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Abstract—The ubiquitous presence of smartphones provides
a new platform on which to implement sensor networks for
ITS applications. In this paper we show how the embedded
sensors and GPS of a smartphone can be used to recognize
driving manoeuvres. Smartphone-based driving behaviour mon-
itoring has applications in the insurance industry and for law
enforcement. The proposed solution is suitable for real-time
applications, such as driver assistance and safety systems. An
endpoint detection algorithm is used on filtered accelerometer
and gyroscope data to find the start- and endpoints of driving
events. The relevant sensor data is compared against different sets
of manoeuvre signal templates using the dynamic time warping
(DTW) algorithm. A heuristic method is then used to classify a
manoeuvre as normal or aggressive based on its speed and closest
matching acceleration and rotation rate templates.

I. INTRODUCTION

Worldwide, more than a million deaths are caused by road
accidents per year [1]. The World Health Organization predicts
that road fatalities will rise to become the fifth leading cause of
death by 2030 [1]. Research done in the United States shows
that, in more than 50% of fatal road accidents, unsafe driving
behaviours were involved [2]. Road accidents are caused by a
variety of factors, but aggressive driving behaviour is one of
the major causes.

In the last decade, various companies have been developing
solutions to monitor a vehicle and its driver’s behaviour [3]–
[5]. However, these solutions are expensive and intended for
fleet management, and there is little incentive for individuals
to buy them. However, the increasingly ubiquitous presence
of smartphones – with their variety of sensors – presents the
possibility to easily implement vehicle monitoring systems on
a large scale.

Most modern smartphones have a variety of embedded
sensors — typically an accelerometer and gyroscope, and light,
proximity and magnetic sensors, as well as a microphone,
camera and Global Positioning System (GPS). This variety of
sensors make many sensing applications possible. An example
of such an application is gesture recognition, which is used to
answer a call when bringing the phone to one’s ear, or paging
through a document by the wave of a hand [6], [7]. In a similar
way, different activities such as walking, running, cycling and
driving can be detected and classified using the inertial sensors
of a phone that is carried in a user’s pocket [8].

Vehicle monitoring is an attractive sensing application for
smartphones. For instance, drivers can be monitored to make
them aware of their potentially dangerous driving behaviour.
Anonymous participatory sensing could also enable identifying
areas where accidents are more likely to occur [9].

Smartphones’ connectivity also allows for the implemen-
tation of other vehicle monitoring features, such as traffic
monitoring, traffic re-routing and accident reporting. Accident
detection is possible using only the sensors in a modern
smartphone, as shown by White et al. [10]. The swift automatic
reporting of road accidents to authorities can prevent fatalities
by minimizing the response time of emergency services. Addi-
tionally, using a machine-to-machine (M2M) communication
platform would allow the redirection of other drivers away
from an accident. Notifying drivers that they are approaching
an accident scene could also increase their alertness and warn
them to slow down, thereby preventing further accidents.

The remainder of this paper is organized as follows: Section
2 presents the current state of the art of smartphone-based
monitoring systems; Section 3 describes the design of a
proposed driving manoeuvre recognition system; Section 4
provides the experimental approach and results; and Section 5
presents the concluding remarks.

II. STATE OF THE ART

In this section, a brief overview is given of the current
literature on smartphone-based monitoring systems used in
vehicles. The literature mentioned is mostly relevant to driver
behaviour monitoring, and some systems also employing road
condition monitoring. The techniques and sensors used in the
more recent projects are listed in Table I.

Johnson and Trivedi [9] developed one of the first complete
driver behaviour monitoring systems on a smartphone. Their
system can detect and classify a number of aggressive and
non-aggressive driving manoeuvres when placed in a vehicle,
by only using the internal accelerometer, gyroscope, magne-
tometer and GPS of a smartphone. Although the system can
identify aggressive driving manoeuvres, it does not draw any
conclusions from them. Their intent is to use the system to
support a holistic driver assistance system (DAS) by providing
it with additional information.
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TABLE I
SUMMARY OF TECHNIQUES AND SENSORS USED BY SMARTPHONE-BASED

VEHICLE MONITORING SYSTEMS.

