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Abstract

Objectives: The development of the artificial intelligence
(AI) classifier to recognize fetal facial expressions that are
considered as being related to the brain development of
fetuses as a retrospective, non-interventional pilot study.
Methods: Images of fetal faces with sonography obtained
from outpatient pregnant women with a singleton fetus
were enrolled in routine conventional practice from 19 to
38 weeks of gestation from January 1, 2020, to September
30, 2020, with completely de-identified data. The images
were classified into seven categories, such as eye blinking,
mouthing, face without any expression, scowling, smiling,
tongue expulsion, and yawning. The category in which the
number of fetuses was less than 10 was eliminated before
preparation. Next, we created a deep learning AI classifier
with the data. Statistical values such as accuracy for the
test dataset and the AI confidence score profiles for each
category per image for all data were obtained.
Results: The number of fetuses/images in the rated cate-
gories were 14/147, 23/302, 33/320, 8/55, and 10/72 for eye
blinking, mouthing, face without any expression, scowl-
ing, and yawning, respectively. The accuracy of the AI fetal
facial expression for the entire test data set was 0.985. The
accuracy/sensitivity/specificity values were 0.996/0.993/

1.000, 0.992/0.986/1.000, 0.985/1.000/0.979, 0.996/
0.888/1.000, and 1.000/1.000/1.000 for the eye blinking,
mouthing, face without any expression, scowling cate-
gories, and yawning, respectively.
Conclusions: The AI classifier has the potential to objec-
tively classify fetal facial expressions. AI can advance fetal
brain development research using ultrasound.
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Introduction

Fetal behaviors such as fetal facial expressions and fetal
movements that can be observed by three- or four-
dimensional ultrasound have been considered as being
related to the development of the fetal brain and central
nervous system [1–10]. Kurjak reported a scoring system
[11], which was later modified by Stanojevic [12], to assess
fetal neurobehavioral development by assessing fetal
facial expressions andmovements. Fetal facial expressions
such as eye blinking, yawning, sucking, mouthing, tongue
expulsion, scowling, and smiling can be assessed by four-
dimensional ultrasound from the beginning of the second
trimester of pregnancy [2, 13]. Emotional behaviors such as
smiling at comfortable times, and responses to different
stimuli in the womb, are reflected in fetal faces [14] and the
frequencies of each facial expression are related at week 13
of gestation. Reissland reported that fetuses of smoking
mothers showed higher mouthing rates compared to non-
smokers [15]. Therefore, it is important to investigate fetal
facial expressions that are considered to be related to fetus
brain development. However, there are no standard
methods to objectively evaluate fetal facial expressions.

Artificial intelligence (AI) has advanced and entered
medicine recently. In various fields of obstetrics and gy-
necology, studies related to AI have been published such
as the estimation of fetal weight [16], the diagnosis of col-
poscopy [17, 18], the prediction of live births [19–22], the
prediction of results of clinical trials [23, 24], the threshold
criteria for fibrinogen and fibrin/fibrinogen degradation
products in cases of massive hemorrhage during delivery
[25], and so on. The well-trained AI classifier, which is a
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computer program that can objectively assess and classify
fetal facial expressions, would help to investigate the
development of the fetal brain and central nervous system.
In this article, we build the original neural network archi-
tecture of theAI classifier anddemonstrate the feasibility of
AI to classify fetal facial expressions as a pilot study.

Materials and methods

Patients and data preparation

The study collected images of fetal faces with a four-dimensional ul-
trasound technique obtained from consecutive singleton pregnancies
of outpatients in routine conventional practice from 19 to 38 weeks of
gestation with informed consent from all individuals at the Miyake
Clinic from January 1, 2020, to September 30, 2020, with completely
de-identified data enrolled.

Several minutes after the patients were comfortably lying in the
supine position at least one fetal facial still image per fetus was
captured and stored using GE Voluson E10 or Voluson E10 BT20 (GE
Healthcare Japan). In discussions of a doctor and two sonographers,
all images were subsequently classified into seven facial categories;
eye blinking, mouthing, face without any expression, scowling,
smiling, tongue expulsion, and yawning. The images classified as the
supervised dataset were transferred to our AI system at Medical Data
Labo offline. This retrospective, non-interventional study was
approved by the Institutional ReviewBoard (IRB) ofMiyake Clinic (IRB
No. 2019-10).

