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Abstract

Handwriting – one of the most important developments in human culture – is also a methodological tool in several
scientific disciplines, most importantly handwriting recognition methods, graphology and medical diagnostics. Previous
studies have relied largely on the analyses of handwritten traces or kinematic analysis of handwriting; whereas
electromyographic (EMG) signals associated with handwriting have received little attention. Here we show for the first time,
a method in which EMG signals generated by hand and forearm muscles during handwriting activity are reliably translated
into both algorithm-generated handwriting traces and font characters using decoding algorithms. Our results demonstrate
the feasibility of recreating handwriting solely from EMG signals – the finding that can be utilized in computer peripherals
and myoelectric prosthetic devices. Moreover, this approach may provide a rapid and sensitive method for diagnosing a
variety of neurogenerative diseases before other symptoms become clear.
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Introduction

The development of systems that can interface bioelectric activity

to external devices hold significant clinical promise. For example,

neural prosthetics strive to restore limb mobility and communica-

tion capacity in disabled subjects by interfacing brain potentials

[1,2,3] or EMG activity [4,5,6] to artificial actuators or devices

based on functional electrical stimulation [7,8]. In addition to

clinical applications, it has been suggested that bioelectric interfaces

may even be used to enhance certain functions in normal subjects

[9]. Although handwriting is one of the most important motor

activities, it has received little attention from the designers of

bioelectric interfaces due to perceived technical limitations and the

paucity of models [10]. An interface that converts human bioelectric

activity into text records could have a number of broad applications.

First the development of this technology could substitute for

computer peripherals or touch screens which have typically been

used to record and transmit text messages. Bioelectric interfaces

potentially could extract normal handwriting patterns directly from

hand and arm EMGs. Clinically, handwriting features have been

used for diagnostic purposes for patients with Parkinson’s disease

[11] and more recently dysgraphia has been shown to be a

conserved element in the progression of Alzheimer’s disease [12].

Methods that could be used to model handwriting could be used to

diagnose diseases with a graphomotor component or be used to

grade the progression of the disease or treatment.

The goal of this study was to develop a hardware/software

system to record bioelectrical signals from the forearm and hand

muscles (Fig. 1) and decode these signals with algorithms to extract

and reproduce handwritten characters (Figs. 2 and 3).

Results

We implemented two fundamental approaches for decoding

handwriting from the EMGs. In the first approach, we reconstructed

pen traces using linear decoding algorithm, the Wiener filter

[13,14] (Fig. 2). In the second approach, we recognized handwritten

characters from the EMG patterns and displayed them as textual

fonts. Thus, EMG patterns were mapped to discrete font

characters. Both the reconstruction algorithms and the recognition

algorithms had to be trained on the data from individual subjects

and did not generalize to other subjects because of inter-subject

variability.

As shown in Fig. 1B, bipolar surface EMG electrodes were

placed on the skin overlying four forearm muscles and four hand

muscles. Each of the muscles recorded exhibited EMG bursts

during handwriting (Fig. 1A). Following conventional methodol-

ogy [15], the intensity of EMG modulations was quantified as

rectified EMG. To reconstruct the pen trace, the Wiener filters

expressed X (left-right dimension) and Y (bottom-top) coordinates

of the pen with respect to the writing surface as weighted sums of

the rectified EMGs (Fig. 2A). The results of such reconstruction

are shown in Fig. 2B. Pen traces recorded by the digitizing tablet

are shown in blue, and the traces reconstructed from the EMGs

are shown in red. The reconstructed traces followed the original

handwriting with accuracy comparable to other bioelectrical

interfaces [2].

The quality of reconstruction was evaluated as coefficient of

determination, R2. R2 values for individual subjects and statistics

for the whole group are presented in Table 1. For the 6 subjects

involved in these experiments, R2 was 0.4760.20 (mean6standard
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deviation across subjects) for X and 0.6360.15 for Y. (R2 can range

from 0 to 1, and it reflects the proportion of variance in the

original data captured by the reconstruction.) Table 1 also shows

R2 values for hand and forearm muscles. When only hand-muscle

recordings were used for the reconstruction, R2 was 0.2660.10 for

X and 0.5060.12 for Y. When only forearm-muscle recordings

were used, R2 was 0.4360.21 for X and 0.5160.13 for Y. Pen

position could be reconstructed even from EMGs of single

muscles, although the accuracy was less compared to multiple-

muscle reconstructions (Table 2). When the best reconstructing

muscle was selected, R2 was 0.3160.17 for X and 0.3260.10 for Y

(Table 1).