Reference Detection technique Sensors used

Mohan [11] pattern matching, orienta-
tion calibration

accelerometer,
microphone, GPS

Dai [12] pattern matching, orienta-
tion calibration accelerometer, gyroscope

Johnson [9] endpoint detection, DTW accelerometer, gyroscope,
magnetometer, GPS

Eren [13] endpoint detection, DTW,
Bayesian classifier

accelerometer, gyroscope,
magnetometer

Fazeen [14] pattern recognition accelerometer, GPS

White [10] pattern matching accelerometer,
microphone, GPS

Eren et al. [13] also implemented a smartphone-based
driving manoeuvre detection system similar to Johnson and
Trivedi’s [9] approach. However, they expanded the system
by adding a driving style characterization feature that labels
a person’s driving style as either safe or unsafe with a given
probability.

Dai et al. [12] developed a smartphone-based system that
specifically detects drunk driving. This is achieved by de-
tecting and positively identifying a combination of dangerous
driving manoeuvres associated with drunk driving.

Fazeen et al. [14] implemented a DAS entirely on a
smartphone. The system records and analyses various driver
behaviours and external road conditions, and advises a driver
on dangerous vehicle manoeuvres. In addition to the driver
behaviour monitoring feature, Fazeen et al. [14] also added a
road condition characterization and mapping feature to their
system that uses a smartphone’s GPS and accelerometer.

Mohan et al. [11] developed a comprehensive road and
traffic monitoring system, named Nericell, which also employs
smartphone sensors to detect certain driving manoeuvres and
road conditions.

White et al. [10] developed the WreckWatch accident detec-
tion system for a smartphone. It detects a vehicle collision by
applying threshold filtering to accelerometer and microphone
samples from the smartphone. Data recorded before and during
an accident is sent via GSM to a centralized server. Important
information about an accident can then be relayed to the
relevant authorities from a stored database on the server.

The literature distinguishes between driving manoeuvre
recognition and driving behaviour classification. A system
could detect various manoeuvres, but not necessarily infer any-
thing from them, whereas another system may be able to clas-
sify a driver’s behaviour from detected driving manoeuvres.
These different systems demonstrate the variety of driving
behaviour classifications that can be made. A person’s normal
driving style can be classified as safe or risky, fuel-efficient
or inefficient, skilled or unskilled — and recommendations
can be given accordingly to improve their driving. On the
other hand, a person’s driving behaviour can sometimes differ
from normal due to certain circumstances. A person could be
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Fig. 1. Qualitative comparison of the systems’ accuracy versus simplicity.

driving under the influence of alcohol, drugs or other sensory
impairments. In such situations drivers could be warned of
their dangerous behaviour, and with their consent, the relevant
authorities could be notified of their location.

A. Accuracy versus simplicity

It is impractical to quantitatively compare the performance
and power consumption of the different systems. All of the
systems were implemented on different smartphones that have
varied sensors and computing power. The test studies were
performed in various countries with different road and traffic
conditions. Their methods of establishing the ground truth for
tests were not necessarily the same and could vary due to
subjectivity.

Figure 1 shows a qualitative comparison of the accuracy
versus simplicity of the different systems. A system that
achieves high detection accuracy with a simple algorithm is
considered superior. The assumption is that a simpler system
uses less resources and therefore consumes less power. The
experimental and empirical test results of the systems as
given in each paper were used to compare detection accuracy,
although the testing procedures differed as mentioned. The
perceived simplicity of each system is based on what each
system is trying to detect, what sensors it uses and how its
algorithms function.

