
Article accepted for publication in AIMS Networks and Heterogeneous Media.
Volume 00, Number 0, Xxxx XXXX pp. 000–000

RECOGNITION OF CROWD BEHAVIOR FROM MOBILE

SENSORS WITH PATTERN ANALYSIS AND GRAPH

CLUSTERING METHODS

Daniel Roggen, Martin Wirz and Gerhard Tröster
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Abstract. Mobile on-body sensing has distinct advantages for the analysis
and understanding of crowd dynamics: sensing is not geographically restricted
to a specific instrumented area, mobile phones offer on-body sensing and they
are already deployed on a large scale, and the rich sets of sensors they contain

allows one to characterize the behavior of users through pattern recognition
techniques.

In this paper we present a methodological framework for the machine recog-
nition of crowd behavior from on-body sensors, such as those in mobile phones.
The recognition of crowd behaviors opens the way to the acquisition of large-
scale datasets for the analysis and understanding of crowd dynamics. It has also
practical safety applications by providing improved crowd situational aware-
ness in cases of emergency.

The framework comprises: behavioral recognition with the user’s mobile
device, pairwise analyses of the activity relatedness of two users, and graph

clustering in order to uncover globally, which users participate in a given crowd
behavior. We illustrate this framework for the identification of groups of per-
sons walking, using empirically collected data.

We discuss the challenges and research avenues for theoretical and applied
mathematics arising from the mobile sensing of crowd behaviors.

1. Introduction. Nowadays, through the use of mobile phones, interconnected
on-body sensing and computing devices are widespread in the population [29]. Pro-
cessing signals from on-body sensor data can in principle reveal information about
individual behaviors and activities [10] as well as collective human behaviors [38].
This “reality mining” [33] is deemed to provide objective measures of human inter-
actions, also called “honest signals” [37]. This opens new ways in Computational
Social Science [30], where the vast amount of information obtained from mobile de-
vices leads to new perspectives for sociometry and the analysis of social dynamics
or crowd behavior. To date, most work exploiting the information of body-worn
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sensors to sense collective aspects of human behavior have focused on social network
analysis and the quantification of face-to-face interaction patterns. Examples for
this include the measurement of the statistics of friendship networks [13, 35] and
the improvement of social interactions in organizations [36, 7]. The combination of
data sources available online (e.g. through social network web sites) together with
information from on-body sensors may, furthermore, lead to a convergence of social
and technological networks [27].

1.1. From modeling to sensing crowd behavior. In our own work, we investi-
gate the recognition of crowd behavior by analysis of data measured with on-body
sensors. The sensors are those typically used in today’s mobile phones. By crowd
behavior, we understand the coordinated movement of a large number of individu-
als to which a semantically relevant meaning can be attributed, depending on the
respective application. Examples include a queue of people, the formation of uni-
directional “lanes” in bi-directional pedestrian flows, the intersection of these lanes,
or a group of people at a specific location.

The detection of such crowd behavior is a recent development. It builds upon
past work that extensively sought to understand the nature of collective and crowd
behavior by means of models [21, 9, 3] and simulations [19, 18, 22]. For more details
regarding modeling approaches, we refer to [53].

While the simulation of crowd behavior is a problem of synthesizing realistic
pedestrian behaviors with a suitable model, the recognition of crowd behavior deals
with the opposite problem. It consists in selecting, among different competing mod-
els, the one that is most likely to explain the observed sensor data. Thus, collecting
sensor data from an ensemble of persons is a necessary condition to recognize crowd
behaviors, but not a sufficient one. The main challenge consists in the interpretation
of this collected data and to devise methods to map the sensors signals, collected
from an ensemble of persons, to one of several kinds of crowd behaviors. This has to
be done in a computationally efficient and robust manner. To this end, statistical
machine learning techniques play a key role [11]. However, there is a wide range of
other disciplines that are involved, such as information spreading, distributed data
fusion, graph visualization, graph clustering, or network analysis.

The recognition of crowd behavior facilitates practical applications. In situa-
tions of emergencies during large-scale public events, machine recognition of crowd
behavior enables a better situational awareness of event managers and informed
participants. This may be used to carry out an evacuation more successfully and
efficiently [20]. Measuring the dynamics of crowd behavior can also be useful for
urban planning and pedestrian navigation.

The recognition of crowd behavior also promotes fundamental research. Past
insights into crowd behavior have mainly been obtained through video analysis (see
e.g. Refs. [42, 23, 53, 24]). By relying on body-worn sensors, crowd behavior can be
analyzed on a much larger scale, allowing experiments to take place under realistic
everyday conditions.

1.2. Contribution. One of the main challenge in crowd behavior recognition is to
infer the most likely crowd behavior underlying the data collected from an ensemble
of persons. We present in this article a methodological framework to address this
problem. We refer to this framework as the crowd behavior recognition chain. This
framework does not define specific data processing methods. It rather organizes a
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set of solutions to the problem of crowd behavior recognition along well defined pro-
cessing stages. This allows the structured comparison of various methods and allows
to modularize the investigation of further crowd behavior recognition systems.

Since the sensing of crowd behavior is a recent development, we wish to explain
based on this methodological framework, what are the applied mathematical fields
that play a role. On the one hand, crowd behavior sensing offers a new application
domain for current methods. On the other hand, that application domain has spe-
cific characteristics that will drive the development of new methods. One particular
challenge is to make sense of large amounts of data, which are likely to be “noisy”
due to the high variability of human behaviors.

Let us now describe the principles that we have developed to recognize crowd
behavior from body-worn sensors, emphasizing the families of applied mathematical
methods that come into play at various stages of the data analysis. Besides the
specific methods used in our work, we mention other applied mathematical fields
which offer relevant methods for the sensing of crowd behavior. We eventually
emphasize requirements to improve existing methods and to develop new ones.

Since our perspective is predominantly that of applying methods to empirically
collected data, we take as an illustrative example the detection of human group for-
mation from on-body sensors. In order to emphasize the principles of our approach,
we limit ourselves to rather simple mathematical methods. However, the reader will
be able to make the link to more advanced methods within the same data analysis
framework.

In particular, in this paper:

• We briefly present the experimental and technical aspects underlying crowd
behavior recognition (see sec. 2), which consists in gathering on-body sensor
data from an ensemble of persons. During system development, these persons
follow an experimental protocol leading to pre-defined collective behaviors.
Eventually, after the system has been optimized, it is used on the the data
collected in everyday situations.

