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The triggers of autoimmune diseases such as multiple sclerosis (MS) remain elusive. Epidemiological studies suggest
that common pathogens can exacerbate and also induce MS, but it has been difficult to pinpoint individual organisms.
Here we demonstrate that in vivo clonally expanded CD4" T cells isolated from the cerebrospinal fluid of a MS patient
during disease exacerbation respond to a poly-arginine motif of the nonpathogenic and ubiquitous Torque Teno virus.
These T cell clones also can be stimulated by arginine-enriched protein domains from other common viruses and
recognize multiple autoantigens. Our data suggest that repeated infections with common pathogenic and even
nonpathogenic viruses could expand T cells specific for conserved protein domains that are able to cross-react with
tissue-derived and ubiquitous autoantigens.
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Introduction

Multiple sclerosis (MS) is considered a CD4" T helper-1-
mediated autoimmune disease that affects the central
nervous system (CNS). The etiology of MS remains unclear,
but the disease develops in genetically susceptible individuals
and likely requires environmental triggers. Epidemiological
studies have shown that MS relapses often follow common
viral infections, and the viral etiology of certain human
demyelinating diseases, and studies of virus-induced disease
models [1-3], all point to a role of viruses in MS. Numerous
agents have been linked with MS based on serology,
pathology, or virus isolation, but none of the associations
has been conclusive. The difficulty in identifying a single
microorganism as the cause of MS or other autoimmune
diseases could indicate that Koch’s paradigm, “one organism -
one disease,” does not apply to such complex diseases,
although we should not discard the possibility that “the” MS
agent may still be discovered. However, the bulk of current
data suggests that MS is induced and/or exacerbated by
several different agents, and that these are most likely
ubiquitous pathogens and highly prevalent in the population.

Molecular mimicry, i.e., cross-recognition of foreign agents
and self-proteins, is one mechanism by which infectious
agents can induce autoimmune diseases [4]. In this context,
the traditional search for triggers for MS has been based on
choosing a likely target autoantigen (e.g., myelin), establishing
CD4" T cells specific for immunodominant peptides, and
then searching for molecular mimics in viral and bacterial
databases [5]. The main drawbacks of previous studies are
that (a) autoreactive T cells have been established almost
universally from the peripheral blood instead of an affected
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tissue compartment and without knowledge about whether
they are related to disease activity; and (b) they have been
established based on the consideration that some or all
autoreactive T cells in MS are reactive to myelin [6]. This last
reasoning is probably too simplistic, since autoimmune
diseases can be exquisitely organ- or tissue-specific, and
nevertheless autoimmune T cells can be directed against
ubiquitous autoantigens, e.g., pyruvate dehydrogenase in
primary biliary cirrhosis [7]. To overcome the above prob-
lems, we decided to isolate T cells from the cerebrospinal fluid
(CSF), a compartment in intimate contact with the affected
brain tissue, and focus on T cells that are clonally expanded in
vivo during active disease, and hence likely relevant to the
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Synopsis

Infectious agents have been discussed as possible triggers for
multiple sclerosis (MS). Molecular mimicry, meaning an antigenic
similarity between pathogen proteins and self-proteins (also called
autoantigens), is one mechanism that can activate autoreactive T
cells. To identify potential triggers and autoantigens in MS, the
authors of this study determined the specificity of T cell clones
(TCCs) from cerebrospinal fluid (CSF) of an MS patient, which were
clonally expanded during disease exacerbation. The CSF is in
intimate contact with the central nervous system, which is damaged
by autoreactive T cells in MS. The authors observed that these TCCs
recognize amino acid motifs from functional protein domains that
are evolutionarily conserved between viruses, prokaryotes, and
eukaryotes. This phenomenon is reminiscent of pattern recognition
by the innate immune system via Toll-like receptors, and represents
an interesting bridge as to how immune responses against foreign
agents may be misdirected against autoantigens. Three TCCs
recognize arginine-rich motifs and respond to peptides from the
ubiquitous, nonpathogenic Torque Teno virus (TTV), but also from
other common viruses and autoantigens. TTV recognition by
clonally expanded CSF TCCs, and the demonstration of viral
infection in brains of people with MS, suggest that this virus may
participate in triggering or sustaining autoimmune diseases such as
MS.

autoimmune disease process. Our methodological approach
combines unbiased expansion of virtually every T cell using a
universal T cell stimulus (phytohemagglutinin [PHA]) [8] with
determination of in vivo clonal expansion by T cell receptor
(TCR) complementarity-determining region 3 (CDR3) spec-
tratyping, and the unbiased identification of stimulatory
peptides by integration of data from screening of positional
scanning synthetic combinatorial peptide libraries (PS-SCLs)
with protein database analyses [9,10].

Results

Generation of In Vivo-Expanded, CSF-Infiltrating T Cell
Clones

We isolated CSF-infiltrating cells from a patient with
relapsing-remitting MS during disease exacerbation and
cloned them by limiting dilution with PHA as an unbiased
stimulus [11]. Growing colonies were characterized for CD4/
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CD8 and TCRVP expression, and clonality was confirmed by
TCR-variable (TCR VB) chain sequencing (Figure 1A and
Table 1). In vivo clonal expansion was assessed by TCR CDR3
spectratyping [12], by comparing the CDR3 length of
individual T cell clones (TCCs) with the CDR3 spectrum of
CSF mononuclear cells at the time of the lumbar puncture
during disease exacerbation (CSF1), and again 14 mo later
(CSF2), during remission. Our analysis focused on five CD4"
TCCs (MN10, MN19, MN27, MN36, and MN47), because they
were clonally expanded in vivo at exacerbation and reduced
14 mo later, suggesting involvement in disease exacerbation
(Figure 1A). Each of these TCCs produced T helper-1
cytokines, and their HLA-class II restriction was also
characterized (Table 1).

