
Abstract—We present a gesture recognition algorithm from 

Euler angles acquired using multiple orientation sensors. This 

algorithm is a part of a system for controlling Unmanned 

Aerial Vehicles (UAVs) in the presence of manned aircrafts on 

an aircraft deck. After exploring multiple approaches to arm 

gesture recognition, we investigate a real-time arm gesture 

recognition system using the IS-300 Pro Precision Motion 

Tracker by InterSense. Our work consists of (1) analyzing 

several gesture recognition approaches leading to a selection 

of an active sensor, (2) gesture modeling using Euler angles, 

(3) low-level gesture characterization, and (4) model-based 

gesture classification algorithms. We have implemented and 

tested the proposed real-time arm gesture recognition system 

in a laboratory environment with a robot that represents an 

UAV surrogate

I. INTRODUCTION

E address the problem of gesture recognition for 

controlling unmanned and manned vehicles without 

interfering with the current control mechanisms of 

manned vehicles, such as, Navy [2] or NASA [15] aircrafts. 

Our objective is to explore multiple approaches to arm 

gesture recognition, and investigate a real-time gesture 

classification algorithm based on Euler angles as obtained 

from the IS-300Pro Precision Motion Tracker 

manufactured by InterSense [1]. A diagram in Fig.1 

overviews our gesture recognition system, where a robot 

[3] serves as a UAV surrogate and four orientation sensors 

altogether are attached to upper arms and forearms of a 

flight director (2 sensors per arm).  

In this work, we describe (1) our analysis of several 

gesture recognition approaches in Section II leading to a 

selection of an active sensor, (2) gesture modeling using 

Euler angles in Section III, (3) low-level gesture 

characterization in Section IV, and (4) model-based gesture 

classification algorithms in Section V. We conclude in 

Section VI with our observations about the robustness and 

deployment of the proposed gesture classification system. 
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II. ARM GESTURE RECOGNITION APPROACHES

A. Overview of Gesture Recognition Approaches 

Arm gesture recognition can be approached with using 

active or passive sensors, or a combination of both sensor 

types. An example solution using passive sensors would be 

a vision-based system [4],[13],[14]. Single or multiple 

cameras acquire video stream that is processed and gestures 

are mapped into temporal signatures of changes in video 

frames [4]. This solution faces several challenges in such a 

harsh environment as the aircraft carrier deck and has to 

overcome changes in a flight director orientation, outdoor 

illumination (day and night), and possible occlusions of 

flight directors or recognizing the right flight director 

among many directors on the deck. On the other side, this 

approach does not require any changes in the current 

control practices, or any changes in the flight director’s 

equipment. One should be aware during a system design 

that any additional weight to the equipment worn by flight 

directors would increase fatigue of flight directors and 

hence additional weight is not desirable. This consideration 

imposes real-world constraints on systems with active 

sensors since they have to be worn. 

Examples of solutions using active sensors would include 

gloves with bent sensors [7] or miniaturized accelerometers 

[8], [9]. For example, the cyberglove in [7] uses 18 

distributed bent sensors embedded in a glove to capture 

finger articulation. Similarly, the advancement in Micro-

Electro Mechanical Systems (MEMS) led to building a 

glove prototype at UC Berkeley [9]. Most of these 

solutions have been developed for indoor virtual reality 

(VR) applications and are not easily extensible to outdoor 

applications with highly uncontrolled environment. In 

addition, outdoor applications might require a feedback 

mechanism since a controlled vehicle can be out of sight 

[5], [6]. 
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The use of passive and active sensors together was 

reported in the past [11] with the goal of combining 

advantages of both sensor types. For instance, placing 

fluorescent markers on tracked objects and illuminating 

them with known light sources is an example of a vision-

based hybrid system that does not constraint moving 

subjects with heavy or bulky sensors and improves 

robustness of a standard vision based system in terms of 

motion detection and tracking.  

We should also mention that the specific problem 

introduced in this section could have been also approached 

by broadcasting video of synthesized gestures to the 

cockpit of manned aircrafts. A computer program driven by 

a flight director would create video of synthesized gestures. 

Pilots of manned aircrafts would recognize synthesized 

gestures the same way as they did in the past, and all 

unmanned vehicles would receive directly the de-coded 

(interpreted) commands. We developed video examples of 

synthesized gestures for test purposes. However, this 

solution, although very robust from gesture recognition 

viewpoint, is not acceptable by the end application because 

the person giving commands has to be present on the 

aircraft deck during the entire time of any vehicle 

navigation.  

