 70,000
audio tracks, verify that the proposed approach achieves
a nice balance between retrieval accuracy and efficiency
and demonstrates the feasibility of using hashing-based



chord progression summarization for music content repre-
sentation and scalable acoustic-based music matching and
searching. Compared to previous schemes on music signal
summarization, the proposed algorithm effectively improves
summarization accuracy and retrieval performance.

The remainder of this paper is organized in the following:
Section II reports a review of related work in this field.
Section III explains our proposed approach, concentrating
on how to extend Viterbi algorithm to probe multiple likely
candidates of chord progressions, and how to summarize
the probed chord progressions into a compact feature. Sec-
tion IV gives our method to parameter tuning addressing
how to build a training dataset and determine parameters
for probing. Section V evaluates our proposed algorithm
by the content-based music retrieval application on a large
database. Finally, Section VI concludes this work.

II. RELATED WORK

With multimedia music contents growing explosively
on user-contributed social sharing websites, scalability of
content-based MIR is becoming a challenging issue. Reliable
summarization of musical audio signals, as an important
component of MIR systems, can facilitate music content
comparison and further accelerate the use of music retrieval.
The majority of scalable music content-based retrieval algo-
rithms are based on extracting low-level audio features from
music signals. Their representations of music signals can be
classified into four types according to their different levels
of abstraction.

(i) Plain feature sequences without summarization. Short-
term feature sequences (STFT [1], pitch [2], chroma [4])
have the highest accuracy but with large redundancy. They
are computationally inefficient because of high dimen-
sional feature space. (ii) Conventional global summarization.
Among the methods for audio sequence summarizations,
a composite feature tree [14] (semantic features, such as
timbre, rhythm, pitch, etc.) has been presented to facilitate
kNN search. Statistics of most often-used spectral features
(MFCC, chroma, pitch) are concatenated into a compact and
semantic feature union [15], but assigned different weights
in order to account for their different effects on human
perception. These summaries are concise but inaccurate. Be-
cause an audio signal is not stationary, global summarization
drops too many details and makes audio features less distin-
guishable. (iii) Local summarization. This method makes a
tradeoff between accuracy and conciseness. The music signal
is divided into multiple segments so that features within
each segment are highly correlated and the statistics remain
almost unchanged [16]. Then, a summary is computed for
each segment. Log frequency cepstral coefficients (LFCCs)
and pitch class profiles (PCPs) [17] of adjacent frames
are concatenated to form audio shingles. Exact Euclidean
locality sensitive hashing functions are used to compress
the high-dimensional audio shingles to generate short local

summaries. In this way, the music signal is represented by
a sequence of local summaries. (iv) Global summarization
retaining harmonic progressions. A multi-probe histogram
[5] is calculated from the chroma feature sequences by
heuristically probing the transition between major bins of
adjacent chroma features, which is able to retain local
spectral and temporal information to some degree. It is
more concise compared with local summarization, and is
more accurate than conventional global summarization by
retaining the temporal information of music signals. But
its performance is limited as a heuristic scheme without
exploiting music knowledge.

Music signals differ from general audio signals in their
harmonic structure, where a fundamental frequency (pitch)
is usually accompanied by its harmonics. A chord in music
is any combination of two or more notes (pitch) initiated
simultaneously1. Chord, as a mid-level feature, is a concise
representation of music signals. Chord progression repre-
sents harmonic content and the semantic structure of a music
work, and is an inherent property of a music song. Hence,
chord recognition has attracted great interest and many
efforts have been devoted to transcribing chords from music
signals [6]–[11]. The simplest way to chord recognition is
to use the per-feature template matching [6], computing
correlation between the chroma feature and a target chord
template. This, however, does not always work well since
unexpected components sometimes may dominate chroma
energy [7]. A more effective policy is to consider chord
progression and use sequence detection in chord recognition
with the HMM model [9].

There exist a few works on exploiting spectral prop-
erties such as pitch histogram, concatenation of statistics
of MFCC, chroma, etc., to summarize music signals [14],
[15]. Melody information, however, is seldom retained in
the generated summary, which therefore has limited capa-
bility in distinguishing music songs. Chord sequence can be
extracted to represent music signals. Unfortunately, even the
performance of state-of-the-art chord recognition algorithms
is limited, which further affects the accuracy of chord-
based music summarization. This inspires us to perform
multi-probing to improve accuracy of chord progression
recognition, as will be addressed in our algorithm.

