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Recognition by Linear Combinations of Models 
Shimon Ullman and Ronen Basri 

Abstract- Visual object recognition requires the matching of 
an image with a set of models stored in memory. In this paper, 
we propose an approach to recognition in which a 3-D object is 
represented by the linear combination of 2-D images of the object. 
IfJLk{M1,.” .Mk} is the set of pictures representing a given 
object and P is the 2-D image of an object to be recognized, then 
P is considered to be an instance of M if P= C~=,aiMi for 
some constants (pi. We show that this approach handles correctly 
rigid 3-D transformations of objects with sharp as well as smooth 
boundaries and can also handle nonrigid transformations. The 
paper is divided into two parts. In the first part, we show that 
the variety of views depicting the same object under different 
transformations can often be expressed as the linear combinations 
of a small number of views. In the second part, we suggest how 
this linear combination property may be used in the recognition 
process. 

Index Terms-Alignment, linear combinations, object recogni- 
tion, recognition, 3-D object recognition, visual recognition. 

I. MODELING OBJECTS BY THE 

LINEAR COMBINATION OF IMAGES 

A. Recognition by Alignment 

V ISUAL OBJECT recognition requires the matching of 

an image with a set of models stored in memory. 

Let M = {Ml, . , M,} be the set of stored models and 
P be the image to be recognized. In general, the viewed 

object, depicted by P, may differ from all the previously 

seen images of the same object. It may be, for instance, the 

image of a three-dimensional object seen from a novel viewing 

position. To compensate for these variations, we may allow the 

models (or the viewed object) to undergo certain compensating 

transformations during the matching stage. If 7 is the set 

of allowable transformations, the matching stage requires the 

selection of a model A4, E M and a transformation T E 7, 

such that the viewed object P and the transformed model TM, 

will be as close as possible. The general scheme is called 

the alignment approach since an alignment transformation is 

applied to the model (or to the viewed object) prior to, or 

during, the matching stage. Such an approach is used in [S], 

[7], [8], [12], [16], [20], and [23]. Key problems that arise in 

any alignment scheme are how to represent the set of different 
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models M, what is the set of allowable transformations 7, 

and for a given model 44, E M, how to determine the 

transformation T E 7 to minimize the difference between 

P and TMi. For example, in the scheme proposed by Basri 

and Ullman [3], a model is represented by a set of 2-D 

contours, with associated depth and curvature values at each 

contour point. The set of allowed transformations includes 3-D 

rotation, translation, and scaling, followed by an orthographic 

projection. The transformation is determined as in [12] and 

[23] by identifying at least three corresponding features (points 

or lines) in the image and the object. 

In this paper, we suggest a different approach, in which each 

model is represented by the linear combination of 2-D images 

of the object. The new approach has several advantages. First, 

it handles all the rigid 3-D transformations, but it is not 

restricted to such transformations. Second, there is no need 

in this scheme to explicitly recover and represent the 3-D 

structure of objects. Third, the computations involved are often 

simpler than in previous schemes. 

The paper is divided into two parts. In the first (Section I), 

we show that the variety of views depicting the same object 

under different transformations can often be expressed as the 

linear combinations of a small number of views. In the second 

part (Section II), we suggest how this linear combination 

property may be used in the recognition process. 

B. Using Linear Combinations of Images to Model 
Objects and Their Transformations 

The modeling of objects using linear combinations of im- 

ages is based on the following observation. For many continu- 

ous transformations of interest in recognition, such as 3-D 

rotation, translation, and scaling, all the possible views of 

the transforming object can be expressed simply as the linear 

combination of other views of the same object. The coefficients 

of these linear combinations often follow in addition to certain 

functional restrictions. In the next two sections, we show that 

the set of possible images of an object undergoing rigid 3-D 

transformations and scaling is embedded in a linear space and 

spanned by a small number of 2-D images. 

The images we will consider are 2-D edge maps produced 

in the image by the (orthographic) projection of the bounding 

contours and other visible contours on 3-D objects. We will 

make use of the following definitions. Given an object and a 

viewing direction, the rim is the set of all the points on the 

object’s surface whose normal is perpendicular to the viewing 

direction [13]. This set is also called the contour generator 

[17]. A silhouette is an image generated by the orthographic 

projection of the rim. In the analysis below, we assume that 

every point along the silhouette is generated by a single rim 
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view of the object may be given by two linear combinations: 

one for the z coordinates and the other for the y coordinates. 

In addition, certain functional restrictions may hold among 

the different coefficients. 

(4 (b) 

Pi 0 

To introduce the scheme, we first apply it to the restricted 

case of rotation about the vertical axis and then examine more 

general transformations. 

I) 3-D Rotation Around the Vertical Axis: Let PI and P2 be 

two images of an object 0 rotating in depth around the vertical 

C’ 
axis (Y axis). P2 is obtainedAfrom PI following a rotation by 

. ? an angle LY (a # AX). Let P be a third image of the same 
. Q . object obtained from PI by a rotation of an angle 8 around 

“’ P the vertical axis. The projections of a point p = (CC. y. z) E 0 

in the three images are given by 

v 

(cl 

v 

(d) 

Pl = (a. Yl) = (2, Y) E Pl 

P2 = (22TY2) = ( xcosa + zsin0.y) E P2 

fi = (i, 6) = (xcosH + zsinO.y) E P. 

Claim: Two scalars n and b exist, such that for every point 

PC0 

i = ax1 + bx2. 

before 

(e) 

af?er 

(f) 

Fig. 1. Changes in the rim during rotation: (a) Bird’s eye view of a cube; 
(b) cube after rotation. In both (a) and (b) points p, Q lie on the rim; (c) bird’s 
eye view of an ellipsoid; (d) ellipsoid after rotation. The rim points p, Q in 
(c) are replaced by p’, Q’ in (d); (e) ellipsoid in a frontal view; (f) rotated 
ellipsoid (outer), superimposed on the appearance of the rim as a planar space 
curve after rotation by the same amount (inner) (from [3]). 

point. An edge map of an object usually contains the silhouette, 

which is generated by its rim. 

We will examined two cases below: the case of objects with 

sharp edges and the case of objects with smooth boundary 

contours. The difference between these two cases is illustrated 

in Fig. 1. For an object with sharp edges, such as the cube 

in Fig. l(a) and (b), the rim is stable on the object as long 

as the edge is visible. In contrast, a rim that is generated by 

smooth bounding surfaces, such as in the ellipsoid in Fig. l(c) 

and (d) is not fixed on the object but changes continuously 

with the viewpoint. 

In both cases, a small number of images M;, with known 

correspondence, will constitute the object’s model. Given a 

new image P, the problem is then to determine whether P 

belongs to the same object represented by the Mi’S. We will 

not directly address here the problem of segmentation, i.e., 

separating an object or a part of it from the image of a scene. 

C. Objects with Sharp Edges 

In the discussion below, we examine the case of objects with 

sharp edges undergoing different transformations followed by 

an orthographic projection. In each case, we show how the 

image of an object obtained by the transformation in question 

can be expressed as the linear combination of a small number 

of pictures. The coefficients of this combination may be 

different for the x and y coordinates, that is, the intermediate 

The coefficients a and b are the same for all the points, with 

a2+b2+2abcosa=1 

Proof: The scalars a and b are given explicitly by 

sin(a - 0) 
a=- 

sin (Y 

b+. 

Then 

sin(a - 0) ’ 
ax1 + bx2 = 

sin i2 
3.+e(xcosru+zsina) 

sin (Y 

=xcos19+zsinB=i. 