• We explain how the sensor data are analyzed (see sec. 3). This is first car-
ried out for each person individually. The outcome is the identification of
“behavioral primitives” and the quantification of their characteristics (here-
after refered to as “individual behavior”). A pairwise measure of individual
behavior relatedness is then computed, given the assumption that the two
persons participate to a common crowd behavior. Finally, in order to obtain
a global view of the structure of the crowd behavior from these pairwise mea-
sures, we use graph clustering to uncover which individuals participate in the
same crowd behavior. Further network analysis techniques can be used to
characterize the resulting graph. We formalize these methodological steps in
the form of a “crowd behavior recognition chain”. The methods involved in-
clude essentially signal processing and statistical machine learning, similarity
analyis, graph embedding and clustering, and network analysis.

• We illustrate the crowd behavior recognition for the example of walking as part
of a group, based on experimental data acquired from 10 subjects performing
various individual and collective activities (see sec. 4).

• We discuss the current challenges and the main fields of applied mathematics
that are relevant in the analysis of large-scale data collected from on-body
sensors to infer crowd behavior (see sec. 5).
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• Finally we conclude this paper emphasizing the benefits of on-body sensing
for the analysis of crowd dynamics and its better understanding (see sec. 6).

(a) Illustration of the 3D acceleration sensor (b) Placing of the sensor
on subject’s hip

Figure 1. Acceleration sensor adjusted to the hip for the recog-
nition of crowd behavior. The sensor placement mimicks that of a
mobile phone located in the trouser pocket. The data acquired by
the sensor are synchronized accross all participants of the experi-
ment and stored for later analysis.

2. Experimental aspects and datasets. The machine recognition of the activi-
ties of a single person has been extensively investigated in ubiquitous computing and
wearable computing to create smart-assistants [31]: systems that proactively and
unobtrusively provide information or assistance upon detection of specific activities
or gestures. Examples of activity-aware systems include e.g.: an industry worker’s
assistant that recognizes complex gestures of workers assembling a car [46]; gestural
control of a computer [25]; a system reacting to the freezing of gait of persons with
Parkinson’s disease [1]; or systems to detect and prevent elderly from falling [4]
(see the special issue “Activity-Based Computing” for a survey of state-of-the-art
approaches and applications [10]). These systems operate by looking for patterns
corresponding to specific activities in the data of various numbers of multi-modal
sensors placed on the body of a single person. This is usually tackled as a prob-
lem of learning by demonstration [2, 47, 15]. In such a paradigm, the mapping
between sensor signals and activities is learned using machine learning techniques
[11]. This is well suited for the complex and highly variable nature of human activi-
ties. For this reason, we follow this approach for the recognition of crowd behavior.
A learning-by-demonstration approach is carried-out as follows for crowd behavior
recognition (see ref. [50] for more details):

1. Participants are recruited to emulate in a laboratory setup the collective be-
havior of interest. They are instrumented with sensors (see Figure 1). They
are instructed to perform a set of actions. As a result of executing their tasks,
a collective behavior occurs. Thus, the collective behavior is generated under
well-controlled conditions.

2. Data are collected synchronously from the sensors of all experimental subjects.
Supplementary data are obtained by ambient cameras. These are used to
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identify the time points, at which the collective behavior of interest occurred
(see Figure 2).

3. The crowd behavior recognition chain is trained or optimized on a subset of
the dataset (training data). This includes optimizing the statistical models
linking sensor signal characteristics to individual and collective behaviors, and
optimizing all the other parameters of the system.

4. The part of the dataset that was not used for training (test data) is used to
estimate the performance of the crowd behavior recognition chain by cross-
validation [11].

5. Finally, the system may be used on the data acquired in everyday situations.
At this point, ground truth is not available. The crowd behavior recogni-
tion performance is assumed to be identical to what was obtained during the
optimization process.

Common sensors for human activity recognition are body-worn accelerometers
and inertial measurement units (IMUs). Accelerometers are extremely small and
measure the vectorial acceleration of the device requiring very little power. IMUs
contain accelerometers, magnetometers and gyroscopes and allow one to sense the
orientation of the device with respect to a frame of reference. These sensors are
nowadays found in mobile phones [29]. In Ref [50] we review further sensors common
in mobile phones that can be used for the recognition of crowd behavior. In this
article we present crowd behavior recognition results obtained from accelerometers.
These accelerometers can be provided by a standalone device, or by a smartphone.
Both kinds of devices deliver, for all practical purposes, identical acceleration pat-
terns when placed at same body location (here on the front trousers pocket). Thus
the results presented here are representative of those obtained with a broad set of
mobile phones (e.g. Apple iPhone, Android Nexus One, and virtually any other
smartphone containing an accelerometer, which is a broad portion of the current
market).

In Figure 2 we illustrate three kinds of collective behaviors, observed at a large-
scale public event in the city of Malta. These behaviors are people queuing, people
clogging and forming lanes, and people walking in groups of small size. In the rest
of this article, we focus on the latter collective behavior: the identification of people
walking together in a group. Figure 2 illustrates the laboratory emulation of the ob-
served behaviors with a limited number of subjects equipped with sensors. Finally,
the figure also shows the signals acquired from a sensor placed on the body. The
sensor is an accelerometer worn on the hip as illustrated in Figure 1. One can visu-
ally observe characteristic signal patterns for each kind of collective behavior. The
objective for crowd behavior recognition is to identify these characteristic patterns
automatically.

3. Crowd behavior recognition chain. We now formalize a series of processing
steps (the “crowd behavior recognition chain”) that can be used to infer crowd
behaviors from body-worn sensors. This defines a methodological framework. The
specific methods used within that framework may vary according to use cases. The
proposed process is illustrated in Figure 3. It consists of:

• First, the crowd behavior recognition system is queried to identify the individ-
uals that participate to a specific crowd behavior. This behavior is indicated
by the user, according to the respective application. In other words, an as-
sumption of the approach is that, among all individuals, some participate
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(a) (b) (c)

The acceleration of four queuing 
subjects shows their sequential 
movements.

Top: acceleration of a person not 
obstructed during walking. 
Bottom: the same person passes 
through a narrow corridor, leading 
to clogging.

Top and middle: the acceleration 
of two persons walking in the same 
group shows a similar pattern.
Bottom: the acceleration of a 
person walking in another group 
shows a different pattern.