B. Proposed Approach and Sensing 

While there are many approaches to gesture recognition, 

we chose to research and develop a solution with active 

sensors because of the end application requirements on 

performance robustness and reliability. By considering the 

importance of (a) system reliability in a highly varying 

environment (e.g., geometry, illumination, line of sight, 

temperature, and operator’s fatigue) and (b) safety of 

navigation operations, the active sensing approach 

outperforms solutions based on passive sensing approach. 

As one part of our research, we surveyed and evaluated 

active sensors based on their (a) size, (b) weight, (c) cost, 

and (d) commercial availability. We considered three 

different solutions, such as, (1) virtual reality (VR) motion 

trackers [1], (2) global positioning systems (GPS) [10]] and 

Micro-Electro-Mechanical Systems (MEMS) with tiny 

operating system (tinyOS) [8], [9]]. The choice of the IS-

300 Pro Precision Motion Tracker by InterSense, MA, for 

this work was primarily driven by its best sensing 

performance specifications and its commercial availability. 

For example, a spatial accuracy of GPS (around 3 m for the 

GPS with the Wide Area Augmentation System) and an 

extra development effort (building a glove with MEMS 

sensors) were considered as major drawbacks of the other 

two solutions. The cost of IS-300 Pro Precision Motion 

Tracker ($4,375 for the base unit plus $1,437 for each 

additional sensor), and the size and weight parameters 

(each sensor cube weighs 2.1 oz and measures 

1.06”x1.34”x1.2”) were at the borderline of being 

acceptable at the time of purchase. Nevertheless, the 

vendor has miniaturized the sensors and decreased their 

weight significantly since the time of purchase.  

Given the choice of an active sensor, our approach to the 

problem of gesture recognition is based on (1) translating 

arm motion into a temporal sequence of orientation of 

angles, (2) describing a sequence of orientation angles with 

its characteristics, (3) building models of gestures in a 

lexicon using sequence characteristics of orientation angles, 

and (4) classifying sequences of orientation angles into 

gesture classes according to the developed gesture models 

in real time. The basic premise of our approach is an 

existence of a unique mapping between human gesture 

represented by arm movements and a temporal sequence of 

upper arm and forearm orientation angles. This type of 

mapping is frequently used in the computer graphics 

community, where arms are modeled as connected 

cylinders or ellipsoids, changing their orientation in a 

world coordinate system. Our overall approach is 

fundamentally robust to most environmental conditions on 

an aircraft carrier that makes the vision-based solution 

difficult. These conditions include variable lighting, 

occlusion in the line of sight, background clutter, fog, and 

hot engine exhaust. Distance from the director to the 

aircraft is not a factor either as long as the communication 

between the yellow shirt and a specific aircraft (manned or 

unmanned) can be established.  Communication is clearly a 

problem, but our system requires very low bandwidth (only 

communicating high level commands at a frequency less 

than a few hertz). We assume that the generality of the 

proposed solution would be validated in multiple 

application environments by a study (similar to [12]) and 

specific modifications would be performed accordingly.  

III. GESTURE MODELING USING EULER ANGLES

There are many different ways to measures orientation in a 

three dimensional space. It all depends of the referential 

system being used. For our application, we found that the 

Euler coordinate system was the most suitable. This system 

represents an orientation with three different angular 

values: yaw, pitch and roll. These values are commonly 

used to describe the orientation, or attitude, of an aircraft as 

shown in Fig. 2.  Roll indicates rotation along the front-to-

back axis of the plane; Pitch indicates rotation along the 

side-to-side axis of the plane; Yaw indicates rotation along 

the vertical axis (or the axis perpendicular to the other two, 

if the plane is not level). 

When a sensor is attached along the side of one arm (or 

forearm), the roll axis is along the length of the arm, the 

pitch axis is horizontal and perpendicular to the roll axis, 

the yaw axis is vertical. As the roll axis always “follows” 

the orientation of the arm, it provides a relative angle (to 

the arm) for both the pitch and roll. For the sensors on the 

forearms near the hands, it is indicative of the orientation of 

the hand. For example, palm facing back or front, or facing 

up and down. The pitch angle indicates the angle relative to 

a horizontal plane.  Having one’s arm horizontal will 
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provide an angular value of 0; and vertical will lead to a 

value either +90 or –90 depending on whether the arm is 

oriented toward the ground or the sky. Yaw values are 

indicatives of the compass orientation of the arm (North, 

West, South or East). Unlike the other two angles, yaw 

angle values depend on the absolute orientation (relative to 

the earth) of the sensor wearer and hence cannot be directly 

used for robust classification. Yaw can only be used for 

low-level pattern characterization (oscillation or steady) or 

as a relative value with respect to a yaw value from another 

sensor.