In the EMG recognition approach, we used linear discriminant

analysis [16] to translate EMG patterns into font characters.

Figure 3A illustrates the operation of written-character discrimi-

nation algorithm. The subjects were asked to write characters,

numbers from ‘‘0’’ to ‘‘9’’ (50 repetitions per characters). A half of

the records (250 randomly selected trials) were used as the training

set for the discriminant analysis, and the remainder of the records

was used as a sample set. During the training phase, 3.5 s epochs

corresponding to single characters were selected using an

algorithm in which bursts in compound EMG (the sum of rectified

EMGs from all muscles) were detected which crossed a threshold

(0.5 standard deviation from the intertrial level) designated the

epoch onset. Averaging the EMGs over all detected epochs yielded

a generic template. This template was entered in the template

matching analysis in which a 3.5 s sliding window was moved

along the EMG records, and the correlation coefficient between

the EMGs and the template was continuously correlated.

Character writing epochs were then refined using the occurrences

of peak correlations as epoch onsets. These epochs were then

entered in the linear discriminant analysis that recognized the

characters. The quality of recognition was evaluated across the 6

subjects using the percent of correct recognitions as the measure.

This percent was 90.467.0 (mean6standard deviation across

subjects). When hand muscle EMGs were analyzed separately

(Table 1) the percent was 79.2610.6, and for the forearm muscles

we obtained the value 83.5610.0. When a single best recon-

structing muscle was selected, the percent of correct reconstruc-

tions was 65.9611.4 (Table 1), and the average percent correct for

any single muscle was 51.6612.5 (Table 2).

As shown in Fig. 4, the performance of both the reconstruction

algorithm (Fig. 4A,B) and the recognition algorithm (Fig. 4C)

benefited from the EMG recordings from multiple muscles.

Further, we estimated the performance of discriminate analysis

for different amounts of training data. In this analysis, different

amounts of data were taken from the recordings as the training set,

and the rest of the data was used as a sample set. Analysis of a

representative experimental session is shown in Fig. 4D. A

minimum of five repetitions per font character were needed for

the discriminant analysis to work. Recognition accuracy was 63%

correct for this amount of training data. As the number of

repetitions increased to 35 per character, recognition improved to

97% correct.

Discussion

Thus, we have shown that EMGs of hand and armmuscles can be

converted into handwriting patterns: either the actual handwriting

traces or font characters. This demonstration opens a number of

directions for future research and practical applications. First, we

have shown that EMG-based technology is a viable alternative to

traditional methods of record taking. We envision a computer

peripheral, an EMG glove, in which electrical activity of hand and/or

Figure 1. Data acquisition. A: A photograph of a recording session. B: Electrode placement over the hand (top) and forearm muscles (bottom).
doi:10.1371/journal.pone.0006791.g001
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Figure 2. Reconstruction of handwriting traces using the Wiener filter. A: Schematics of the Wiener filter. EMG signals (rectified EMGs) from
multiple models were fed into two independent Wiener filters which reconstructed X and Y coordinates of the pen, respectively. Each filter
represented reconstructed coordinate as a weighted sum of EMGs. B: Examples of reconstructed traces from one recording session. Actual traces are
shown in blue; reconstructed traces are shown in red. The first two columns show X(t) and Y(t), respectively. The third column shows X-Y plots.
doi:10.1371/journal.pone.0006791.g002
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Figure 3. Transformation of EMG records into font characters. A: Schematics of the algorithm. Compound EMG (the sum of all rectified
EMGs) was first used to detect the periods during which handwriting occurred. Compound EMG was first segmented into epochs corresponding to
individual characters using a threshold that detected EMG bursts. Then, a generic compound EMG template was calculated by averaging these
epochs. Template matching was used to refine the EMG segments, which were then classified using linear discriminant analysis. B: Example of
discrimination for a representative recording session. From top to bottom: Eight EMGs were used for character recognition. 3.5-s segments
corresponding to individual characters are highlighted as blue bars which are aligned on peak correlation coefficient, R, for template matching.
Posterior probabilities for character recognition which were computed by discriminant analysis are shown as color plots. Recognized font character
which corresponds to the highest probability is shown near each plot. Original handwriting is shown at the bottom.
doi:10.1371/journal.pone.0006791.g003
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Table 1. Reconstruction and recognition accuracy for individual subjects, combinations of recorded muscles and across-subject
averages.

Subject 1 2 3 4 5 6 mean6st. dev.