Figure 2. Three typical crowd behavior: (a) queuing, (b) clog-
ging, (c) group formation. Starting with an identification of the
collective behaviors of interests at large-scale events (top row), the
relevant situation is emulated in the laboratory with a limited num-
ber of subjects wearing on-body sensors (middle). Signals of ac-
celerometers at the hips are depicted for different users (bottom).
The signals show specific patterns reflecting different collective be-
haviors, which we aim to automatically recognize in order to iden-
tify the current crowd behavior in which a person is involved.

in a specified crowd behavior. The task of the recognition chain consists in
identifying, which individuals participate to that crowd behavior.1

• Then, characteristics of the behavior of each single person are inferred from
the sensors worn by that person. Depending on the crowd behavior of interest,
these characteristics may be “activity primitives” (e.g. performing a step) or
a continous characterization of the user activity (e.g. the speed of walking).
We refer to this as the “individual behavior”. This is carried out with online
signal processing and machine learning techniques.

1This shares similarity, in a Bayesian framework, to the computation of the conditional prob-
ability of an observation (i.e. measured sensor data), given a phenomena (i.e. an assumed crowd

behavior).
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• Then, the characteristics inferred previously are analysed pairwise for each
pair of individuals to find out whether the behavior of these two persons may
be the result from their participation to the specified crowd behavior. The
outcome is a measure of disparity between two individuals as compared to the
assumed crowd behavior. For example, two people of the same group are likely
to walk, stop, and take turns at roughly the same time, and their locations
are close to each other.

• Finally, the pairwise measures of disparity are analyzed by graph visualization
and graph clustering. This allows one to determine which people, among
all experimental subjects, take part in the common crowd behavior that the
user of the system was interested in. Network analysis may then be used to
characterize the structure of the crowd behavior in more details.

The above process is explained in more details in the following subsections.
The crowd behavior recognition chain contains a wide range of parameters. These

parameters are optimized during design time on the training dataset to correctly
identify ensembles of people taking part in a common crowd behavior (see Section 2).

Individual behavior The IARC detects or estimates
Mode of locomotion The IARC detects the user’s mode of locomotion and stance,

such as walking, running, sitting, standing or lying. Individu-
als in a group are likely to have the same mode of locomotion.

Stop and go The IARC detects, when the user stops or starts walking. In-
dividuals in a group are likely start and stop walking in a cor-
related manner.

Foot stride The IARC detects the foot steps of the user, such as the heel
strike or toe-off. The phase of people walking as a group is
likely to be synchronized.

Turn The IARC detects sharp user turns (change in heading). People
walking as a group are likely to show correlated turns.

Walking speed The IARC indicates the walking speed of the user, which is
more or less identical for people walking in a group.

Heading The IARC indicates the heading of the user, which is correlated
for people walking in a group.

Table 1. The individual activity recognition chain (IARC) is de-
signed to recognize one or more user behaviors from the on-body
sensor data, which are then processed to infer whether two persons
participate in the same crowd behavior. This table indicates some
user behaviors that are relevant for the recognition of walking in
a group. The top part of the table describes sporadic behaviors
(action primitives), which can be detected by the IARC. The bot-
tom part indicates continuous behavioral characteristics which can
be estimated by the IARC. These elements can all be recognized,
using sensors available in today’s mobile phones [44]. In this work,
the IARC is designed to estimate the walking speed by comput-
ing, as a proxy, the variance of the user acceleration. Other crowd
behaviors may require the identification of other kinds of behaviors.

3.1. Individual activity recognition chain. We refer to the individual activity
recognition chain (IARC) as a set of processing principles, which is commonly fol-
lowed by most researchers to infer human activities from raw sensor data [47, 2, 15, 5]
(see figure 3, top).
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Figure 3. Processing steps used to infer from on-body sensor
data, which users take part in a given crowd behavior. The data
processing comprises three steps: First, characteristics of individual
user behaviors are inferred, using the “individual activity recogni-
tion chain”. This processing chain consists of signal processing and
machine learning elements and maps sensor signals to time series
of behavioral primitives or to quantitative characteristics of the
user’s behavior. Then, an analysis of the behavior of pairs of in-
dividuals is carried out, yielding a measure of disparity, in view of
the assumed crowd behavior. Finally, graph clustering techniques
are used to identify commonalities across all experimental subjects
from the pairwise disparities. The resulting clusters identify the
set of persons participating in a certain crowd behavior.

The IARC maps low-level sensor data Su (e.g. body-limb acceleration) of user u
to semantically meaningful activity primitives (e.g. do a step, stand) or to quanti-
tative characteristics of the activity (e.g. walking speed). We refer hereafter to this
generically as the user “individual behavior” Bu. Formally:

IARC : Su → Bu

In Table 1, we indicate a few characteristics of the user behavior that are relevant
for the detection of walking as a group. Since the user behavior changes over time
according to what he is doing, the system must identify individual behaviors as they
occur sporadically (for activity primitives) or continuously (for a continuous char-
acterization of the user activity). This is realized by streaming signal processing
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and statistical machine learning techniques in real time. This online data process-
ing consists at a given time of estimating the individual behavior, using the data
available up to that time point.2

Therefore the behavior Bu corresponds to a time serie:

Bu = {Bu
t : t ∈ Tu},

where Tu = {Tu
1 , T

u
2 , . . .} represents the time instants Tu

t at which the system takes
a decision about the behavior Bu

t of the user u. The behavior can be represented
by a tuple Bu

t = (but , p
u
t ), where but is either a set of discrete activity primitives

(e.g. performing a step, stopping, turning), or a continous characterization of the
activity (e.g. the walking speed). put optionally represents the confidence of the
system in the decision, which may be exploited in a Bayesian framework.

“Meaning” is attributed to the sensor data streams by “comparing” them with
known parameterized activity prototypes through a series of processing stages that
are internal to the IARC. The IARC processing stages are (see Fig. 3):3

• Sensor data acquisition. A time series corresponding to the sensor data is
obtained: S = {s0, s1, s2, ...}. Since sensors can provide multiple values (e.g.
an acceleration sensor provides a 3D vector), and multiple sensors can be
jointly sampled, a vectorial notation is used.

• Signal pre-processing. The time series S leads to a pre-processed time series
P :

P = {p0,p1,p2, ...}

Typical transformations are calibration, de-noising, or a computation of the
acceleration amplitude from the vectorial acceleration.

• Segmentation of the time serie P into sections of interest (i.e. a subset of
P ), which are those likely to contain an activity primitive (e.g. for footstep
detection) or a time span within which a characteristic of the user behavior is
computed (e.g. for the walking speed). The section i is delimited by a start
time tsi and an end time tei within the time series P , yielding a segmented
time series Wi:

Wi = {pts
i

, ...,pte
i

}

A common type of segmentation technique is the sliding window, for periodic
movements such as walking. In that case, the window has a fixed size w1, and
we have tsi = tei − w1.