WreckWatch of White et al. [10] is empirically proven to be
virtually 100% accurate and is the simplest system, because
it only detects accidents and nothing else. The road condition
monitoring feature of Mohan et al. [11] is more accurate than
that of Fazeen et al, and its implementation is simpler.

The drunk driving detection of Dai et al. [12] is the most
accurate, achieving a false negative rate of virtually 0%. Dai et
al. [12] implemented a simple yet effective pattern matching
approach that requires very little computation. Essentially, only
the difference in subsequent values on the relative longitudinal
and latitudinal axes are calculated. If the difference exceeds a
certain threshold, an aggressive driving manoeuvre is assumed.
The algorithm used by Nericell of Mohan et al. [11] works in
a similar manner. Both systems consume less than 12% of the
phone’s battery life-cycle.

In contrast, Johnson and Trivedi [9], as well as Eren et
al. [13], implemented a more complex pattern recognition
approach derived from speech recognition techniques. Their
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Fig. 2. Smartphone and vehicle coordinate system.

systems perform well, achieving a true positive rate of 97%
and 93%, respectively. Although it can not be explicitly proven
here, the simpler approaches are likely to consume less power
while achieving similar performance to the more complex
approaches. Arguably, Dai et al. [12] accomplished the same
functionality as Eren et al. [13] with a simpler algorithm, as
both systems can infer a certain aspect of a driver’s behaviour
from detected driving manoeuvres.

The systems of Mohan et al. [11] and Dai et al. [12] were
developed on hardware and software that are now considered
obsolete, yet their systems were simple and accurate. This
suggests that in the last decade, the accuracy of embedded
sensors used in smartphones has either not improved signifi-
cantly, or it does not result in better manoeuvre recognition.
The computing power and efficiency of modern smartphones,
however, has increased dramatically, which provides headroom
for more complex solutions. Therefore there is still merit in
implementing a more complex approach as used by Johnson
and Trivedi [9]. Especially if the accuracy could be improved
to such an extent as to have very few false negatives (FN) or
false positives (FP).

B. Contributions and best practices

In terms of contributions made, Dai et al. [12] and Mohan
et al. [11] were the only authors to implement a procedure to
calibrate the system to any arbitrary orientation of the smart-
phone. All of the other systems assume that the smartphone is
placed in a fixed position within a vehicle. Automatic virtual
reorientation of a smartphone’s axes to a vehicle’s axes is
considered a best practice for any smartphone-based vehicle
monitoring system.

III. SYSTEM DESIGN

The proposed algorithmic approach used to detect aggres-
sive driving is discussed in this section. The hardware setup
used to collect driving data with which the system was
developed and tested is also described.

The vehicle’s axes are denoted as x′, y′ and z′ in the
directions as shown in Figure 2. The smartphone’s axes are
denoted as x pointing towards the right and y to the top
from the phone’s front, while z points out orthogonal to the
screen. The system assumes the smartphone’s axes are aligned
with the vehicle’s axes. Readings from the accelerometer’s
three axes (x, y, z) are denoted as ax, ay and az . Readings
from a gyroscope’s three axes are denoted as ωx, ωy and

ωz . Accelerometer readings are expressed in terms of the
acceleration from gravity, g (9.8 m/s2), and gyroscope readings
in terms of rotation rate (rad/s).

A. Aggressive driving model

Aggressive driving is considered as deliberate behaviour by
a driver to perform any manoeuvre in such a manner that
increases the risk of a road accident. Such deliberate driving
behaviour often involves exceeding the speed limit.

In developing countries, such as in Africa, roads and vehi-
cles are generally not as well maintained as in North America
and Europe. Speeding is thus a bigger contributing factor to
road accidents in Africa then typically elsewhere. Enforcing
speed limits in rural areas proves to be difficult, because of
typical budgetary constraints of law enforcement agencies in
Africa. Making drivers aware of the danger of speeding has
always been a top priority of road safety initiatives, such
as the Arrive Alive campaign in South Africa. Drivers are
unfortunately not always aware they are driving too fast for
the shape of the road they are on. The goal is therefore to
make a driver aware of unsafe speeds for the specific road
they are on using their own smartphone.