The proposed algorithm belongs to the 4th type of music
presentation. Its advantages, in contrast to previous works,
lie in the following key concepts: A supervised learning
method is proposed to derive and generate probable chord
progressions. Multi-probing is performed in the recognition
so as to compensate for otherwise inaccurate chord progres-
sions due to the low recognition accuracy. The computed
summary is strongly associated with musical knowledge
and captures the most-frequent chord progressions, where
likelihood information of each probed chord progression is

1http://en.wikipedia.org/wiki/Chord (music)



associated with its own ranking.

III. PROPOSED APPROACH TO MUSIC SUMMARIZATION

In this section, we present the music summarization
algorithm. First, we give an overview of the proposed algo-
rithm in Sec. III-A, briefly introducing the main steps. The
model used for recognizing chord progressions from chroma
sequences and the multi-probing procedure for improving
recognition accuracy are discussed in Sec. III-B. To avoid
directly comparing two chord sequences while retaining
chord progressions, we further explain how to compute a
LSH-based summary in Sec. III-C, focusing on the different
effects of probing chords and probing chord progressions.

A. Overview of the Algorithm

Figure 1 shows the flowchart for summarizing music
signals. It consists of four main parts: feature extraction,
model training, chord progression recognition, and LSH-
based summarization. Following these steps, music signals
with variable lengths are summarized into fixed-length,
compact digests.

The DO = 114 dimensional CompFeat [9], computed
from beat-synchronous chroma, is adopted as the feature.
The sequence of CompFeat is to be transcribed to a chord
sequence. Distinguishing all possible chords is quite compli-
cated. For many applications, e.g., content-based similarity
retrieval, it is enough to use a subset of chords as the vocabu-
lary. Similar to previous works, we mainly consider the most
frequent chords: 12 major triads (C,C#, D, · · · , A#, B)
and 12 minor triads (c, c#, d, · · · , a#, b). All other types
of chords are regarded as one type (O). Altogether there are
M = 25 possible chords, where O,C,C#, · · · , a#, b are
mapped to the numbers 1, 2, · · · ,M respectively, so as to
uniquely identify each chord. As for the training part, we use
the SVMhmm model [12], which considers both the spectral
structure in each feature and chord progressions embedded in
adjacent features. Then, chord progressions are summarized
into a compact histogram.

B. n-best Chord Progression Recognition

Each CompFeat corresponds to a chord. In addition, the
composition rule of a song also places some constraints on
adjacent chords, which determines chord progression and is
reflected in adjacent CompFeats. We adopt the SVMhmm

model [12], SVM for per CompFeat chord recognition, and
HMM for chord progression recognition.

The SVMhmm model is described by Eq. (1) and ex-
plained as follows: wC is a M×DO matrix used to convert
a DO × 1 CompFeat to a M × 1 vector of chord scores
which correspond to the likelihood of chords computed
from the CompFeat (the effect of SVM). wT is a M ×M
matrix describing the score of transiting from one chord
to another between adjacent features (the effect of HMM).
φC(yt) is a 1 ×M indicator vector that exactly has only
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Figure 1. Comparing audio signals by LSH-based summarization.

one entry set to 1 corresponding to a chord yt. φT (yt−1, yt)
is a M ×M indicator matrix that only has one entry set
to 1 corresponding to chord progression from yt−1 to yt.
With a CompFeat sequence {xt} and a chord sequence
{yt}, t = 1, 2, · · · , l, φC(yt)·wC ·xt is the score (likelihood)
that xt is matched to chord yt. φT (yt−1, yt)·wT is the score
that the local chord sequence progresses from yt−1 to yt.
Consequently, the sum in Eq. (1) represents the total score
that the CompFeat sequence {xt} is matched to the chord
sequence y = {yt}. In the end, the chord sequence with the
maximal total score is found.

y=argmax
y

 ∑
t=1,··· ,l

φC(yt)·wC ·xt+φT (yt−1, yt)·wT

 . (1)

Parameters wC and wT of the SVMhmm model can be
obtained by training, using the public dataset “Beatles”
which has been manually annotated by Harte [18].

