
REVIEW ARTICLE

Recognition of Fetal Facial Expressions Using Artificial 
Intelligence Deep Learning
Yasunari Miyagi1, Toshiyuki Hata2, Saori Bouno3, Aya Koyanagi4, Takahito Miyake5

AB S T R AC T 

Fetal facial expressions are useful parameters for assessing brain function and development in the latter half of pregnancy. Previous investigations 
have studied subjective assessment of fetal facial expressions using four-dimensional ultrasound. Arti�cial intelligence (AI) can enable the 
objective assessment of fetal facial expressions. Arti�cial intelligence recognition of fetal facial expressions may open the door to the new 
scienti�c �eld, such as “AI science of fetal brain”, and fetal neurobehavioral science using AI is at the dawn of a new era. Our knowledge of fetal 
neurobehavior and neurodevelopment will be advanced through AI recognition of fetal facial expressions. Arti�cial intelligence may be an 
important modality in current and future research on fetal facial expressions and may assist in the evaluation of fetal brain function.
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IN T R O D U C T I O N 

Fetal behaviors such as fetal movements and facial expressions 

that have been observed by four- (4D) or three-dimensional (3D) 

ultrasound have been deemed to be related to the development of 

fetal central nervous system development.1–11 A scoring system,12 

which was originally reported by Kurjak et al. and later modi�ed by 

Stanojevic et al.,13 can evaluate fetal neurobehavioral development 

by evaluating fetal movements and facial expressions. Fetal facial 

movements and expressions such as blinking, a face without any 

expression, mouthing, scowling, smiling, sucking, tongue expulsion, 

and yawning can be evaluated by 4D ultrasound from the beginning 

of the 2nd trimester of pregnancy.2,14 Eye blinking (blinking) is a 

re�ex response possibly related to brain function maturation and 

development that occurs with advancing gestation.14–18 Mouthing 

is the most frequent expression and is recognized as fetal brain 

maturation if it occurs together with non-rapid eye movement 

after 35 weeks of gestation.19 The frequency of scowling that might 

indicate su�ering of the fetus in utero pain or stress20 increases 

with advancing gestation.21 Smiling might indicate a state of brain 

development performing complex facial movements.22,23 The 

correlation of an expressionless face and tongue expulsion with 

brain function is unclear.14 Yawning may be utilized as an index of 

fetal development.24,25 Therefore, it is important to investigate fetal 

facial expressions. There have been, however, no standard objective 

methods to evaluate fetal facial expressions.

Recently, arti�cial intelligence (AI) has advanced into the �eld of 

medicine. In di�erent �elds of obstetrics and gynecology, research 

works relevant to AI have been published.26–35 A well-trained AI 

classi�er that can evaluate and classify fetal facial expressions 

would help investigate the development of the fetal central 

nervous system. The AI recognition of adult facial expressions 

has been investigated. Kim et al. reported the accuracy of the AI 

facial expression recognition was 0.965.36 Adult facial expressions 

can state human mental state and behavior and their analysis 

is available for marketing, healthcare, safety, environment, and 

social media.37

In this review article, we introduce the updated status of AI 

recognition of fetal facial expressions as a signi�cant parameter 

for fetal brain function and suggest recommendations for future 

research on fetal brain development and function.

RE CO G N I T I O N  O F  FE TA L  FAC I A L  EX P R E S S I O N S 

US I N G  AI 

All data per fetus are divided into test/training/validation 

datasets at random in a ratio that is not �xed but commonly set to 

0.20/0.64/0.16. In this way, training datasets, validation datasets, 

and non-overlapping test datasets are created.

The AI classi�er is then designed. The AI classi�er composed of 

convolutional neural network (CNN)38–43 for classifying categories 

is often used for image recognition. The CNN usually comprises 
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layers with a combination of convolutional layers such as pooling 

layers,44–46 linear layers,47,48 �attened layers,49 batch normalization 

layer,50 recti�ed linear unit layers,51,52 and softmax layer53,54 that 

presents the probabilities of each category named con�dence 

scores. Then, the category with the highest con�dence score is 

determined as the AI classi�cation category of each image. The AI 

classi�er is trained using the training dataset with simultaneous 

validation by using the validation dataset. Before the AI training, the 

training and validation datasets are augmented by methods such 

as rotating the images. Data augmentation is often used, because 

image processing such as rotation, can result in di�erent vector 

data in the same category.31

The feasibility of the AI classi�er is evaluated using the test 

dataset. Then, statistical values of the test dataset are then 

obtained, such as sensitivity, speci�city, accuracy, receiver operating 

characteristic (ROC) curve, etc.