Fetal face images

Each image of the fetal region of interest is cropped into a square and
then saved in size of 100×100 pixels to provide the best accuracy. The
image has been de-identified so as not to identify the person.

AI classifier

The AI classifier that comprised both the convolutional neural
network (CNN) [25–31] with L2 regularization [32, 33] to obtain the
probabilities of predicting each category of the fetal face was devel-
oped. We introduced deep learning for images with an original CNN
architecture as shown in Table 1. The CNN in the image comprised 13
layers with a combination of convolutional layers, pooling layers
[34–36], flattened layers [37], linear layers [38, 39], and rectified linear
unit layers [40, 41], batch normalization layer [42], and softmax layer
[43, 44] that presented the probabilities of each category as confidence
scores. The categorywith the highest probability was defined as the AI
classification category of each image.

The category, in which the number of fetuses was less than 10,
was removed before preparation because it was too short to create AI.
Then, all fetus-rated data were divided into test data sets and training
data sets at random in a ratio of one to four. Eighty percent of the
training data set was used as the AI training data set. The remaining
20% of the data set was defined as the validation data set. In this way,
AI training data sets, validation data sets, and non-overlapping test

data sets were created. The AI classifier was trained by an AI training
data setwith concurrent validationby the validationdata set, and then
the AI classifier was evaluated with the test data set. The training data
set is augmented by rotating the images by 0, 90, 180, and 270°, as is
often done in the AI classifier process known as data augmentation,
because image processing with any degree of rotation can produce
images, resulting in different vector data of the same category [21]. The
feasibility of the AI classifier was evaluated for the test data set. The
statistical values of the test data set are obtained, such as accuracy,
sensitivity, specificity, etc. Confidence score profiles were obtained for
each category per image for all data.

Development environment

The development tools and conditions used are: Intel Core i5 with
Windows 10 (Redmond, WA, United States), 32 GB (Santa Clara, CA,
United States), NVIDIA GeForce GTX 1080 Ti (Santa Clara, CA, United
States), and Wolfram Language 12.0 (Wolfram Research, Champaign,
IL, United States).

Statistical analysis

Wolfram Language 12.0 is used for all statistical analyzes. A one-way
analysis of variance (ANOVA) test with Sheffe’s post hoc test was used.
The p-value <0.05 was considered statistically significant.

Results

The number of fetuses/images was 14/147, 23/302, 33/320,
8/55, 3/16, 2/10, 10/72, and 93/922 for eye blinking,
mouthing, face without any expression, scowling, smiling,
tongue expulsion, yawning, and all categories, res-
pectively. Then the categories scored in this study were
eye blinking, mouthing, face without any expression,

Table : The neural network architecture of the classifier for
recognizing fetal facial expression.

The sequence number for processing Layers

 Convolution layer
 ReLU layer
 Pooling layer
 Convolution layer
 ReLU layer
 Pooling layer
 Flatten layer
 Linear layer
 ReLU layer
 Linear layer
 Batch normalization layer
 Linear layer
 Softmax layer

ReLU, rectified linear unit.
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scowling, and yawning. The total number of fetuses/im-
ages in the rated categories was 88/896. Maternal age with
mean±standard deviation (SD) (range) was 31.5±4.32 (24–
39), 33.29±4.50 (26–41), 32.16±5.07 (20–42), 34.25±4.89
(27–42), 35.4±4.27 (31–42), and 32.81±4.75 (20–42) years for
eye blinking, mouthing, face without any expression,
scowling, yawning, and all categories, respectively.

There were no significant differences for maternal age
between the five categories (p=0.36 by two-sided one-way
ANOVA test). The mean gestational week±SD (range)
was 34.29±2.77 (28.00–38.4), 29.69±3.81 (19.29–36.423),
31.07±2.92 (27.4–36.86), 32.92±3.55 (27.43–36.86),
29.89±4.89 (19.29–38.43), and 31.37±3, 76 (19.29–38.43)
weeks for eye blinking, mouthing, face without any
expression, scowling, yawning, and all categories,
respectively. There were significant differences for weeks
of gestation between the five categories (p<0.01 by the two-
sided one-way ANOVA test). The weeks of gestation when
they blinked and scowled were more advanced than the
other categories (p<0.05 according to Sheffe’s post hoc
test).