• Feature extraction. Features are computed on the before mentionned sections
to reduce their dimensionality and to discriminate activities of interest. The
result is a feature vector Xi:

Xi = Ψ(Wi)

• Next, a mapping of the feature vector Xi into an individual behavior bi is
performed:

Xi → bi, pi

2The amount of data taken into consideration prior to the time at which the system takes
a decision usually depends on the duration of the behaviors of interest. For instance, if one
is interested in detecting steps, the amout of data considered would correspond roughly to the
duration of a step (for instance one second, for normal walking).

3We omit the superscript u for legibility reasons.
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This mapping can be a machine learning classifier, to detect sporadic activity
primitives, in which case bi is one of a discrete set of possible individual be-
haviors. The mapping can also be a transformation which yields a continuous-
valued characteristic of the user behavior bi. Usually, the classification yields
the likelihood of the detected activity primitive pi. In fact, many classifiers
can be calibrated to provide probabilistic outputs [8].

• “Null-class” rejection. In cases where the confidence in the classification result
is low, the system may discard the classified activity i based on pi.

The outcome is a time series of tuples {(bui , p
u
) , . . .}, reflecting that the individual

behavior bi is detected with likelihood pi at times tei .
The parameters of the IARC include the thresholds to segment activities or reject

the null class, the set of features, scaling parameters, and the classifier parameters.
They are determined at design time using a training dataset D that contains data
instances (feature vectors) X and corresponding ground truth labels γ indicating
to which individual behavior they correspond:

D = {(Xi, γi)}
N
i=1

Classifiers commonly used for the recognition of modes of locomotion, such as
walking, running, sitting, standing, etc, have been reviewed in Ref. [15], together
with typical features derived from acceleration signals. The classifiers that are typi-
cally used include Support Vector Machines [39], decision trees, k-Nearest Neighbors
or Naive Bayes classifiers [40]. If the temporal unfolding of the sensor signal must
be analyzed, approaches such as Dynamic Time Warping [28] or hidden Markov
models (HMMs) [45] are used.

Note that the IARC does not guarantee a perfect recognition of the individ-
ual activities. Data fusion approaches can further enhance the IARC accuracy by
combining several on-body sensors, e.g. with ensemble classifiers [52]. Higher-level
activity models, reasoning and probabilistic approaches can also be included to fur-
ther enhance the IARC performance [41, 32]. Nevertheless modes of locomotion
can be recognized with accuracies above 80% independently of the on-body sensor
placement [2] and other simple activities are nowadays also well recognized.

3.2. Local, pairwise disparity analysis. A measure of disparity between a pair
of individuals u and v is inferred at time T from the behaviors Bu and Bv. The
disparity value reflects the possibility that the individual behaviors of persons u and
v are the consequence of their participation to a common crowd behavior that the
system must recognize.

Note that the disparity could also be computed directly between a pair of sensor
signals S instead of the behaviors B. However, such a direct correlation between
individual sensor readings may not be sufficient to recognize the crowd behaviors.
This may be due to noise (e.g. resulting from different on-body sensor placement
and orientation, which affect the readings of a 3D accelerometer), variable latency of
the wireless data transmission, or the need to use multimodal sensing to capture the
individual activities that are required to infer a desired crowd behavior. For instance
speech features and body movement may be used to identify the positive or negative
emotional state of the user. Together with the data of other persons, this may be
used to identify whether a person is part of a cheerful crowd or a sad crowd, for
instance at a stadium during a match. Direct sensor correlation may not work due to
the highly diverse way in which persons can express their emotions and the fact that
they are likely not expressing them synchronously. Thus, the role of the IARC is to
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evidence individual activity patterns that are, in combination with those of other
persons, highly discriminative of the crowd behavior to recognize. Nevertheless,
since the crowd behavior recognition chain is a methodological framework, it also
allows for a direct correlation of the sensor data, if this is desired: in that case the
IARC would simply do no processing and Bu = Su.

The disparity is computed as follows:

C
u,v
T = g(Corr(f(Bu, T ), f(Bv, T )))

The functions f , Corr and g depend on the specific crowd behavior that is
considered. Typically, f is a pre-processing function. Corr computes a measure of
similarity between the input data, with respect to the crowd behavior of interest.
Finally, g maps this to a disparity value. We define the disparity to be 0 if the
behaviors of two users are likely resulting from their participation to the same crowd
behavior. Conversely, the disparity tends to 1 if the behaviors are not likely to be
the result of participating to the same crowd behavior. This yields the disparity
matrix CT = [Cu,v

T ]n×n at time T .
The disparity is usually computed in real-time with a sliding window technique.

Thus, f defines a temporal window w2 within which the disparity is computed,
considering only the behavior Bu

t for t ∈ Tu, T − w2 ≤ t ≤ T :

f(Bu, T ) = {Bu
t : t ∈ Tu, T − w2 ≤ t ≤ T}

The functions f , Corr, and g as well as their parameters are determined by an
optimization process at design time based on the training dataset. This process
aims at obtaining lower values Cu,v

T when two individuals u and v take part in the
same crowd behavior at time T , and higher values Cu,w

T when two individuals u and
w do not take part in the same crowd behavior.

3.3. Inferring the global crowd behavior. At this stage, one seeks a global
characterization of the assumed crowd behavior. In particular, we want to identify,
which individuals participate in a common crowd behavior. However, only local,
pairwise information is available. Complex nextwork analysis can be used to find the
global crowd behavior from the local pairwise activity analysis. Thus, the disparity
matrix CT = [Cu,v

T ]n × n (for n persons) is now analyzed to find out what set of
people participates in a common crowd behavior at a given time T .

3.3.1. Graph embedding. A graphical representation of the disparity matrix can lead
to a visual identification of the persons participating in the same crowd behavior.
Each of the n persons is represented by a point in an m-dimensional space. We
define an embedding as the matrix X = [xi,j ]n × m, where (xi,1, . . . , xi,m) is the
row vector of the coordinates of point i in the m-dimensional space. The objective
is to find an embedding such that the (typically Euclidian) distance between points
embedded in the m-dimentional space approximates the pairwise disparity C

u,v
T .