Reconstruction, R2

All 8 EMGs X: 0.72 0.19 0.54 0.44 0.62 0.31 0.4760.20

Y: 0.77 0.40 0.71 0.66 0.76 0.50 0.6360.15

4 hand EMGs X: 0.38 0.13 0.23 0.27 0.36 0.18 0.2660.10

Y: 0.69 0.35 0.58 0.49 0.48 0.42 0.5060.12

4 forearm EMGs X: 0.71 0.15 0.51 0.37 0.57 0.25 0.4360.21

Y: 0.52 0.29 0.55 0.58 0.67 0.42 0.5160.13

1 best – all X: 0.52 (#8) 0.11 (#7) 0.38 (#7) 0.22 (#7) 0.49 (#7) 0.17 (#7) 0.3160.17

Y: 0.57 (#1) 0.22 (#3) 0.42 (#1) 0.45 (#7) 0.35 (#7) 0.32 (#1) 0.3960.12

1 best - hand X: 0.27 (#4) 0.06 (#1) 0.09 (#4) 0.13 (#3) 0.28 (#4) 0.09 (#4) 0.1560.10

Y: 0.57 (#1) 0.22 (#3) 0.42 (#1) 0.35 (#3) 0.18 (#4) 0.32 (#1) 0.3460.14

1 best - forearm X: 0.52 (#8) 0.11 (#7) 0.38 (#7) 0.22 (#7) 0.49 (#7) 0.17 (#7) 0.3160.17

Y: 0.31 (#5) 0.14 (#8) 0.36 (#5) 0.45 (#7) 0.35 (#7) 0.32 (#8) 0.3260.10

Recognition, % correct

All 8 EMGs 97.5 81.8 97.1 92.4 82.0 91.5 90.467.0

4 hand EMGs 87.3 69.7 89.6 84.3 62.8 81.3 79.2610.6

4 forearm EMGs 92.7 67.9 94.2 81.3 77.2 87.5 83.5610.0

1 best – all 78.1 (#7) 51.3 (#7) 76.2 (#7) 55.7 (#4) 61.0 (#7) 72.9 (#7) 65.9611.4

1 best - hand 71.8 (#4) 47.1 (#3) 67.4 (#2) 55.7 (#4) 50.7 (#4) 65.4 (#1) 59.7610.0

1 best - forearm 78.1 (#7) 51.3 (#7) 76.2 (#7) 55.6 (#7) 61.0 (#7) 72.9 (#7) 65.9611.4

All 8 EMGs 97.5 81.8 97.1 92.4 82.0 91.5 90.467.0

Muscles: #1 opponens pollicis, #2 abductor pollicis brevis, #3first dorsal interrosseus, medial head, #4 first dorsal interrosseus, lateral head, #5 flexor carpi radialis,
#6extensor digitorum, #7 extensor carpi ulnaris, #8 extensor carpi radialis.
doi:10.1371/journal.pone.0006791.t001

Table 2. Reconstruction and recognition accuracy for different muscles.

Muscle Individual muscles Hand versus forearm All muscles

Mean6st. dev. Mean6st. dev. Mean6st. dev.

Reconstruction, R2: X; Y

Opponens pollicis 0.0960.05; 0.3360.15 Hand: 0.1660.13; 0.2560.10

Abductor pollicis brevis 0.1160.05; 0.2160.06 0.1260.07; 0.2760.10

First dorsal interosseous (m) 0.1360.08; 0.2760.08

First dorsal interosseous (l) 0.1460.10; 0.2660.08

Flexor carpi radialis 0.1560.16; 0.2260.13 Forearm:

Extensor digitorum 0.1860.11; 0.2060.06 0.2160.16; 0.2460.09

Extensor carpi radialis 0.3160.16; 0.2760.11

Extensor carpi ulnaris 0.2060.19; 0.2760.07

Recognition, % correct

Opponens pollicis 49.4613.3 Hand: 51.4610.9 51.6612.5

Abductor pollicis brevis 47.6612.0

First dorsal interosseous (m) 55.267.9

First dorsal interosseous (l) 55.169.2

Flexor carpi radialis 47.7612.4 Forearm: 51.8614.1

Extensor digitorum 45.1610.8

Extensor carpi radialis 65.9611.4

Extensor carpi ulnaris 48.8614.2

doi:10.1371/journal.pone.0006791.t002
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forearm muscles are streamed directly to a computer where

mathematical algorithms transform it into font characters. Such

technology can employ dry electrode attachments and can be

interfaced to the computer using wireless technology. As such, it may

both offer certain advantages to conventional digitizing technologies,

such as digitizing tablets, and become a useful supplement to these

technologies. Our methodology can be also applied to clinical studies.