CD4" T Cell Clones Show Preferential Recognition of
Specific Amino Acids

Subsequently, we tested the five TCC with a decapeptide
PS-SCL as described [9,10], which allows the identification of
stimulatory peptides. The results of a representative experi-
ment for TCC MNI19 are presented in Figure 1B (for the
other four TCC, see Figure S1). Most remarkably, each of the
five TCCs responded strongest to one defined amino acid (aa)
in multiple positions of the libraries (marked in red in Fig-
ures 1B and S1). Based on the stimulatory indices (SIs) from
testing the PS-SCL mixtures (Slps_scr.), we generated a scoring
matrix for each TCC as described [10]. The matrix for MN19
is shown in Figure 1C. We used the matrix to estimate for
each TCC the preference of a given aa in the composition of
the predicted stimulatory peptides (“peptidome”) by calcu-
lating the sum of the Slps.g¢r, in each of the ten positions for
each of the 20 L-amino acids (L-aa) and expressing it as a
fraction of 100% (Figure 1C). If we assume a uniform
distribution of the 20 aa in each position, the probability of
each aa in each position would be 5%. The “peptidome,” or
composition of the predicted stimulatory peptides, for each
TCC shows a substantial preference for one aa (Figure 1D,
boxed in red): in three TCCs the preference is for R (MN19
[53.2%]1, MN27 [25.4%], and MN36 [25.1%]), in one TCC for V
(MN10 [35.4%]), and in one TCC for K (MN47 [44.6%]).

CSF-Infiltrating T Cell Clones Recognize Torque Teno Virus
Next, we predicted stimulatory peptides for these CD4"
TCCs by PS-SCL biometrical analysis [10], and then selected

Table 1. Characterization of TCCs

Characteristic Component T Cell Clone ID
MN19 MN36 MN27 MN10 MN47

TCR rearrangement VB N(D)N JB TCRBV3S1BJ2S5 TCRBV6S7PBJ2S5 TCRBV6S2BJ1S1 TCRBV4S1A1TBJ1S3BC1S2 TCRBV13S1BJ1S4
region Cp (VB3, JB1.1, CP) (VB6.7, J2.5) (VB6.2, JP1.1, CP) (VB4.1, JP1.3, CP1.2) (VB13.1, JB1.4)
Vo N Ja TCRAV11ST1A1TAJ37 TCRAV2S2A1TAJ15 TCRAV2S2A1TAJ15 TCRAV4S2AJ53 TCRAV27S1AJ48
region Co. (Va11.1, Ju37) (Vo2.2, Ja15) (Vo2.2, Ja15) (Void.2, Ju53) (Vo27, Jod8)
HLA Class Il DR13 DR2B DR2A DR2B DR13
Restriction

Stimulation with anti-CD3 IFNy (pg/ml) 9,447 6,168 11,828 11,572 8,484
GMCSF (pg/ml) 4,347 7,272 9,085 10,822 4,581
IL4 (pg/ml) 213 150 148 82 143
IL10 (pg/ml) 291 77 410 42 73

All TCC clones are CD4".

DOI: 10.1371/journal.ppat.0010041.t001
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Figure 1. In Vivo-Expanded CSF-Infiltrating TCCs and Their Response to PS-SCL

(A) TCR BV rearrangement (*Arden’s nomenclature) of selected TCCs. Histograms of the relative CDR3 length distributions of each TCC (top histogram)
and CSF T cells (middle and bottom histograms). Fluorescence intensity is listed on the y-axis, and on the x-axis, the electrophoresis time resolving in-
frame rearrangements of TCRB CDR3 at 3-nt intervals. Red boxes identify the correct alignment. The bottom graph represents the percent contribution
(expressed as AUC) of the TCCs' CDR3 to all CDR3s with the same BV chain in the CSF samples.

(B) Proliferative response of MN19 to a complete decapeptide PS-SCL. Single-letter aa codes are listed on the x-axes, and proliferation (cpm) is shown on
the y-axis. Data represent one experiment of three. The mixtures with R as the defined aa inducing the highest response are shown in red.

(C) Score matrix for MN19. Each number represents the Slps sc. (mean of three independent experiments) of each of the 200 mixtures of a decapeptide
PS-SCL (rows, aa; columns, positions). The last column represents the optimal composition of stimulatory peptides “peptidome.” The aa contributing

the most to “peptidome” is shown in red.
(D) Peptidomes of the five in vivo-expanded TCCs.
DOI: 10.1371/journal.ppat.0010041.g001

peptides from human infectious agents (see Materials and
Methods). Table 2 shows the actual number of predicted
bacterial and viral peptides (column labeled #) and this
number normalized for the total number of decamer entries
in the database multiplied by one million to facilitate
analysis (column labeled NPP). The normalization step was
performed to avoid biased representation of agents with
large numbers of sequence entries such as HIV or Escherichia
coli.

Although the prediction included a few peptides from
bacteria that had previously been related to MS or CNS
infections, the NPP values for these agents were very low.
Furthermore, no specific bacterium was preferentially recog-
nized by the three TCCs with R-enriched peptidomes (Table
2). In contrast, and exclusively for these three TCCs, much
higher values (NPP > 100) were found for two related small
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DNA viruses, Torque Teno virus (I'TV) and TTV-like mini
virus (TLMV) (Table 2 in bold). TTV was identified in 1997
[13] and thought to mediate hepatitis infection, although
further follow-up did not confirm this suspicion [14,15].
TLMV was identified in 1999 in a study of TTV prevalence in
blood donors [16]. These two viruses are now recognized as
ubiquitous agents in the human population and are consid-
ered orphan viruses, i.e., they have not been related to a
known disease. Interestingly, in the context of MS, TTV DNA
has been detected in CSF and brain samples [17,18]. We have
confirmed this neurotropism by detecting TTV DNA in five
of 11 brain samples from MS patients (Tables 3 and S1) and
also in 32 of 41 brain tumors (astrocytoma, medulloblastoma,
and ependymoma) (E. M. de Villiers and W. Scheurlen,
unpublished data). Interestingly, an identical sequence was
detected in three different patients.
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Table 2. Human Infectious Agents Predicted to Be Recognized by the TCCs

Taxa Species MN19 MN36 MN27 MN10 MN47 Total 10-Mers
# NPP # NPP # NPP # NPP # NPP