Therefore, an image of an object rotating around the vertical 

axis is always a linear combination of two model images. It is 

straightforward to verify that the coefficients a and b satisfy 

the above constraint. It is worth noting that the new view p is 

not restricted to be an intermediate view (that is, the rotation 

angle r9 may be larger than CZ). Finally, it should be noted that 

we do not deal at this stage with occlusion; we assume here 

that the same set of points is visible in the different views. 

The issue of occlusion and self-occlusion will be discussed 

further below. 

2) Linear Transformations in 3-D Space: Let 0 be a set of 

object points. Let PI, P2, and P3 be three images of 0 obtained 

by applying 3 x 3 matrices R, S, and T to 0, respectively. 

(In particular, R can be the identity matrix, and S, T can be 

two rotations producing the second and third views.) Let P 

be a fourth image of the same object obtained by applying 

a different 3 x 3 matrix U to 0. Let ~1, si, tl, and ~1 be 

the first row vectors of R, S, T, and U, respectively, and let 

~2, ~2, t2 and u2 be the second row vectors of R, S, T, and 

I 
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U, respectively. The positions of a point p E 0 in the four 

images are given by 

Pl = (Xl, Yl) = (TlP, 72P) 

P2 = (52, Y2) = (SlP, SPP) 

p3 = (X3,Y3) = (hPrk?P) 

I; = (CB) = (UlPr U2P). 

Claim: If both sets (~1, si, tr} and (~2, ~2, ta} are linearly 

independent, then there exist scalars al, aa, a3, and bl, b2, b3 

such that for every point p E 0, it holds that 

P = a121 + a222 + a323 

6 = hw + b2y2 + km. 

Proof: { ~1, si , ti} are linearly independent. Therefore, 

they span ‘R3, and there exist scalars al, a2, and as such that 

211 = a1r1 + a2s1 + ast1. 

Since 

2 = u1p 

it follows that 

2 = alrIp + a2s1p + a3t1p. 

Therefore 

P = a151 + a252 + asxa. 

In a similar way, we obtain that 

B = hm + hi2 + bw. 

Therefore, an image of an object undergoing a linear trans- 

formation in 3-D space is a linear combination of three model 

images. 

3) General Rotation in 3-D Space: Rotation is a nonlinear 

subgroup of the linear transformations. Therefore, an image 

of a rotating object is still a linear combination of three 

model images. However, not every point in this linear space 

represents a pure rotation of the object. Indeed, we can show 
that only points that satisfy the following three constraints 

represent images of a rotating object. 

Claim: The coefficients of an image of a rotating object 

must satisfy the three following constraints: 

lla1r1 + a251 + ast1I( = 1 

llblr2 + b2~2 + b&II = 1 

(alrl + ~251 + astl)(blrz + bzs2 + b&) = 0 

Proof: U is a rotation matrix. Therefore 

lblll = 1 

IIu2ll = 1 

u1up = 0 

and the required terms are obtained directly by substituting 

ZG~ and u2 with the appropriate linear combinations. It also 

follows immediately that if the constraints are met, then 

the new view represents a possible rotation of the object, 

that is, the linear combination condition together with the 

constraints provide necessary and sufficient conditions for 

the novel view to be a possible projection of the same 3-D 

object. 

These functional constraints are second-degree polynomials 

in the coefficients and therefore span a nonlinear manifold 

within the linear subspace. In order to check whether a 

specific set of coefficients represents a rigid rotation, the values 

of the matrices R, S, and T can be used. These can be 

retrieved by applying methods of “structure from motion” to 

the model views. Ullman [21] showed that in case of rigid 

transformations, four corresponding points in three views are 

sufficient for this purpose. An algorithm that can be used to 

recover the rotation matrices using mainly linear equations has 

been suggested by Huang and Lee [ll]. (The same method 

can be extended to deal with scale changes in addition to the 

rotation). 

It should be noted that in some cases, the explicit computa- 

tion of the rotation matrices will not be necessary. First, if the 

set of allowable object transformations includes the entire set 

of linear 3-D transformations (including nonrigid stretch and 

shear), then no additional test of the coefficients is required. 

Second, if the transformations are constrained to be rigid but 

the test of the coefficient is not performed, then the penalty 

may be some “false positives” misidentifications. If the image 

of one object happens to be identical to the projection of 

a (nonrigid) linear transformation applied to another object, 

then the two will be confuseable. If the objects contain a 

sufficient number of points (five or more), the likelihood of 

such an ambiguity becomes negligible. Finally, it is worth 

noting that it is also possible to determine the coefficient of 

the constraint equations above without computing the rotation 

matrices, by using a number of additional views (see also 

Section I-C-5). 

Regarding the independence condition mentioned above, for 

many triplets of rotation matrices R, S, and T both {~r,sl, tl } 

and (~2, ~2, t2) will in fact be linearly independent. It will 

therefore be possible to select a nondegenerate triplet of views 

(PI, P2, and Pa) in terms of which intermediate views are 

expressible as linear combinations. Note, however, that in the 

special case that R is the identity matrix, S is a pure rotation 

about the X axis, and T is a pure rotation about the Y axis, 

the independent condition does not hold. 

4) Rigid Transformations and Scaling in 3-D Space: We 

have considered above the case of rigid rotation in 3-D space. 

If, in addition, the object is allowed to undergo translation and 

a scale change, novel views will still be the linear combinations 

of three 2-D views of the object. More specifically, let 0 be a 

set of object points, and let PI, P2, and P3 be three images of 

0, which are obtained by applying the 3 x 3 rotation matrices 

R, S, and T to 0, respectively. Let P be a fourth image of 

the same object obtained by applying a 3 x 3 rotation matrix 

U to 0, scaling by a scale factor s, and translating by a vector 

(tZ,tY). Let ~1, ~1, tl, and ui again be the first row vectors 

of R, S, T, and U and ~2, sp, t2, and u2 the second row 

vectors of R, S, T, and U, respectively. For any point p E 0, 
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its positions in the four images are given by 

Pl = (215 Yl) = (w, w) 

p2 = (52, y2) = (w, S2P) 

P3 = (23,Y3) = (mt2P) 

fi = (236) = (su1p + t,, su2p + ty). 

Claim: If both sets {ri,.si,ti} and {ra,sa, ta} are lin- 
early independent, then there exist scalars al, aa, as, a4 and 

bi, b2, b3, bd, such that for every point p E 0, it holds that 

i = al21 +a222 fa323fa4 

D = hm + km + k/3 + b4 

with the coefficient satisfying the two constraints 

llalrl + WI + w51Il = llhv + be2 + W211 

(aIrI + am + adl)(blrz + b2s2 + bd2) = 0. 

We can view each of the above equations as a linear 

combination of three images and a fourth constant vector. 

(Instead of a constant vector, one can take a fourth image 

generated internally by shifting one of the three images.) 

The proof is almost identical to the one in Section I-C-3 and 

therefore will not be detailed. As for the constraints on the 

coefficients, since U is a rotation matrix 

IId = 1 

II-11 = 1 

UlU2 = 0 

it follows that 

lblll = lb2II 

(W)(S~2) = 0 

and the constraints are obtained directly by substituting the 
appropriate linear combinations for sul and su2. 

5) Using Two Views Only: In the scheme described above, 

any image of a given object (within a certain range of 

rotations) is expressed as the linear combination of three fixed 

views of the object. For general linear transformations, it is 

also possible to use instead just two views of the object. (This 

observation was made independently by T. Poggio and R. 

Basri.) 

