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Abstract— This paper presents a system to recognize and
classify sounds produced by human subjects blowing air by
the mouth. The objective is to implement the system for fast
recognition using low-complexity algorithms in a low-budget
processor. Recognition is achieved using tailored band energy
ratios, modified frequency centroid and a periodicity test based
on spectrum autocorrelation. These lightweight feature extraction
techniques are adapted to the particular task of recognition of
blowing sound types. The classification is achieved by a naive
Bayes classifier. The algorithm can be implemented in real-time
(latency ≤ 100 ms) and experimental test results show average
recognition rates over 94%.

I. INTRODUCTION

Accurately identifying and classifying the different types of
sounds that can be produced by a human blowing air by the
mouth - for example, the sounds emitted when someone tries
to cool-off or warm-up something - could be used in medical
applications (e.g. control interface for the disabled), in video
games and in children educational toys. In this case, it will
be used in an interactive art piece to affect the multimedia
content on an electronic display. For example, a user could
blow towards a display and generate mist on a virtual window.
Or, by blowing, a user could generate wind in a virtual
environment. In this context, the system must continually
recognize blowing sounds on small time windows (slices), in
real-time. As long as the recognition rate is sufficiently high,
erroneous decisions on single slices will have negligible effect
on the rendered animation. On the other hand, the systems’s
latency is critical for an enjoyable experience for the user.
Preliminary tests show that a latency lower than 100 ms is
required with a recognition rate over 90%. Also, CPU usage
must be minimized for integration in mobile systems and can
thus be regarded as a problem of classification on a budget
[1], [2].

While there are many effective sound and speech recogni-
tion techniques [3], [4], [5], [6], [7], very few information was
found on their application to blowing sounds. Many of these
techniques could succeed at this task, but they tend to rely on
statistical methods that are CPU intensive or require buffering
which precludes real-time classification.

This paper proposes lightweight feature extraction tech-
niques which allow successful recognition of blowing sounds.
These features are then classified by a standard naive Bayes

classifier. The paper is organized as follows. In Section II,
the characteristics of a blowing sound are described. In
Section III, the feature extraction techniques are detailed.
Section IV describes the classification. Section V describes the
test methodology and the results are presented in Section VI,
leading to a conclusion in Section VII.

II. BLOWING SOUNDS CHARACTERISTICS

In the study of voiced speech, the vocal system has been ap-
proximated efficiently by the independent source-filter model
[8]. The vocal chords are modeled as a periodic sound source
and the position of the parts of the mouth (e.g. lips, tongue,
cheeks) acts as a variable filter, as shown in Fig. 1.

Fig. 1. Source-Filter Model. Reprinted with permission from [9].

When a person blows, the vocal chords are inactive. Only
the position of the mouth affects the nature of the emitted
sound. The emission of a blowing sound can thus be approx-
imated by a white noise source passing through a bandpass
filter. In this paper, two different blowing sound types are
considered, labeled as hot and cold blowing sounds. A hot
blowing sound is the type of sound made by someone trying
to create mist on a window. A cold blowing sound is, for
example, the sound of someone cooling-off a bowl of soup.
Fig. 2 shows the power spectrogram of those two different
blowing sound types, as well as speech, for comparison.

For both blowing sound types, the spectrum is not periodic
and their energy is clearly located in different parts of the
spectrum. A speech signal contains periodic components with
fundamental frequencies comprised between 85 and 255 Hz
[10].
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Spectrogram of a typical hot blowing signal
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Spectrogram of a typical cold blowing signal
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Spectrogram of a typical speech signal
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Fig. 2. Spectrograms for the three types of sound treated in this paper.

III. FEATURES EXTRACTION

In the proposed system, the incoming audio stream is
segmented into uniform slices of length Ts with 50% in-
terleaving. The Discrete Fourier Transform (DFT) of each
slice is computed which is then used to obtain a number
of signal features. These features are analyzed by the Bayes
classifier to determine the sound type of each slice. Several
signal features commonly used in sound or speech recognition,
such as MFCC LPC or MP [11], [3], [4], [12], are too
complex (i.e. computationnally expensive) to be implemented
in a mobile device system for real-time implementation. The
following feature extraction techniques have been selected for
their efficiency and their low computation needs.

Band energy ratios (BER) (f1-f6) are used in the field of
voice activity detection and speech recognition [7]. However,
the technique has been adapted for the particular problem
of blowing sound recognition. The spectrum of the signal is
separated into four bands: [200 - 500 Hz], [500 - 1000 Hz],
[1000 - 2300 Hz] and [2300 - 5000 Hz]. Each of the four bands
contains frequencies specific to a recognized class of sound.
The lowest band contains energy from speech. The second
and third bands carry energy of a hot and cold blowing sound
respectively. If a user is too close to the microphone, the signal
is clipped and the fourth band carries energy from the third
harmonic of the hot blowing sound. The energy in band x is
obtained by integrating the DFT magnitude over its boundary
frequencies fmin,x and fmax,x:

Asbx =

fmax,x∑
f=fmin,x

|X (f) | (1)

The magnitude is not squared to reduce computation complex-
ity.

