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Abstract— We investigate the unsupervised K-means clustering 
and the semi-supervised hidden Markov model (HMM) to 
automatically detect anomalous motion patterns in groups of 
people (crowds). Anomalous motion patterns are typically people 
merging into a dense group, followed by disturbances or 
threatening situations within the group. The application of K-
means clustering and HMM are illustrated with datasets from 
four surveillance scenarios. The results indicate that by 
investigating the group of people in a systematic way with 
different K values, analyze cluster density, cluster quality and 
changes in cluster shape we can automatically detect anomalous 
motion patterns. The results correspond well with the events in 
the datasets. The results also indicate that very accurate 
detections of the people in the dense group would not be 
necessary. The clustering and HMM results will be very much 
the same also with some increased uncertainty in the detections. 
 

Index Terms— clustering algorithms, decision support 
systems, hidden Markov models, machine learning, machine 
vision, object segmentation, pattern recognition 

I. INTRODUCTION 

During the last years automatic crowd analysis has been 
studied for various applications including visual surveillance, 
crowd management and public space design. In visual 
surveillance crowd analysis is used for automatic detection of 
anomalies or threatening events. In crowd management crowd 
analysis is used to analyze sport events, large concerts and 
public demonstrations to avoid crowd related disasters. For 
public space design crowd analysis is used to provide 
guidelines for the design of shopping malls, city centers, etc 
[1].  

With automatic crowd analysis it is possible to foresee 
different states of the crowd, including crowd size, crowd 
density, crowd flow, crowd speed and anomalous motion 
patterns (e.g. riots, robberies and fights). Automatic crowd 
analysis can improve the possibilities for an operator to detect, 
at an earlier stage, important events in the often very large 
amount of information from sensor data. The outcome of 
threatening and dangerous situations can then be mitigated or 
even avoided.  
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In dense environments occlusion is a problem. People will 
temporarily be hidden and cannot be continuously tracked. In  
traffic and pedestrian monitoring crowd analysis has been 
divided into three approaches to be able to better handle the 
effects from occlusion. They are microscopic approach, 
macroscopic approach and a combination of the two [2]. In 
the microscopic approach people are analyzed as discrete 
individuals. This information is summarized to obtain 
knowledge about the crowd. In the macroscopic approach the 
crowd is instead analyzed as a single unit. There is no 
information used on position estimates of individuals, which 
is a way of avoiding the problems with occlusion. A 
combination of micro- and macroscopic approaches can be 
made by keeping the crowd as a homogeneous mass, but at the 
same time considering an internal force. Another way is by 
keeping the characters of the persons while maintaining a 
general view of the entire crowd.  

A combination is proposed in [3] where the aim is to 
understand group motion patterns in subway stations. 
Detection and tracking of individuals together with group 
tracking form a basis for group motion patterns analysis.  

In [2] and [4] optical flow from the crowd movements is 
used to detect abnormal regions in the image. In [4] an HMM 
is used to interpret the optical flow. A macroscopic approach 
is proposed by [5] where optical flow and foreground regions 
are used to derive crowd features in the image. The different 
crowds features are fused by an HMM to obtain a final 
decision. In [6] optical flow, foreground regions and sound 
level are fused by an HMM to detect abnormal crowd events, 
while still regarding the crowd as a single unit.  

In this paper we propose to use K-means clustering and 
HMM to detect anomalous motion patterns in dense crowds. 
The anomalous motion patterns are based on merging and 
splitting of groups as well as internal interactions within dense 
groups.  

Tracking of dense groups, as well as merging and splitting, 
have been discussed also in another paper [7] where the 
authors use a dynamic Gaussian mixture model to describe the 
dynamics of the clusters and a measure for target 
concentration that is based on the probability hypothesis 
density (PHD) filter. Merging and splitting are described by 
using a point process formulation. Internal activities, such as 
fights, are not investigated. Group analysis (including group 
tracking) have been investigated in several papers, and also 
for other types of applications, see for example [8]-[11]. 

The objective of this paper is to study unsupervised K-
means clustering and semi-supervised HMM for detection of 
anomalous motion patterns in crowds. For crowd surveillance 
in urban environments the context is important, e.g. time of 
day, time of week, time of year and weather conditions. 
However, if the anomaly detection algorithm is conditioned on 
the context to a large extent, the algorithm can often be used 
only in that specific context. The less prior information we 
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can use the more generic can the algorithm become. With K-
means clustering and HMM the aim is to minimize the amount 
of prior information, while still getting enough information 
from the sensor data.  

