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Abstract

The subject of this thesis is object recognition from range data. Being developed for appli-

cations of machine vision in engineering tasks, the discussion of this subject is restricted to

the class of man-made objects where object surfaces can be modelled with quadric primi-

tives. The study aims at developing optimal representation and recognition of the objects

from range data.

Two different range finders are utilised to provide the range data for the work of this

thesis: The “frequency-difference” laser scanning sensing system that is being developed by

the Ocean University of Qingdao (OUQ), China, and the ranging system developed by Uni-

versity of Twente (UT), The Netherlands. Firstly, the “frequency-difference” laser scanning

sensing system is particularly introduced. Based on the newly developed sensing technique

and its implementations, this thesis deals with modelling the 3D representation of the

measurement system. After configuration of the system parameters, a new fitting algorithm

is proposed to acquire the accuracy of parameter estimation in calibration. To avoid the

non-linearity of error propagation in 3D representation, a “sensor-driven” technique is pro-

posed for parameter estimation to improve the reliability of the solutions.

Subsequent parts of this thesis are concerned with the investigation of methodological

aspects of optimisation of surface representation and recognition. Surface parameters are

estimated through fitting of range data to a quadric representation. The bias-corrected re-

normalisation algorithm is applied for surface fitting because of its property of unbiased-

ness. However, due to the inexact implementation of the gradient weighted least-squares

criterion, the solution is deficient in accuracy. By reformulating the implementation of the

estimation criterion, a new method is proposed, which improves the reliability of the bias-

corrected solution.

As a focus of this thesis, the uncertainty problem in parameter estimation and feature

representation is discussed analytically. In conventional parametric descriptions of objects,

only the estimates of parameters (the first order statistics) are used as the explicit represen-

tation to model the objects. The uncertainty problem in parameter estimation was not well

studied. In this thesis, the second order statistics of errors in parameter estimates are mod-

elled with a covariance matrix. Assuming low level Gaussian noise present in the raw range

data, an explicit formulation for the covariance matrix is obtained. Therefore the optimal

description of the quadric primitive is represented by the estimate and its covariance. A

probabilistic model of normal pdf is used to describe the statistical properties of the esti-

mated parameters. This consequently enables the direct application of optimal classification

of surface primitives. Moreover, the probabilistic representation can be applied to establish

an optimal model base obtained from measurements.

The feature descriptor of a surface is defined on the invariants of quadric representa-

tions. These invariants are extracted through pose transformation between the viewer-

specific co-ordinate system and the object-specific co-ordinate system. An advantage of
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such a feature definition is that the pose information can be extracted simultaneously. This

thesis also deals with pose description of surface-based object representation by compounds

of quadrics, especially their relational pose formulation. Combination of feature description

and relational pose is expected to provide a generic approach for modelling 3D objects us-

ing quadric primitives.

To extraction of the surface primitives, segmentation of range images is investigated in

this thesis. The proposed optimal description of a surface primitive is applied for the re-

gion-based segmentation approach. Because estimates of a surface primitive are represented

with a probabilistic model, the homogeneity criterion is directly established on an optimal

framework. Moreover, because the uncertainties of region estimates are explicitly ex-

pressed, the order of region merging can be solved in the sense of reliability of region rep-

resentation.

The proposed optimal description of man-made objects by surface-based quadric primi-

tive and the segmentation approach have been tested experimentally. Both the range data,

acquired by the range finder of UT and of OUQ, as well as the synthetic data, are used for

surface classification. The results show that the classification, based on an optimal descrip-

tion, is more reliable than the one based on conventional descriptions. The range images

acquired by the ranging system of UT and the synthetic data are used to test the segmenta-

tion approach. The experimental results show that the proposed segmentation algorithm is

practical and reliable.
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Chapter 1

Introduction

Three-dimensional sensing modalities have been extensively studied to improve the quality

of vision systems for machine intelligence. In the past two decades, a variety of range

finder systems have been developed for various applications, for example, navigation of

autonomous vehicles (on land, in the air, or under water), inspection or measurement of the

geometric integrity of manufactured parts, measurement for recycling of industrial prod-

ucts, identification for mechanical assembly/disassembly, or specific designs of medical

aids.

A particular example of a newly developed range finder is the so-called “frequency-

difference laser scanning 3D sensing system”, being under construction by the Opto-

electronic Information Laboratory of the Ocean University of Qingdao (OUQ), China. This

ranging system is based on a novel “frequency-difference scanning” technique to acquire

three-dimensional data of a scene. The working principle and system set-up, as well as

some features of the system, are described in chapter 2 of this thesis. This system has been

designed mainly for inspection and carrying out engineering tasks, on land or under water,

for which reliable recognition and object classification is of paramount importance. The

objectives of this thesis originate from this particular requirement:  a study of man-made

object recognition from range data.