Bacterial Acinetobacter spp 3 26 116,437
Bacillus anthracis 2 1 3 2 9 6 2 22 1,533,806
Bacillus cereus 3 2 14 9 13 8 2 49 1,557,835
Bordetella bronchiseptica 1,668,784
Bordetella pertussis 2 2 2 2 1,224,396
Borrelia burgdorferi 4 5 8 39 751,190
Campylobacter jejuni 2 3 2 3 3 4 63 781,720
Chlamydia trachomatis 2 4 2 4 2 4 489,140
Chlamydophila pneumoniae 3 2 6 4 4 3 6 1,485,357
Clostridium difficile 31 96,942
Clostridium perfringens 6 7 8 9 75 917,433
Clostridium tetani 4 5 3 4 95 800,708
Enterococcus faecalis 2 2 5 4 8 7 43 1,172,388
Escherichia coli 9 1 30 3 33 3 29 3 1 6 10,985,423
Haemophilus influenzae 4 4 6 6 12 967,084
Helicobacter pylori 3 2 4 2 1 22 1,891,357
Klebsiella pneumoniae 1 334,765
Legionella pneumophila 2 1 2 176,747
Listeria monocytogenes 8 6 6 5 30 1,314,391
Mycobacterium avium 5 36 6 43 41 138,674
Mycobacterium leprae 9 9 18 19 1 1 10 10 4 969,114
Mycobacterium tuberculosis 63 28 115 52 45 20 41 18 2 2,223,153
Mycoplasma genitalium 38 210,389
Mycoplasma pneumoniae 3 11 25 279,010
Neisseria meningitidis 2 1 8 4 7 3 4 2 3 7 2,147,499
Porphyromonas gingivalis 749,686
Pseudomonas aeruginosa 21 8 84 32 31 12 16 6 3 2 2,614,693
Pseudomonas putida 10 6 32 18 16 9 1 1,744,677
Rickettsia prowazekii 26 313,455
Salmonella enterica 4 1 4 3,146,113
Salmonella typhi 3 1 2,031,852
Salmonella typhimurium 6 3 6 3 7 4 5 3 6 1,912,290
Shigella flexneri 2 1 3 1 4 2 1 2,662,832
Shigella sonnei 2 28 71,265
Staphylococcus aureus 6 2 9 3 13 3,268,029
Staphylococcus epidermidis 6 8 11 14 52 767,128
Streptococcus mutans 2 3 7 10 3 4 35 710,141
Streptococcus pneumoniae 2 1 3 1 1 17 2,045,988
Streptococcus pyogenes 5 2 7 3 9 4 10 2,543,966
Treponema pallidum 5 10 18 37 1 23 3 6 6 483,781
Vibrio cholerae 4 3 6 4 9 6 11 7 18 1,576,412
Yersinia pestis 10 4 12 4 9 3 9 2,717,802

Viral Bluetongue virus 2 15 1 7 1 7 3 22 137,270
Borna disease virus 2 38 52,485
Canine distemper 1 11 2 22 91,714
Chimpanzee cytomegalovirus 5 78 1 16 6 94 1 16 63,731
Colorado tick fever virus 1 77 12,947
Dengue virus 8 11 746,550
Hepatitis B 6 4 2 1 1,421,941
Hepatitis C virus 1 0 8 3 2 1 2,689,140
Hepatitis G virus 1 6 168,011
Hepatitis GB virus 1 9 111,979
Human adenovirus 6 19 7 22 2 6 322,529
Human endogenous retrovirus 1 44 22,583
Human herpesvirus 1 2 4 4 9 4 9 467,653
Human herpesvirus 2 2 22 3 33 2 22 1 11 1 11 90,689
Human herpesvirus 4 2 14 2 14 141,972
Human herpesvirus 5 2 4 3 7 8 18 1 2 448,213
Human herpesvirus 6 1 4 2 8 9 38 3 13 1 4 235,535
Human herpesvirus 7 1 10 1 10 2 20 100,560
Human herpesvirus 8 4 18 224,114
Human immunodeficiency virus 29 2 8 0 22 1 9 0 41 2 18,399,391
Human papillomavirus 14 34 2 5 9 22 1 2 410,900
Infectious hematopoietic necrosis virus 1 38 26,589
Infectious pancreatic necrosis virus 1 19 53,209
infectious spleen and kidney necrosis virus 1 29 34,115
JC virus 1 1 3 673,012
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Table 2. Continued

Taxa Species MN19 MN36 MN27 MN10 MN47 Total 10-Mers
# NPP # NPP # NPP # NPP # NPP
Influenza A virus 1 0 1 2,434,396
Japanese encephalitis virus 3 14 212,383
Marek’s virus 1 21 3 62 3 62 48,194
Measles virus 1 2 1 2 620,578
Molluscum contagiosum virus 4 48 1 12 83,856
Mumps virus 1 7 1 7 139,699
Rotavirus 2 3 598,753
Theiler's encephalomyelitis virus 1 60 16,755
Tick borne encephalitis 16 1 16 1 16 62,971
TTV 309 887 153 439 a4 117 348,369
TLMV 15 1569 7 732 4 418 1 105 9,558
Vaccinia virus 1 3 2 6 315,637
West Nile virus 1 7 142,971

#, number of predicted peptides with scores higher than 0.7 of the maximal score; PPN, predicted peptides normalized to the total number of 10-mers in the database X 10°.

The prediction of large numbers of peptides from TTV and TLMV is in bold.
DOI: 10.1371/journal.ppat.0010041.t02

Next, we tested a total of 228 TTV and TLMV peptides
predicted to be recognized by MN19, MN27, or MN36 with
higher scores, particularly those with scores higher than 0.7 of
the maximal theoretical score. Assuming that the shared
preference for R-enriched peptides by these three TCCs
reflects similarities in specificity, we tested the peptides
predicted for one TCC also with the other two TCCs. The
number of stimulatory peptides identified for each TCC is
summarized in Figure 2A. Detailed information about all
stimulatory peptides is available in Table S2. Fewer peptides
are stimulatory for MN36, although in contrast to MN19 and
MNZ27, MN36 preferentially recognizes peptides longer than
decamers. Since the current search strategy is based on
decamer libraries, our prediction efficacy was therefore much
lower for MN36. Despite this, it is interesting to note that all
three TCCs recognize peptides not only from one organism,
TTV, but even the same peptides. The few TTV peptides that
stimulate MN36 are recognized by all three TCCs, and 48
peptides are recognized by MN19 and MN27 (Figure 2B).
However, as shown in Figure S2 by dose titration experi-
ments, the different clones recognize these peptides with
different affinities, i.e., at different concentrations.