We will assume that a reliable detection algorithm of people 
in raw images already exists in this work, and focus on 
anomalies in groups. The detection of people can be done with 
for example face detection [12] or head detection [13], using 
standard video surveillance cameras. An alternative is to use a 
combination of thermal infrared and visual cameras and fuse 
the results from the respective detection algorithms [14].  

In [15] we made an initial study on the use of K-means 
clustering and HMM. In that paper we assumed only one 
group in the scene. In this paper we do not have any prior 
assumptions of the number of groups. Instead we have 
developed a procedure where we can estimate the most 
relevant number of groups and can select the most relevant 
input data to the motion patterns analysis. We evaluate the 
algorithms more rigorously on four datasets, including three 
different sensitivity analyses. 

The paper is organized as follows. Section II presents K-
means clustering and Section III presents HMM. In Section IV 
we discuss the application of the two algorithms on the 
detection of anomalous motion patterns in crowds. In Section 
V the algorithms are tested on data from four recorded 
scenarios that include smaller crowds (here denoted groups of 
people to distinguish them from large crowds). Section VI 
presents a sensitivity analysis. Section VII finally presents 
some conclusions. 

 

II. K-MEANS CLUSTERING 

Cluster analysis is used for segmenting a collection of 
objects into clusters, based on information found in the data. 
The data describes the objects as well as their relationships. 
Within each cluster the members are more closely related to 
each other than to cluster members who belong to other 
clusters [16]. A similarity measure is used to estimate the 
closeness of cluster members in each cluster. In this case we 
use the squared Euclidean distance.  

The basic steps in the algorithm are: 1) select K points as 
initial centroids; 2) form K clusters by assigning each point to 
its closest centroid; 3) re-compute the centroid of each cluster; 
and 4) repeat 2 to 3 until the centroids do not change anymore. 

The purpose is to obtain as well-separated clusters as 
possible. A measure that indicates how well-separated the 
clusters are, is the so-called silhouette st [17]. The silhouette is 
based on distances between a certain cluster member to its 
own cluster as well as to other cluster. st indicates what cluster 
members that lie well within their cluster, and what cluster 
members that lie somewhere in between clusters. The average 
silhouette representing all clusters for a given K provides a 
measure of the clustering quality that can be used to select the 
appropriate number of clusters. The silhouette ranges from – 1 
 st  1. If st = 1 the cluster member has most likely been 
associated to the right cluster. If st = 0 the cluster member 
could as well belong to another cluster. If st = 1 the cluster 
member has most likely been associated to the wrong cluster. 

We denote the average silhouette of cluster l at time t as sl,t,A 
and use its standard deviation l,t to illustrate the robustness of 
the silhouette.  

Other output data include the centroid coordinates, the 
number of cluster members and the sum of the Euclidean 
distances between each cluster member and the corresponding 
centroid. The sum of Euclidean distances is used as a basis for 
describing the cluster density and this is described in more 
detail Section IV.B. 

 

III. HMM 

The HMM [18] is a machine learning algorithm that has 
been used for pattern recognition in many different 
applications, e.g. speech recognition, text recognition and 
motion recognition. The algorithm consists of two stochastic 
processes. The underlying (hidden) process can not be 
observed directly, but indirectly through a second stochastic 
process which produces sequences of observations. The states 
represent some unobservable condition of a system. The 
HMM () is defined by the parameters  = (A, B, , N, M).  

The number of hidden states in the system is N. The 
individual states are denoted S = {S1, S2, …, SN} and the state 
at time t is denoted q. The number of distinct observation 
symbols in each state is M. The observation symbols represent 
a physical output from the system. The individual observation 
symbols are denoted V = {v1, v2, …, vM}. The state transition 
probability distribution is A = {aij}, where 
 

]|[ 1 itjtij SqSqPa                              (1) 

 
and 1  i,j  N. The observation symbol probability 
distribution in state j is B = {bj(k)} where 
 

]|[)( , jttkj SqvPkb     .                   (2) 

 
 and 1  j  N , 1  k  M . The initial state distribution is 
denoted  = {i} and 
 

][ 1 ii SqP  .                         (3) 