1) Chord Recognition with Multi-Probing: Chord recog-
nition by Eq. (1) only returns the most likely chord se-
quence. However, even with state-of-the-art algorithms, the
chord recognition accuracy is still relatively low, with a
lower recognition accuracy of chord progressions. When
the recognized chord sequence is used for retrieval, we
argue that besides the most likely chord sequence, other
chord progressions should also be probed as well, in order
to improve the reliability. Although new features may be
suggested for improving performance of chord recognition,
the multi-probing method proposed here will still work well.

Chord recognition is to find a chord path across all fea-
tures. Usually the optimal path is found by the well-known
Viterbi algorithm [12]. We modified the Viterbi algorithm
shown in Algorithm 1 to realize local multi-probing, not
only probing chords but also probing chord progressions.
Actually the latter is more important in this paper.

This modified Viterbi algorithm takes the CompFeat se-
quence {xt} as input, and outputs chord progression set
{zt}. The procedure is divided into two parts. The first part



Algorithm 1 Chord progression recognition
1: procedure CHORDPROCRECOG(xt, t = 1, 2, · · · , l)
2: r1 ← wC · x1 ◃ Initialization at t = 1
3: s1 ← r1
4: for t = 2, 3, · · · , l do ◃ Forward iteration
5: rt,j ← wC,j · xt, j = 1, · · ·M
6: pt,j ← st−1 +wT,j + rt,j , j = 1, · · ·M
7: st ← [max(pt,1),max(pt,2), · · · ,max(pt,M )]T

8: end for
9: yl ← NC top chords of sl ◃ Initialization at t = l

10: for t = l − 1, l − 2, · · · , 1 do ◃ Reverse iteration
11: St ←

∑
j∈yt+1

pt+1,j

12: yt ← NC top chords of St

13: P t←{
(
i, j,pt+1,j,i

)
|i ∈ [1, · · · ,M ], j ∈ yt+1}

14: zt ← {(i, j, ranki,j) |top NP of P t}
15: end for
16: return zt, t = 1, 2, · · · , l − 1
17: end procedure

is a forward process, where scores of all paths are computed.
rt = wC ·xt is a M ×1 vector which contains scores of all
chords when matched against xt. st is a M×1 vector, each
of which corresponds to the optimal path from the beginning
to a chord at t. At t = 1, s1 equals r1. When t = 2, 3, · · · , l,
scores of the paths from the beginning to chord j at t are
composed of three parts: (1) st−1, scores of the M optimal
paths to all chords at t − 1, (2) wT,j , scores of transiting
from all chords at t − 1 to chord j at t, and, (3) rt,j , the
score of chord j when matched against xt. Scores of these
M paths leading to the same chord j at t are recorded in
pt,j and scores of the M optimal paths to M chords at t
are stored in st.

The second part is the reverse process, where potential
chords and chord progressions are probed. At t = l, the NC

top chords of sl are regarded as potential chords correspond-
ing to the last CompFeat. When t = l−1, l−2, · · · , 1, there
is a path from each chord at t to each of the NC chords in
yt+1 at t + 1. Scores of these NC paths sharing the same
chord at t are added together and saved in St, from which
the top NC chords are found as yt. The M × NC chord
progressions from M chords at t to NC chords in yt+1 at
t+1 form a set P t, from which the top NP are probed. These
chord progressions, together with their ranks, are saved in
zt.

C. Chord Progression-Based Summarization

The chord sequence recognized from the CompFeat se-
quence is a mid-level representation of an audio signal.
Directly comparing two chord sequences is faster than
comparing two chroma sequences. But it still requires the
time-consuming dynamic programming (DP), in order to
account for potential mis-alignment. To expedite the retrieval
process, the chord sequences are further summarized into
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Figure 2. Chord progressions-based summarization (“A Hard Day’s Night”
of the album “A Hard Day’s Night” by “The Beatles”).

a compact feature—chord progression based summarization
(CPS), computed from {zt} as follows:

for t=1, 2, · · · , l−1, k = 1, 2, · · · , NP ,

get zt,k = (i, j, ranki,j) from zt,

h=(i−1)×M+j, w=NP−ranki,j+1,

CPS(h)=CPS(h) + w. (2)

Each probed chord progression zt,k = (i, j, ranki,j) is a
triple. The chord progression i→ j is hashed to a histogram
bin h by the hash function h=(i−1)×M+j, and the weight
w is computed from the rank ranki,j , a larger weight for
a higher rank. Accordingly, the dimension of a CPS equals
M2.