MS Patient Is Infected with TTV at Disease Exacerbation
In order to determine whether the MS patient was infected
with TTV, serum samples from the time of the first CSF
isolation (time 0) and 1, 3, 8, 14, and 24 mo later, were tested
for TTV-DNA by PCR amplification using two primer
combinations with the respective nested primers. Cloning
and sequencing of all amplicons confirmed the presence of
TTV DNA in the first serum sample obtained during
exacerbation and also 1 mo later, during a second exacer-
bation (Figure 3A and Table S1). The next three serial
samples during remission were negative, but TTV-DNA was
again detected 24 mo later, suggesting a second infection or
reactivation. The highly conserved region of the TTV
upstream regulatory region (URR) amplified here did not
allow for determination of the specific TTV types involved.
However, sequence alignment of the samples with the closest
related known TTV strains indicates that different isolates
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were present in the positive serum samples (Figure 3B). Seven
different isolates were identified at month 0, three at month
1, and two at month 24; and only one isolate was shared by
two isolates (time 0 and 1 mo). Interestingly, this isolate was
identical to the one shared by the three brain samples (see
above). The CSF could not be checked for TTV infection, as
CSF became unavailable.

The absence of TTV-DNA in the serum during remission
does not exclude its persistence in infected cells, since
presence of TTV DNA in tissue samples has been reported
despite its absence in corresponding sera [17].

Cross-Recognition of Conserved TTV Epitopes

Next we examined the location of each individual
stimulatory peptide (Table S2). TTV has five open reading
frames (ORFs) and, interestingly, 96.2% (152/158) of the
stimulatory peptides were from a narrow region in the 74-aa
N-terminal sequence of ORF1 (Figure 4A). ORFI1 and
especially its N-terminal region are highly enriched in
positively charged aa (mainly R) when compared to the
proteomes of all organisms (Figure 4B). The N-terminal R-
rich domain of TTV ORF1 corresponds to a potential nuclear
localization signal (NLS). A significant proportion of the
stimulatory peptides identified are shared by different TTV
isolates, indicating that this N-terminal sequence is conserved
(Table S2).

Since multigenotype and persistent infections with TTV
are frequent, an expansion of TCCs recognizing these
conserved domains is expected. We therefore addressed
whether the precursor frequency of T cells responding to
R-enriched peptides was increased in the patient in our study.
Using IL-7 primary proliferation assays, we stimulated
peripheral blood cells with mixtures of ten peptides enriched
in R, ten peptides enriched in K, ten peptides not enriched
in any specific aa, and a decamer peptide mixture in which
all 20 L-aa are present in randomized order in each of the
ten positions (X10). Detailed information about these
mixtures is available in Table S3. We demonstrated a higher
frequency of peripheral T cells specific for TTV R-enriched
peptides up to 3 y after the last exacerbation (Figure 5A).
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Table 3. Detection of TTV-DNA in MS Brain

Patient Characteristics

Nested PCR Results Isolates Present in Brain Samples

Patient Age

Sex Pathology Duration (y) TTV DNA

TTV Clone TTV URR Sequence (Amplicon)

1 47 F MS 20 Positive gbKK31.1 A
C-
2 45 F MS 20 Negative — —
3 45 M MS 20 Positive gbKK33.2 T
gbKK33.4 T
A
C——
4 52 F MS 13 Negative — —
5 51 F MS 7 Negative — —
6 61 M MS 16 Positive gbKK36.10 T
=
7 35 F MS 8 Negative — —
8 31 F MS 8 Positive gbKK38.12*
C-
C——
9 45 M MS 25 Positive gbKK39.7°
C-
C——
10 52 F MS 20 Negative — —
12 54 F MS 0.5 Negative — —
13 18 M HHV6 =" Positive gbKK43.11?
encephalitis C-
C——
2Sequence overlapping identical.
bPatient died of acute infection.
DOI: 10.1371/journal.ppat.0010041.t003
NUMBER OF
A) STIMULATORY PEPTIDES
TCC MN 19 TCC MN 27 TCC MN 36
N° Sl N° Si N° Sl
TV 125 71 86 40 2 2 1N
34 23
12 16
8 7
TLMV 6 5 : 2 2 [
1
NUMBER OF
B) CO-RECOGNIZED PEPTIDES
TCCs MN19 & MN27 TCCs MN19 & MN27 & MN36
MN19 MN27 MN19 MN27 MN36
N° sl N sl
v a8 267' 2 2 [T 'm [ ] 3<si<10
: I 10<Si<50
! s
1

Figure 2. Stimulatory Peptides from TTV and TLMV

(A) Number and Sls of the stimulatory peptides from TTV and TLMV identified for TCCs MN19, MN27, and MN36.

(B) Number and Sls of the peptides co-recognized by different TCCs. Peptides have been tested in proliferation assays at 10 pg/ml and using PBMCs as
antigen-presenting cells.
DOI: 10.1371/journal.ppat.0010041.g002
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Figure 3. TTV-DNA in Patient’s Serum Samples

(A) Detection of TTV-DNA by PCR amplification using two primer combinations with the respective nested primers. Six different serum samples from the
same patient obtained at different time points were analyzed. The first two samples were obtained during relapse. Time points with simultaneous CSF
are indicated. Plus symbol indicates presence of TTV DNA; minus symbol indicates absence.

(B) The sequences obtained by cloning and sequencing of all amplicons and the alignment with the closer related known TT viruses are shown. One
isolate that was present in two different serum samples is shown in red.

DOI: 10.1371/journal.ppat.0010041.g003

The majority of these T cells originated from the memory T
cell pool (Figure 5B).

Cross-Recognition of Conserved R-Rich Protein Domains
in Common Viruses

We also identified stimulatory peptides for these three
TCCs from other common human viruses, particularly
adenovirus and papillomavirus (Table 4). Interestingly, and
similar to what we observed for TTV, various peptides are
located in the same protein region and shared by different,
but related, strains of one virus. The four stimulatory
peptides identified from different types of human papillo-
mavirus are located between aa 447-461 in the minor capsid
protein L2 (Table 4). The C terminus of this protein is
enriched in basic aa, and the region between aa 456 and 461
is described as a putative NLS [19]. Regarding human
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adenovirus, we identified three different stimulatory peptides
from pVII protein shared by different strains (Table 4). PVII
protein is a core protein enriched in R with a histone-like
function and tightly bound to the viral DNA. Previous
observations indicate that this close association is likely
preserved during transport of the viral genome to the
nucleus [20]. Interestingly, both proteins share important
characteristics with the 74-aa N-terminal sequence of ORF1
from TTV.