Thus, when the behavior of a pair of users is similar (Cu,v
T is close to 0), the points

should be close in the m-dimentional space. Formally:

‖(xu,1, . . . , xu,m)− (xv,1, . . . , xv,m)‖ . Cu,v

This is reformulated as an optimization problem, where an error term, the raw
stress σr, is minimized. This raw stress may be defined by:

σr =
∑

u,v

[

‖(xu,1, . . . , xu,m)− (xv,1, . . . , xv,m)‖ − Cu,v
]2
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Multi-dimensional scaling as stress minimization technique often relies on the indi-
cated stress measure [6], however alternative measures of stress may be used, such as
Stress-1 or the sum of absolute differences. The specific stress which is chosen does
not affect the generality of the methodological framework which we propose. It is
during the design phase of the recognition system that the appropriate stress mea-
sure is selected according to its influence on the resulting recognition performance
(see Sec. 3.4).

Various approaches can be used to minimize the stress. For example, multi-
dimensional scaling is a common approach to find an embedding of a disparity
matrix in an m-dimensional space [6]. The disparity matrix subtracted from the
identity matrix can also be interpreted as an adjacency matrix. Numerous graph
drawing approaches can then be used as well. With force-directed methods, the
graph drawing problem is converted into a physical simulation problem. Thus, the
disparity matrix can be interpreted as a graph with a system of forces acting on the
edges. A minimum energy state is finally found by simulating the physical evolution
of the system. For graph drawing, different systems of forces have been proposed,
see e.g. Refs. [12, 16]. In the end, the visual representation provides a qualita-
tive indication of persons participating to a crowd behavior, with individuals close
together in the embedding more likely to participate in the same crowd behavior.

3.3.2. Graph clustering. Instead of a qualitative approach, we propose to use graph
clustering methods to objectively identify clusters of individuals within the adja-
cency matrix. A large number of graph clustering approaches can be used for that
purpose [43]. Again the selection of the effective clustering method is based on an
optimization done using a training dataset (see Sec. 3.4). After their application,
the clusters identified in the graph determine which set of people are identified by
the system to participate in a common crowd behavior.

3.4. Validation and operation. During design time, the performance of the
crowd behavior recognition is optimized on a training dataset. This training dataset
contains on-body sensor data collected from an ensemble of persons while exhibiting
various crowd behaviors, and ground-truth information about the activities taking
place. The optimization of the recognition system is performed by selecting the
appropriate parameters and methods within the crowd behavior recognition chain.
This includes optimizing the IARC (see Sec. 3.1), the local pairwise disparity met-
rics (see Sec. 3.2), the graph embedding including the stress definition and the graph
clustering method (see Sec. 3.3). After optimization the system is evaluated on a
testing dataset that also includes ground truth information, in order to estimate the
recognition performance (training and testing are performed with cross-validation
to ensure generalization of the results to unseen data). During the application of
the system, the performance is assumed to be similar to that obtained at design
time. This is ensured by acquiring representative training and testing datasets.

The graph embedding and its visualization only provides a qualitative indication
of the performance of the recognition system. For an ojective measure of perfor-
mance, the graph clustering approach is more appropriate. The system’s perfor-
mance can be defined as the proportion of individuals, who are correctly identified
to belong to a common crowd behavior, according to the ground truth.
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Other measures typically used in machine learning can also be considered, such
as sensitivity, specificity, or ROC4 curves to identify the influence of a parameter on
the performance of the system. We refer to Refs. [11, 48] for alternative performance
measures.

4. Application: Recognition of persons walking together. We illustrate the
crowd activity recognition chain by identifying persons walking together in a group.
Technical details are provided in Ref. [49].

During our experiment, a number of participants walk in different “configura-
tions”: alone, or in groups of various sizes. This experiment was a medium-size
experiment performed in a building, where the participants could show a natural
behavior.

4.1. Experimental setup. Ten participants were instrumented with 3-axis ac-
celerometers placed at their hips (see Fig. 1). These sensors measured the acceler-
ation at 64Hz.

In order to ensure a realistic realization of various kinds of collective behavior, we
instructed the participants individually to perform specific tasks. We ensured that,
as a result of executing these tasks, a set of natural collective behaviors emerged.
In particular, the following behaviors are considered:

• Walking independently: Each person walked in the floor of the building indi-
vidually. Thus, the movement of the participants person was independent of
each other. The duration of the related recording was 166 seconds.

• Walking in a single group: All participants formed a coherent group, fol-
lowing one of the participants showing the way. This emulated a group of
friends walking through the city. The duration of the related recording was
56 seconds.

• Walking in two (or more) groups: The participants were asked to form sub-
groups. Each subgroup was independent from the others. The participants
belonging to one subgroup followed a particular person. This emulated differ-
ent groups of friends with different interests and walking in different directions.
The duration of the related recording was 174 seconds with two subgroups and
120 seconds with three subgroups.

The participants walked on flat surfaces, upstairs, downstairs, entered and exited
rooms, and walked along narrow corridors or open spaces. The overall scenario
simulated a broad set of situations that arise in everyday life, where people meet,
walk together, split and eventually walk to their respective destinations. To trigger
situations, where participants walked in groups, we instructed them to follow a lead
participant. However, no additional constraints were imposed. Neither were they
asked to walk in a synchronized way nor did they have to maintain a particular
structure in the group.

The task of the crowd behavior recognition system was to identify, what individ-
uals participated in a collective behavior. Here, the collective behavior of interest
was restricted to walking in a group. However, in a more complex situation (see
Fig. 2), a more diverse set of collective behaviors may be observed.

4Receiver operating characteristic: a graphical plot of the sensitivity, or true positive rate, vs.
false positive rate (1 - specificity or 1 - true negative rate), for a binary classifier system as its
discrimination threshold is varied [14].
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During the experiment, the data of the acceleration sensors were recorded to-
gether with annotations by the experimenters describing the behaviors of the par-
ticipants. These annotations provided the ground truth to assess the performance
of the system.