 
The observation sequence O, representing some physical 
output from the system, is denoted 
 

),...,,( 21 TOOOO  .                      (4) 

 
Each observation symbol Ot is one of the symbols from V, and 
T is the number of observations in the sequence. Given an 
observation sequence O and a model  = (A, B,, N, M) we 
can compute the likelihood of O given the model, i.e. P(O|). 
The likelihood is calculated using the forward-backward 
procedure [18], where the forward variable t(i) is defined as: 
 

)|...,()( 21  itt SOOOPi  ,                   (5) 
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and describes the probability of the partial observation 
sequence (O1, O2, …, Ot) and state Si at time t, given the 
model . To solve t(i) we use the following steps: 
 

)()( 11 Obi ii  ,                                           (6) 

 

)()()( 1
1
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  tj

N

i
ijtt Obaij  ,                       (7) 





N

i
T iOP

1

)()|(  ,                          (8) 

 
and 1 < t < T – 1. To be able to compute t(i) for very small 
numbers a scaling factor Ct is introduced which finally leads 
to the expressions [18]: 
 




 N
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,                         (9) 

  



T

t
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1

log]log[  .                     (10) 

 
The unknown parameters A, B and  are obtained by using 

the Baum-Welch algorithm [16]. This algorithm uses an 
iterative expectation-maximization (EM) procedure, given 
initial parameters for A, B and  and a set of training data.  

Based on the data for normal motion patterns we define a 
threshold DHMM that distinguishes approximately normal from 
anomalous motion patterns. DHMM is based on the mean log-
likelihood value log[P(O|]mean for normal motion patterns 
and its standard deviation , such as : 

 

    3]log[ meanHMM OPD .            (11) 

 
The HMM can be used for both supervised and semi-

supervised anomaly detection. For supervised anomaly 
detection the HMM is trained on data from both normal 
situations and different abnormal situations. For semi-
supervised anomaly detection the HMM is trained only on 
data from normal situations. An abnormal situation is 
recognized as a deviation from the expected normal situation, 
but it is not possible to recognize (classify) the type of 
abnormal event.  

Input data to the HMM are based on results from the K-
means clustering. In this way we use an unsupervised 
algorithm to create input data to the HMM, which will make 
the HMM less dependent on the context. 

 

IV. TRACKING PERSONS AND GROUPS AND ESTIMATING GROUP 

BEHAVIOR 

 The overall procedure for detection of anomalous motion 
patterns is illustrated in Fig. 1. To start with the people in the 

scene are detected. The detections are input data to the 
clustering. The clustering decides at every time step the 
current number of clusters, where each cluster can be a single 
person or a group of people.  

 
Fig. 1. The overall procedure for detection of anomalous motion patterns. 
 
With a thresholding procedure (based on a crowd density 
measure) we can detect dense groups. In the next step we 
analyse the motion patterns of dense groups, using an HMM 
with input data from the thresholding and clustering. The 
motion patterns are described by changes in the cluster shape.  

Tracking is then applied for all the clusters. If the cluster 
represents a group the cluster centroid will be the basis for the 
group tracking. If the cluster represents one person the 
corresponding detection will be the basis for the tracking. The 
influence of increased activities on group tracking, and the 
ability of the tracking to perform enough tracking accuracy, is 
briefly discussed in [15]. In this paper we focus on the steps 
for clustering, thresholding and motion patterns analysis. 

A. Detection in raw images 

For the detection of people in raw images foreground-
background segmentation is used, which provides a set of 
detected people represented with ellipsoids. Each ellipsoid is 
represented with a center coordinate zr

p in the image plane, 
and with “covariance” r

p, for r = 1, 2, …, R, with R 
detections. Here, superindex ‘p’ stands for people.  

In this work we will, as mentioned earlier, assume that a 
reliable detection algorithm of people already exists. 

B. Merging persons to groups 

We apply K-means clustering to find candidates for clusters 
of people that can be treated as a dense group. The output 
from the clustering algorithm is a cluster center zl

c in the 
image plane. Here, superindex ‘c’ stands for cluster to 
distinguish it from people. The cluster l consists of the people 
r  Rl, where Rl defines a set of indices of people. The cluster 
center and its covariance (representing an area covering the 
people) are computed using standard merging formulas, which 
are: 

,
1 




lRr

p
r

l

c
l z

R
z                                         (12) 
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p
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Here, |Rl| denotes the cardinality of the set Rl that is the 
number of people in the set. To decide how dense a cluster of 
people is we propose to use the property that det() is 
proportional to the area of the ellipsoid. The area of the cluster 
normalized with the total area of all people included in the 
cluster is a good indicator of the density of a group. Therefore 
an appropriate dense-group measure is: 
 

.
)det(

)det(
p
rRr

c
l

l

l

d







                     (14) 

 
For a cluster that consists of only one person, we get dl = 1. 

