
RECOGNITION FOR LARGE SETS OF HANDWRITTEN MATHEMATICAL SYMBOLS

Stephen M. Watt and Xiaofang Xie

Dept. of Computer Science
University of Western Ontario

London Ontario, Canada N6A 5B7
{watt,maggie }@csd.uwo.ca

Abstract
Natural and convenient mathematical handwriting recogni-
tion requires recognizers for large sets of handwritten sym-
bols. This paper presents a recognition system for such
handwritten mathematical symbols. We use a pre-classification
strategy, in combination with elastic matching, to improve
recognition speed. Elastic matching is a model-based method
that involves computation proportional to the set of candi-
date models. To solve this problem, we prune prototypes by
examining character features. To this end, we have defined
and analyzed different features. By applying these features
into an elastic recognition system, the recognition speed is
improved while maintain high recognition accuracy.

1. Introduction

The development of Personal Digital Assistants (PDAs) and
Tablet PCs provides an ideal potential environment to input
mathematics by handwriting. Handwriting input would not
only make writing mathematical documents much easier, it
would also provide a friendly user interface for computer
algebra systems such as Maple. Although the first applica-
tions on PDAs and Tablet PCs have no concept of mathe-
matical input, the handwriting writing modality is so much
more natural for mathematics than typing that we expect
mathematical handwriting recognition to be important.

Mathematical handwriting differs significantly from the
other forms of handwriting. First, the set of possible input
symbols is very extensive, coming from several different al-
phabets and sources. A full recognizer for all mathematical
handwriting would have to distinguish about 2000 symbols.
Unlike Asian languages with large symbol sets, these sym-
bols are typically composed of a few strokes, with no spe-
cific stroke order, and with many symbols being quite sim-
ilar. Second, the spatial relation among symbols can use
complex context-sensitive two dimensional rules. Third,
mathematical handwriting can involve large operators such
as matrix brackets, fraction bars or square roots. This lay-
out and grouping makes mathematical handwriting akin to
a blend of drawing and writing.

From these difficulties, we can see that in order to recog-
nize handwritten mathematics well, we need to perform two
major tasks: recognize a large set of mathematical symbols
and analyze the two-dimensional mathematical formula struc-
ture. Recognition within large symbol sets is understood to
be a hard problem [1]. This paper presents our first steps
toward a system to address this problem, so we can make
progress in recognizing handwritten mathematical symbols.

It is understood that feature extraction is important in
handwriting recognition [2] and most existing recognizers
use features to some degree. For the problem of recognition
in large symbol sets, we expect that feature recognition will
be more important than in other applications. In this pa-
per, we define some features, give algorithms for extracting
these features, and analyze the performance of a recognizer
after applying some of these features.

2. Architecture of the Symbol Recognizer

2.1. Context

This work is part of a larger project, involving expression
analysis, dictionary-based methods, and portability layers [3].
In this paper we concentrate on the problem of symbol recog-
nition. Figure 1 represents the top-level architecture of our
symbol recognition system. The overall organization is as
follows: First we collected a representative set of stroke
data as traces of(x, y) points, rather than as images. We
applied various preprocessing methods to the data, such as
smoothing, re-sampling, size normalization,etc. This data
was used off-line to develop classification categories for the
different mathematical symbols. When we wish to recog-
nize a symbol on-line, given raw stroke data, we perform
similar preprocessing, and then send the strokes to a feature
extraction coordinator. This detects which features the sym-
bol exhibits. These are used to select the class mathemati-
cal symbols known to exhibit these features. Then elastic
matching is performed on the pruned set. We give details of
each step in the following sections.