4.2. Experimental sensor data acquisition. First, we acquired the magnitude
of the acceleration determined by accelerometers worn by the subjects. The result-
ing time series Su = {su0 , s

u
1 , . . .} were the input of the crowd behavior recognition

chain. In Fig. 4 we illustrate these time series. Some data loss occured for subjects
7 and 8 around time 125, and for subject 6 at time 350. This is typical for real-
world recordings, and a crowd behavior recognition system ought to be robust to
such situations. Note that it is possible, but challenging, to visually identify from
the acceleration data, what persons belong to a walking group.
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Figure 4. Magnitude of the acceleration measured by an ac-
celerometer placed at the hips of 10 subjects (S1 to S10) in an
experiment of 400 seconds duration. The partipants start by walk-
ing independently of each other. Then, they walk together as a
single group of 10 persons. Afterwards, the group splits into two
subgroups of 5 persons (S1 to S5 and S6 to S10). The two groups
then merge to form a single group of 10 persons. Finally, the par-
ticipants disperse and walk independently again.
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4.3. Individual activity recognition chain. Several individual behaviors may
be used to identify, who belongs to a group of persons walking together. In Table 1,
we indicate a few characteristics of the individual behavior which can be used. Here,
we rely on the fact that the speed of individuals in a group is approximately identical
and varies in a similar manner for the members of the group. We use an individual
activity recognition chain that provides a continuous quantification of the behavior
of the subject, which is related to the walking speed. We do not attempt to estimate
the walking speed per se. Instead we use the energy in the acceleration signal as a
proxy [44].

The characteristics of the individual activity recognition chain are thus:

• Preprocessing with outlier removal, and imputation of missing sensor data;
• Windowing of the signal with a sliding window of size w1 = 15 seconds;
• Feature extraction by computing the variance of the acceleration in the win-
dow, serving as proxy for the walking speed;

• The output of the IARC is the continuous valued signal Bu
t computed above,

i.e. the variance of the magnitude of the acceleration of subject u computed
on a 15-second-long window ending at time t. Note that this IARC does not
implement a classification or a null-class rejection as we are interested in a
continuous quantification of the walking speed.

In Fig. 5, we illustrate the output of the individual activity recognition chain, i.e.
the time series Bu. Note that the consequences of the missing data in the sensor
signals are clearly visible, for instance for subject 6 between times 350 and 400.

In contrast to raw signals, a visual inspection of the variance allows one to identify
similarities between the behaviors of the subjects belonging to the same group. For
instance, there are similar trends in the change of variance, e.g. between 150 and
200 seconds for subjects S6 to S10, and between 200 and 250 seconds for subjects
S1 to S5.

4.4. Local, pairwise disparity analysis. Based on the prior knowledge of the
individual’s behaviors within a group, and supported by the inspection of the in-
dividual behavior characteristics presented in the previous section, we define the
pairwise disparity as a measure of the correlation between the acceleration variance
measured for two subjects u and v.

Following Sec. 3.2, we define f as a windowing function of duration w2 = 15
seconds. The correlation Corr is the maximum value of the cross-correlation of
Bu

t and Bv
t (when subtracting the mean value from the signal). Typically, there

is some time lag between behavioral changes of two persons. For instance, when a
group accelerates, one person may follow the movement more promptly than others.
Thus, the maximum of the cross-correlation may not be found for a zero lag. For
this reason, we look for the maximum of the cross-correlation with up to one second
time lag. g is used map the correlation value to a disparity and it yields Cu,v

T , the
disparity between user u and v at time T .

The final operation consists in a temporal filtering. This exploits the fact that a
person cannot change its membership of a group at the sample rate of the sensors
(64Hz). Thus, a more robust estimation of the disparity between two subjects can
be obtained by averaging the disparity values Cu,v

T over a period TF :

C̄u,v =
∑

T∈TF

C
u,v
T
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Figure 5. The individual activity recognition chain computes a
continuous behavioral characteristic, here the variance of the ac-
celeration magnitude. This serves as a proxy estimating the speed
of the subjects. The variance is computed within a 15-second slid-
ing window. In order to deal with discontinuities at the edges of the
signal, we used a common signal processing approach that mirrored
the signal at the edges. This allows to apply the sliding window
approach everywhere.

The side effect of this filtering is a higher latency of the system.
For visualization purposes, the time intervals TF within which the disparity is

computed are: i) the time interval where the subjects walk indendently, ii) the
time interval where the subjects walk as a single group, iii) the time interval where
the subjects walk in two groups, and iv) the time interval where the subjects walk
in three groups. This is similar to the operation of the crowd behavior recogni-
tion chain on “segmented” data, where a well-defined kind of collective behavior
is displayed within the data segment. A “continuous” approach is possible (but
not presented here), where TF is a fixed-length sliding window within which the
averaged disparity value is computed.

In Fig. 6 we illustrate the combined disparity value for four kinds of collective
behaviors: i) walk independently, ii) walk as a single group, iii) walk as two groups,
and iv) walk as three groups. A visual inspection shows that the disparity is low
when individuals walk as a single group, compared to when they walk indepentently
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from each other. The disparity matrix also shows a lower disparity for individuals
walking together as members of the same group.

4.5. Inferring the global crowd behavior. The global crowd behavior can be
inferred qualitatively by visualizing the disparity matrix as a graph. In Fig. 6 we
present the disparity matrix as a graph resulting from multidimensional scaling (see
Sec. 3.3.1).

In this representation, each node corresponds to one subject. Neighboring nodes
have similar behavioral characteristics, and are thus more likely to participate in
the same crowd behavior. One can recognize two and three distinct groups of nodes
in the situations where the subjects walked in two or three groups. Moreover, when
the subject walk in a single group the nodes are closer than in situations where the
subjects walk independently from each other.

A quantitative validation is performed by clustering the graph obtained before.
Using a bottom-up clustering approach based on triadic relations5 we obtain the
clustering indicated in Fig. 6.

When two nodes belong to the same cluster, our clustering approach predicts
that the corresponding persons participate in the same crowd behavior. In fact,
the clustering correctly identifies one, two and three clusters, when the subjects
walk in a single, two or three groups. The verification of the affiliation of the
subjects to the clusters shows that, in this example, the prediction of their group
membership is correct for all subjects. In the case of independent walking, a single
cluster is identified, as in the situation, where all subjects walk in a single group.
In that case, the prediction derived from our clustering is that all the subjects
perform the same collective behavior. However, the subjects do not form a group
but “walk independently”. In order to account for this, further postprocessing
is needed, e.g. requiring minimum link strengths between nodes in order to be
considered as indicator of group membership. Such a thresholding must be selected
by training and testing the recognition chain on separate datasets, using cross-
validation techniques.

Another quantitative evaluation consists in measuring the performance of the
recognition chain in identifying whether two users u and v are walking as part of
the same group. This is a binary classification problem solved by comparing Cu,v

to a detection threshold Dth:
Cu,v ≤ Dth → persons u and v belong to the same group,
Cu,v > Dth → persons u and v are not in the same group.
In Fig. 7 we illustrate how a ROC curve can be used to analyze the influence of
Dth on the sensitivity and specificity of the recognition chain [14]. It also shows the
infludence of the window size w2. Such a quantitative measure can be used during
the design of the collective behavior recognition chain for parameter optimization.