Figure 2 shows an example of CPS. Top 4 chord progres-
sions (O → F#, E → F#, O → C#, C#→ F#) can be
detected without probing (NC = 1, NP = 1). Detecting less
dominant chord progressions such as F#→ d#, d#→ a#
requires probing (NC = 2, NP = 3).

There are three dominant chord progressions (CPs) in
Fig. 2. By further analysis, we find that each song usually has
several dominant CPs. We computed the ratio of dominant
CPs to all CPs for each song, and the cumulative distribution
function (CDF) of this ratio for all 180 songs in the Beatles
dataset. The CDF computed according to the ground truth
of chord annotations is shown in Fig. 3. It is clear that
CPs focus on several values. For example, in about 60%
(CDF=0.4) percent of songs, the ratio of 5 dominant CPs is
no less than 0.8. Similar results, based on recognized CPs,
are shown in Fig. 4. Due to the effect of multi-probing, a
single CP may be probed as multiple ones, and CPs are more
distributed. At the same CDF=0.4, the ratio of 5 dominant
CPs decreases to 0.6 in Fig. 4. But the trend that a few CPs
are dominant remains the same as in Fig. 3.

IV. PARAMETER TUNING

In this section, we first investigate how to select the train-
ing set for chord recognition. Then, with a small database,
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Figure 3. Distribution of ratio of dominant chord progressions in the 180
songs of the Beatles dataset, based on the ground-truth of chord annotations.
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Figure 4. Distribution of ratio of dominant chord progressions in the 180
songs of the Beatles dataset, based on recognized chord progressions.

we examine the effect of probing on both chord recognition
and retrieval, and determine the optimal parameters.

A. Selecting a Training Set

State-of-the-art chord recognition algorithms, evaluated in
MIREX2, all are trained and tested on the Beatles sets [18].
About 3/4 of the 180 songs are used for training and the
other 1/4 is for testing. With such a policy, the trained model
may be over fitted to the training set and does not generalize
well to other databases.

Different from a Gaussian model which heavily depends
on the size of the training set, the SVM model is decided
by the number of support vectors. The training set would
work well if all typical support vectors are included. Instead
of chords, we are more interested in chord progressions.
We use the MRR1 metric to measure the performance of
chord progression recognition. MRR1 is defined as the mean
reciprocal rank of the correct CP in the probed CP list, which
identifies both the recognition accuracy and the quality of
chord progression in times of probing. To avoid over-fitting
and remove features specific to training songs, we select a
small training set from Beatles and use others as the testing
set. We wish to find a training set that contains most typical

2http://www.music-ir.org/mirex/wiki/2011:Audio Chord Estimation

Algorithm 2 Find the optimal training set
1: procedure FINDTRAINSET(G) ◃ Annotated songs
2: Equally divide G into N1 groups G′

i, i =
1, 2, · · · , N1, each with N2 songs

3: for i = 1, 2, · · · , N1 do
4: Use G′

i as the training set and train a model
5: Test the model with G−G′

i, compute MRR1′i
6: end for
7: Sort MRR1′i, i = 1, 2, · · · , N1, in the decreasing

order, accordingly {G′
i} becomes {Gi}

8: Use last N3 groups as the common testing set T T .
9: TR ← G1, train a model with TR

10: Test model with T T and set its MRR1 to MRR1best
11: for i = 2, · · · , N4 do
12: Use (TR

∪
Gi) to train a model

13: Test the model with T T and compute MRR1i
14: if MRR1i > MRR1best then
15: TR ← TR

∪
Gi ◃ Update the training set

16: MRR1best ←MRR1i
17: end if
18: end for
19: return TR as the selected training set.
20: end procedure
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Figure 5. Effect of multi-probing in chord-progression recognition.

support vectors and maximizes MRR1 on the testing set
so that the trained model can be well generalized to other
datasets.