Let 0 be again a rigid object (a collection of 3-D points). Pi 

in a 2-D image of 0, and let P2 be the image of 0 following 

a rotation by R (a 3 x 3 matrix). We will denote by rl, ~2, ~3 

the three rows of R and by el, e2, ea the three rows of the 

identity matrix. For a given 3-D point p in 0, its coordinates 

(xlTyl) in th e rs image view are x1 = elp, y1 = e2p. Its fi t 

coordinates (22, ya) in the second view are given by 22 = rip, 

~2 = r2p. 

Consider now any other view obtained by applying another 

3 x 3 matrix U to the points of 0. The coordinates (i, 6) of 

p in this new view will be 

P = u1p, $ = U2P 

(where ui, ~2, are the first second rows of U, respectively). 

I --..--- -, -_-. .--- -.. 

Assuming that el, ea and r1 span R3 (see below), then 

UI = ale1 + a2e2 + u3rl 

for some scalars al! a2, ua. Therefore 

i = ulp = (ale1 + a2e2 + a3rl)p 

= alxl + @??/I + a322. 

This equality holds for every point p in 0. Let 21 be the 

vector of all the z coordinates of the points in the first view, 22 

in the second, ai: in the third, and y1 the vector of y coordinates 

in the first view. Then 

Here 21, yr, and 22 are used as a basis for all of the views. 

For any other image of the same object, its vector 5 of x 

coordinates is the linear combination of these basis vectors. 

Similarly, for the y coordinates 

G = blxl + bzyl + b3x2. 

The vector $ of y coordinates in the new image is therefore 

also the linear combination of the same three basis vectors. 

In this version, the basis vectors are the same for the z and 

y coordinates, and they are obtained from two rather then 

three views. One can view the situation as follows. Within an 

n-dimensional space, the vectors 21, yl, 22 span a three- 

dimensional subspace. For all the images of the object in 

question, the vectors of both the x and y coordinates must 

reside within this three-dimensional subspace. 

Instead of using (ei, ea: ~1) as the basis for R3, we could 

also use (el. ea. ra). One of these bases spans R3, unless the 

rotation R is a pure rotation around the line of sight. 

The use of two views described above is applicable to 

general linear transformations of the object, and without 

additional constraints, it is impossible to distinguish between 

rigid and linear but not rigid transformations of the object. 

To impose rigidity (with possible scaling), the coefficients 

(ai, ~2, ua! bl) b2, b3) must meet two simple constraints. Since 

U is now a rotation matrix (with possible scaling) 

u1u2 = 0 

lblll = IIUZII. 

In terms of the coefficients ui. bi. ui, ua = 0 implies 

albl +a&2 +a& +(alb3 +aybl)rll + 

(a2b3 + u3bz)m = 0. 

The second constraint implies 

UT + a; + ai - bq -b; - b; = 2(blb3 - aa3b-11 

+ 2(bd3 - a2a3)T12. 

A third view can therefore be used to recover, using two lin- 

ear equations, the values of t-11 and ~12. (ail and r12 can in fact 

be determined to within a scale factor from the first two views; 

only one additional equation is required.) The full scheme 

for rigid objects is, then, the following. Given an image, 

determine whether the vectors ?,i, are linear combinations 

of xi, y1 and x2. Only two views are required for this stage. 

_--, - -...-..- ~-, - . . ..-- ‘-“ ‘ D--“ ’  
I 
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Using the values of ~11 and ria, test whether the coefficients 

ui, bi, (i = 1: 2,3) satisfy the two constraints above. 
It is of interest to compare this use of two views to structure- 

from-motion (SFM) techniques for recovering 3-D structure 

from orthographic projections. It is well known that three 

distinct views are required; two are insufficient [21]. Given 

only two views and an infinitesimal rotation (the velocity 

field), the 3-D structure can be recovered to within depth- 

scaling [22]. It is also straightforward to establish that if the 

two views are separated by a general affine transformation of 

the 3-D object (rather than a rigid one), then the structure of 

the object can be recovered to within an affine transformation. 

Our use of two views above for the purpose of recognition 

is thus related to known results regarding the recovery of 

structure from motion. Two views are sufficient to determine 

the object’s structure to within an affine transformation, and 

three are required to recover the full 3-D structure of a rigidly 

moving object. Similarly, the linear combination scheme uses 

in the match two (for general linear transformation) or three 

views (for rigid rotation and scaling). The matching does 

not require, however, the full 3-D model. Instead, linear 

combinations of the 2-D images are used directly. 

Finally, it can also be observed that an extension of the 

scheme above can be used to recover structure from motion. 

It was shown how the scheme can be used to recover ~11 

and 7-12. ~21 and raa can be recovered in a similar manner. 
Consequently, it becomes possible to recover 3-D structure 

and motion in space based on three orthographic views, using 

linear equations. (For alternative methods that use primarily 

linear equations, see [15] and [ll]). 

6) Summary: In this section, we have shown that an object 

with sharp contours, undergoing rigid transformations and 

scaling in 3-D space followed by an orthographic projection, 

can be expressed as the linear combination of three images of 

the same object. In this scheme, the model of a 3-D object 

consists of a number of 2-D pictures of it. The pictures are 

in correspondence in the sense that it is known which are 

the corresponding points in the different pictures. Two im- 

ages are sufficient to represent general linear transformations 

of the object; three images are required to represent rigid 

transformations in 3-D space. 

The linear combination scheme assumes that the same object 

points are visible in the different views. When the views are 

sufficiently different, this will no longer hold due to self- 

occlusion. To represent an object from all possible viewing 

directions (e.g., both “front” and “back”), a number of different 

models of this type will be required. This notion is similar to 

the use of different object aspects suggested by Koenderink 

and Van Doorn [13]. (Other aspects of occlusion are examined 

in the final discussion and Appendix C.) 

The linear combination scheme described above was imple- 

mented and applied first to artificially created images. Fig. 2 

shows examples of object models and their linear combina- 

tions. The figure shows how 3-D similarity transformations 

can be represented by the linear combinations of four images. 

D. Objects with Smooth Boundaries 

The case of objects with smooth boundaries is identical to 

(4 

(b) 

(4 
Fig. 2. (a) Three model pictures of a cube. The second picture was obtained 
by rotating the cube by 30’ around the X axis and then by 30” around the 
Y axis. The third picture was obtained by rotating the cube by 30’ around 
the Y axis and then by 30’ around the X axis; (b) three model pictures of 
a pyramid taken with the same transformations as the pictures in (a); (c) two 
linear combinations of the cube model. The left picture was obtained using 
the following parameters: the I coefficients are (0.343, -2.618,2.989,0), and 
the y coefficients are (0.630, -2.533,2.658,0), which correspond to a rotation 
of the cube by 10, 20, and 4.5’ around the X, Y, and Z axes, respectively. 
The right picture was obtained using the following parameter: s coefficients 
(0.455,3.392, -3.241,0.25) and y coefficients (0.542,3.753, -3.343, -0.15). 
These coefficients correspond to a rotation of the cube by 20, 10, and -4P 
around the X, Y and Z axes, respectively, followed by a scaling factor 1.2 and 
a translation of (25, - 15) pixels; (d) two linear combinations of the pyramid 
model taken with the same parameters as the picture in (c). 

the case of objects with sharp edges as long as we deal with 

translation, scaling, and image rotation. The difference arises 

when the object rotates in 3-D space. This case is discussed 

in [3], where we have suggested a method for predicting 

the appearance of such objects following 3-D rotations. This 

method, called “the curvature method,” is summarized briefly 

below. 

A model is represented by a set of 2-D contours. Each point 

p = (x, y) along the contours is labeled with its depth value 

z and a curvature value r. The curvature value is the length 

of a curvature vector at p, r = II(rZ, rY) I]. (r, is the surface’s 

radius of curvature at p in a planar section in the X direction, 

ry in the Y direction.) This vector is normal to the contour at 

p. Let V, be an axis lying in the image plane and forming an 

angle 4 with the positive X direction, and let r4 be a vector 

of length T# = ry cos 4 - r, sin 4 and perpendicular to I$,. 