PR E V I O U S  ST U D I E S  O N  AI RE CO G N I T I O N  O F 

FE TA L  FAC I A L  EX P R E S S I O N S 

The development of the AI classifier with the original neural 

network architecture that recognizes and classi�es images of fetal 

faces captured by sonography was reported by Miyagi et al.55 

This pilot study was the �rst report on the recognition of fetal 

facial expressions by AI, to the best of our knowledge. The CNN 

architecture consisted of 13 layers; 2 convolution layers, 3 recti�ed 

linear unit layers, 2 pooling layers, 1 �atten layer, 3 linear layers, 1 

batch normalization layer, and 1 softmax layer. The classi�er could 

classify only �ve categories: blinking, face without any expression 

(neutral face), mouthing, scowling, and yawning, due to sample 

limitations for each category. The number of fetus/images were 

93/922 and the number of test/validation/training datasets for 

creating the AI was 222/1,648/7,168. The accuracy for the test 

dataset was 0.985. The values of accuracy/sensitivity/speci�city 

were 0.996/0.993/1.000, 0.992/0.986/1.000, 0.985/1.000/0.979, 

0.996/0.888/1.000, and 1.000/1.000/1.000 for blinking, mouthing, 

neutral face, scowling, and yawning, respectively. Though the 

con�dence score of the blinking category in the rated categories 

was 0.51 ± 0.35 (mean ± SD), the maximum values of the average 

of the con�dence scores of other categories were over 0.85.

FU R T H E R  AC H I E V E M E N TS  I N  AI RE CO G N I T I O N 

O F  FE TA L  FAC I A L  EX P R E S S I O N S 

We introduce the improved AI classif ier composed of the 

same neural network architecture by collecting more data for 

recognizing seven categories in this review. The number of 

fetus/images were 237/1,457 and the number of test/validation/

training dataset for creating the AI was 251/1,536/11,248. The 

accuracy, the confidence scores, and the ROC curve of the AI 

fetal facial expression analysis were 0.996 as shown Figures 1 

to 3, respectively. The accuracy/sensitivity/specificity values 

were 0.996/0.964/1.000, 1.000/1.000/1.000, 0.996/1.000/0.994, 

1.000/1.000/1.000, 1.000/1.000/1.000, 1.000/1.000/1.000, and 

1.000/1.000/1.000 for blinking, mouthing, neutral face, scowling, 

smiling, tongue expulsion, and yawning, respectively (Table 1). 

Other statistical values such as negative predictive value, positive 

predictive value, informedness, the area under the ROC curve, F1 

score, markedness, and Matthews correlation coe�cient were over 

0.96 in all categories. Sample images classi�ed by AI are shown in 

Figure 4.

L I M I TAT I O N S 

The following limitations of AI fetal facial expression recognition 

need to be considered. First, the AI cannot properly classify 

unknown images. Though seven facial categories were used, 

there would be other fetal facial expressions that are signi�cant in 

investigating the development of the fetal central nervous system. 

The perfect classi�cation of fetal facial expressions has not yet been 

established, possibly due to the long time needed to observe the 

fetal face and lack of consensus image classi�cation by examiners. 

Such unde�ned and undiscovered images and categories would 

be needed to train AI for clinical practice and research in the 

future. Second, the feasibility of fetal facial expression recognition 

by AI depends on the supervised data by experienced examiners. 

Moreover, the anthropometric di�erences a�ected in fetal facial 

expression could strongly a�ect AI creation, this AI would not 

be feasibly used for di�erent anthropometric fetuses directly. 

We believe, however, that similar algorithms would be available 

for other anthropometric fetuses. Third and last, although the AI 

showed quite good accuracy, there are still defective datasets such 

as for sucking that was rarely seen during the examination. The 

incidence of sucking was approximately 1% in all cases.55

More datasets are required, as in general, AI deep learning for 

the neural network is better with more datasets. The recognition 

frequencies and accuracies of each fetal facial expression related 

to gestational weeks by AI should also be analyzed.

FU R T H E R  PE R S P E C T I V E 

The advantage of multi-modalities for AI has been presented in the 

classi�cation of the uterine cervical squamous epithelial lesion from 

colposcopy images combined with HPV types27 and the predicting 

live birth from blastocyst images combined with the conventional 

clinical embryo evaluation parameters.29 Therefore, fetal facial 

expressions can be classi�ed by image and by incorporating images 

with gestational age and other associated parameters.

Fig. 1: The confusion matrix plot for the test dataset. The correct 

predictions were located in a diagonal matrix position. The accuracy 

for classifying fetal facial expression for seven categories was 0.996
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Established AI has no intrinsic bias for classifying images. Thus, 

AI can show objective �ndings regarding fetal facial expression 

recognition, which could advance research on the fetal central 

nervous system and brain development. The establishment of 

AI classi�cation of fetal facial expressions could enable objective 

fetal neurodevelopment investigation by applying tests such as 

mini KANET that is used for predicting postnatal developmental 

disabilities.56 Further establishment of an advanced AI recognition 

for fetal facial expression using incorporated images with associated 

parameters will be able to reveal correlations between facial 

expressions and parameters such as fetal physical development, 

multiple pregnancies, parity, siblings, maternal personality, 

maternal disease, mental and physical development after birth, 

personality formation, score in school, intelligence, etc. Subsequent 

observation data of medical and social factors obtained in cohort 

studies or retrospective studies may aid mothers in the next 

generation in providing optimal treatment for their fetuses.

CO N C LU S I O N 

As the fetal facial expression is considered to be important for 

non-invasively investigating the fetal central nervous system and 

brain development, AI may be useful in this aspect with the advent 

of 4D ultrasound.

Fig. 2: The pro�les of the con�dence scores for each category per image (mean ± standard deviation) for the test dataset
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