Data Collection

Preprocessing

Smoothing, Resampling, Size Normalization
Head and Tail Trimming

Feature Extraction

Intersection, Loops, Cusps, Point Density,
Initial/End Position, Initial/End Direction,

Height/width Ration, Number of Strokes …

Elastic Matching

Fig. 1. Symbol recognizer global architecture

2.2. Data Collection

We collected data through using a questionnaire filled out
a tablet PC. The questionnaire included 227 symbols and a
number of formulas. Individual symbols included ten dig-
its, lower case and upper case letters, Greek letters, math-
ematical operators and different arrows. For each symbol
the data collected includedx, y coordinates, pen up/down
events, pen pressure and time stamps. When the user lifted
the pen, as long as the pen could still be detected, the trace
coordinates were also recorded. Each movement of the pen
was recorded as a “Stroke”, either with or without the pen
touching the writing surface. Pressure is associated with
each pair ofx, y coordinates, and varies between 0 and 255,
in device-dependent units. The time stamp includes the start
time and the ending time of each stroke. The timing of the
intermediate points can be determined by the sampling fre-
quency of the device.

2.3. Preprocessing

We performed several pre-processing operations, including
selectively chopping the head and the tail of strokes, re-
sampling, smoothing and size normalization. The smooth-
ing operation computes the average of each three consecu-
tive points, and replaces the mid point by the average. The
first and last few points usually exhibit errors, and usually
they do affect the recognition results. We therefore chop the
head and the tail of each stroke. In chopping the head, we
calculate the angles among the first 5 points. If the angles
change a lot (our experiments showed 90 degrees to be ef-
fective), then we chop the corresponding points. Same rules
apply to angle chopping the tail. We used re-sampling to re-
duce the amount of data, and performed size normalization
to remove the symbol size effect on recognition. Resam-
pling also gives us a degree of device independence.

2.4. Feature Extraction

Feature extraction has been recognized as important in many
recognizers, but selecting the relevant features is still quite
an ad-hoc activity, with researchers still trying to find the
best features. H. Winkler used angle and angle difference
in HMM-based recognition [4]. He also integrated hidden
stroke information with the actual strokes. Except for the
angle feature, he used the information of whether the ac-
tual point belongs to a stroke or to an integrated hidden
stroke. Recently, hidden/actual stroke information is called
pen-down/pen-up feature in the literature. M. Okamoto and
K. Yamamoto used clockwise/counterclockwise direction-
change features, written-area features and circle features [5]
in Japanese character recognition. K. Chan and D. Yeung [6]
extracted lines, counter-clockwise/clockwise curves, loops
and dots in their elastic matching recognizer.

J. Kurtzberg [7] did work similar to our own, but used
different features for a smaller symbol set. He used the fol-
lowing seven features to improve the speed of his elastic
matching recognizer: the number of strokes, the number of
points per stroke, the number of points in the symbol, the
height of the lowest point, the height of the highest point,
the height of the lowest point per stroke and the height of
the highest point per stroke. Some of these features, for
example the number of points per stroke, are device depen-
dent. Others features were special to certain data-collection
conditions. For example, Kurtzberg used guidelines, so the
height features are relative to the guidelines.

We considered the different features presented in the lit-
erature and concentrated on the device and context inde-
pendent features. From these features, we selected a set for
pre-classifying in an elastic matching based recognizer. We
describe these in more detail below.

These features have elsewhere been tested on small set
of symbols. Here we test our features on the larger set of
mathematical symbols. We also give improved algorithms
for some of these features. For example, K. Chan and D.
Yeung [6] used loops, but as they pointed out, their loop
finding algorithm can not find all loops. We note that our
algorithm improves on this.

We organize these features into different categories. The
definitions and algorithms are given in the following sec-
tions. The results of recognition using selected features are
shown in the experimental results section.

3. Feature Families

When people recognize handwritten symbols, geometric and
other features, such as loops, play an important role. More-
over, when the characters are too cursive to recognize indi-
vidually, people rely on context, loops and intersections to
distinguish characters. We outline some of these features
here.

3.1. Geometric Features

Number of Loops: This includes complete loops and open
loops. In order to find loops, we define the “minimum dis-
tance pair”.