5. Discussion. There are two key technical aspects that influence the choice of
methods for the machine recognition of crowd behavior.

First, for reasons of costs and in order to avoid a saturation of the communica-
tion network, the amount of data transferred from the mobile devices to a server, or
exchanged between devices, must be limited. Thus, local data processing must be
performed on the device to spot and transmit only the most relevant information to
infer the crowd behavior. In the crowd behavior recognition chain, this process is

5The implementation we use is the UCINET F-group clustering. Note, however, that other
clustering approaches may be used [43].
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Figure 6. Four collective behaviors of 10 persons are considered:
i) each person walks independly of each other, ii) the 10 persons
walk as a single group, iii) the persons walk in two groups with 5
member each, and iv) the persons walk in 3 groups with 4, 3 and 3
persons. For each situation, the disparity matrix resulting from the
collective behavior recognition chain is indicated (top). A bright
color represents a low disparity. A qualitative validation of the
results of the recognition chain is represented by a graph obtained
through multidimensional scaling (middle). In this representation,
the lower the disparity between two persons and the closer are the
corresponding two nodes, and the more likely is their behavior to
be the result of participating to the same crowd behavior. Note
the close proximity of the nodes belonging to the same groups.
Graph clustering is used to objectively identify nodes belonging
to the same cluster (bottom). Two nodes belonging to the same
cluster are assumed to participate in the same crowd behavior. The
identification of the group membership worked correctly when the
persons walked in 1, 2 or 3 groups. The color scale and graph scale
is identical for all plots.

taken care of by the individual activity recognition chains (IARC), that are imple-
mented in the sensor system worn on-body. The IARC is used to identify, from all
available on-body sensors, only the key individual behavior characteristics that are
relevant for the problem of crowd behavior recognition. Only these characteristics
are transferred, rather than the raw sensor data.

Second, a low latency between the emergence of the crowd behavior and its de-
tection by the system is desired for most applications of crowd behavior recognition.
Thus, the pattern recognition methods must be optimized to perform accurate clas-
sification based on very limited amounts of data. In the approach outlined, here the
processing occurs over sliding windows, whose size define the latency of the system.
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Figure 7. ROC curve for different cross-correlation window sizes
obtained by varying a detection threshold. The method is used
here to identify whether two persons are walking as part of the
same group, based on the measure of disparity.

The process of recognizing the crowd behavior from sensor data consists in se-
lecting the statistical model (among several competing ones) which does most likely
explain the data collectively reported by the mobile devices. In a naive approach,
for an ensemble of n persons and a single considered crowd behavior (walking in
a group), there should be as many models as there are subsets of individuals who
may participate in the crowd behavior. Each model would describe, for each indi-
vidual, the distribution of data reported by the mobile devices if he participated in
the crowd behavior or not. This is obviously computationally and experimentally
intractable. Therefore, we reduced the complexity by devising models describing
the pairwise distribution of data when a pair of persons participates in the same
crowd behavior or not. We quantified this by a disparity measure. While this still
requires

(

n

2

)

pairwise comparisons, in a practical application, geographical cluster-
ing from GPS data can be used to limit the comparisons to users within a given
physical neighborhood. In our approach, the pairwise analysis is followed by a graph
representation and clustering. It fuses the pairwise disparities into a global classi-
fication result that indicates which persons - among all those in the experiment -
participated in the same crowd behavior.

In this work, we formalized a series of processing steps (the “crowd behavior
recognition chain”) that was used to infer collective behaviors from body-worn sen-
sors. This series of processing step defines a framework, in which other methods
used to infer collective behaviors may be cast as well. It does not prescribe meth-
ods at each step, although we gave one example, namely the recognition of people
walking in a group. In the following, we would like to highlight some avenues for
future investigation and new methods:

• Learning by demonstration or analytical models: In order to devise the models
indicating whether a pair of users does or does not participate in the same col-
lective behavior (hereafter called “pairwise relatedness models”), we followed
a learning by demonstration approach. We recorded data from an ensemble of
persons exhibiting different kinds of crowd behavior and we derived a data-
driven model from the recordings. An alternative approach may be to derive
pairwise relatedness models from existing physical models of crowd dynamics
[21, 9, 3, 53, 20]. This may reduce the experimental cost. However, current
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crowd dynamics models do not consider on-body sensor measurements. An
avenue for further investigation therefore consists in developing crowd dynam-
ics model that include such measurements, for instance by performing rigid
body dynamics simulation and providing measurements of sensors placed on
the virtual body. Another kind of simulation models could include fine-grained
action primitives such as those indicated in the top of Table 1. For example,
the simulation model could indicate the occurence of stepping, or turning,
without modeling sensor measurements. This approach is computationally
lighter and it is applicable, when the action primitives that are reported by
the simulation correspond to those that can be accurately recognized from
mobile sensors using an IARC.

• Hierarchical structure of crowd behavior, network of networks: In a large-scale
scenario, it is unlikely for each person to participate in exactly one single crowd
behavior. Thus, while a number of people may form a group locally, this group
and other groups may be participating in a common crowd behavior on a larger
scale. In the same way, a person may participate to multiple crowd behaviors,
such as forming a lane, yet walking in a group with its close neighbors [34].
The analytical methods involved include e.g. multiresolution or multiscale
models, hierarchical graph clustering, and statistical methods to characterize
complex behavioral membership relationships. For example, Barabási et al.
propose the concept of network of networks [17].

• Decentralized approaches and information spreading: In this work, we assumed
a centralized analysis of the pairwise similarity of individual behaviors. A de-
centralized approach may be prefered, especially for emergency situations.
Such an approach would assume only local communication between neighbor-
ing individuals. In a decentralized version of the paradigm presented here, the
pairwise relatedness would be computed between two individuals in their lo-
cal communication range. Thus, each device would determine the relatedness
of behaviors of neighboring individuals. This pairwise knowledge would be
spread through the network and aggregated such that each device would gain
sufficient knowledge of the relation between any relevant pair of users, thus
being able to infer with which other users it participates in a collective behav-
ior, even though it is not in direct communication range [26].6 This links to
these following research avenues: methods for the robust and efficient global
spreading of information through a locally connected network; modelling of
information spreading; and robust distributed data aggregation.