When the object is rotated around Vd, we approximate the 

new position of the point p in the image by 

p’ = R( p - r+) + rm (1) 

where R is the rotation matrix. The equation has the following 

meaning. When viewed in a cross section perpendicular to the 

rotation axis V& the surface at p can be approximated by a 

I 
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circular arc with radius r+ and center at p - r$. The new 

rim point p’ is obtained by first applying R to this center of 

curvature (p - r+), then adding the radius of curvature r+. 

This expression is precise for circular arcs and gives a good 

approximation for other surfaces provided that the angle of 

rotation is not too large (see [3] for details). The depth and 

the curvature values were estimated in [3], using three pictures 

of the object, and the results were improved using five pictures. 

In this section, we show how the curvature method can also be 

replaced by linear combinations of a small number of pictures. 

In particular, three images are required to represent rotations 

around a fixed axis and five images for general rotations in 

3-D space. 

I) General Rotation in 3-D Space: In this section, we first 

derive an expression for the image deformation of an object 

with smooth boundaries under general 3-D rotation. We then 

use this expression to show that the deformed image can be 

expressed as the linear combination of five images. 

a) Computing the transformed image: Using the curvature 

method, we can predict the appearance of an object undergoing 

a general rotation in 3-D space as follows. A rotation in 3-D 

space can be decomposed into the following three successive 

rotations: a rotation around the Z axis, a subsequent rotation 

around the X axis and a final rotation around the Z axis by 

angles cy, /3, and y, respectively. Since the Z axis coincides 

with the line of sight, a rotation around the Z axis is simply an 

image rotation. Therefore, only the second rotation deforms the 

object, and the curvature method must be applied to it. Suppose 

that the curvature vector at a given point p = (x, y) before 

the first Z rotation is (rz,ry). Following the rotation by o, 
it becomes r(, = r,coso - r,sino and rh = r,sincr + 

rY COSQ. The second rotation is around the X axis, and 

therefore, the appropriate r+ to be used in (1) becomes rb = 

r, sin Q + ry cos Q. The complete rotation (all three rotations) 

therefore takes a point p = (2, y) through the following 

sequence of transformations: 

(z,y) + (xcosa - ysina,xsina: + ycoscu) + 

(xcoso - ysino,(xsino + ycosa)cosp - zsin,B 

+(r,sino+rycoso)(l-cosp)) --t 

((x cos 0. - y sin o) cos y - ((x sin cy + y cos a) cos p 

- 2 sin p + (rz sin (Y + rY cos a)( 1 - cos /?)) sin y: 

(xcoso - ysina)siny + ((xsina + ycoscy)cosp - zsinp 

+ (rz sin ck + rY cos a)( 1 - cos /3)) cos y) . 

(The first of these transformations is the first Z rotation, the 

second is the deformation caused by the X rotation, and the 

third is the final Z rotation). 

This is an explicit expression of the final coordinates of 

a point on the object’s contour. This can also be expressed 

more compactly as follows. Let R = {r;j} be a 3 x 3 rotation 

matrix. Let Q, ,/3, and y be the angles of the Z-X-Z rotations 

represented by R. We construct a new matrix R’ = { rij} of 

size 2 x 5 as follows: 

R’ = 

m rl2 rl3 - sina(1 - cos/3)sinr 

r21 r22 r23 sin o( 1 - cos p) cos y 

- coscr(l - cos,f?)sinr 

> cosa(l - cosp)cosy . 

Let p = (x, y) be a contour point with depth z and curvature 

vector (r,,rY), and let fi = (x, y,z,r,,rY). Then, the new 

appearance of p after a rotation R is applied to the object is 

described by 

p’ = RI@. (2) 

This is true because (2) is equivalent to (1) in Section I-D 

with the appropriate values for r@. 
b) Expressing the transformed image as a linear combi- 

nation: Let 0 be a set of points of an object rotating in 

3-D space. Let PI, P2, Pa, P4, and Ps be five images of 0, 

which are obtained by applying a rotation matrix RI, . . . , R5 
respectively. p is an image of the same object obtained by 

applying a rotation matrix fi to 0. Let Ri , . . . , Rb, k’ be the 

corresponding 2 x 5 matrices representing the transformations 

applied to the contour points according to the curvature 

method. Finally, let ri, . . . , rg, i denote the first row vectors 

of Ri,...,RI,,& and s1,...,s5,g the second row vectors 

R’,,..., Rb, R’, respectively. The positions of a point p = 

(X,Y) E 0, 13 = ( x~y~z,r,,ry) in the six pictures is then 

given by 

pi = (x,, Y;) = (ri13, sil?) E Pz, l<i<5 

6 = (?, 3) = (@, 86) E P,. 

Claim: If both sets {rl,...,rs} and {sl,...,ss} are 

linearly independent vectors, then there exist scalars al, . . . , a5 

and bl;.. , b5 such that for every point p E 0, it holds that 

5 

9= 
c 

&Xi 

i=l 

ij = C biyi. 
i=l 

Proof: {rl,. . . , rg} are linearly independent. Therefore, 

they span R5, and there exist scalars al, . . . ! a5 such that 

Since 

Then 

that is 

t= IfI air;. 

i=l 

g= 
5 - Grip 

i=l 

i= 
5 

azx;. 

i=l 

I 
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In a similar way, we obtain that 

i=l 

In addition, for pure rotation, the coefficients of these lin- 

ear combinations satisfy seven functional constraints. These 

constraints, which are second-degree polynomials, are given 

in Appendix A. The coefficients of these polynomials can be 

found (by linear equations) using additional views. 

Again, one may or may not actually test for these additional 

constraints. Assuming that different objects in memory differ 

by more than just a linear transformation, if the test is omitted, 

the probability of a false-positive misidentification is slightly 

increased. 

As in our case of sharp boundaries, it is possible to use 

mixed z and y coordinates to reduce the number of basic 

views for general linear transformations (Section I-C-5). For 
example, one can use five basis vectors (~1, x2, 1cg,yl,y2) 

taken from these distinct views as the basis for the ic and y 

coordinates in all other views. 

2) Rigid Transformation and Scaling in 3-D Space: SO far, we 

have shown that an object with smooth boundaries represented 

by the curvature scheme and undergoing a rotation in 3-D 

space can be represented as a linear combination of 2-D views. 

The method can again be easily extended to handle translation 

and scaling. The linear combination scheme for objects with 

smooth bounding contours is thus a direct extension of the 

scheme in Section I-C for objects with sharp boundaries. In 

both cases, object views are expressed as the linear combina- 

tion of a small number of pictures. The scheme for objects with 

sharp boundaries can be viewed as a special case of the more 

general one when T, which the radius of curvature, vanishes. 

In practice, we found that it is also possible to use the scheme 

for sharp boundaries that uses a smaller number of views in 

each model for general objects, provided that T is not too large 

(and at the price of increasing the number of models). 

3) Summary: In this section, we have shown that an object 

with smooth boundaries undergoing rigid transformations and 

scaling in 3-D space followed by an orthographic projection 

can be expressed (within the approximation of the curvature 

method) as the linear combination of six images of the object. 

Five images are used to represent rotations in 3-D space, 

and one additional image (or, alternatively, a constant vector) 

is required to represent translations. (In fact, although the 

coordinates are expressed in terms of five basis vectors, 

only three distinct views are needed for a general linear 

transformation.) The scaling does not require any additional 

image since it is represented by a scaling of the coefficients. 