Fig. 2: Roll, Pitch and Yaw axes. 

A. Bouncing Effects and Discontinuity 

While Euler angles are easy to understand and model, they 

introduce temporal discontinuity of values. Next, we 

describe gesture modeling related characteristics of each 

angle separately. First, pitch angles always range between -

90 and plus 90 degrees. However, when passing the 90-

degree vertical point during an arm rotation, the pitch 

values will be decreasing again. Yaw values, however, 

have a problematic discontinuity when passing through the 

90-degree position. At that point, the yaw value will 

suddenly shift by 180 degrees.  For example, if the 

movement was started with a North heading, it will shift to 

South heading when passing the vertical point. Fig. 3 

illustrates this transition and the curves S1.1 and S1.2 

correspond to the yaw and pitch values respectively. The 

movement was an arm oscillation from about 0 degree 

pitch (horizontal) to 30 degree beyond vertical. The yaw 

angles represented by curve S1.1 show the 180 degree 

jump at the time of the transition past vertical. When 

reaching -90 degrees, the pitch curve S1.2 reverses its 

course for the remaining 30 degrees. The “bouncing effect” 

(or reversed course) of pitch values observed in Fig. 3 may 

yield to a misinterpretation of the actual movement 

frequency due to oscillations centered on the vertical 

position. Fortunately, it is possible to use the yaw 180-

degree shift information to determine when such effect is 

occurring and adjust the pitch value by 

“Corrected pitch”=”raw pitch” + 2*(90-“raw pitch”). 

Fig. 3: An example of a bouncing effect due to oscillations 

past the vertical orientation. 

B. Rollover Effect 

Another problem occurring while using Euler angles is the 

rollover effect. The angular values provided by orientation 

sensors are bounded by -180 and +180 (except for pitch 

values which are between -90 and +90). When an angle 

value goes past 180 degrees, then it is kept within a range 

of [-179,181] degrees by subtracting 360. Fig. 4 and Fig. 5 

show observed oscillations around the rollover point with 

no corrections and with the corrections by subtraction. The 

rollover correction is practical since we do not expect a 

complete rotation of a human arm. 

Fig. 4: Oscillations around the rollover point with no 

corrections.

Fig. 5: Oscillations around the rollover point with 

corrections.

Our correction is also based on the assumption that there is 

no rate of changes greater than 180 degrees per 10 ms, and 

both raw and corrected values are available for 

classification purposes. The correction routine is presented 

below. 

get_corrected_angle(previous_raw, previous_corrected, current_raw ) 
{

 corrected_raw = current_raw; 
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if (abs(current_raw-previous_raw) > 180 ) 
if (current_raw < 0) 

   corrected_raw = current_raw + 360; 
  else 
   corrected_raw = current_raw - 360; 

return previous_corrected + (corrected_raw - previous_raw); 
 } 

IV. LOW LEVEL GESTURE CHARACTERIZATION

Our approach to robust gesture recognition relies on a two-

stage classification technique. The first stage characterizes 

temporal streams of each Euler angle separately. The 

second stage uses the combination of Euler angle stream 

characteristics from the first stage to assign gesture labels 

according to a set of gesture classification models.  

As each of the 4 sensors reports 3 Euler angles (yaw, pitch 

and roll), we receive 12 temporal streams of angular values. 

The stream information content is contained more in the 

evolution of values over time than in the instantaneous 

value of an Euler angle.  We found two basic patterns to 

characterize an evolution of angular values, denoted as 

steady and oscillating patterns. Patterns that could not be 

identified as either steady or oscillating are tagged as 

unclassified. Many gestures involve some back and forth 

movements of one or both arms. The orientation sensors 

report these movements as a sinusoidal modulation of one 

or more angular values, and we labeled those patterns as 

oscillation. Most gestures also involve some holding 

position of one or both arm. These measurements are 

represented as a flat curve for the related angular values, 

and we labeled those patterns as steady.  