The algorithm for selecting a training set is shown in
Algorithm 2, which takes as input all 180 Beatles songs
(G) with chord annotations, and outputs a refined training
set TR. At first, G is divided into N1 groups, G′

i, i =
1, 2, · · · , N1, each with N2 songs. N2 should be small
enough so that there will be some groups that do not contain
support vectors that are only specific to the training set.
N2 should also be large enough so that a SVMhmm model
can be trained. Using each group G′

i as the training set
and the other songs in G −G′

i as the testing set, MRR1′i
is computed. The obtained MRR1′i, i = 1, 2, · · · , N1, is



sorted in decreasing order, and accordingly {G′
i} is re-

arranged to {Gi}. Then, starting with TR = G1 and
MRR1best = MRR11, a new set of songs (TR

∪
Gi) is

used as a temporary training set. Its MRR1 is evaluated
on the common testing set T T , and computed as MRR1i.
The set (TR

∪
Gi) will be used as the new training set if

MRR1i is greater than MRR1best. For this process, we used
N2 = 5, N1 = 36, N3 = 26, N4 = 10, and the final training
set only contains 45 songs, or 1/4 of the total annotated
songs.
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Figure 6. Effect of probing in retrieval.

B. Parameters for Probing

We investigated MRR1 of chord and chord progression
over the testing set T T . Besides the proposed algorithm, we
also applied the multi-probing procedure to a model pre-
trained by Ellis [9] 3. As shown in Fig. 5, the latter does
have a higher MRR1 for chords, but it has a lower MRR1
for chord progressions, especially at the most important 1st

rank and 2nd rank. This justifies the necessity of refining
the training set.

We tried different probing policies (NC and NP ) in
computing CPSs and tested them on a small database by the
kNN (k-nearest neighbor) retrieval. The result of the often-
used recall metric is shown in Fig. 6. This figure reveals
three points. (i) The effect of probing chord progressions.
Under a fixed NC , recall first increases with NP and then
decreases, which indicates that a suitable NP can lead to
a local maximal recall. (ii) The effect of probing chords.
Increasing NC usually leads to a higher peak recall. (iii)
The effect of probing is large when NC and NP are small.
When there is no probing, NC = 1 and NP = 1, recall is only
0.665. Simply probing one more chord progression by using
NP = 2, the recall increases to 0.746. When probing NC =
16 chords, the max recall reaches 0.806 at NP = 90. This
figure confirms that probing is necessary in order to improve

3As for the pre-trained model, part of the testing sets T T might overlap
with its training set.

Table I
DATASET DESCRIPTION.

Datasets Name # Audio tracks
I Covers79 (Q993,D79) 1,072
II Background1 10,041
III Background2 62,942

the summarization accuracy to achieve a high recall in the
retrieval. Hereafter, NC = 16 and NP = 90 are used.

V. EVALUATION

Content-based similarity retrieval, as a typical application,
is used to evaluate the performance of the proposed chord
progression based summarization algorithm over a large
music audio database. Since there are no large databases
publicly available for simulating scalability of audio content
matching and retrieval, we collected audio tracks from
MIREX, lastfm.com, and the music channel of Youtube. We
use the three datasets shown in Table I, with a total of 74,055
audio tracks. Dataset I, Covers79, is the same as in [5] and
consists of 1072 cover versions of 79 songs. Datasets II and
III are used as background music.

In the experiments, each track is 30s long in mono-
channel mp3 format and the sampling rate is 22.05 KHz.
From these mp3 files, the CompFeat features [9] are cal-
culated. Then, chord progressions are recognized through
the trained model. To evaluate the performance of multi-
probing, the summary without probing is named as CPS and
the one with multi-probing and refined parameters is named
as CPS+.

We compare the proposed CPS+ scheme to another music
summarization method MPH [5] using kNN as the retrieval
method. Our retrieval task is to run a batch of multi-
version querying against the original one. Multi-version
means different cover versions of the same song produced
by different people. To this end, the Cover79 dataset is split
into two parts: D79 containing original versions of the 79
songs and Q993 containing the rest 1072-79=993 songs in
Cover79. Unless stated otherwise, in the evaluation, we use
the following default setting: each audio track in the dataset
Q993 is used as a query to retrieve its relevant audio track
from the datasets D79 plus Dataset II, which have 10,120
audio tracks. The exception is in the second experiment
where Dataset III is also used for evaluating the effect of
the database size. We use recall, precision and MRR1 as the
main metrics to evaluate large-scale retrieval performance.

1) Precision-Recall Curves: A retrieval algorithm should
make a good tradeoff between recall and precision. In
this subsection we investigate this tradeoff by the classical
precision-recall curves.