Our aggressive driving model is consequently based on the
angle of a turn, the lateral force exerted on the vehicle and
it’s speed through the turn. The gyroscope, accelerometer and
GPS of a smartphone is used accordingly to obtain the required
information.

B. Recognition algorithm

For the recognition of lateral driving manoeuvres, the ax
acceleration and rotation rate ωz are used. The accelerometer
and gyroscope are continuously sampled at a rate of 20 Hz,
in line with [9].

Figure 3 shows a block diagram of the system. The ac-
celerometer output is band-pass filtered to remove sensor noise
and the gravitational force vector, as its direction changes
slowly when the vehicle’s roll and pitch changes while driving.
The gyroscope output is low-pass filtered to remove noise.

In order to detect manoeuvres, the start and end of driv-
ing events are determined by using the endpoint detection
algorithm. For lateral manoeuvres, a simple moving average
(SMA) of ωz is continuously calculated over 40 samples. The
beginning of a lateral event is detected if the SMA goes above
a set threshold. The previous 40 and succeeding samples of
ωz are concatenated until the SMA falls below the threshold,
signifying the end of the event. The samples of ax are also
saved during the same time window. An event is dismissed
if it is less than 2.5 or more than 15 seconds long. This is
to keep the system from hanging on potentially erroneous or
noisy data. The length boundaries were established empirically
to detect most valid events.

When a valid driving event has been detected, the signals
recorded during the event are compared to a set of templates
using the dynamic time warping (DTW) algorithm [15]. DTW
finds an optimal alignment between two signal vectors with
different lengths. Consider a matrix of the Euclidean distance
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Fig. 3. Block diagram of the system.

between each point of two signal vectors, as seen in Table
II. Both vectors start at the bottom left corner. An optimal
warping path constitutes the minimum sum of distances, while
adhering to monotonicity, boundary and step size conditions.
The template with the lowest minimum-distance warp path to
the detected event is the closest match.

C. Empirical classification

The acceleration and rotation rate templates are discrete
Gaussian signals with fixed lengths that were created from
collected driving data. The ωz templates indicate the angle
of a turn. It allows the system to classify a left or right bend
from 1 to 3, based on the closest matching ωz template — with
1 indicating an easy bend, 2 a medium bend and 3 a sharp
bend. Similarly there are six ax templates with increasing
amplitudes.

TABLE II
DTW COST MATRIX SHOWING OPTIMAL WARPING PATH.

Template Minimum-distance 0
0 0 -1 -2 -3 -4 -4 -2 -1 -1 0
1 1 0 -1 -2 -3 -3 -1 0 0 1
2 2 1 0 -1 -2 -2 0 1 1 2
4 4 3 2 1 0 0 2 3 3 4
3 3 2 1 0 -1 -1 1 2 2 3
3 3 2 1 0 -1 -1 1 2 2 3
1 1 0 -1 -2 -3 -3 -1 0 0 1
0 0 -1 -2 -3 -4 -4 -2 -1 -1 0

Measured 0 1 2 3 4 4 2 1 1 0

A heuristic method is used to label any recognized turn as
taken normally or aggressively, based on the vehicle’s speed
(obtained from the GPS) and matching ax and ωz template.
From experimental results it was evident that two conditions
need to be satisfied to classify a turn as aggressive:

1. v > 50(3− h)
2. k > 4 ∨ k > (h+ 2)

where v is the vehicle’s speed in km/h, h is the labelled
bend severity (1–3) and k is the ax template number (1–6).

D. Hardware setup

A Samsung Galaxy S3 smartphone was used for driving
data collection. A simple data logger Android application was
developed that samples the accelerometer and gyroscope at 20
Hz. Although a higher sampling rate is possible, it increases
power consumption, and 20 Hz was considered fast enough for
the proposed system. The application saves the sensor samples
and GPS data to an SQLite database.