For a cluster that consists of |Rl| people on the same spot, we 
get dl = 1/|Rl|. When one or more people leave the cluster, dl 
starts to increase and at some point of time the clustering 
algorithm may detect two clusters instead of one. 
Consequently, a small dl (much less than one) indicates a 
dense group of people. For the detection of dense groups we 
introduce a thresholding procedure, i.e. 
 

,Ddl                          (15) 

 
where in this application  D = 1 to allow for some 
uncertainties in sensor data and position estimates. The output 
from the clustering algorithm is a set of validated groups zl

c, l 
= 1, 2, …, L and a set of people zr

p, r = 1, …, R that do not 
belong to a group.  

Information about the motion patterns within the dense 
group can be obtained from dl. If there exists a dense group 
for a certain time period, and dl temporarily fluctuates around 
D (without giving rise two a new object/cluster according to 
the clustering algorithm), this can be used as an indication of 
increased motion activities (or increased interactions).  

The fluctuations of dl are input data to an HMM that 
describes normal motion patterns, which in this case reflects 
people that are together (socializing). Section IV.D discusses 
in more detail the use of the HMM in this application. 

C. Tracking of persons and groups 

Tracking is basically done in the same way for people and 
groups. The state consists of at least position and velocity in 
standard motion models. We use a motion model with only 
position and velocity in the state vector. The total model is the 
linear, and the Kalman filter applies for tracking. The Kalman 
filter relies on a correct association of people zr

p and group 
centers zl

c at each time. Association is performed using a 
nearest neighbor approach, where the predicted center zr

c and 
covariance r

c from each filter are compared to the outputs 
from the clustering algorithm.  

There are in total L + R Kalman filters running in parallel for 
all clusters and unclustered people. The number of clusters (L 
+ R) is given by the clustering with different K values and by 
the analysis of the cluster qualities sl,t,A. The K value that has 
the highest sl,t,A indicates the most likely number of clusters.  

The clustering also gives information on the number of 
detections (cluster members) that exists in each cluster. For a 
dense cluster (with more than one person) the cluster can be 

regarded as an extended object [10] and it is not necessary to 
know the exact number of people in the dense cluster. 

D. Estimation of group behavior 

The HMM is used to model the expected motion patterns of 
a dense and calm group. We compute the likelihood that the 
observation sequence O represents normal motion patterns. A 
low likelihood would indicate that O does not represent 
normal motion patterns and we have instead detected some 
anomalous motion pattern. We decide to model only normal 
motion patterns since that is many times easier than to model 
different abnormal events (and to try to classify the different 
abnormal events). Consequently we use a semi-supervised 
anomaly detection approach [1].  

Changes of the cluster shape dl,t, as described by changes of 
dl (14) over time t, is assumed to reflect the degree of 
interactions between people in the dense group. Few changes 
would indicate normal motion patterns, i.e. that people are 
together. Intense changes would instead indicate intense 
activities, e.g. fights. The observation symbol Ot, can take the 
values 1, 2 or 3 according to (14) and the following:  

 

If 1, tld  and 11, tld   1tO ,                     (16) 

 

If tld ,  has increased and 11, tld   2tO ,           (17) 

 

If tld ,  has decreased and 11, tld   3tO .           (18) 

 
Equation (16) implies that the group is still dense and calm 
compared to t – 1. Equation (17) implies that the density has 
decreased compared to t – 1, and (18) implies that the density 
has increased compared to t - 1. 

The HMM parameters A, B,  are obtained by training a 
specific model topology (defined by N and M) on a set of 
training data. The only parameter that is known in advance in 
this case is M = 3 (according to (16)–(18)). The computation 
of P(O|) will then answer the question: given the observed 
changes of the cluster shape, over some time period, what is 
the likelihood that the changes represent normal motion 
patterns for a group of people?  