Another important reason for this research work emanates from the work on a ranging

system as part of a multi-sensor recognition system for electronic components on scrap

PCB’s. This system has been designed and constructed by the Measurement and Instru-

mentation Laboratory of the University of Twente (UT), The Netherlands ([18]). Although

both systems operate in essentially different ways, their output is a set of range data, from

which the shape of the observed objects should be extracted unambiguously.

However, since any measurement system is prone to uncertainty, errors exist in the ob-

tained raw range data. Moreover, in most cases, data points are only partially sampled from

the objects due to the limitation of sensing resolution, field of view or occlusions. There-

fore, when shape is estimated from the raw range data, uncertainties in descriptions are in-

evitable. Coping with the uncertainty problem in shape extraction from range data is im-

portant for the reliability of recognition. This aspect has not been well approached up to

now.

A vision system as applied in machine intelligence comprises three main functions: data

collection (or data acquisition), data processing and interpretation. Most vision systems in-

tended for industrial tasks utilise radiometric information (colour, intensity), i.e., a two-

dimensional (2D) image of the scene, yielding “visual” data about the scene. Then a data
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processing module transforms the input images to an intermediate representation, recover-

ing some or all of the features of the scene. Finally, this information is subjected to high

level analysis, resulting in the identification or recognition of the objects.

Essentially in 2D image analysis, the processing part should perform the extraction of

some physical and (3D) geometrical features from the raw 2D images, such as depth, ori-

entation or reflectance. From the resulting information, so-called intrinsic images ([4]) can

be derived. These images are more useful for further processing because they are in fact the

first version of the mapping from raw 2D images to actual physical characteristics of the

scene. However, the problem of getting the intrinsic characteristics of the scene from its 2D

images is inherently ill-posed because of the dimension reduction during the 2D image

formation. To avoid such difficulties in low-level vision processing with 2D images, three-

dimensional (3D) data (range data or range images) that are directly collected using three-

dimensional sensing modalities, could be used instead. Since a range image provides es-

sentially 3D information about the scene, it facilitates the “shape” descriptions of the scene.

In other words, the geometry of the intrinsic image is embedded in the range data.

However, the interpretation of range data, too, encounters difficulties, arising from:

• scene complexity for shape descriptions;

• errors in the obtained range data;

• limitation of shape information inferred only from the range data.

The last problem can be solved by extension of the sensing system, for example the combi-

nation of 2D images and 3D range data or another multi-sensing strategy (sensor fusion).

Such approach could also reduce the other two problems. However, once the range data

have become available, three-dimensional object representation and recognition appears to

be a non-trivial problem and has occupied many researchers for many years.

The next sections review some aspects of object recognition from range data, the back-

ground of 3D vision, acquisition of 3D data, and some existing methods for 3D object rep-

resentation and recognition. Finally, an overview of the work of this thesis is given.

1.1 3D vision

An important aim of computer vision is the recovery of three-dimensional geometric infor-

mation from optical images, to understand the physical structure of the scenes observed.

Marr ([45]) defines 3D vision as follows: ‘from an image (or a series of images) of a scene,

derive an accurate three-dimensional geometric description of the scene and quantitatively

determine the properties of the objects in the scene’. Here 3D vision has been formulated as

a 3D object reconstruction task. More general in Marr’s theory, a computer vision system is

just an example of an information processing device that could be understood at three lev-

els:

1. Computational theory. The theory should define the functional device  the infor-

mation it can provide (output) given other provided information (input), and the logic

of the strategy performed.
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2. Representation and algorithm. The kind of information representations and the algo-

rithms to carry out the computation must be designed.

3. Implementation. The algorithms are finally realised physically, usually in software

and hardware.

According to the first level, 3D vision requires an output of three-dimensional descriptors

of the geometry of visible objects in the scene.

In early work on 3D vision, 3D geometric characteristics of objects were usually de-

rived from 2D intensity images, following Marr’s idea of a “2.5D sketch”. The 2.5D sketch

recovers the relative distances from the 2D image, which is often represented as a depth

map in the form of a dense field, i.e., the depth information is available at all points over

the 2D visual field. The depth map can be considered as an intrinsic image, which is one of

the important outputs in low-level vision. The main approaches to derive the depth map

from 2D images are known as “shape from X” (shape from shading, shape from contour,

shape from texture, shape from optical flow, shape from motion, etc.), by estimating the lo-

cal surface orientation rather than absolute depth. However, most of these approaches are

generally ill-posed tasks.