Minimum Distance Pair: A pair of points which has the
minimum non-local distance in a given area. To ensure non-
locality (e.g. sequential points in a trace), the time interval
between the pair of points must exceed a certain threshold.
There is only one minimum distance pair in a given neigh-
borhood. Approximate loops may be found using minimum
distance pairs.

Our algorithm starts with a pair of points within a cer-
tain distance threshold on a stroke. We call these points the
“begin” and “end” point and compute the straight line be-
tween them. We then sweep a line parallel to this in the
direction that makes shorter the distance between the two
neighboring intersections with the stroke. See figure 2. We
continue until the pair of intersections with the parallel line
are seen to be locally connected, or until we find a minimum
distance pair.

As K.Chan and D.Yeung pointed out, the detection of
loops is not always trivial [6]. They used chain code se-
quences to detect loops, but where the stroke starts may af-
fect the results. Our algorithm does not have this limitation.
We detect the loop in figure 3 which is their failure case.

Number of Intersections: For this we count self intersec-
tions and inter-stroke intersections. We implemented the
modified Bently-Ottman sweepline algorithm. Every time
we find an intersection, we delete the two line segments as-
sociated with the intersection.

Number of Cusps: A cusp is a sharp turning point in a
stroke. A cusp is formed locally by three points,e.g.p1, p2,
p3 in figure 4. If the angle of p1, p2 and p3 is small, it could
be a cusp. In order to determine well-defined cusps, we
check two more neighboring points: p0 and p4. The points
p0, p1 and p2 should be on a relatively straight line. Like-
wise for p2, p3, p4. We take 170 degrees as our straightness
threshold.

3.2. Ink Related Features

Number of Strokes: This information is manifest in the data
structures returned by the ink collection.

Point Density: We determine whether the ink density is
most similar to the letter “o,” “p” or “b.” For o density, ink
is evenly distributed in the whole stroke. With p density,
ink is distributed in the upper part is more than that in the
lower part, while for b density, ink is distributed in the lower
part more than that in the upper part. To compute these, we
divide the ink bounding box into three parts vertically, the
upper40%, the middle20% and the lower box is40%. We
divide the ink bounding box into three boxes instead of two

Fig. 2. Example 1 for Loop Detection

Fig. 3. Example 2 for Loop Detection

due to the variance in handwriting. For example, the lower
part of letter “b” may occupy more than50% of the symbol
height.

3.3. Directional Features

Initial, End and Initial-End Directions: The initial and end
directions are calculated to the third neighboring point. The
initial-end direction is the direction from the initial point to
the end point. We discretized all directions to the nearest of
N, NE, E, SE, S, SW, W, NW.

3.4. Global Features

Initial and End Position: We divide the ink bounding box
into four quadrants, NE, NW, SE, SW. We take as a feature
into which of these boxes the initial and end points fall.

Width to Height Ratio: We discretized this ratio to three
values,0 for a slim symbol,1 for a wide symbol, and2 for
a normal symbol.

Fig. 4. Cusps

4. Recognition

We use elastic matching against models for the final recog-
nition step. This is achieved by calculating the minimum
distance between the unknown symbol and a set of models.
The mapping between the two sequences of points allows
for both one-to-one and many-to-one correspondences be-
tween points using dynamic programming. The total dis-
tance between theith point of the unknown character and
thejth point of the model,D(i, j), is given calculated as:

D(i, j) = δ(i, j)+

∑j−1
k=0 δ(0, k) if i = 0∑i−1
k=0 δ(k, 0) if j = 0

min
{

D(i− 1, j)
D(i− 1, j − 1) if i > 0, j = 1

min
{

D(i− 1, j − 1)
D(i− 1, j − 2) if i > 0, j > 1

δ(i, j) = (xi − xj)2 + (yi − yj)2 + C |φi − φj |

whereφ represents the orientation and the curvature.