We have used artificial training data to represent normal 
motion patterns. Normal motion patterns is here characterized 
by mostly Ot = 1. But Ot = 2 and Ot = 3 may occur one at a 
time (in a random manner). It is less common that there are 
several consecutive time steps with Ot = 2 and Ot = 3. The 
training data consists of 760 observation sequences O, where 
each O consists of four observation symbols, i.e. O = (Ot, Ot+1, 
Ot+2, Ot+3). The time difference between each Ot is 1 second. 
An example of consecutive observation sequences in the 
training data is: O = (1,1,1,1), O = (1,1,2,3), O = (1,2,3,1), O 
= (1,1,3,2) and O = (1,1,1,1).  

Input data to the Baum-Welch algorithm are the 760 
observation sequences, an assumed model topology (N and M) 
and initial guesses of the parameters for A, B and . The initial 
guesses are based on randomly selected probabilities. The 
Baum-Welch algorithm adjusts the parameters so that the 
likelihood for obtaining the training data will be maximized. 
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We perform the training for different N to find a suitable 
model topology. For the final HMM parameters we select N = 
3 and obtain for A, B and : 
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The state transition model is represented by an ergodic 

model [18], which means that each state can be reached from 
all other states, i.e. aij > 0. This would be a representative 
transition model for normal motion patterns in this case. At 
least we do not know any other structure that we know would 
be better. To obtain a suitable ergodic model we selected N so 
that aij > 0. That is to say, with N > 3 we got several aij  0.  

V. EXPERIMENTS 

We have selected four scenarios that describe two different 
environments, i.e. a parking place [19] and a scenario 
resembling a check-in area at an airport [20], see Fig. 2. We 
focus on the development of the clustering and HMM based 
methods. Input data are therefore annotated image coordinates 
for the detection of people, as seen from one camera.  
 

 
Fig. 2.  Four datasets are recorded from two environments: the parking place 
to the left and the check-in area to the right. 

A. Experiment 1: people merge to a dense group 

In this experiment there are nine people in a parking place. 
Initially they come from different directions and are well-
separated from each other. They merge to a dense, calm and 
stationary group in the middle of the scene. After a while the 
dense group splits up and people leave in different directions 

and they become well-separated again. Fig. 3 shows dl,t for K 
= 1. The curve indicates the merging of people into a dense 
cluster and the dashed line represents the threshold for dense 
group, D = 1.  

 
Fig. 3. The variation of dl,t over t, for K = 1. The dashed line represents D = 1. 

A dense group seems to be formed two times. For 8 s < t < 11 
s there is a cluster of three to four people. The cluster is dense 
since dl,t  1, which means that people stand close to each 
other and the cluster area is equal to, or smaller than, the 
minimum area of the number of people (according  (14)). At t 
> 11 s more people enter the scene and eventually merge to 
the cluster. Just as the people enter there is a strong increase 
of dl,t (and a reduction in density). This happens since K = 1 
and no further cluster can be formed. If K > 1 the people that 
enter the scene would have formed one or more clusters of 
their own. At t = 20 s there is an indication of a dense cluster 
again. This time the cluster lasts until t = 30 s. When t > 30 s 
people start to leave and dl,t is constantly increasing for the 
rest of the time.  

To see if there are several smaller clusters, K-means 
clustering is done for K = 2 and K = 3. Since the minimum 
number of people is three, the number of clusters that we 
investigate is K  3. Fig. 4 shows dl,t  for K = 2 and K = 3. The 
variations of dl,t show the same motion patterns as for K = 1, 
i.e. there are dense clusters two times, one for a shorter time, 9 
s < t < 12 s, and another for a longer time, 17 s < t < 33 s. 
Since we have detected a dense cluster already for K = 1, the 
clusterings with K = 2 and K = 3 may give clusters that are not 
so well-separated. If we want to use dl,t for estimating group 
motion patterns it is important to have as well-separated 
clusters as possible. In the next section we will discuss how to 
select data for motion patterns analysis for K > 1. 

 

 
Fig. 4.  The densities dl,t for the clusters from K = 2 (blue) and K = 3 (red). 

Several clusters show higher densities compared to the cluster from K = 1. 

B. Experiment 2: people merge to small, dense and active 
groups 

In this scenario people merge into a group and after a while 
two fights start, each involving two people. The group is split 
up during the fights to two smaller and denser groups. There 
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are at the most seven people in the scene. When the fights are 
over the people leave the scene.  