This scheme was implemented and applied to images of 3-D 

objects. 

Figs. 3 and 4 show the application of the linear combina- 

tion (LC) method to complex objects with smooth bounding 

contours. Since the rotation was about the vertical axis, three 

2-D views were used for each model. The models were created 

by taking three images and producing their edge maps (only 

edges that appeared in all three images were maintained). Since 

the rotation was around the vertical axis, a simple correspon- 

(b) 

(d) 

Fig. 3. (a) Three model pictures of a VW car for rotations around the vertical 
axis. The second and the third pictures were obtained from the first by rotations 
of zk30° around the Y axis; (b) two linear combinations of the VW model. 
The s coefficients are (0.556,0.463, -0.018) and (0.582, -0.065,0.483), 
which correspond to a rotation of the first model picture by &lj”. These 
artificial images, which are created by linear combinations of the first three 
views rather than actual views; (c) real images of a VW car; (d) matching 
the linear combinations to the real images. Each contour image is a linear 
combination superimposed on the actual image. The agreement is good within 
the entire range of ~t30’; (e) matching the VW model to pictures of the Saab 
car. 

dence scheme was used to match points along the same scan 

line. The matching accuracy was sufficient for unambiguous 

discrimination in the presence of unavoidable noise, e.g., in 

image formation, edge detection, and correspondence. The 

figure shows a good agreement between the actual image and 

the appropriate linear combination. Although the objects are 

similar, they are easily discriminable by the LC method within 

the entire 60” rotation range. 

Finally, it is worth noting that the modeling of objects by 

linear combinations of stored pictures is not limited only to 

rigid objects. The method can also be used to deal with various 

types of nonrigid transformations, such as articulations and 

nonrigid stretching. For example, in the case of an articulated 

object, the object is composed of a number of rigid parts linked 

together by joints that constraint the relative movement of the 

parts. We saw that the x and y coordinates of a rigid part are 

constrained to a 4-D subspace. Two rigid parts reside within 

an 8-D subspace, but because of the constraints at the joints, 

they usually occupy a smaller subspace (e.g., 6-D for a planar 

joint). 
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(b) 

Cd) 

(4 

Fig. 4. (a) Three model pictures of a Saab car taken with approximately 
the same transformations as the VW model pictures; (b) two linear com- 
binations of the Saab model. The z coefficients are (0.601,0.471, -0.072) 
and (0.754, -0.129,0.375), which correspond to a rotation of the first model 
picture by &15”; (c) real images of a Saab car; (d) matching the linear 
combinations to the real images; (e) matching the Saab model to pictures 
of the VW car. 

II. DETERMINING THE ALIGNMENT COEFFICIENTS 

In the previous section, we have shown that the set of 

possible views of an object can often be expressed as the 

linear combination of a small number of views. In this section, 

we examine the problem of determining the transformation 

between a model and a viewed object. The model is given 

in this scheme as a set of Ic corresponding 2-D images 

{Ml, . . . , Mk}. A viewed project P is an instance of this 

model if there exists a set of coefficients {al,. . . , ak} (with a 

possible set of restrictions F(ar, . . . , ok) = 0) such that 

P = CLlMl + . . . + Ukibfk. (3) 

In practice, we may not obtain a strict equality. We will 

attempt to minimize, therefore, the difference between P and 

alhill + ... + akMk. The problem we face is how to deter- 

mine the coefficients {al, . . , ok}. In the following sub- 

sections, we will discuss three alternative methods for 

approaching this problem. 

A. Minimal Alignment: Using a Small Number 
of Corresponding Features 

The coefficients of the linear combination that align the 

model to the image can be determined using a small number 

of features, which are identified in both the model and the 

image to be recognized. This is similar to previous work in 

the framework of the alignment approach [8], [12], [16], [23]. 

It has been shown that three corresponding points or lines are 

usually sufficient to determine the transformation that aligns a 

3-D model to a 2-D image [23], [12], [19], assuming the object 

can undergo only rigid transformations and uniform scaling. In 

previous methods, 3-D models of the object were stored. The 

corresponding features (lines and points) were then used to 

recover the 3-D transformation separating the viewed object 

from the stored model. 

The coefficients of the linear combination required to align 

the model views with the image can be derived in principle, as 

in previous methods, by first recovering the 3-D transforma- 

tions. They can also be derived directly, however, by simply 

solving a set of linear equations. This method requires k points 

to align a model of k pictures to a given image. Therefore, 

four points are required to determine the transformation for 

objects with sharp edges and six points for objects with smooth 

boundaries. In this way, we can deal with any transformation 

that can be approximated by linear combinations of pictures 

without recovering the 3-D transformations explicitly. 

The coefficients of the linear combination are determined 

by solving the following equations. We assume that a small 

number of corresponding points (the “alignment points”) have 

been identified in the image and the model. Let X be the 

matrix of the z coordinates of the alignment points in the 

model, that is, xi3 is the x coordinate of the jth point in 

the ith model-picture. p, is the vector of z coordinates of the 

alignment points in the image, and a is the vector of unknown 

alignment parameters. The linear system to be solved is then 

Xa = p,. The alignment parameters are given by a = X-‘p, 

if an exact solution exists. We may use an overdetermined 

system (by using additional points), in which case, a = X+p, 

(where X+ denotes the pseudo-inverse of X). The matrix X+ 

does not depend on the image and can be precomputed for the 

model. The recovery of the coefficients therefore requires only 

a multiplication of p, by a known matrix. Similarly, we solve 

for Yb = p, to extract the alignment parameters b in the y 

direction from Y (the matrix of y coordinates in the model) 

and p, (the corresponding y coordinates in the image). The 

stability of the computation in the face of noise will depend on 

the condition number of the matrices XXT and YYT. These 

matrices depend on the model images only, and this raises the 

possibility of selecting the model images in a manner that will 

increase the stability of the computation during matching. 

It is also worth noting that the computation can proceed 

in a similar fashion in the basis of correspondence between 

straight-line segments rather than points. In this case, due to 

the “aperture problem” [18], only the perpendicular component 

(to the contour) of the displacement can be measured. This 

component can be used, however, in the equations above. In 

this case, each contour segment contributes a single equation 

(as opposed to a point correspondence, which gives two 

equations). 

As a possible model of object recognition by a human being, 

one question that may arise in this context is whether the 

.---. --.---.--w-v - . _ _ . ___... 
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Fig. 5. Aligning a model to images using corresponding features: (a) Two 
images of a Saab car and one of the six model pictures; (b) corresponding 
points used to align the model to the images. The correspondence was 
determined using apparent motion, as explained in the text; (c) transformed 
model; (d) transformed model superimposed on the original images. 

visual system can be expected to reliably extract a sufficient 

number of alignment features. Two comments are noteworthy. 

First, this difficulty is not specific to the linear combination 

scheme but applies to other alignment schemes as well. 

Second, although the task is not simple, the phenomenon of 

apparent motion suggests that mechanisms for establishing 

feature correspondence do, in fact, exist in the visual system. 

It is interesting to note in this regard that the correspon- 

dence established during apparent motion appears to provide 

sufficient information for the purpose of recognition by linear 

combinations. For example, when the car pictures in Fig. 5(a) 

are shown in apparent motion, the points marked on the 

right in Fig. 5(b) appear perceptually to move and match 

the corresponding points marked on the pictures on the right. 

These points, with the perceptually established match, were 

used to align the model and images in Fig. 5, that is, the 

coordinates of these points were used in the equations above 

to recover the alignment coefficients. The model contained six 

pictures of a Saab car in order to cover all rigid transformations 

for an object with smooth boundaries. As can be seen, a 

close agreement was obtained between the image and the 

transformed model. (The model contained only a subset of 

the contours: the ones that were clearly visible in all of the 

different pictures.) 