TTV-Specific T Cells Cross-React with R-Rich Domains in
Autoantigens

R-enriched domains are frequent in eukaryotes, prokar-
yotes, and viruses as part of DNA-binding regions, NLSs, and
other functional sequences, providing a bridge for cross-
reactivity between pathogens and autoantigens. In support of
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Figure 4. Characterization TTV Peptides
(A) Configuration of ORF1 from TTV showing the hypervariable region

(HVR) and the 74-aa N-terminal domain. Sequence of the first 74 aa for a

prototype TTV is shown. Distribution of all TTV stimulatory peptides identified between the first 74 aa is shown.
(B) AA composition of all proteins, ORF1 from TTV, and the 74-aa N-terminal region of ORF1.

DOI: 10.1371/journal.ppat.0010041.9g004

this notion, three of the stimulatory TTV peptides recognized
by TCC MNI19 are identical to peptides from two human
proteins (Table 5). The first peptide stems from a DEAD box
protein. Although the function of most DEAD box proteins is
unknown, helicase activity and interactions with DNA or
RNA have been associated with several of them [21]. The
other two peptides are part of the a-1B adrenergic receptor
(0-AR). They are located between aa 367-380, an R-rich
motif that has been reported to interact with the multifunc-
tional protein gCIlqR, controlling their expression and
subcellular localization [22].

TCC MN19 is the most expanded clone, and it shows the
highest preference for R-enriched peptides and, conse-
quently, for R-rich protein domains. For this TCC we have
identified five overlapping decapeptides from a,-AR (Table 6),
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two of these identical to two TTV peptides, that completely
cover the R-rich motif between aa 367-380 (see above). MN19
also cross-recognizes two peptides from other adrenergic
receptors and three overlapping peptides from the N-
terminal R-enriched region of ARP (i.e., arginine-rich
protein). Although the expression and function of this protein
are unknown, starting at aa 56 the translated DNA shares
100% sequence identity with the secreted human protein
MANF (mesencephalic astrocyte-derived neurotrophic fac-
tor), which protects dopaminergic neurons in the substantia
nigra of the brain [23].

TCCs MN27 and MN36 showed a lower preference for R-
enriched peptides than did MN19, which is reflected in the
corresponding “peptidomes” and in the composition of the
stimulatory peptides. Despite this relatively lower recognition
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(A) Proliferative response of peripheral TCL to the following: a mixture of ten peptides enriched in R, a mixture of ten peptides enriched in K, a mixture
of ten peptides not enriched in any specific aa, and a mixture of randomized decapeptides. Negative control is medium without peptide mixture.
Responses higher that the mean of the negative control plus 4 standard deviations have been considered positive. * Detailed information of mixtures
used in IL-7 primary proliferation assay are available in Table S3.
(B) Comparison of the origin (naive versus memory) of all TCLs with confirmed reactivity against R-enriched peptides.
DOI: 10.1371/journal.ppat.0010041.g005

Table 4. Stimulatory Peptides from Common Viruses

Organism Group Protein Accession Number® Sequence Amino Acid  SI°
Residues
MN19 MN27 MN36
Human papillomavirus  Type 28 Minor capsid protein L2~ AAA79427 FVPRRRRRKR 452-461 i A =
Type 33 Minor capsid protein L2 FILRRRRKRF 447-456 + + —
Type 58 Minor capsid protein L2 FILRRRRKRF 452-461
Type 54 Minor capsid protein L2 YTYVRKRRKR 449-458 + +++ -
Type 69 Minor capsid protein L2 LIHKRRRKRV 447-456 = SF=r =
Human adenovirus Subgroup A type 4 pVIl protein AAP49207 AMLRAARRAA  132-141 — - +++
Subgroup B type 11 pVIl protein AMLRAARRAA  131-140
Subgroup B type 35 pVIl protein AMLRAARRAA  131-140
Subgroup B type 11 pVIl protein ALLRRARRVG 119-128 = = F
Subgroup B type 35 pVIl protein ALLRRARRVG 119-128
Subgroup C type 1 pVIl protein AAA92212 RRVARRHRRR 103-112 AFEar = =
Subgroup C type 2 pVIl protein RRVARRHRRR 103-112
Subgroup C type 5 pVII protein RRVARRHRRR 103-112
Subgroup C type 1 L1 protein AAA92209 DLRWAPSRRA  367-376 — — +++
Subgroup C type 2 L1 protein DLRWAPSRRA  367-376
Subgroup C type 5 L1 protein DLRWAPSRRA 195-204
Subgroup A type 31 Protein mu precursor AAB19004 RSHRRRGLLT 17-26 = SErar =
Subgroup D type 8 E3A2 47.7k AALO1120 YICCRKRLRA 398-407 + +++ -
?GenPept database (http://www.ncbi.nlm.nih.gov).
P, SI < 3;4,3 < SI < 10;+++, 10 < SI < 50; +++ SI > 50.
DOI: 10.1371/journal.ppat.0010041.t004
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Table 5. Peptides Derived from TTV and Human Proteins with Identical Peptide Sequences

Organism Protein Accession Sequence Amino Acid si®

Number® Residues

MN19 MN27 MN36

TV ORF1 AAK11698 RRRRRPRRRR 22-31 aF = =
Homo sapiens DEAD (Asp-Glu-Ala-Asp) box AAH40185 RRRRRPRRRR 65-74
TTV CT30F ORF1 BAB79318 RGRRRRRRRR 54-63 SFEar = =
Homo sapiens Alpha-1B adrenergic receptor AAB60352 RGRRRRRRRR 370-379
TTV CT30F ORF1 BAB79318 —GRRRRRRRRR 55-64 4 = =
Homo sapiens Alpha-1B adrenergic receptor AAB60352 —GRRRRRRRRR 371-380

“GenPept Database (http://www.ncbi.nlm.nih.gov).
P, S < 3;4,3 < SI < 10; 4+ 10 < S| < 50; +++ S| > 50.
DOI: 10.1371/journal.ppat.0010041.t005

of R-rich domains, we nevertheless identified several stim-
ulatory decapeptides with at least three arginines and
potential biological relevance in the context of the CNS or
the immune system (Table 6). Among these CNS-related
molecules is the purinergic receptor PX2A, which is ex-
pressed on oligodendrocytes and astrocyte; several other
neurotransmitter receptors; ion channels; and molecules that
play a role in brain function and metabolism. Among the
immunologically relevant autoantigens stimulatory for MN27
and MN36 are immunoglobulin chains and the pattern
recognition receptor TLRY. These antigens are of particular
interest in the context of perpetuating the autoimmune
response once it has started in the CNS.