As in experiment 1 clustering is first done with K = 1 to get 
an overview of the situation. The density dl,t shows that a 
group is formed, but the group is sparse since 1 < dl,t < 4 for 
the whole scenario. Clustering with K = 2 shows that there 
exists two dense groups and that there are strong fluctuations 
of dl,t around D = 1 for 13 s < t < 17 s. This can be seen in Fig. 
5 in the left diagram. During this time period the two fights 
occur. Clustering with K = 3 indicates three dense groups but 
there are no fluctuations around D = 1. 

 

 
Fig. 5. The diagram to the left shows the densities dl,t for the two clusters 

from K = 2. The diagram to the right shows the cluster qualities s2,t,A for K = 

2 (blue) and s3,t,A for K = 3 (red). The diagram to the right also shows the 

cluster qualities including the standard deviation, i.e. s2,t,A - 2,t for K = 2 

(blue dashed line) and s3,t,A - 3,t for K = 3 (red dashed line). 

Consequently, we have somewhat different recommendations 
from the clustering with K = 2 and K = 3, i.e. increased 
activities for K = 2 and no increased activities for K = 3. 
Which data should be used for the estimation of group motion 
patterns? In the right diagram in Fig. 5 the cluster qualities 
s2,t,A (for K = 2) and s3,t,A (for K = 3) are presented. The 
clustering with the highest quality should be used to represent 
the situation, since the highest quality describes the most well-
separated clusters at the time. In this case we are most 
interested in the cluster quality for 13 s < t < 17 s when the 
strong fluctuations occur for K = 2. The quality including the 
standard deviation s2,t,A - 2,t shows that clustering with K = 2 
is robust for 13 s < t < 17 s. For K = 3, s3,t,A - 2,t does not 
show the same robustness. Since s2,t,A - 2,t > s3,t,A - 3,t input 
data to the HMM should be taken from K = 2. We extract for 
the specific time period the following observation symbols Ot 
from the left diagram in Fig. 5 (and based on (16)–(18)): 

1) 9 s  t  12 s   O9 = 1,…, O12 = 1. 
2) 13 s  t  17 s   

O13 = 2, O14 = 2, O15 = 3, O16 = 2, O17 = 3 (first 
cluster). 
O13 = 1, O14 = 2, O15 = 2, O16 = 3, O17 = 3 (second 
cluster). 

3) 18 s  t  22 s  O18 = 1,…, O22 = 1. 
Ot are introduced in O in a sequential procedure. Each 

second there is a new Ot introduced while the oldest Ot+3 is 
taken away. In this experiment we obtain for example the 
following consecutive observation sequences for the first 
cluster: O = (1,1,1,1), O = (2,1,1,1), O = (2,2,1,1), O = 
(3,2,2,1) and O = (2,3,2,2). 

 

 

Fig. 6.  Log-likelihood (log[P(O|)]) for calm group for the two clusters. The 
threshold between approximately normal and anomalous motion patterns is 
DHMM = – 4.5.  

The log-likelihood log[P(O|)] for calm group, computed 
according to (5)-(10), is presented in Fig. 6. The estimation of 
group motion patterns describes correctly the two fights which 
occur for 13 s < t < 17 s. At this time the log-likelihood is 
reduced and below the threshold for normal motion patterns 
DHMM = -4.5 (11). 

C. Experiment 3: dense group with increased activities 

In this experiment it is assumed that we have a check-in area 
at an airport (see Fig. 2). There is a check-in desk to the right 
in the scene. The people enter the check-in area, move around, 
queue in front of the desk and then leave the area. There are at 
the most nine people in the scene. The threatening situation 
takes place during 20 s < t < 60 s. A fight between two people 
takes place during 40 s < t < 60 s. 

Clustering with K = 1 indicates that there is a dense group 
present all the time. There are minor fluctuations of dl,t around 
D = 1, but no major internal activities are identified. 
Clustering with K = 2 and K = 3 indicate on the other hand 
major fluctuations around D. Fig. 7 presents in the diagram to 
the left dl,t for K = 1 (black), K = 2 (blue) and K = 3 (red). The 
diagram to the right presents the qualities s2,t,A for K = 2 (blue) 
and s3,t,A for K = 3 (red).  