5. Experimental Results

Our initial objective was to use features to reduce computa-
tion in our symbol recognition system. We have therefore
based our selection of features, not just on their effective-
ness, but also on their computational cost. The features we
use in our experiments were: number of strokes, initial po-
sition, width to height ratio, end direction and initial to end
direction. We required the number of strokes and the (dis-
cretized) width to height ratio to match exactly. The initial
position and initial to end direction could differ by one. We
allowed end direction to differ by two.

Our test data set had 227 symbols, including digits, Latin
letters, some Greek letters and mathematical operators. We
asked our users to write eight sets of the symbols. The first

Experiment # Prototypes Recog.
P1:T1,2,3,4 227 81.8 %
P1,2:T1,2,3,4 454 90.1
P1,2,3:T1,2,3,4 681 93.9
P1,2,3,4:T1,2,3,4 908 94.8

Table 1. Results Without Features

Experiment Prototypes Recog.
CandidatePruned

P1:T1,2,3,4 227 26 88.5
%

76.0 %

P1,2:T1,2,3,4 366 38 89.6 85.5
P1,2,3:T1,2,3,4 495 52 89.5 90.0
P1,2,3,4:T1,2,3,4 575 60 89.6 91.9

Table 2. Results With Features

four sets were used as prototype sets, and the rest sets were
used as testing sets. The results are shown in Table 1, Ta-
ble 2 and Table 3. We use P as notation for prototype sets.
P1 indicates the data from the first prototype set. We use T
as notation for test sets. T1 indicates the data from the first
testing set.

Table 1 shows the experimental results without using
features. The first column indicates the prototype sets and
testing sets. The second column is the number of prototypes
used for recognizing a symbol. For example, if the proto-
type set is P1, for each symbol in T1, we need to do 227
symbol comparisons. When another prototype set is added,
the number of prototypes is227× 2 for each symbol in the
test sets.

Table 2 shows the experimental results using features.
The first column is same as that in table 1. The second col-
umn is the number of prototypes in the prototype sets. The
prototypes are updated by training on the second set, and so
on. The third column is the number of prototypes used for
recognition. For example, if the prototype set is P1, for a
symbol in T1, we need to do 26 comparisons. The fourth
column is the percentage of prototypes pruned.

From Table 1 and Table 2, we see a final recognition
rate is94.8% without using any features. With features, the
recognition rate is91.9%, but the prototypes are pruned by
89.6%, reducing computation proportionately. Note that the
percentage of prototypes pruned was relatively constant for
each prototype set.

Table 3 is the test results on 72 symbols, including 10
digits, 52 upper and lower case Latin letters and 10 punc-
tuation symbols. This is the same set as in J.Kurtzberg’s
paper [7]. We acknowledge that it is difficult to compare
different recognition systems when the test data sets are not
exactly same. if there are large differences in the results,
however, the comparison can still be useful.

Experiment # Prototypes Candidate Prototypes Pruned (%) Recog. Rate (%)
J.K’s ours J.K’s ours J.K’s ours J.K’s ours

P1,2,3,4: T1,2,3,4 121 169 47 24 61.5 85.8 99.0 97.6
P1,2,3,4: T1,2,3,4 122 288 92 288 N/A N/A 99.0 99.7

Table 3. Our vs. J.Kurtzberg’s Results

In Table 3, we can see the fraction of prototypes pruned
has improved significantly over Kurtzberg’s result, from61.5%
to 85.8%. The recognition rate has reduced by about1%,
but still remains high. As the features we used to prune
prototypes were easy to compute, the computation was in-
significant compared to the elastic matching. Compared
with J.Kurtzberg’s features, ours are more device indepen-
dent and somewhat more general. The last row in Table 3
shows the experimental results without using features. Since
J.Kurtzberg used some parameters, the number of proto-
types is reduced. We note our recognition rate is better, but
that the data sets were not the same.