In 3D vision based on 2D intensity images, a more tractable and sophisticated paradigm

is stereo vision. Stereo vision is sometimes regarded as a mimicry of human visual percep-

tion (strictly, only partially in distance perception), where a pair of (or more) cameras are

utilised to measure the distance by point correspondence in the two images obtained from

different viewpoints. (Shape from motion is similar to stereo vision, because the measure-

ment is based on changes of viewpoints over time). The main dilemma in stereo vision is

the inherent correspondence problem. As an extreme case, for example, the scene contains

a non-textured flat object with uniform brightness filling the whole imaging field. In that

case finding corresponding points in the two images is not possible. Excluding such rare

cases, the ambiguity in stereo correspondence can be reduced by adding some constraints,

according to the properties of the image acquisition process, to radiometric properties of the

scene or to prevailing properties of the objects in the real world.  Stereo vision is still an

important topic in the field of 3D vision, mainly because the system can be implemented in

a simple way.

More recently, studies of active perception ([3] and [41]) and purposive vision ([1])

have been published. Active vision uses a more sophisticated strategy in data collection. In

an active vision system, data collection is dynamically controlled by higher level outputs,

i.e., data acquisition is controlled by the measured scene parameters, to obtain better con-

vergence behaviour. In purposive vision, only a specified part of the information in the

scene is needed, which justifies simpler solutions.

Generally, the state of the art of 3D vision is characterised by the extraction of 3D in-

formation of the scene at a low-level stage. Direct 3D data collection in the sensing process

is a straightforward and effective approach to solve the problems encountered in distance

recovery from 2D images.
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1.2 Formation of range data

Range sensing systems provide three-dimensional information directly as inputs of classifi-

cation systems. Characteristic for range sensing techniques is that both the sensors and the

illumination are actively controlled. It can be considered as an active imaging process, in

distinction to stereo vision where the illumination is not controlled (passive imaging proc-

ess).

Range data can be achieved by various kinds of sensors: optical (electromagnetic) sen-

sors, acoustic (sonar), and thermal or tactile sensors. The choice of sensing modality de-

pends on the application. Optical sensors (CCD, radar sensors) are the most commonly

used. The range data from a vision system is often called a “range image”. In this thesis the

two terms, “range image” and “range data”, are used indiscriminately in the meaning of

collecting three-dimensional points in the scene (usually the “range image” refers to the

whole collection, while “range data” can imply a subset). Some typical optical sensing

techniques are described in chapter 2 of this thesis.

The points in a range image are characterised by their three-dimensional co-ordinates

with respect to a specified co-ordinate system. If the distance is measured in a Cartesian co-

ordinate system and no ordering of points is given, it is called the general xyz form (in this

thesis, such kind of range data is also referred to as “scattered points”). If the sampling

points are equally spaced in the horizontal and vertical directions on the surface, then the

range image can be represented in a matrix with rows and columns of scaled and quantised

range values. Often such a range image can be converted to a visual form as a 2D greylevel

image, in which the position of a pixel corresponds to its x-y co-ordinates and the greylevel

value corresponds to the z co-ordinate (distance). The range images used in this thesis have

both forms: those from the UT are in matrix form, whereas those from the OUQ are in fact

in the xyz form. Sometimes we use the notation rij to represent a regularly organised range

image, where r indicates the range measurement associated to a specified co-ordinate sys-

tem and (i, j) is a pair of integers as the indices. In case of a Cartesian co-ordinate system,

rij can be given as a matrix where (i, j) represent the indices of the rows and columns corre-

sponding to the sampling intervals at x and y directions. If the points are sampled with re-

spect to a spherical co-ordinate system with equal intervals of angles, (i, j) represents the

indices of the two angles and r is the distance between the point and the origin.

Range data can further be classified as dense or sparse, according to the space resolu-

tion of point sampling relative to the size of objects in the scene. In fact the difference be-

tween these two classes is ambiguous. More strictly, a dense range image should refer to a

sampling resolution based on the applicable maximum sensing resolution of the modality

itself. However, because of the limited field of view as well as the limited sensing resolu-

tion, the collection of range data, irrespective of being dense or sparse, only “partially”

conveys the three-dimensional information of the geometry of the scene. Moreover, errors

in distance measurement are inevitable. The errors could be caused by mechanical instabil-

ity of the scanning system, electronic noise, deviation of illuminating conditions, extraordi-

nary physical properties of the scene, or just the limited resolution of the sensing system it-

self. When these errors occur randomly, they are commonly represented as a stochastic pro-

cess in the low-level processing of range data.
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Next to the acquisition of raw range data, the representation of the 3D geometry from

the collected data and the interpretation of the data are major tasks in 3D vision.