For the motion pattern analysis we extract changes of dl,t 
according to (16)-(18) for the K with the highest quality sl,t,A. 
In Fig. 7 we can see that there are strong fluctuations of dl,t 
around D for 6 s < t < 10 s with K = 2. 
 

 
Fig. 7. The densities dl,t for K = 1 (black), K = 2 (blue) and K = 3 (red) to the 
left. The cluster qualities s2,t,A for K  = 2 (blue) and s3,t,A for K = 3 (red) to the 
right. 

We can also see that at the same time K = 3 is more stable 
than K = 2, i.e. s3,t,A > s2,t,A. Therefore we should not consider 
the fluctuations of dl,t for 6 s < t < 10 s. (This is correct since 
the disturbances do not start until t = 20.) For the whole time 
period the following observation symbols Ot for K = 2 can be 
extracted for the motion pattern analysis: 

1) 1 s  t  20 s  O1 = 1,…, O20 = 1. 
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2) 21 s  t  23 s   
O21 = 2, O22 = 2, O23 = 3 (first cluster).  
O21 = 2, O22 = 2, O23 = 3 (second cluster). 

3) 24 s  t  41 s  O24 = 1,…, O41 = 1. 
4) 42 s  t  44 s  O42 = 2, O43 = 3, O44 = 3 (first 

cluster). 
5) 45 s < t < 78 s  O45 = 1,…, O78 = 1. 

The observations for K = 3 are:  
1) 1 s  t  44 s  O1 = 1,…, O44 = 1. 
2) 45 s  t  47 s  O45 = 2, O46 = 2, O47 = 3 (first 

cluster). 
 
The results from the motion pattern analysis are presented in 
Fig. 8. We can see that log[P(O|)] is low for 20 s < t < 60 s 
which indicates the disturbances and quick movements during 
the fight.  

 
Fig. 8 The log-likelihoodd for calm group for K = 2 (blue) and for one cluster 
from K = 3 (red).  

D. Experiment 4: calm group 

In this scenario there is a normal situation at the check-in 
area. People enter, stand in queue and then leave the check-in 
area. There are no fights or other threatening situations. At the 
most there are six people in the scene. From the clustering 
with K = 1 it can be seen that there is no single dense group. 
Clustering with K = 2 and K = 3 indicate that there are dense 
groups with some increased activities. Fig. 9 shows to the left 
dl,t for K = 2 and K = 3 and to the right the corresponding 
cluster qualities s2,t,A and s3,t,A.  

 
Fig. 9. To the left the densities dl,t for K = 2 (blue) and K = 3 (red). To the 
right the cluster qualities s2,t,A for K = 2 (blue) and s3,t,A for K = 3 (red). 

By comparing the two diagrams one can see that the increased 
activities during 12 s < t < 16 s for K = 2 should not be 
considered since at that time s3,t,A > s2,t,A. The increased 
activities for 25 s < t < 28 s should, on the other hand, be 
considered for K = 3, since at that time s3,t,A > s2,t,A. The 
following observation symbols Ot for K = 3 are obtained: 

1) 1 s  t  25 s  O1 = 1,…,O25 = 1. 

2) 26 s  t  28 s  
O26 = 3, O27 = 2, O28 = 3 (first cluster). 
O26 = 1, O27 = 2, O28 = 3 (second cluster). 

3) 29 s  t  46 s   O29 = 1,…, O46 = 1. 
 

 

Fig. 10 The log-likelihood for calm group for two clusters from K = 3.  

The results from the motion pattern analysis are presented in 
Fig. 10. One of the clusters has a distinct reduction of 
log[P(O|)] for calm group at t = 28 s. In this case the 
reduction is not a result from increased activities. It is instead 
an effect of occlusion, when a person temporarily is hidden 
behind a tree and then appears again after some time. This 
experiment shows how occlusion can cause changes in the 
cluster compositions, and thereby cause false alarms. 
 

VI. SENSITIVITY ANALYSIS 

To study how the detection of dense groups may be 
influenced by increased position uncertainties for the detected 
people, we have made K-means clustering with different 
position uncertainties. A dense group can be regarded as an 
extended object and the sensitivity analysis can be seen as 
obtaining different detections on the extended object. The 
position uncertainties are modeled with a uniform distribution 
for two different intervals, i.e.  2% and 4% of the correct 
positions. In Table I, dl,t has been calculated specifically for 
the dense groups and for the different uncertainty intervals. 
For each case we made 10 Matlab runs and calculated the 
mean of dl,t. The results show that with correct positions 
(column 2), dl,t for the dense groups is well below the 
threshold (D = 1), i.e. dl,t  < 1. With increased uncertainties 
(columns 3 and 4) dl is increasing (i.e. indicating that the 
groups become less dense). However, dl,t never exceeds D and 
the correct decision can be taken in all the cases, i.e. that the 
groups are dense. 