Discussion

In order to identify putative triggers in MS, we focused in
the current study on TCCs that are clonally expanded in vivo
at the time of disease exacerbation and in a tissue that is in
intimate contact with the affected CNS. Taking T cells
directly from the brain or reinjecting potentially autoreactive
T cells back into a patient would provide more direct
evidence for the relation to disease, but for obvious reasons
these steps are either very difficult to justify, i.e, brain
biopsies for nondiagnostic reasons, or impossible in humans.
Thus, as a next step, we applied methods that included the
unbiased expansion of T cells and a search strategy using
combinatorial peptide chemistry and bioinformatics. This
approach allowed, to our knowledge for the first time, the
identification of target epitopes of T cells for which nothing
was known in terms of their antigen specificity a priori.

The first interesting and novel point of our data is that the
recognition pattern of the five TCCs we studied showed a
preference for one specific aa at several positions of the PS-
SCL that translates into recognition of peptides enriched in
this aa. The most stimulatory peptides for MN19, which shows
the strongest bias for R (53.2%), contain on average 7.8 R
residues within a decamer. The preference for R-enriched
peptides shared by the clones MN19, MN27, and MN36,
together with their marked clonal expansion in the CSF,
suggest that these three TCCs could have been activated in
the periphery in response to the same foreign agent(s) before
migrating to the CSF. The analysis of predicted peptides from
human infectious agents confirmed this hypothesis. A large
number of peptides from TTV and TMLV were predicted
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exclusively for the three TCCs with the preference for R-
enriched peptides. At this stage, no other pathogen was
predicted at a comparable level. We therefore assumed that
TTV and related viruses are the most likely candidate targets
for MN19, MN27, and MN36. We synthesized a large number
of these predicted peptides and found not only multiple
stimulatory TTV peptides for each of the three TCCs, but
many that were recognized by two or even all three TCCs.
With few exceptions all peptides are located in an R-rich area
of TTV ORFI, a putative capsid protein that is thought to
mediate binding to viral DNA and transport to the nucleus.
The chromatin association of this R-enriched region of TTV
has been demonstrated in in vitro experiments (R. Kellner
and E. M. de Villiers, unpublished data). This region is shared
by different TTV isolates, suggesting that it represents a
conserved functional domain. Human T cell recognition of
epitopes conserved between different but related subtypes of
viruses has been described for enteroviruses [24,25], flavivi-
ruses [26], influenza A virus [27], and adenoviruses [28]. It has
been proposed that exposure to consecutive infections with
different strains results in repeated cycles of stimulation and
expansion of T cells specific for shared epitopes [27]. The
frequent multigenotype infections that characterize TTV and
occurred in the patient in this study, together with the
unusually large size of the R-rich domain (74 aa) in this virus,
are likely relevant in amplifying T cell expansion, a notion
supported by the high frequency of peripheral memory T
cells specific for R-enriched peptides.

The fact that basic aa such as R play an important role in
the interaction of proteins with DNA and with other proteins
such as shuttle proteins implies that R-enriched domains are
frequent in all organisms as part of DNA/RNA-binding
regions, NLSs, or other functional domains. The recognition
of such evolutionarily conserved domains by adaptive
immune cells such as the TCCs examined here is reminiscent
of pattern recognition by innate immune receptors such as
Toll-like receptors and could facilitate the cross-recognition
of different organisms and human proteins. The fact that
several stimulatory peptides from common human viruses
other than TTV, such as adenovirus and papillomavirus, are
also from R-enriched protein domains with characteristics
similar to the 74-aa N-terminal region of ORF1 supports this
hypothesis. Important additional evidence includes the
identity between three stimulatory TTV peptides and three
peptides from human proteins with functional R-enriched
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Table 6. Cross-Reactive Autoantigens

Protein Type Human Protein Accession  Sequence Amino Acid  SIP
Number® Residues
MN19 MN27 MN36
CNS proteins Human adrenergic receptor alpha 1B AAB60352 CRGRGRRRRR 367-376 SH4F = =
—RGRGRRRRRR 368-377 ++ - -
—-GRGRRRRRRR 369-378 ++ = -
—-—RGRRRRRRRR 370-379 +++ - -
————GRRRRRRRRR 371-380 4 = =
Human adrenergic receptor Alpha 1A AAB60351 CQCRRRRRRR 419-428 ++ — —
Human adrenergic receptor Alpha 2C AAG28077 HILFRRRRRG 446-455 aF AF =
Arginine-rich protein AAB08753 RRQRRRRRRR 39-48 + — -
—RQRRRRRRRR 40-49 ++ - -
———RRRRRRRRMR 42-51 + - -
Dopamine D2 receptor AAC78779 YIVLRRRRKR 213-222 F = =
P2X2A receptor AAD42947 VIVVRNRRLG 21-30 - +++ -
Prolactin-releasing peptide receptor BAA31159 LVIARVRRLH 83-92 = Riis =
GalNAc 4-sulfotransferase BAB19806 LRQRRRRLLI 107-116 — ++ —
Inner mitochondrial membrane translocase TIM17 AAD27772 PVGIRHRLRG 41-50 = A =
Endozepine-related protein AAP30852 LYYQRRRRKL 406-415 — 4 —
Non-lens beta gamma-crystallin like protein (AIM1) AAB53791 RIYFRLRNKA 1501-1510 = A =
Vitelliform macular dystrophy 2-like protein 2 AAM76996 GVDQRGRLLR 116-125 — + -
Retinoic acid receptor, alpha AAH08727 KVYVRKRRPS 360-369 — 4F =
Retinoic acid receptor beta 4 (NR1B2) AAD45688 KIYIRKRRPS 241-250 — + —
G protein-coupled sphingolipid receptor (CHEDG1) AAF43420 LVRTRSRRLT 227-236 — + —
Immunologically  Immunoglobulin heavy chain variable region AAN84534 SVYSRGRRGA 67-76 — +++ —
relevant
proteins
CAD82980 SVAGRKRLRW 70-79 - aF =
BAA35004 LTGYRRRLNL 64-73 - + -
BAC02041 AVYYRARARL 92-101 - F =
AAK31256 TIRYRRRLSF 97-106 - + -
AAC09133 WIRRSPSRGL 38-47 = - s
B-cell leukemia/lymphoma 3 (BCL) AAC51348 LMVARSRRVI 260-269 — ++ —
Immunodeficiency virus type | enhancer-binding protein 2 AAF81365 YVYVRGRGRG 1788-1797 = +++ —
HIV-1 rev binding protein 2 AAH16778 FVKRRQRLIG 157-166 — ++ -
Toll-like receptor 9 BAB19259 YVRLRQRLCR 980-989 — ++ —
Autoimmune enteropathy-related antigen AIE-75 BAA81740 LTPRRSRKLK 77-86 — + -
Phosphatidylcholine transfer protein AAF08345 YVYLRQRRDL 114-123 = A= =