B. Searching for the Coeficients 

An alternative method to determine the best linear combina- 

tion is by a search in the space of possible coefficients. In this 

method, we choose some initial values for the set {al, . . . . uk} 

of coefficients, we then apply a linear combination to the 

model using this set of coefficients. We repeat this process 

using a different set of coefficients and take the coefficient 

values that produced the best match of the model to the image. 

The most problematic aspect of this method is that the 

domain of coefficients might be large; therefore, the search 

might be prohibitive. We can reduce the search space by first 

performing a rough alignment of the model to the image. 

The identification of general features in both the image and 

the model, such as a dominant orientation, the center of 

gravity, and a measurement of the overall size of the imaged 

object, can be used for compensating roughly for image 

rotation, translation, and scaling. Assuming that this process 
compensates for these transformations up to a bounded error 

and that the rotations in 3-D space covered by the model are 

also restricted, then we could restrict the search for the best 

coefficients to a limited domain. Moreover, the search can 

be guided by an optimization procedure. We can define an 

error measure (for instance, the area enclosed between the 

transformed model and the image) that must be minimized 

and use minimization techniques such as gradient descent to 

make the search more efficient. The preliminary stage of rough 

alignment may help preventing such methods from reaching a 

local minimum instead of the global one. 

C. Linear Mappings 

The linear combination scheme is based on the fact that a 

3-D object can be modeled by the linear combination of a 

small number of pictures, that is, the set of possible views of an 

object is embedded in a linear space of a low dimensionality. 

We can use this property to construct a linear operator that 

maps each member of such a space to a predefined vector, 

which identifies the object. This method is different from 

the previous two in that we do not explicitly recover the 

coefficients (al 1 . . , an) of the linear combination. Instead, 

we assume that a full correspondence has been established 

between the viewed object and the stored model. We then use 

a linear mapping to test whether the viewed object is a linear 

combination of the model views. 

Suppose that a pattern P is represented by a vector p of its 

coordinates (e.g., (‘cl, y1 1 22. ~2. . . . :rnyn)). Let PI and P2 

be two different patterns representing the same object. We can 

now construct a matrix L that maps both pl and p2 to the 

same output vector q, that is, Lpi = Lp2 = q. Any linear 

combination npl + bpp will then be mapped to the same out- 

put vector q multiplied by the scalar n + b. We can choose, for 

example q = pl, in which case any view of the object will be 

mapped by L to a selected “canonical view” of it. 

We have seen above that different views of the same object 

can usually be expressed as linear combinations C nipi of 

a small number of representative views P,. If the mapping 

matrix L is constructed in such a manner that Lp, = q for 

all the views P, in the same model, then any combined view 

6 = 1 n,p, will b e mapped by L to the same q (up to a 

scale) since Lfi = (C ai)q. 
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L can be constructed as follows. Let {PI. .pk} be k 

linearly independent vectors representing the model pictures 

(we can assume that they are all linearly independent since a 

picture that is not is obviously redundant). Let {pk+l. . . , p,} 

be a set of vectors such that {PI. . . . .p,} are all linearly 

independent. We define the following matrices: 

P= (PI.... rPkrPk+l*....Pn) 

& = (4,.“,Q.Pk_tl~...,P,) 

We require that 

LP=Q. 

Therefore 

L = QP-‘. 

Note that since P is composed of n linearly independent 

vectors, the inverse matrix P-l exists; therefore, L can always 

be constructed. 

By this definition, we obtain a matrix L that maps any linear 

combination of the set of vectors (~1. . . . , pk} to a scaled 

pattern cyq. Furthermore, it maps any vector orthogonal to 

{Pl.... ~ pk} to itself. Therefore, if fi is a linear combination of 

{pl,....pk} with an additional orthogonal noise component, 

it would be mapped by L to q combined with the same amount 

of noise. 

In constructing the matrix L, one may use more than just 

k vectors pi, particularly if the input data is noisy. In this 

case, a problem arises of estimating the best k dimensional 

linear subspace spanned by a larger collection of vectors. This 

problem is treated in Appendix B. 

In our implementation, we have used Lpi = 0 for all the 

view vectors p, of a given object. The reason is that if a new 

view of the object fi is given by c nip, with c ai = 0, then 

Lfi = 0. This means that the linear mapping L may send a 

legal view to the zero vector, and it is therefore convenient 

to choose the zero vector as the common output for all the 

object’s views. If it is desirable to obtain at the output level a 

canonical view of the object such as pl rather than the zero 

vector, then one can use as the final output the vector pl - Lfi. 

The decision regarding whether or not 1; is a view of the 

object represented by L can be based on comparing llL@jl 

with 11$11. If fi is indeed a view of the object, then this ratio 

will be small (exactly 0 in the noise-free condition). If the 

view is “pure noise” (in the space orthogonal to the span of 

(Pl.... ,pk)), then this ratio will be equal to 1. 

Fig. 6 shows the application of the linear mapping to two 

models of simple geometrical structures: a cube (a) and a 

pyramid (b). For each model, we have constructed a matrix 

that maps any linear combination of the model pictures to the 

first model picture that serves as its ‘canonical view.’ Consider 

the cube images in Fig. 6(a) first. The left column depicts two 

different views of the cube. Applying the cube matrix to these 

views yields in both cases the canonical view, as shown in 

the middle column. When the input to the cube matrix was a 

pyramid rather than a cube, the output was different from the 

canonical view (right column). In this manner, different views 

of the cubes can be identified by comparing the output to the 

(4 

(b) 

Fig. 6. (a) Applying cube and pyramid matrices to the cubes of Fig. 2; 
(b) applying pyramid and cube matrices to the pyramids of Fig. 2. Left col- 
umn of pictures-the input images. Middle column-the result of applying 
the appropriate matrix to the images (these results are identical to the first 
model pictures, which serve as canonical views). Right column-the result 
of applying the wrong matrix to the images (these results are not similar to 
the canonical views). 

canonical cube. Fig. 6(b) shows similar results obtained for 

the pyramid. 

III. GENERAL DISCUSSION 

We have proposed above a method for recognizing 3-D 

objects from 2-D images. In this method, an object-model is 

represented by the linear combinations of several 2-D views 

of the object. It was shown that for objects with sharp edges 

as well as with smooth bounding contours, the set of possible 

images of a given object is embedded in a linear space spanned 

by a small number of views. For objects with sharp edges, the 

linear combination representation is exact. For objects with 

smooth boundaries, it is an approximation that often holds over 

a wide range of viewing angles. Rigid transformations (with or 

without scaling) can be distinguished from more general linear 

transformations of the object by testing certain constraints 

placed on the coefficients of the linear combinations. 

We have proposed three alternative methods for determining 

the transformation that matches a model to a given image. 

The first method uses a small set of corresponding features 

identified in both the model and the image. Alternatively, 

the coefficients can be determined using a search. The third 

method uses a linear mapping as the main step in a scheme that 

maps the different views of the same object into a common 

representation. 

The development of the scheme so far has been primarily 

theoretical, and initial testing on a small number of objects 

shows good results. Future work should include more exten- 

__-. --.---.--w-v - . _ _ . ___... 
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sive testing using natural objects, as well as the advancement 

of the theoretical issues discussed below. 

In the concluding section, we discuss three issues. First, we 

place the current scheme within the framework of alignment 

methods in general. Second, we discuss possible extensions. 

Finally, we list a number of general conclusions that emerge 

from this study. 