At any moment each of the 12 streams of angular values 

are labeled as, steady, oscillating or unclassified. In 

addition of this categorization, a position value was also 

determined for the steady and oscillating state, with five 

different possible positions:  
HIGH    : median value < -67.5 
MEDIUM-HIGH : -22.5 < median value < -67.5 
MEDIUM  : 22.5 < median value < -22.5 
MEDIUM-LOW : 67.5 < median value < 22.5 
MEDIUM  : median value > 67.5

A. Detecting steady state 

The purpose of a steady state is to characterize a holding 

position. As the yellow shirt may not be able to hold a 

perfectly still position after a long working shift, the 

algorithm must be sufficiently tolerant. Small shaking of 

the arms should not be labeled as oscillations, and slow 

drift of the position should be tolerated. 

We experimented with different estimations of gesture 

speed and acceleration by using low pass filtering but 

eventually settled in for the following simple solution. A 

data stream of angle values was considered steady if there 

was a variation of no more than 18 degrees for at least 0.4 

seconds. These values were determined empirically from 

experiments. The delay of 0.4 seconds seems to be the 

minimum amount of time that a position would be held.  

B. Detecting oscillation state 

For the detection of oscillations, we used a technique of 

minima and maxima detection. Any data stream can be 

characterized as a sequence of alternating minima and 

maxima. If the stream is steady, then the difference 

between two consecutive minima and maxima is small 

which is opposite to oscillations. To accommodate for 

noise perturbation, any min/max or max/min pair were 

rejected if (max-min) was less than 10 degrees. Thus, an 

oscillation is detected (1) if there is a sequence of 

min/max/min or max/min/max where the time difference 

between the first min (or max) and last min (or max) was at 

least 0.3 seconds but no more than 2 seconds; (2) if (max – 

min) was at least 35 degrees; and (3) if the difference 

between the two minima (or maxima) was no more than 40 

degrees. Anytime such a sequence is detected, the pattern is 

labeled as oscillating. Note, that there is a detection delay 

of at least one period after the beginning of the oscillation. 

Another limitation to our current algorithm is that there is a 

trailing effect. Oscillation detection takes precedence over 

steady state detection and therefore we will wait for the 

maximum allowed duration of one period (2 seconds in our 

current setting) before we acknowledge the end of the 

oscillation.  

This algorithm was adequate for our experiments but could 

be improved to reduce the latency and trailing effect. The 

maximum allowed duration of a period (2 seconds) is also 

probably too long and could be readjusted. 

V. GESTURE CLASSIFICATION AND EXPERIMENTS

The actual gesture classification is based on the low level 

characteristics of individual angular data stream. Whenever 

new low-level characteristics are detected, the gesture 

classifier is activated. By using the set of current angular 

characteristics, a gesture label is determined based on built-

in gesture model. This approach does not need to detect the 

transition from one movement to another. It simply 

compares the current combination of low-level 

characteristics with a pattern (expressed as a logical 

formula) for each of the possible 20 gestures to be 

recognized. The classification algorithm does not make any 

assumption about the possible order in which the gestures 

could occur. If such preferential gesture order exists in 

practice, then this information may be used to limit locally 

the number of patterns that must be tested at a particular 

time. This a priori information could potentially help in 

disambiguating some gestures, but it did not appear to be 

necessary based on the data we have collected.   

In our current configuration, we are able to recognize 

very robustly those 11 out of 20 gestures that do not need 

the yaw angle information. Yaw values are dependent on 

the orientation of a flight director and therefore, cannot be 

used individually but only in comparison with another yaw 

value. Robust recognition of the remaining 9 gestures 
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requires incorporating modeling enhancements and 

inclusion of the yaw angle. 

We present next the results obtained and the logical 

formula used for pattern modeling of each of the NAVY 

gestures [2]. We represented the low level classification of 

each individual data stream as color-coded bars. 

Unclassified states are represented as a grey bar. Steady 

and oscillating state bars are divided in two parts where the 

upper part indicates steady or oscillating and the lower part 

indicates the position 

Abbreviations for the formulas are as follow: 
S1.1 lafy : left arm front yaw  (fore arm) 
S1.2 lafp : left arm front pitch 
S1.3 lafr : left arm front roll 
S2.1 laby : left arm back yaw  (upper arm) 
S2.2 labp : left arm back pitch 
S2.3 labr : left arm back roll 
S3.1 rafy : right arm front yaw   
S3.2 rafp : right arm front pitch 
S3.3 rafr : right arm front roll 
S4.1 raby : right arm back yaw   
S4.2 rabp : right arm back pitch 
S4.3 rabr : right arm back roll 

A. Move Ahead 

Arms extended from body and held horizontal 
to shoulders with hands upraised and above 
eye level, palms facing backwards. Execute 
beckoning arm motion angled backward. 
Rapidity indicated speed desired of aircraft. 

lafp.oscillating(MEDHIGH) AND  
(labp.steady(MED) OR rabp.steady(LOWMED)) AND  
rafp.oscillating(MEDHIGH) AND 
(rabp.steady(MED) OR rabp.steady(LOWMED))) 

Fig. 6. Description of “Move Ahead” gesture. 