2GenPept Database (http://www.ncbi.nlm.nih.gov).
P, SI < 3;+,3 < SI < 10;++, 10 < SI < 50; +++ SI > 50.
DOI: 10.1371/journal.ppat.0010041.t006

domains. A series of other interesting R-enriched peptides
from autoantigens have been identified, including several
overlapping peptides from a R-rich motif of o;-AR. The
density of o;-ARs in the CNS is among the highest of any
tissue in the body [29], and although the specific functional
roles of this receptor remain uncertain, it has been
implicated in motor control by the CNS [30-33]. Interest-
ingly, no myelin autoantigens were among the autoantigenic
peptides with highest predicted stimulatory scores for these
TCCs. This could be explained by the fact that axonal
damage, gliosis, and inflammation also play a role besides
demyelination, and that nonmyelin autoantigens, such as
alpha-B crystalline, S-100, and others, have already been
implicated in MS or experimental allergic encephalomyelitis.

One important component that remains unidentified is the
initial activator of these T cells. Both TTV infections and
autoantigens are plausible. However, since TTV infections
occur frequently and probably also early in life, and since
activation of T cells probably starts in the periphery and
transmigration into the CNS/CSF and damage of tissue are
subsequent events, we believe that the most likely scenario
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may be that repetitive TTV infections lead to expansion of
these T cells.

T cell recognition of R-enriched peptides may not be
critical for clearance of the infectious agent, since most of
these peptides are recognized at only moderate concentra-
tions, suggesting low functional avidity of the T cells.
Furthermore, deletion of high-avidity cells specific to these
common, conserved domains in the thymus is expected.
However, the frequent occurrence of these peptides in nature
implies that T cells specific for R-enriched areas may be
activated repeatedly, resulting in lower requirements for
costimulation and expansion despite relatively low functional
avidity. The resulting reduction in the activation threshold,
together with the repetitive expansion of these cells, may
facilitate responses to suboptimal autoantigens in the target
tissue acting as an “acquired susceptibility trait” in MS. Since
TTV infections are also frequent in normal donors, additional
predisposing factors, such as human leukocyte antigen and
other susceptibility genes, compromised CNS repair pro-
cesses, increased tissue vulnerability, or variations in central
tolerance, are probably necessary for MS development.
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Despite this demonstration that several CSF-infiltrating
and in vivo-expanded TCCs from an MS patient in
exacerbation recognize large numbers of peptides from
TTV, we do not suggest this virus as the latest “MS agent.”
The fact that these likely disease-related TCCs recognize R-
enriched conserved domains shared between different viruses
and human autoantigens suggests that the specificity of these
T cells results in recognition of specific types of protein
domains rather than a specific organism. This kind of
specificity or recognition of evolutionarily conserved do-
mains could be involved in inducing and perpetuating
autoreactive T cells. It will be important to examine whether
the proposed mechanism applies to other MS patients and to
other autoimmune diseases, and whether the recognition of
conserved protein domains by adaptive immune cells plays a
role during protective immune responses.

Materials and Methods

TCCs and antigen-presenting cells. TCCs were established from
CSF of an untreated patient with relapsing-remitting MS during
exacerbation by limiting dilution at 0.3 and 3 cellsiwell with 2 X 10°
autologous, irradiated PBMCs and 2.5 pg mI™" of PHA-P (Sigma, St
Louis, Missouri, United States) in IMDM containing 100 U ml™!
penicillin/streptomycin, 50 pg ml™! gentamicin, 2 mM L-glutamine
(BioWhittaker, Gaithersburg, Maryland, United States), and 5%
human serum (Gemini Bio-products, Woodland, California, United
States). After 24 h, 20 U ml ™' of human recombinant IL-2 (hrIL-2,
National Cancer Institute, National Institutes of Health, Bethesda,
Maryland, United States) were added. Cells were restimulated every 2
wk with 2.5 pg ml~! PHA, 20 U mI™! hrIL-2, and autologous irradiated
PBMCs, and hrIL2 was added every 3-4 d.

RT-PCR and sequencing of TCR rearrangements. TCC TCR VB
gene usage was analyzed by PCR using 21 TCRAV and 23 TCRBV
family-specific oligonucleotide primers. Nucleotide sequencing of
PCR products was performed as described [34]. TCR gene desig-
nations are in accord with Arden’s nomenclature [35].

Cytokine production. TCCs were stimulated with coated anti-CD3
antibody, and supernatants were collected after 48 h from cultures
with/without antibody. IFN-y, GM-CSF, IL-4, and IL-10 levels were
determined by ELISA following the manufacturer’s protocol (Bio-
source, Camarillo, California). For TCCs MN19, MN27, and MN36 the
cytokine production was confirmed with several stimulatory peptides.

CDR3 spectratyping. For high-resolution TCR B-chain CDR3
spectratyping, 2.5 pl of PCR product from each TCR-BV were used
as template in a 12.5 pl primer-extension (“runoff”) reaction
containing 1.25 ul of 5'FAM-labeled BV primer, 0.25 ul of 10 mM
dNTPs, 0.06 pl of Pfu DNA polymerase, 1.25 ul of Pfu reaction buffer,
and 7.2 pl HeO. After thermal cycling (95 °C for 2 min; followed by
ten cycles of 94 °C for 20 s, 55 °C for 45 s, and 72 °C for 45 s; and a
final extension of 72 °C for 10 min), 2 pl of runoff product was mixed
with loading buffer containing four Cy-5-labeled DNA size markers,
heat-treated at 80 °C for 2 min, and run on a 6% polyacrylamide gel
on an OpenGene (Visible Genetics, Toronto, Ontario, Canada)
sequencer. Electropherograms were analyzed for peak size (bp), peak
height, and area under the curve (AUC). The percentage represented
by each CDR3 peak in a BV spectrum (corresponding to the
representation of clonal populations with a given CDR3 length) was
calculated according to the formula % AUC BVn=(AUC BVn/AUC all
BV) X 100. TCR CDR1, CDR2, and CDR3 boundaries were defined
according to the IMGT [36].