• Visualization and representation: Once crowd behaviors have been identi-
fied, they must be visualized or semantically represented in a compact but
clear manner. This is especially important for applications of crowd behav-
ior recognition, such as real-time situational awareness in cases of emergency.
The related research avenues include devising effective symbolic representa-
tions for certain kinds of crowd behavior, and visualizing hierarchial structure
of crowd behavior. A key challenge is to devise find visualization methods
that can be applied to massive amounts of data. For instance, a symbolic

6For instance, users A, B and C walk together. A and C are not in communication range,
but they are in range with B. Locally the device of user A will find that A participates in the
same crowd behavior as B, B will find that it participates with A and C, and C will find that it
participates with B. Eventually, the devices of A, B, and C must all know that their user participate
to a single, identical crowd behavior: they walk as a group.
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graphical representation of the the crowd behavior may represent a group of
persons as a single node on a network. Similar representations are needed for
stampedes, ensembles of persons forming lanes, or queues of people, etc.

6. Conclusions. So far, most approaches to crowd behavioral analysis relied on
video cameras [42, 23, 53, 24]. This limits the range of observation to the area
covered by the camera system, although it provides very rich information.

Recently, mobile technologies (e.g. mobile phones or wearable sensors) have been
proposed to uncover social networks [35] and for computational social science [30].

Mobile sensing has a key advantage: it is not geographically restricted to a
specific instrumented area.

Another major advantage of mobile sensing results from the fact that the sensors
are part of all modern mobile phones. The set of current sensors includes, for
example, movement and orientation sensors, and GPS sensors. They provide rich
additional sources of information [29]. The interpretation of these sensor data can
provide objective information about the activities of the user of the device [2].

Mobile sensing allows one in principle to collect datasets comprising movement
patterns of individuals on a large scale (e.g. throughout a city, or even a country).
This has the potential to deepen our understanding of the emergence of certain
patterns of crowd dynamics and opens new perspectives for crowd management.
These datasets can be richly annotated, as the information of on-body sensors can
be easily analyzed to infer movement characteristics of each person, such as the
walking speed, turns, or single steps. A similar analysis based on video recordings
analysis would be challenging and time consuming, e.g. due to occlusion.

¿From an application perspective, mobile sensing allows the machine recognition
of crowd behaviors, which was the object of this paper. This opens the way to
situational awareness and crowd management in cases of emergency [20]. It also
enables consumer applications, such as smart event guides that provide information
about crowd densities or excitement, to help participants select areas that fit their
tastes best [51].

The automatic detection of crowd behavior from mobile sensors is a novel field
of research. It builds on the advances obtained in the last five years in the recog-
nition of face-to-face interactions with mobile sensors. In this article, we showed
that automatic recognition of crowd behavior is possible from mobile sensors. We
proposed a recognition methodology of tractable complexity that combines local
pairwise activity analysis and global graph clustering. Furthermore, we illustrated
the processing principles with the example of recognizing whether people walk to-
gether in groups. Our current work investigates the recognition of other crowd
behaviors, such as queuing and clogging (see Fig. 2).

Besides conceptual novelties, crowd behavior sensing requires novel approaches
to infer structure at a global scale based on local interaction and pairwise disparity
information. Our initial approach is based on graph theoretical concepts. Future
work could investigate methods from time-series analysis and knowledge discovery
as an alternative. Moreover, network analysis techniques may give further insights
into the role of specific individuals in the crowd behavior, such as e.g. leadership,
by computing measures of centrality such as betweenness or closeness. Future work
may also consider predicting the temporal dynamics of the crowd behavior or iden-
tifying anomalies. This may play a key role to predict and prevent situations such
as stampedes.
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As often, novel developments give rise to novel methodological challenges. We
discussed a few of the fields where theoretical and applied mathematics come into
play. In conclusion, we emphasize, that besides video-based approaches, mobile
sensing has equally great potentials as novel tool for crowd dynamics analysis, with
implications for a better understanding of collective human behaviors for crowd
management and urban plannning.
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[3] N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic

macroscopic models, Mathematical Models and Methods in Applied Sciences, 18 (2008),
1317-1345.

[4] M. Benocci, C. Tacconi, E. Farella, L. Benini, L. Chiari and L. Vanzago, Accelerometer-based

fall detection using optimized zigbee data streaming, Microelectronics Journal, 41 (2010),

703–710.
[5] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan and D. Ri-

boni, A survey of context modelling and reasoning techniques, Pervasive and Mobile Com-
puting, 6 (2010), 161–180.

[6] I. Borg and P Groenen, “Modern Multidimensional Scaling: Theory and Applications,”
Springer Series in Statistics, Springer-Verlag, New York, 1997.

[7] M. Buchanan, The science of subtle signals, Strategy+Business, 48 (2007), 68–77.
[8] I. Cohen and M. Goldszmidt, Properties and benefits of calibrated classifiers, Proc. Knowledge

Discovery in Databases, 2004, 125–136.

[9] V. Coscia and C. Canavesio, First-order macroscopic modelling of human crowd dynamics,
Math. Mod. Meth. Appl. Sci., 18 (2008), 1217–1247.

[10] N. Davies, D. P. Siewiorek and R. Sukthankar, Special issue: Activity-based computing, IEEE
Pervasive Computing, 7 (2008), 20–21.

[11] R. O. Duda, P. E. Hart and D. G. Stork, “Pattern Classification,” Second edition, Wiley-
Interscience, New York, 2001.

[12] P. Eades, A heuristic for graph drawing, Congressus Numerantium, 42 (1984), 149–160.
[13] N. Eagle, A. Pentland and D. Lazer, Inferring friendship network structure by using mobile

phone data, Proc Natl Acad Sci U S A, 106 (2009), 15274–15278.
[14] T. Fawcett, “ROC graphs: Notes and practical considerations for researchers,” Tech. report,

HP Laboratories, 2004.

[15] D. Figo, P. Diniz, D. Ferreira and J. Cardoso, Preprocessing techniques for context recognition

from accelerometer data, Pervasive and Mobile Computing, 14 (2010), 645–662.

[16] T. M. J Fruchterman and E. M. Reingold, Graph drawing by force-directed placement, Soft-
ware - Practice and Experience, 21 (1991), 1129–1164.
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in car manufacturing, IEEE Pervasive Computing, 7 (2008), 42–50.

http://www.ams.org/mathscinet-getitem?mr=MR1988582&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2387817&return=pdf


24 DANIEL ROGGEN, MARTIN WIRZ, GERHARD TRÖSTER AND DIRK HELBING
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