A. Classes of Alignment Schemes 

The schemes discussed in this paper fall into the gen- 

eral class of alignment recognition methods. Other alignment 

schemes have been proposed by [2], [S], [7], [8], [lo], [16], 

and [20]. In an alignment scheme, we seek a transformation 

T, out of a set of allowed transformations and a model M 

from a given set of models that minimizes a distance measure 

d(M, T,? p) (where p is the image of the object). T, is 

called the alignment transformation because it is supposed to 

bring the model M and the viewed object p into an optimal 

agreement. 

The distance measure d typically contains two contribu- 

tions: 

d(M,Ta,p) = dl(Te>M,p) + W”cc). 

The first term dl(T,, M, p) measure the residual distance 

between the picture p and the transformed model T, M follow- 

ing the alignment, and dp(T,) penalizes for the transformation 

T, that was required to bring M into a close agreement with 

p. For example, it may be possible to bring M into a close 

agreement with p by stretching it considerably. In this case 

dl (T,, M, p) will be small, but if large stretches of the object 

are unlikely, dz(T,) will be large. We will see below that 

different classes of alignment schemes differ in the relative 

emphasis they place on dl and dz. 

Alignment approaches can be subdivided according to the 

method used for determining the aligning transformation T,. 

The main approaches used in the past can be summarized by 

the following three categories. 

1) Minimal Alignment: In this approach, T, is determined 

by a small number of corresponding features in the model and 

the image. Methods using this approach assume that the set 

of possible transformations is restricted (usually to rigid 3-D 

transformations with possible scaling or a Lie transformation 

group [6]) so that the correct transformation can be recovered 

using a small number of constraints. 

This approach has been used by Faugeras and Hebert 

[7], Fischler and Bolles [8], Hutteniocher and Ullman [12], 

Shoham and Ullman [19], Thompson and Mundy [20], and 

Ullman [23]. In these schemes, the term d2 above is usually 

ignored since there is no reason to penalize for a rigid 3-D 

aligning transformation, and the match is therefore evaluated 

by dl only. 

The correspondence between features may be guided in 

these schemes by the labeling of different types of features, 

such as cusps, inflections, blob-centers, etc. [12], [23] by 

using pairwise constraints between features [lo] or by a more 

exhaustive search (as in [14], where possible transformations 

are precomputed and hashed). 

Minimal alignment can be used in the context of the linear 

combination scheme discussed in this paper. This method was 

discussed in Section II-A. A small number of corresponding 

features is used to determine the coefficients of the linear 

combination. The linear combination is then computed, and 

the result is compared with the viewed image. 

2) Full Alignment: In this approach, a full correspondence 

is established between the model and the image. This corre- 

spondence defines a distortion transformation that takes M into 

P. The set of transformations is not restricted in this approach 

to rigid transformations. Complex nonrigid distortions are 

included as well. In contrast with minimal alignment, in the 

distance measure d above, the first term dl(T,, M, P) does 

not play an important role since the full correspondence forces 

T,M and P to be in close agreement. The match is therefore 

evaluated by the plausibility of the required transformation T,. 

Our linear mapping scheme in Section II-C is a full alignment 

scheme. A full correspondence is established to produce a 

vector that the linear mapping can then act upon. 

3) Alignment Search: In contrast with the previous ap- 

proaches, this method does not use feature correspondence 

to recover the transformation. Instead, a search is conducted 

in the space of possible transformations. The set of possible 

transformations {T,} is parametrized by a parameter vector 

cy, and a search is performed in the parameter space to 

determine the best value of a. The deformable template 

method [2.5] is an example for this approach. Section II-B 

described the possibility of performing such a search in the 

linear combination approach to determine the value of the 

required coefficients. 

B. Extensions 

The LC recognition scheme is restricted in several ways. It 

will be of interest to extend it in the future in at least three 

directions: relaxing the constraints, dealing effectively with 

occlusions, and dealing with large libraries of objects. We limit 

the discussion below of brief comments on these three issues. 

I) Relaxing the Constraints: The scheme as presented as- 

sumes rigid transformation and an orthogaphic projection. 

Under these conditions, all the views of a given object are 

embedded in a low-dimensional linear subspace of a much 

larger space. What happens if the projection is perspective 

rather than orthographic or if the transformations are not 

entirely rigid? The effect of perspecitivity appears to be quite 

limited. We have applied the LC scheme to objects with ratio 

of distance-to-camera to object-size down to 4:l with only 

minor effects on the results (less than 3% deviation from the 

orthographic projection for rotations up to 45”). 

As for nonrigid transformations, an interesting general ex- 

tension to explore is where the set of views is no longer a linear 

subspace but still occupies a low-dimensional manifold within 

a much higher dimensional space. This manifold resembles 

locally a linear subspace, but it is no longer “globally straight.” 

By analogy, one can visualize the simple linear combinations 

case in terms of a 3-D space, in which all the orthographic 

views of a rigid object are restricted to some 2-D plane. In 

the more general case, the plane will bend to become a curved 

2-D manifold within the 3-D space. 
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This appears to be a general case of interest for recognition 

as well as for other learning tasks. For recognition to be 
feasible, the set of views {V} corresponding to a given object 

cannot be arbitrary but must obey some constraints, e.g., in the 

form F(Vi) = 0. Under general conditions, these restrictions 

will define locally a manifold embedded in the larger space. 

Algorithms that can learn to classify efficiently sets that form 

low-dimensional manifolds embedded in high dimensional 

spaces will therefore be of general value. 

2) Occlusion: In the linear combination scheme, we as- 

sumed that the same set of points is visible in the different 

views. What happens if some of the object’s points are 

occluded by either self-occlusion or by other objects? 

As we mentioned in Section I-C-5, self-occlusion is handled 

by representing an object not by a single model but by a 

number of models covering its different “aspects” [13] or 

“characteristic views” [24]. 

As for occlusion by other objects, this problem is handled 

in a different manner by the minimal alignment and the 

full alignment versions of the LC scheme. In the minimal 

alignment version, a small number of corresponding features 

are used to recover the coefficients of the linear combination. 

In this scheme, occlusion does not present a major special 

difficulty. After computing the linear combination, a good 

match will be obtained between the transformed model the 

visible part of the object, and recognition may proceed on 

the basis of this match. (Alignment search will behave in a 

similar manner.) 

In the linear mapping version, an object’s view is repre- 

sented by a vector n, of its coordinates. Due to occlusion, some 

of the coordinates will remain unknown. A way of evaluating 

the match in this case in an optimal manner is suggested in 

Appendix C. 

Scene clutter also affects the computation by making the 

correspondence more difficult, that is, model features (points 

or lines) may be incorrectly matched with spurious data in the 

image. This effect of clutter on model-to-image correspon- 

dence is discussed e.g., in Grimson [9]. 

3) Multiple Models: We have considered above primarily 

the problem of matching a viewed object with a single model. 

If there are many candidate models, a question arises regarding 

the scaling of the computational load with the number of 
models. 

In the LC scheme, the main problem is in the stage of 

performing the correspondence since the subsequent testing 

of a candidate model is relatively straightforward. The linear 

mapping scheme is particularly attractive in this regard: Once 

the correspondence is known, the testing of model requires 

only a multiplication of a matrix by a vector. 

With respect to the correspondence stage, the question 

is how to perform correspondence efficiently with multiple 

models. This problem remains open for future study; we just 

comment here on a possible direction. The idea is to use 

prealignment to a prototype in the following manner. Suppose 

thatM1;‘. ! Mk is a family of related models. A single model 

M will be used for representing this set for the purpose of 

alignment. The correspondence Ti between each Mi in the 

set and M is precomputed. Given an observed object P, a 

single correspondence T: M -+ P is computed. The individual 

transformations Mi -+ P are computed by the compositions 

T 0 Ti. 