The confusion matrix plot for the test dataset was
shown in Figure 1. The correct predictions were located in a
diagonal matrix position.

The accuracy of fetal facial expression for the entire
test dataset was 0.985. The accuracy values were 0.996,
0.992, 0.985, 0.996, and 1.000 for the eye blinking,
mouthing, face without any expression, scowling, and

yawning categories, respectively, as shown in Table 2. The
sensitivity values were over 0.933 except for the scowling
category. All specificity values were greater than 0.979. All
positive and negative predictive valueswere over 0.943. All
F1 scores that are the harmonic mean of the sensitivity
value and the positive predictive value were greater than
0.941. All information values [45], which is a multiclass
generalization of Youden’s J Statistic [46], were greater
than 0.889. The cross-entropy was 12.59. The [mean±SD of
confidence scores for eye blinking, mouthing, face without
any expression, scowling, and yawning category] was
[0.51±0.35, 0.10±0.14, 0.34±0.35, 0.004±0.004 and
0.04±0.08], [0.0003±0.0005, 0.98±0.07, 0.01±0.06,
0.0006±0.0015 and 0.006±0.016], [0.00011±0.00033,
0.001±0.010, 0.997±0.016, 0.00006±0.00017, 0.002±
0.008 and 0.0003±0.0004, 0.017±0.032, 0.12±0.22,
0.85±0.23 and 0.011±0.018] and [0.000025±0.000032,
0.0004±0.0016, 0.01±0.07, 0.00010±0.00017 and
0.99±0.07] in the eye blinking, mouthing, face without any
expression, scowling, and yawning categories, respec-
tively, as shown in Figure 2. The mean of the confidence
scores in each rated category suggested that the most
difficult category to classify correctly by AI in the rated
categories was blinking, whose confidence score was
0.51±0.35 (mean±SD).

Sample images of true and false classifications by AI
are shown in Figure 3.

It took less than 0.1 s to classify an image. The L2
regularization value was 0 for the best performance.

Discussion

Here, an AI classifier for deep learning with CNN of the
original neural network architecture is developed using
images of fetal faces. The accuracy for classifying fetal
facial expressions was 0.984, which seemed excellent. The
other statistical results, such as sensitivity, specificity, etc.,
also demonstrated high yields, as shown in Table 2. All
statistical values were over 0.93 except for the scowling
sensitivity value, 0.888, probably due to fewer cases.
Although therewere no significant differences formaternal
age between the five categories, there were significant
differences for gestational weeks between them as a bias
because this was not a randomized study. This bias can be
taken into account for interpreting this study.

The recognition of facial expressions by AI for adults
has been investigated. A facial expression that can define
human mental state and behavior and is used for secu-
rity purposes and recognition of facial expressions by
AI is used in domains such as healthcare, marketing,

Figure 1: The confusion matrix plot for the test dataset.
The correct predictions were located in a diagonal matrix position.
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environment, safety, and social media [47]. Chen et al.
reported that CNN as a deep learning architecture can
extract the essential features of facial expression image
and classified facial images into seven facial expressions
[48]. According to reports, AI uses a variety of algorithms to
reorganize adult facial expressions, and CNN seems to be
mandatory [49]. Kim et al. reported that the accuracy of the
AI facial expression recognition dataset was 0.965 [50].

The accuracy of fetal facial expression in this study
was 0.985 which did not appear inferior compared to its
result. However, there have been no reports regarding the
recognition of fetal facial expressions by AI to our
knowledge.