The number of output is changed and the pairs of recall
and precision achieved by all schemes are obtained and
plotted in Fig. 7. With more outputs, recall of all schemes
increases because the chance that relevant audio tracks
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Figure 7. Recall-precision curves of different schemes.
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Figure 8. MRR1 under different numbers of output audio tracks.

appear in the ranked list gets larger. The maximal precision
is achieved when the number of output is set to 1, the
actual number of relevant audio tracks in the database. At
this point, precision equals to recall. Increasing the number
of outputs leads to a decrease in precision. At the same
precision, CPS+ achieves a much higher recall than MPH.
But the performance of CPS without exploiting probing in
the recognition and summarization is usually very poor.

When the number of relevant audio tracks equals to 1, the
tradeoff between precision and recall is better reflected by
the MRR1 metric, which reflects both recall and the rank of
the retrieved audio tracks. As shown in Fig. 8, MRR1 first
increases with the number of output audio tracks and then
approaches a constant value. This indicates most relevant
tracks that can be found usually appear in the top-10 list
and increasing the number of output audio tracks has little
effect. This figure again confirms that CPS+ is much superior
to MPH.

2) Effect of the Database Size: Content-based MIR usu-
ally applies to large online music databases. By varying the
database size from 10,120 to 73,062, we evaluate the effect
of database size on the performance of CPS+.

Recall curves of three schemes are shown in Fig. 9, where
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Figure 9. Recall under different database sizes.
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Figure 10. MRR1 under different database sizes.

the number of output is set to 1 or 10. Recall decreases in
all schemes with the increase of the database size, but it
is less obvious in CPS+. One observation is that the recall
difference between top-1 results of CPS+ and MPH is very
large, but almost disappears in the top-10 results. This can
be explained as follows: Some of the relevant audio tracks
found by MPH have a low rank, and as a result, the recall
of MPH depends more on the number of outputs than that
of CPS+.

To better compare these schemes, we computed the MRR1
metric as well. Top-1 and top-10 MRR1 results of three
schemes are shown in Fig. 10, all decreasing as the database
size increases. Under all cases, the result of CPS without
probing is the worst, followed by top-1 result of MPH.
Increasing the number of outputs from 1 to 10 effectively
increases MRR1 of MPH. But even the top-10 MRR1 result
of MPH is still lower than that of top-1 MRR1 of CPS+.
This again confirms that CPS+ is more distinguishable than
MPH: the relevant audio tracks retrieved by CPS+ have
higher ranks than those by MPH.

A simple comparison among MPH, CPS and CPS+ is
summarized in Table II, where the database size is N =



Table II
COMPARISON AMONG MPH, CPS AND CPS+.

Comp. cost recall(1) recall(10) MRR1(1) MRR1(10)
MPH 144 ·N 0.610 0.767 0.610 0.658
CPS 625 ·N 0.356 0.565 0.356 0.420

CPS+ 625 ·N 0.687 0.796 0.687 0.724

73, 062. With the kNN retrieval, the average computation
cost is proportional to the database size N and the dimension
of the summary feature. CPS+ has higher dimension than
MPH and requires more retrieval time. On the other hand,
CPS+ outperforms MPH in recall and MRR1. Therefore,
CPS+ achieves much higher retrieval performance at an
acceptable computation cost. This computation cost of CPS+
can be further reduced by locality sensitive hashing, as will
be a part of our future work. This comparison also shows
the necessity of multi-probing: CPS without probing has a
very poor retrieval performance.

VI. CONCLUSION

In this paper, we proposed a novel mid-level summariza-
tion approach for music audio signals based on studying the
properties of chord progressions. The proposed algorithm
consists of two key points: recognizing chord progressions
from a music audio track based on a supervised learn-
ing model related to musical knowledge and computing
a summary of the audio track from the recognized chord
progressions by locality sensitive hashing. In particular, we
exploited multi-probing in chord progression recognition via
the modified Viterbi algorithm, which outputs multiple likely
chord progressions and increases the probability of finding
the correct one. A histogram based on chord progressions
is put forward to summarize the probed chord progressions
in a concise form, which is efficient and retains local chord
progressions. The proposed approach improves accuracy of
music summarization, which has a wide range of applica-
tions such as web audio spam detection and music copyright
enforcement. The evaluation results of large-scale content-
based similarity retrieval systems confirmed the effectiveness
of the proposed approach.
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