C. General Conclusions 

In this section, we briefly summarize a number of general 

characteristics of the linear combinations scheme. In this 

scheme, as in some other alignment schemes, significant 

aspects of visual object recognition are more low-level in 

nature and more pictorial compared with structural description 

recognition approaches (e.g., [4]). The scheme uses directly 

2-D views rather than an explicit 3-D model. The use of the 

2-D views is different, however, from a simple associative 

memory [ 11, where new views are simply compared in parallel 

with all previously stored views. Rather than measuring the 

distance between the observed object and each of the stored 

views, a distance is measured from the observed object to the 

linear subspace (or a low-dimensional manifold) defined by 

previous views. 

The linear combination scheme “reduces” the recognition 

problem in the sense to the problem of establishing a corre- 

spondence between the viewed object and candidate models. 

The method demonstrates that if a correspondence can be es- 

tablished, the remaining computation is relatively straightfor- 

ward. Establishing a reliable correspondence between images 

is not an easy task, but it is a general task solved by the visual 

system (e.g., in motion measurement and stereoscopic vision), 

and related processes may also be involved in visual object 

recognition. 

APPENDIX A 

In Section I-D-l, we showed that the images of an object 

with smooth surfaces rotating in 3-D space can be represented 

as the linear combination of five views and mentioned that the 

coefficients for these linear combinations satisfy seven func- 

tional constraints. In this appendix, we list these constraints. 

We use the same notation as in Section I-D-2. Let 

Rl,... , Rg, l?, be 3 x 3 rotation matrices and Ri. . . . , Rk, 

& be the corresponding 2 x 5 matrices defined in Section I- 

D-2. Let ~1, . . . , ~5, f be the first row vectors and ~1,. . . , ss, 

2 the second row vectors of R’,, . . . , Rk, l?‘, respectively. In 

Section I-D-2, we showed that each of the two row vectors of 

& is a linear combination of the corresponding row vectors 

of R:,Rh....:Rk, that is 

+= c airi 

i=l 

i= c his;. 

i=l 

The functional constraints can be expressed as 
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Claim: Let {Xi! . . , X,} be the lc smallest eigenvalues of 

F; then 

iI 
2=1 

Xi = FkllD2(Vk) 

(Constraints 1, 2, and 3, are immediate. Constraints 4, 5, 6, where the minimum is taken over all the linear subspaces of 

and 7 can be verified by expressing all the entries in terms of dimension n - k. Therefore, span{uk+l! . . , u,} is the best 

the rotation angles (Y, /3, and y.) (n - Ic) dimensional space through pl , p2 > . . . ! p,. 

To express these constraints as a function of the coefficients, Proof: Let VI, be a linear subspace of dimension (n - /c). 

every occurrence of a term iii should be replaced by the We must establish that 

appropriate linear combination as follows: 

i=l 

ii = 2 bi(si)j. 

i=l 

Let {WI,... ,u,} be a set of orthonormal vectors in R” 

such that & = Span{Wk+l, ... ,wu,}. V = (WI, ... ,?I,) and 
u = (Ul, . *. , u,) are n x n orthonormal matrices. Let 

R = UtV. 

In the case of a similarity transformations (i.e., with scale Then 

change), the first two constraints are substituted by UR=V 

72~+f;+~~=~~+~;+~~ that is 

and the sixth becomes t13 = 2 Ti3 Ui 

(?I +q2 + (i5 +q2 = +: +?; +?;. 
i=l 

R is also orthonormal, therefore 

APPENDIX B 

In this Appendix, we describe a method to find a space of 
erfj = crfj = 1. 

z=l j=l 

a given dimension that lies as close as possible to a given set 

of points. 
Now 

tit {Pl,PZ,“. , pm} be a set of points in R”. We would 

like to find the (n - Ic) dimensional space that lies as FIJI = F kriiut 

( ) 

=k Tij Xi Ui 

close as possible (in the least-square sense) to the points 
i=l i=l 

{Pl,PZ,... ,pm}. Let P be the n x m matrix given by and therefore 

(Pl,PZ,... ,Pm). Let {Ul,..., u,} be a set of orthonormal 

vectors in R”, and define Uk = span{uk+r,u,}. The sum 

of the distances (squared) of the points pl, ~2, . . . , p, from 
VfFvj = ($riiui) (griikui). 

& is given by 
Since uiuj = Sij, we obtain that 

D2(U,!f) = & IIPtUii12. 
i=l 

IJ~FIJ~ = 2 r&Xi. 

i=l 

(since Et=, (PiUi)2 is the squared distance of pi from uk.) Therefore 

Let F = PPt. Then 

D2(uk) = 5 llPtuil12 = 2 (P”Ui)t(PtUt) = &uIFUI’ 

D2(Vk) = $ujFuj = k k?$k = $ 

j=l i=l 

i=l i=l i=l Let 

Any real matrix of the form XXt is symmetric and non- 

negative. Therefore, F has n eigenvectors and n real nonnega- Cti = 

tive eigenvalues. Assume that the {ui: . . . , u,} above are the j=l 

eigenvectors of F with eigenvalues X1 5 X2 5 . . . 5 X,, Then 
respectively, then Fui = Xiui, and therefore 

D2(u,) = 2 xi. 

i=l 

D2(V,) = 2 &iXi 

i=l 

where 0 5 oi 5 1 and Cy=“=, N, = Ic. 
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The claim we wish to establish is that the minimum is 

obtained when oi = 1 for i = 1.. . k, and cyi = 0 for 
i = Ic+1... n. Assume that for Vk, there exists 1 5 m 5 Ic 

such that Q, < 1, and k + 1 5 1 5 n such that al > 0. We 

can decrease cyl and increase (Y, (by min(cq, 1 - a,)), and 

this cannot increase the value of D2(&). By repeating this 

process, we will eventually reach the value of D2(&). Since 

during this process the value cannot increase, we obtain that 

and therefore 

i=l 

Xi = I$Il D2(Vk). 

APPENDIX C 

In the linear mapping method, a matrix L was constructed 

that maps every legal view ZI of the object to a constant output 
vector. If the common output is chosen to be the zero vector, 

then Lv = 0 for any legal view of the object. 

In this Appendix, we briefly consider the case where the 

object is only partially visible. We model this situation by 

assuming that we are given a partial vector p. In this vector, 

the first k coordinates are unknown due to the occlusion, and 

only the last n - k coordinates are observable. (A partial 

correspondence between the occluded object and the model 

is assumed to be known.) 

In the vector p, we take the first k coordinates to be zero. 

We try to construct from p a new vector p’ by supplementing 

the missing coordinates so as to minimize 11 Lp’ll. The relation 

between p and p’ is 

p’ = p + 5 UtUi 
i=l 

where the ci are unknown constants, and the Ui are unit vectors 

along the first k coordinates. 

In matrix notation, we seek to complement the occluded 

view by minimizing: 

rnin IlLp + LUall 

where the columns of the matrix U are the vectors u;, and a 

is the vector on the unknown ai’s. 

The solution to this minimization problem is 

a = -[Lu]+L, 

(where H+ denotes the pseudo inverse of the matrix H). 

This means that the pseudo inverse (LU)+ will have to be 

computed. The matrix L if fixed, but U depends on the points 

that are actually visible. 

This optimal value of a can also be used to determine the 

output vector of the recognition process Lp’: 

Lp’ = (I - [Lu][Lu]+)Lp. 

p is then recognized as a legal view if this output is sufficiently 

close to zero. 
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