A vector of
(
4
2

)
= 6 amplitude ratios rxy is obtained from

these 4 bands:

rxy = log
Asbx

Asby

(2)

The logarithm of these ratios is taken because it increases the
recognition performances due to the large dynamic range of
sound signals. These ratios provide more sensitive information
than normalized power in each band because it emphasizes
band power relation even if one band contains most of the
spectrum power.

The spectral centroid (f7) can be defined as the center
of mass of the spectrum [13]. It is a simple yet powerful
signal descriptor for this application. It was found that using
only the frequencies for which the magnitude value is greater
than 90% of the maximum magnitude significantly improves
the reliability of the descriptor. The spectral centroid, fc, is
computed as follows:

fc =

∑N
f=1 f |X ′(f)|∑N
f=1 |X ′(f)|

(3)

with

|X ′(f)| =

{
0 if |X(f)| < 0.9Xmax

|X(f)| if |X(f)| ≥ 0.9Xmax

(4)

where Xmax is the maximum observed magnitude.
The peak amplitude frequency (f8) is simply the frequency

at which the maximum magnitude Xmax was observed. In
most cases, this descriptor gives very similar results to the
spectral centroid. However, it is simple to calculate and was
shown to improve robustness when combined to the frequency
centroid in noisy environments.

The last feature is a periodicity evaluator (f9), which
helps discarding speech signals because these signals con-
tain significant energy in the frequency bands associated to
blowing sounds. However, as stated in Section II, because
the vocal cords are inactive when blowing, blowing sounds
do not exhibit short-term periodicity. A periodicity test is
therefore efficient at improving the recognition performance
when speech sounds are injected in the system, which is to be
expected in this application.

A low computation complexity periodicity test based on
the spectrum autocorrelation was designed. When computing
the autocorrelation of the DFT, a periodic signal will exhibit
strong peaks representing the fundamental frequency sliding
over its harmonics, as shown in Fig. 3 [14]. An algorithm was
developed to search for peaks and then cumulates a score at
each peak based on its amplitude and shape. This score is the
value for feature f9. Due to the length constraint of this paper,
the algorithm cannot be further detailed here.

IV. CLASSIFICATION

There are three classes in this problem: cold blowing
sounds, hot blowing sounds, and non-blowing sounds. In most
cases non-blowing sound will be ambient noise or speech.
Because of the large variability of non-blowing sounds, a
class-modular approach [15] was adopted. Two naive Bayes
classifiers [16] are implemented, one to discriminate hot
blowing sounds from all other sounds, and another classifier
to discriminate cold blowing sounds from all other sounds.
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Spectrum Autocorrelation of a Blowing Sound Slice
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Fig. 3. Spectrum and spectrum autocorrelation

There are nine features in this problem which are described
in Section III: the six band energy ratios, the spectral centroid
value, the peak amplitude frequency and the periodicity score.
As an approximation, these features are considered to be
independent. This approximation simplifies the computation
while providing acceptable results [16], [17].

A reference feature vector (T ) is constructed for each class.
Each vector component (ti) contains the mean (µti) and
variance (σ2

ti) computed from the training samples for the nine
features. The feature vector (F ) of the sample under test is
compared to the reference vector (T ). The features probability
density functions (PDF) are evaluated assuming a Gaussian
distribution:

p (fi|ti) =
1√
2πσ2

ti

e

− (fi − µti)
2

2σ2
ti (5)

The Kolmogorov-Smirnov test showed that the features PDF
is not strictly Gaussian, meaning that the system is not
optimal. However, the cumulative distribution function (CDF)
of each feature, shown in (Fig. 4), gives insight as to why the
system provides good performances under the assumption of
a Gaussian distribution.

Assuming all features are independent, the probability of
the slice being part of a class (C) is [16]:

p(C|f1, ..., f9) = Kp(C)

9∏
i=1

p (fi|ti) (6)

where K represents the evidence on Bayes’ Theorem. It
is constant for each class and thus can be ignored in the
implementation to save computation. Moreover, the prior
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Fig. 4. CDF of all features, as well as normal CDF for comparison.

probabilities p(C) are unknown for this application; each class
is thus considered equiprobable and the scaling factor p(C)
is not computed to save a multiplication in the hardware
implementation.