In order to validate the smartphone’s data, an Arduino board
was used to also log data from a dedicated GPS and inertial
measurement unit (IMU) to an SD card.

IV. EXPERIMENTAL RESULTS

The collected data set and tested system performance is
presented in this section.

A. Data collection

Six individuals were asked to drive a pre-determined route
while subjective labelling of their turns were performed by
hand. A route of 15 km was chosen that has varying bends
and up- and downhill parts. The route necessitates drivers
to manage their speed as straighter sections are followed by
several sharp bends. All the distinct bends were annotated by
hand on a map with a severity of 1, 2 or 3. The route has 55
identified bends — 28 right and 27 left bends. Route notes
were used to label how the driver took each bend: normally
or aggressively. Although the labelling was done subjectively,
it was kept consistent for each driver.

The raw data was post-processed and valid data was suc-
cessfully extracted and labelled for 387 bends. Overall, the
endpoint detection algorithm successfully detected 95% of
the left and right bends. The data was split in a 66%/33%
ratio for training and test data respectively. The training data
set was used to create gyroscope and accelerometer signal
templates for the three bend severities taken both normally
and aggressively. Twelve templates were thus created from
the gyroscope and accelerometer data in total.

B. System performance

The test data set was used to obtain the results given in
Table III. For the driver labelled as most aggressive from
first-hand observation, the classifier achieved a FN and FP
rate of 80% and 10.5%, respectively. Figure 4(a) shows the
lateral acceleration of a one minute section where 4 of his
aggressive turns occurred. The vehicle’s average speed was
85 km/h through this section.
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TABLE III
CLASSIFICATION RESULTS.

Bend severity classification:
Accuracy = 83.7%
Aggressive manoeuvre classification:

Precision = 64.3%
Recall = 37.5% TP FP = 9 5
Specifity = 95.2% FN TN 15 100
Accuracy = 84.5%

Figure 4(b) shows the lateral acceleration of another driver
for the same section of road as in Figure 4(a). All of the
second driver’s turns were observationally labelled as normal,
and his average speed was 70 km/h through the section. The
lateral acceleration never exceeded 0.1g, whereas with the
aggressive driver the acceleration exceeded 0.1g for all four
turns. The classifier achieved a FN and FP rate of 0% and
5.9%, respectively, for this driver.

With 24 aggressive turns out of 129 in the test set, the
aggressive turn labelling heuristic achieved a FN and FP rate
of 62.5% and 4.8%, respectively. Although the FN rate is high,
a lower FP rate is desirable. It is biased to label a driver as
aggressive based on falsely identified aggressive manoeuvres.
The heuristic was tuned to obtain the least false positives, at
the expense of missing many true positives (TP). Although the
sample size was small, it is clear that the classifier’s precision
and recall is poor and could be improved. The strength of the
system is that it can definitely be expanded to recognize other
manoeuvres by preparing relevant templates for the same or
other axes of the sensors.

V. CONCLUSIONS

This paper presents a driving manoeuvre recognition and
classification system that is suitable for implementation on

L2
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R2

L1

(a) Aggressive driving

L2

R2 R2
L1

(b) Normal driving

Fig. 4. Band-pass filtered lateral acceleration of left (L) and right (R) turns
labelled with the bend severity (1–3).

a smartphone. The recognition algorithm can successfully
detect turns of varying severity by comparing the gyroscope
signal to a template set, using dynamic time warping. The
system can also label each recognized turn as taken normally
or aggressively by the driver. The system can be expanded
to recognize a variety of manoeuvres. Such a system could
be used to monitor a driver over a long period and give
him feedback on how to drive safely. The prevalence of
smartphones also allows such a system to be easily and cost-
effectively deployed on a large scale. In future work we will
compare the accuracy of the proposed manoeuvre classification
approach to that of other machine learning techniques.
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