In this study, we define seven categories; eye blinking,
mouthing, face without any expression, scowling, smiling,
tongue expulsion, and yawning. AboEllail et al. [13] re-
ported seven similar categories for fetal face expression
that included sucking rather than the face without any
expression, but sucking was rarely observed, and the face
without any expression was often observed in our pre-
liminary studies. There were only several cases of smiling
and tongue expulsion in this study, and these two cate-
gories were removed before the creation of AI. They also
reported other fetal facial expressions such as frown, sad,
and funny face as emotion-like behavior. Therefore, the
complete classification of fetal facial expression has not yet
been established, probably because it could take time to
observe the fetal face for a long time and the image clas-
sification could not be identical by doctors and sonogra-
phers. AI that is a computer program, however, has no bias
in itself for classifying images. AI could demonstrate
objective findings regarding fetal facial expressions, then
research into the development of the fetal brain and central
nervous system would be advanced.

Themost difficult category to classify correctly by AI in
the rated categories was eye blinking, whose confidence
score was 0.51±0.35 (mean±SD), as shown in Figure 2. Eye
blinking was sometimes classified as face without any
expression, and the confidence score was 0.35±0.34 in the
eye blinking category. Themaximum values of themean of
the confidence scores of other categories were over 0.85.
Trying to collect more eye blinking cases would improve
the AI classifier in the future.

The limitations of this study should be considered.
Firstly, the AI cannot correctly classify unknown images.
Seven categories were used, but there could be other fetal
facial expressions that could be meaningful in investi-
gating fetal brain and central nervous system develop-
ment. Those undiscovered and undefined categories and
images could be needed to train AI for research and clinical
practice in the future. Secondly, the feasibility of the
recognition of fetal facial expression by AI in this study
depends on the supervised data derived from Japanese
fetuses. Since the anthropometric differences reflected in
fetal facial expression can strongly affect AI creation, this
AI might not be used directly for different anthropometric
fetuses. However, I believe that the same algorithm could
be available for other anthropometric fetuses. Thirdly,
although the AI in this study demonstrated very good ac-
curacy, there are still problems of incomplete datasets for
seven categories because the smiling and tongue expulsion
were rarely seen. These datasets will need to be collected.
Fourthly, patients were not randomized in this pilot study,
resulting in gestational weeks bias. Therefore, the AI
recognition accuracies and frequencies of each fetal facial
expression related to gestational weeks could not be
analyzed. Randomization of patients across multiple fa-
cilities would be desirable in subsequent studies.

Table : The statistic result for fetal facial expression by an original neural network for artificial intelligence (AI).

Eye blinking Mouthing Face without any expression Scowling Yawning

The number of true positive     

The number of true negative     

The number of false positive     

The number of false negative     

Sensitivity . . . . .
Specificity . . . . .
Positive predictive value . . . . .
Negative predictive value . . . . .
Accuracy . . . . .
F score . . . . .
Informedness . . . . .
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Since there is no gold-standard neural network archi-
tecture for CNN, AI itself has multimodality that can
consolidate a series of disconnected, heterogeneous data.
For example, regarding the diagnosis of AI-assisted col-
poscopy, the accuracy value by image only and by both
image and human papillomavirus typing were 0.823 and
0.941, respectively [17, 18].

In other words, fetal facial expression can be clas-
sified not only by image but also by incorporated images
with known parameters such as gestational age. This

could be an advantage of AI to recognize the facial
expression of the fetus. When those advanced AIs are
provided for the recognition of fetal facial expression
using incorporated images with some parameters, in-
vestigations could be carried out for profiles of the
relationship between fetal facial expressions and pa-
rameters such as parity, siblings, multiple pregnancies,
maternal disease, maternal personality, maternal diet,
fetal physical development, physical and mental devel-
opment after birth, intelligence, score in school,

Figure 2: The profiles of the confidence
scores for each category per image
[mean±standard deviation (SD)].
The predicted category by artificial
intelligence (AI) was correct in all
categories. AI predicted blinking correctly
with 0.51 of the score and neutral
incorrectly with 0.34 of the score in the
blinking category (left upper panel). The
most difficult category to classify by AI in
the qualified categories was blinking.
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personality formation, etc. The findings could suggest to
pregnant women how best to treat their fetus.

Since the fetal facial expression is believed to be
essential for investigating fetal brain and central nervous
system development non-invasively, AI can advance the
investigation of fetal brain development using ultrasound.
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