While handwriting is impaired in dementia [17], Parkinson’s disease

[18], writing tremor [19], and attention deficit hyperactivity disorder

[20], EMG changes during these handwriting impairments are

poorly understood. Our techniques for extracting handwriting

patterns from hand and forearm EMGs may contribute to both

clinical research and development of clinical devices that would assist

patients with impaired handwriting.

Methods

EMG and handwriting recordings
This study was approved by the Institutional Review Board of

St. Lawrence University, Canton, NY. The data were recorded

from 6 subjects. No personal information was recorded during

sessions and all data were analyzed anonymously. Written

informed consent was obtained from the subjects prior to the

EMG recording sessions.

Each subject was comfortably seated at a desk in front of a

computer monitor and wrote on a digitizing table with a pen while

looking at the computer monitor that displayed the written traces.

EMGs of 8 muscles were simultaneously recorded (Fig. 1a). Since

the handwriting involves both the finger and wrist movements,

Figure 4. Performance of reconstruction and recognition algorithms as the function of the number of recorded EMGs and the
amount of training data. The analyses were conducted were all muscles and hand and forearm muscles only (see key on top). A: Reconstruction
accuracy of the X-coordinate of the pen as the function of number of muscles recorded. Muscles were taken in different combinations, and R

2 was
averaged across these combinations and across subjects. B: Recognition accuracy of the Y-coordinate. C: Recognition accuracy as the function of the
number of recorded muscles. D: Improvement in recognition accuracy as the function of training set size.
doi:10.1371/journal.pone.0006791.g004
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surface EMGs were recorded from intrinsic hand and forearm

muscles that produce these movements (Fig. 1b). Bipolar surface

EMG electrodes were placed on four forearm muscles: flexor carpi

radialis (FCR), extensor digitorum (ED), extensor carpi ulnaris

(ECU), extensor carpi radialis (ECR) and four intrinsic hand

muscles: opponens pollicis (OP), abductor pollicis brevis (APB),

and medial (mFDI) and lateral (lFDI) heads of first dorsal

interrosseus). The grounding electrode was placed on the subjects

forehead. The skin surface overlying the muscles of interest was

first cleaned with alcohol and the electrodes were prepped with

electrode paste, firmly pressed to the skin, and fixed in place with

hypoallergenic tape. After the electrodes were attached, the whole

assembly was wrapped with an elastic bandage (Fig. 1a) to fix the

electrode leads to minimize the occurrence of mechanical artifacts

in the recordings.

Our system acquired data from three sources: EMG signals

were obtained using a amplified recording system (Grass, model

15LT/15A54-2 quad modules) with a digitizer (Polyview/16SYS),

pen tracking was accomplished using an Intuos 3/Wacom tablet,

and pen contact was detected with pressure sensitive piezo film

attached to the tablet. The tablet data were sampled at 100 Hz,

which included mouse click events generated when the pen

touched the tablet or was lifted from the tablet. EMG signals were

differentially amplified (1000X gain), band-pass filtered (-6 dB

cutoff points at 5 Hz and 500 Hz) and sampled at 1 kHz per

channel. The pressure sensitive piezo film was placed on the

writing surface of the tablet and the purpose of the film was simply

to indicate the onset of the writing session by generating a

triggering pulse (5 V, 0.05 s) sent to one channel of the EMG

amplifier. EMG acquisition was handled by Grass software, and a

MATLAB script controlled the acquisition of the data from the

tablet.

Each subject was instructed to write numeric characters from

‘‘0’’ to ‘‘9’’. The handwritten traces were displayed on the

computer monitor mounted in front of the subject. The subjects

were instructed to write the numbers within an 868 cm writing

area on the digitizing tablet using their individual handwriting

patterns. Each subject held the pen in the hand according to his/

her individual habits. By a trial we define a recording epoch during

which a subject wrote a single character. Each character was

successively written 50 times. Therefore, each subject wrote 500

characters (i.e. performed 500 trials) during a daily recording

session. Subjects could rest for a few minutes in between the

recordings of individual characters, but the electrodes were not

removed. Since in this study we sought to recognize individual

characters, the subjects were asked to make pauses in between the

characters. The trials were paced by the computer software which

displayed a fresh writing area in the beginning of each trial. The

duration of each trial was 7 s of which 2–3 s corresponded to

character writing. Representative examples of the EMG signals

and handwriting traces are shown in Fig. 3a.