Each sound slice is classified as either a hot or cold blowing
sound based on the highest probability as computed in (6)
for each class. However, if this probability is below a certain
threshold in both classes, the sound slice is classified as a
’non-blow’ signal.

V. TEST METHODOLOGY

To create a sample database, six different subjects - three
women and three men - were recorded while emitting blowing
sounds. Proper care was taken to avoid saturation of the mi-
crophone but no precautions were taken to minimize ambient
noise. To emit hot blowing sounds, the test subjects were asked
to blow as if they were trying to create mist on a window. They
were instructed to keep their mouth wide open while blowing.
To emit cold blowing sounds, the subjects were asked to blow
as if they were trying to cool-off a bowl of soup. Finally, they
were asked to speak normally in the microphone to create
speech samples.

This session resulted in 99 different recorded samples of
hot sounds, 75 samples of cold sounds and 48 samples of
speech sounds. The attack and release parts of the sounds were
removed from the samples. Each sample was divided into 50%
interleaving slices of duration Ts. Generally, the recognition
rate increases with Ts, at the price of a higher latency. Hence,
the slices length was fixed at Ts = 200 ms due to the tolerable
latency of 100 ms. This created 1000 slices of hot blowing
sounds, 1300 slices of cold blowing sounds and 389 slices of
speech signals. The proposed algorithm was implemented in
MATLAB with the the recorded .wav files being treated as an
incoming audio stream (no look ahead).

To test the system, 10 samples of hot sound and 10 samples
of cold samples were randomly selected. All remaining sam-
ples were used to train the classifier by obtaining the mean
and variance of each feature for both classes. The 20 selected
blowing sound samples and every speech samples were then
classified. This test was repeated 100 times. This is called
the ”jackknife” testing method and has been used in previous
sound recognition works [4], [6].



VI. RESULTS

Table I shows the classification performances when using
slices of duration Ts = 200 ms, as explained in Section V.
The average recognition performance is 93% or better for
each sound type. It must be emphasized that these results
represent the recognition rate of every 200 ms sound slice.
In other words, for the duration of a full hot blowing sound,
the classifier would be at the correct value for 93% of the
time.

TABLE I
CLASSIFIER RESULTS FOR 200 MS SLICES

Classified as:
Slice type Hot Cold Non-Blow

Hot 93.0 ± 6.0 % 2.3 ± 2.5 % 4.7 ± 5.4 %

Cold 3.9 ± 4.5 % 95.1 ± 4.4 % 1.0 ± 1.2 %

Speech 3.7 ± 0.4 % 0.5 ± 0.0 % 95.8 ± 0.4 %

TABLE II
CLASSIFIER RESULTS FOR 100 MS SLICES

Classified as:
Slice type Hot Cold Non-Blow

Hot 93.5 ± 3.5 % 2.2 ± 1.7 % 4.3 ± 3.2 %

Cold 5.0 ± 3.1 % 94.0 ± 3.3 % 1.0 ± 1.1 %

Speech 5.0 ± 0.2 % 0.5 ± 0.0 % 94.5 ± 0.3 %

Tests using a smaller slice length (100 ms) result in slight
degradation of classification performances (see Table II). How-
ever, the response time of the system is halved. For the same
full length sample, there will be twice as much slices analysed.
The number of data (N ) in each of these slice will be scaled by
a factor of two. Because FFT and autocorrelation algorithms
complexity is O(Nlog2N), the number of operations needed
to achieve classification is reduced. Also, less memory is used
during the process.

Assuming each class is equiprobable in the application
(the probability will be assessed in in situ experiments with
the implemented system), the average performance for the
recognition system is 94.6%, which is better than the 90%
performance target.

VII. CONCLUSION

In this work, a system to recognize two different types
of blowing sounds was presented. The system can be imple-
mented on an mobile device platform for real-time operation
(≤100 ms latency) and the classification can be achieved by
a classic naive Bayes classifier. We identified and optimized
features that allow high recognition rates of blowing sound
types with low computation complexity. These features are
frequency band energy ratios, the spectral centroid, the peak
amplitude frequency of the spectrum and a periodicity test
score. The frequency centroid feature has been made more

discriminative by introducing amplitude thresholding. Also a
periodicity test based on the spectrum autocorrelation was
proposed.

Future work includes implementation of the algorithm in
an Android system and rigorous validation with a higher
number samples from different test subjects. It also includes
the design of a tracking algorithm which would take into
account previous decisions of the classifier to improve the
recognition performances. The performances could also be
improved by training the system for a specific user at the
beginning of a session. Finally, tests should be conducted to
see if the classifier could benefit from the implementation of
new classes, e.g. separate classes for male and female users.
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