Peptide combinatorial libraries and individual peptides. A syn-
thetic N-acetylated, C-amide L.-aa decapeptide combinatorial library
in a positional scanning format (PS-SCL; 200 mixtures) was prepared
as described [37]. Each OX9 mixture consists of 3.2 X 10'" (19%)
different decamer peptides at approximately equimolar concentra-
tion. Individual decapeptides were synthesized with a custom multi-
ple peptide synthesizer using solid-phase Fmoc chemistry. The purity
and identity of each peptide were characterized by mass spectrom-
etry.

groliferative assays. TCC proliferation responses to PS-SCL
mixtures or individual decapeptides were tested by seeding in
duplicate 2 X 10 T cells and 1 X 10° irradiated PBMCs (3,000 rad)
with or without PS-SCL mixtures or individual decapeptides.
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Because the specificity of TCCs was unknown, PHA-P stimulation
served as positive control. Proliferation was measured by methyl-‘%H-
thymidine (Amersham Biosciences, Little Chalfont, United Kingdom)
incorporation. The stimulatory index for a PS-SCL mixture (Slps.
sci) with an aa defined at one position was calculated as Slps_scr,
=SI'/mean all SI' in the library, where SI' = (mean of duplicate cpm,
mixture) — (mean cpm, background). Responses to mixtures were
considered positive when SI > 2. The SI for individual peptides was
calculated as SI = (mean of duplicate cpm, peptide)/(mean cpm,
background). Responses to individual peptides were considered
positive when SI > 3, cpm > 1,000, and at least three standard
deviations above average background cpm in at least three
independent experiments.

Biometric analysis and database searches. Responses to PS-SCLs
were analyzed as described [9,10]. A positional scoring matrix was
generated by assigning a value of the stimulatory potential to each of
the 20 defined aa in each of the ten positions. Based on a model of
independent contribution of individual aa to peptide antigen
recognition, the predicted stimulatory score of a given peptide is
the sum of the stimulatory potential of all aa contained in the peptide
in each position. Using a web-based search tool [38], the scoring
matrix was applied to rank, according to their stimulatory score, of all
the naturally overlapping 10-mer peptides in the protein sequences
within the GenPept database (version 136) (ftp://ftp.ncifcrf.gov/pub/
genpept), and for viral peptides, within RefSeq (http://www.ncbi.nlm.
nih.gov/RefSeq). We analyzed viral and bacterial peptides with scores
higher than 0.7 of the predicted maximal theoretical score (Smax).
The cut-off of 0.7 of Smax is based on prior experience of the
sensitivity and accuracy of the approach [10,39,40]. We then selected
peptides from human infectious agents, counted the predicted
peptides from each individual organism, and normalized the value,
taking into account the total number of decamers for each organism
in the GenPept database, in order to avoid a bias related to the
number of database entries. This problem would have otherwise
significantly skewed the data for organisms with large numbers of
reported sequences, such as HIV.

Precursor frequency in peripheral blood. Primary proliferation
assays were performed as described [41]. Briefly, PBMCs were seeded
in 96-well plates at 1 X 10° cellsiwell on day 0 in the presence of
antigen and IL-7. A mixture of ten R-enriched peptides was used as
antigen. Three different controls were included, a mixture of ten K-
enriched peptides, a mixture of ten peptides not enriched in any
specific aa, and a decamer peptide mixture in which all 20 L-aa are
present in randomized order in each of the 10 positions (X10)
without any defined aa. After 7 d, cell cultures were divided in half,
and positive wells were identified by comparing the amount of
actively proliferating cells in split cultures with the proliferation of
PBMCs seeded without antigen. The remaining half of the positive
wells were restimulated, and a confirmation assay was performed at
days 17-19. Confirmed positive cultures were used to determine the
naive versus memory origin of precursors T cells by flow cytometry
using anti-CD45RA and anti-CD45RO antibodies (Pharmingen, BD,
Palo Alto, California, United States).

TTYV detection. Total DNA was extracted from serum samples by
the High Pure Viral Nucleic Acid Kit (Roche Diagnostics, Penzberg,
Germany). DNA from brain samples was extracted using phenol and
chloroform-isoamyl alcohol. PCR amplification of each sample was
performed twice. The primer combinations NG133-NG352 with
nested NG249-NG351 [42] were used to amplify a 134-bp fragment
of the TTV URR. The latter overlaps the highly conserved region of
71 bp, which is amplified by primers NG472-NG352 and nested
NG473-NG351 [43] used in the second PCR amplification. All
amplicons were cloned, and at least 12 clones per sample sequenced.
Sequences were compared to all available TTV sequences.

Supporting Information

Figure S1. Proliferative Response of TCCs MN36, MN27, MN10, and
MN47 to 200 Mixtures of a Decapeptide PS-SCL in Which Each
Mixture Has One Defined aa in One Position and the Other Positions
Contain All L-aa Except Cysteine

Horizontal axes, single-letter aa code; vertical axes, proliferation as
counts per minute. Data represent one experiment of three. The
defined aa inducing the highest response at several positions for each
TCC is shown in red.

Found at DOI: 10.1371/journal.ppat.0010041.sg001 (61 KB PDF).
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Figure S2. Proliferation of TCCs MN19 and MN27 in Response to
Different Concentrations of Five Decapeptides

Proliferation is shown as SI. Peptide sequences are listed on top.
Found at DOI: 10.1371/journal.ppat.0010041.sg002 (32 KB PDF).

Table S1. Proportion of TTV Clones Identified After Single and
Nested PCR

Found at DOI: 10.1371/journal.ppat.0010041.st001 (55 KB PDF).

Table S2. Stimulatory Peptides from TTV and TLMV
Found at DOL: 10.1371/journal.ppat.0010041.st002 (71 KB PDF).

Table S3. Mixtures Used in IL-7 Primary Proliferation Assay
Found at DOI: 10.1371/journal.ppat.0010041.st003 (42 KB PDF).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/) accession numbers of the
proteins discussed in this paper are o;-AR (AAB60352), ARP
(AAB60352), DEAD box protein (AAH40185), minor capsid protein
L2 (AAA79427), pVII protein (AAP49207 and AAA92212), PX2A
(AAD42947), and TLR9 (BAB19259).
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