Data analysis
Handwriting patterns were extracted from rectified EMGs.

Rectified EMGs were calculated by full-wave rectification of the

original EMG signals followed by low-pass filtering with a cutoff

frequency of 5 Hz (second order Butterworth filter).

In the handwriting reconstruction algorithm, we reconstructed pen

traces from the EMGs of eight muscles of the arm. Thus, the end

result of this method was the trace of the character with the only

difference that it was not actually written by a pen, but rather

derived from the EMGs (Fig. 2b). Handwriting traces were

extracted from the EMGs using a linear method, the Wiener [14].

In the recognition algorithm, we recognized the characters written by

the subjects by comparing the EMG patterns to a set of previously

obtained EMGs. The recognition choice was the character whose

previously recorded EMG patterns most closely matched the

examined EMG pattern.

In both the reconstruction and recognition methods, the

analysis consisted of two steps: (1) training the algorithm and (2)

decoding using the trained algorithm. Accordingly, the experi-

mental data (50 trials per each of 10 numerical characters) were

split into two separate parts: (1) training data and (2) decoding

data. To split the data into these parts, we simply used the first half

of the record for each character for training and the second part

for decoding. Thus, 250 trials (25 trials per character) were used

for training and separate 250 trials were used for decoding (cross-

validation) within one recording session for one subject.

To reconstruct handwriting into traces, we started with the

application of a linear model that decoded pen coordinates x(t) and
y(t) as a weighted linear combination of the EMG inputs:

x tð Þ~bz

X

T

Dt~{T

w Dtð Þn tzDtð Þze tð Þ ð1Þ

where x(t) is X-coordinate at time t, n tzDtð Þ is a vector of input

signals (rectified EMGs on 8 channels), at time t and time-shift Dt

(negative shifts correspond to past values, positive shifts correspond

to future values), T is the time window for the lags were, w Dtð Þ is a
vector of weights for each input at time-lag Dt, b is the y-intercept,

and e tð Þ is the residual error.

Wiener filter defined by equation 1 reconstructs pen position

from the EMG activity of several muscles sampled in the interval –

T to T centered on the time point for which the reconstructed

variable is calculated. EMG samples in this window are given

different weights to optimally map time-varying EMG activity pen

coordinates.

Equation 1 was solved using linear least squares regression

(MATLAB routine regress). This equation can be recast in matrix

form as

x~Nwze ð2Þ

where x, w and e are column vectors, N is a matrix and b is a

scalar. Rows in x and N correspond to time t = {tstart, tstart + step,

tstart + 2step, …, tend}, and rows in w correspond to lags Dt = {2T,
2T + step, 2T + 2step, … T} and recording channels. In this

notation, matrix N contains lagged data and thus has a column for

each lag and each channel. The y-intercept is handled by

prepending a column of ones to matrix N. The weights w are

solved by

w~inv N
T
N

� �

N
T
x ð3Þ

where N and x are taken from model training datasets.

Linear model decoding for the y-coordinate of the pen was

performed the same way as the decoding for the x-coordinate

(equations 1–3).

For character recognition, we used Fischer linear discriminant

analysis [16] to translate EMGs into the text characters

represented by a computer (Fig. 3). To detect the onset of

handwriting for each character, we used the compound EMG

calculated as the sum of all analyzed rectified EMGs. Compound

EMG was then detected as the threshold crossing set to 0.5

standard deviations from the intertribal level. After these onsets

were determined, the EMG record was segmented into 3.5 s

epochs which represented the writing of each character. Further,

Handwriting EMG
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these epochs were downsampled to 10 samples per second (or

100 ms bins). A generic EMG template was calculated by

averaging the EMG records across the epochs representing

individual characters. This template consisted of the templates

for individual muscles (35 bins per muscle) stacked together. Then,

the template was slid across the EMG records, and correlation

coefficient, R, between the EMGs and the template was calculated.

R was high when the template was aligned with character writing

episodes. Peak R values were then used to better segment the

EMGs into 3.5 s epochs corresponding to each character: the

onsets of these epochs were set to the occurrences of peak R. These

segments were entered in the discriminant analysis (MATLAB

function classify) as the training data. To reduce data dimension-

ality, principal component analysis was used to preprocess the

EMG data before the discriminant analysis step. Empirically, the

best results were obtained when the number of parameters was

reduced from 280 (35 bins for each of eight muscles) to 50

principal components.
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