For the “Move Ahead” gesture, the pitch measurement 

shows both forearms oscillating around the medium-high 

position. Upper arms only have parasitic motions and are 

characterized as steady since the values stay within 18 

degrees of motion margin. The pattern specifies the median 

position of the upper arms as either medium or medium-

high.  

The trailing effect of oscillation is causing in this case a 

false classification of pivot to left. This problem will 

disappear once we have a better algorithm for detecting 

oscillation. This problem has occurred regularly in our 

experiments and it affected all movements involving an 

oscillation.  

The upper arm characterization reported some times 

medium position and other times medium high position. 

Our pattern includes both positions as valid. The parasitic 

oscillation of the upper arms was also more or less 

pronounced from one user to another, though always within 

the tolerance for a steady state.

B. Turn to Left 

Extend right arm horizontally, left arm 
repeatedly moved upward. Speed of 
movement Indicates the rate of turn. 
A clenched fist (day) or down-turned wand 
(night) directs the pilot to lock the indicated 
brake.

lafp.oscillating(MEDHIGH) AND  
labp.steady(MED) AND 
(rafp.steady(MED) OR rafp.steady(MEDHIGH)) AND 
rabp.steady(MED) ) 

Fig. 7. Description of “Turn to Left” gesture. 

In this movement we observe the same pitch oscillation 

of the left forearm as for the “Move Ahead” gesture. In this 

case, the right arm remains steady and horizontal. Note, 

that the pattern also accepts a medium high position for the 

right arm. The yaw value of the right arm (curve S3.1 in 

Fig. 7) indicates the direction in which the arm is pointing.  

In this case again, both upper arm characteristics appear 

unnecessary. They could be replaced by the difference in a 

pair of yaw measurements.  

C. Pass Control 

With both arms shoulder height in 
direction of person receiving control.
Will touch eyes or hand with both 
hands first before pointing.
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Touch Eyes 
(lafp.steady(MEDHIGH) || lafp.steady(HIGH)) &&  
(rafp.steady(MEDHIGH) || rafp.steady(HIGH)) && 
(lafr.steady(LOWMED) || lafr.steady(MED)) &&  
(rafr.steady(LOWMED) || rafr.steady(MED)) 

Pass Control 
(lafp.steady(MED) || lafp.steady(MEDHIGH)) &&  
(labp.steady(MED) || labp.steady(MEDHIGH)) && 
(rafp.steady(MED) || rafp.steady(MEDHIGH)) && 
(rabp.steady(MED) || rabp.steady(MEDHIGH)) 

Fig. 8. Description of “Pass Control” gesture. 

This gesture was interesting as it involved two sub-

gestures: touching eyes and then pointing toward another 

flight director. In this case, the pattern requires the specific 

sequence of one sub-gesture followed by the other one (not 

expressed in this formula). Note, how the roll value is 

being used to detect the tough eyes pattern 

D. Slow Down 

Arms down with palms towards ground. Then 
moved up and down several times. 

(lafp.oscillating(LOWMED) || lafp.oscillating(MED)) &&  

(rafp.oscillating(LOWMED) || rafp.oscillating(MED)) && 
lafr.steady(LOW)!= true && rafr.steady(HIGH)!= true) 

Fig. 9. Description of “Slow Down” gesture. 

Both upper arms and lower arms are oscillating with same 

amplitude. We actually found some differences in 

measurements where in some cases the upper arm was not 

oscillating very much but we did not include them. The 

most important factor is the low-medium to medium 

position of the oscillations (by contrast to high-medium for 

“Move Ahead” gesture).

VI. CONCLUSION

We presented a real-time gesture classification system 

using multiple orientation sensors that has been tested for 

robustness and speed. Based on our gesture recognition 

analysis, we concluded that by incorporating the yaw angle 

and enhancing the current model, we could eliminate the 

upper arm sensors, which would lead to weight and cost 

reduction of the whole system. Robustness of some specific 

gestures that include opening and closing fists (brakes 

gesture) might be improved by additional information. 
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