Although we have not used all the features we have
studied (such as loops, intersections, and so on) for prun-
ing prototypes, they are still useful for other purposes. For
example, we can improve the elastic matching procedure
by applying these features. They can also be used in other
recognition methods.

To compare our results with more recent work, we im-
plemented some of the features in Henning’s paper on word
recognition [8]. The features we implemented were ascen-
der, descender, length of character, and number of center
horizontal line crossings. Section 3 of Henning’s paper dis-
cussed dictionary reduction, which is similar to our proto-
type reduction. To the best of our knowledge, there is no
similar recent work for on-line handwritten symbol recog-
nition. We have applied these features of Henning at the
character level to see the results. We have compared these
features in terms of coverage. We use the coverage notion
of Koerich [9], where coverage refers to the capacity of the
reduced (pruned) lexicon to include the correct match. We
tested our features and Henning’s features (applied to sym-
bols instead of words) on 227 symbols of 2 different writers.
All the features, except for length, require exact matches,
and length must match within a certain tolerance. Our ex-
periments showed that both our features and Henning’s fea-
tures give 100% coverage.

6. Conclusions

Most recognizers focus on limited range of symbols such
as postal codes or Latin letters. Even recognizers for Asian
languages deal with a limited vocabulary of strokes which
must be given in a particular order. Recognition for large
set of symbols is still a challenging research problem.

We have made progress in this area by using feature sets

to prune the number of candidates considered in a character
match. This is a central feature of our symbol recognition
framework, and influences our overall mathematical hand-
writing project.

Our recognizer can recognize digits, English letters, Greek
letters, most of the common mathematical operators and no-
tations. We have selected our features based on their ef-
fectiveness and computational cost. We have attempted to
identify these features empirically, having analyzed a database
of 10,000 mathematical handwriting samples. We have found
the use of features in pruning to be effective, greatly reduc-
ing computation time at only a modest decrease in recogni-
tion rate.

7. References

[1] D.Blostein and A.Grabvec, “Recognition of mathematical no-
tation,” in Handbook of Character Recognition and Docu-
ment Image Analysis, H.Bunke and P.S.P Wang, Eds. 1996,
pp. 557–582, World Scientific, Singapore.

[2] O.D.Trier, A.K.Jain, and T.Taxt, “Feature extraction methods
for character recognition–a survey,”Pattern Recogniton, vol.
29, no. 4, pp. 641–662, 1996.

[3] Elena Smirnova and Stephen Watt, “A context for pen-based
mathematical computing,” inProceedings of the 2005 Maple
Summer Conference, July 2005.

[4] H-J. Winkler, “Hmm-based handwritten symbol recognition
using on-line and off-line features,” inInternational Confer-
ence on Acoustics Speech and Signal Processing, May 1996,
pp. 3438–3441.

[5] M.Okamoto and K.Yamamoto, “On-line handwritten charac-
ter recognition method using directional features and clock-
wise/counterclockwise direction-change features,” inInter-
national Conference on Document Analysis and Recognition,
September 1999, pp. 491–494.

[6] K.F.Chan and D.Y.Yeung, “Elastic structural matching for on-
line handwritten alphanumeric character recognition,” Tech.
Rep., Department of Computer Science, Hong Kong Univer-
sity of Science and Technology, March 1998.

[7] Jerome M. Kurtzberg, “Feature analysis for symbol recogni-
tion by elastic matching,” Tech. Rep., IBM Research Center,
January 1987.

[8] A. Henning and N. Sherkat, “Cursive script recognition using
wildcards and multiple experts,”Pattern Analysis and Appli-
cations, vol. 4, no. 1, pp. 51–60, 2001.

[9] A.L. Koerich, R. Sabourin, and C.Y. Suen, “Large vocabulary
off-line handwriting recognition: A survey,”Pattern Analysis
and Applications, vol. 6, no. 2, pp. 97–121, 2003.