 
TABLE I 

CLUSTER DENSITY WITH UNCERTAINTIES IN POSITION ESTIMATES 
Number of 

clusters K and 
specific cluster l  

Mean d1,t for 
correct position 

Mean d1 for  2 
% of correct 

position  

Mean d1 for  4 
% of correct 

position 
K = 1 0.85 0.91 0.99 

K = 2, l = 1 0.43 0.52 0.66 
K = 2, l =  2 0.46 0.51 0.64 
K = 3, l = 1 0.27 0.34 0.38 
K = 3, l =  2 0.28 0.26 0.40 
K = 3, l = 3 0.23 0.28 0.35 
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The Baum-Welch algorithm finds local maxima when 
searching for the maximum likelihood estimates. It is 
therefore interesting to see what HMM parameters that are 
obtained from other initial parameter settings and how these 
other HMM parameters would influence on log[P(O|)]. Fig. 
11 shows the results from 10 Matlab runs with randomly 
chosen initial parameter, where each run gives ten new sets of 
HMM parameters compared to (19)-(21). The two scenarios in 
Sections V.B and V.C are used. We also investigate how 
variations in training data would influence on the maximum 
likelihood estimates from the Baum-Welch algorithm, and in 
the next step on the HMM results. Minor random changes are 
introduced to the original training data and the scenarios in 
Sections V.B and V.C are used again. The results are 
presented in Fig. 12.  

As can be seen in Figs. 11-12 there are variations of 
log[P(O|)] for the same scenario. But the variations still 
show the same behavior as for the original initial parameter 
settings as well as for the original training data. Consequently, 
the detection of anomalous motion patterns can be done for 
the scenarios in V.B and V.C also for some variations in input 
data.  

 

 
Fig. 11. The log-likelihood for calm group with different initial parameters 

to the Baum-Welch algorithm. The diagram to the left shows the scenario in 
section V.B. The diagram to the right shows the scenario in section V.C. 
 

 
Fig. 12. The log-likelihood for calm group with different training data. The 

diagram to the left shows the scenario in section V.B. The diagram to the right 
shows the scenario in section V.C. 

 

VII. CONCLUSIONS 

With the clustering and HMM algorithms we have used a 
rather limited amount of prior information. For the HMM the 
prior information was the knowledge of the motion pattern of 
a calm (and normal) group, based on the dynamics of the 
cluster shape. For the clustering the prior information 
corresponded to the approximate number of pixels per person, 
as observed from a certain camera.  

Clustering with different K values was used to estimate the 
number of clusters in the scene. Each cluster could consist of 
one or several persons. The experiments showed that dense 
groups can be observed with K = 1 as well as with K > 1. The 
same (or at least similar) motion patterns from different views 

(or different K values) could be used to strengthen the 
detection of dense groups.  

When analyzing motion patterns it was important to have 
well-separated clusters. With well-separated clusters the 
fluctuation of dl,t was likely to reflect the movements of the 
people. With less-separated clusters dl,t was instead likely to 
reflect the uncertainty of the clustering (i.e. which cluster 
member should belong to which cluster). Therefore, 
observation symbols Ot should be derived from the cluster 
with the highest quality sl,t,A. 

How would the approach work for a large crowd? A 
solution could be to divide a large crowd into smaller sub 
groups where each sub group corresponds approximately to 
the scenes used in these experiments. The sub groups are then 
analyzed according to the proposed procedure and the final 
results are obtained from fusing the decisions from the sub 
groups.  

The results corresponded well with the real events in the 
scenarios. In one case we obtained however false alarms 
because of occlusion. The risk for occlusion would for 
example be reduced if there was information from several 
cameras.  

In this approach a very accurate detection of each person 
would not be necessary. Instead we used coarse changes of the 
group dynamics as indications on anomalous motion patterns. 
In future work we will investigate in more detail how the 
signal processing steps before the clustering and HMM may 
influence on the results. 
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