1.3 Object representation and recognition with range data

The collection of range data is hard to be utilised to render an interpretation directly. Thus a

representation scheme must be applied to describe the geometry recovered from the range

data. Briefly, representation means a deterministic, structural function describing the shape

of the object(s). One essential characteristic of representation is that it renders the features

of the object(s) suitable for higher level cognitive visual purposes. Another requirement of

the representation is its discriminative property, i.e., the representation enables to distin-

guish between different shapes. The representation scheme is closely related to the recogni-

tion strategy. It dictates the robustness and efficiency of the higher-level recognition task,

while the control strategy of recognition guides the choice of the representation approach.

Associated to the representation scheme, a low-level task in 3D vision system is the

segmentation of range images. The role of segmentation is to extract geometric primitives

relevant for higher level processes from the raw range image. These primitives have a

common geometric representation (or property). Usually, such a low-level vision task is

data-driven. This means data processing without any assumptions regarding the semantic

content of the scene. Only generic constraints on the scene surface, geometry in formatting

co-ordinate representation and physical properties of the sensing devices are employed. In

another words, it is desired to avoid making any application-specific constraints of the

scene. Although the purpose of the low-level segmentation seems simple, it has turned out

to be the most difficult task in computer vision. Human vision, on the other hand, is re-

markably adept at detecting surface discontinuities, smoothness and spatial coherence. Ob-

viously, human vision relies for a great part on “experience”, “hidden” knowledge in the

so-called perceptual organisation. This intelligence aspect of human vision seems very dif-

ficult to emulate in computer vision. Perhaps, the “representation” of human vision is es-

sentially different to machine vision (this is not well understood).

According to the idea of [50], a representation scheme is desired to have the following

characteristics:

• Completeness (or Unambiguity: no two or more different objects have the same repre-

sentation).

• Uniqueness (for a certain object, there is just a single description).

• Richness (it is able to model a large class of objects).

Unfortunately, up to now most representation schemes fail to satisfy one or more of the

above features. In fact, there exist a variety of representations, each of which is associated

to a specific recognition strategy. There is no universal representation scheme in 3D vision

that copes with any kind of vision tasks. Representation schemes could be classified as ge-

neric or distinctive. Generic representation schemes aim at a description of a wide range of
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objects (e.g., for free-form objects), while distinctive representation schemes focus on spe-

cific classes of objects under consideration.

The goal of a 3D vision system is to recognise the concerned objects in the scene (in-

cluding localisation of the objects in a specified co-ordinate system). Different to the recon-

struction task, which aims to estimate a continuous function of a 3D surface, recognition

means the identification of an instance of the object under the assumption that the object

classes are known in advance, i.e., a model-based process. Generally, a model representa-

tion is given in an object-oriented co-ordinate system, allowing the model description to be

viewpoint independent. Thus the model description is feature-based. This nature of a model

description implies that the representation scheme for geometric recovery of the objects

should be ultimately performed at feature-level. Hence, feature descriptions should also be

viewpoint independent. Usually the quantitative components of a feature representation are

denoted as invariants.

Once we have proper feature descriptions for the objects in the scene and the models,

the task of recognition is to match these two descriptions. In the sense of scene interpreta-

tion, the recognition can be considered as a constraint satisfaction or consistent labelling

problem, i.e., to find a correspondence between the entities of the scene and those of the

models, using generic knowledge and domain constraints. Therefore the matching process

is in fact a constraint-directed search process.

Two typical matching strategies are:

• Model-driven search (top-down). The search is controlled by the nature of the repre-

sentation of the object model. Usually the features are defined at the level of primi-

tives. The matching process starts from the correspondence between local primitive

features and the model features (satisfying the local consistence). Then the local con-

sistence of matching propagates to a global consistent match between the scene and the

model. A commonly used searching approach is the tree search ([26], [27] and [28]).

Starting from the first level of the tree, each node represents a hypothesised local

match and the propagated paths represent local consistence. A global match is achieved

if a path of the tree satisfies the global constraints. In the test process, a transformation

between the viewer-centred co-ordinates and the object-centred co-ordinates is utilised

to check the geometric constraints. Such approach is called “recognition-via-

localisation”, meaning that object localisation is computed during the procedure of rec-

ognition. There exist a variety of searching approaches such as Hough clustering

([54]), geometric hashing  ([20] and [40]) and alternatives of indexing strategy.

• Data-driven search (bottom-up). In this strategy, the features are defined at higher level

semantic descriptions, often object-specific, rather than primitive-specific. The con-

straints used in the search are more generic, so it is more suitable for general scene in-

terpretation. The major characteristic of the data-driven approach is that it processes

through a bottom-up sequence: image processing  segmentation  feature extraction

 recognition. The scene and the model are represented by graph-theoretic descrip-

tions. Thus the search is typically based on such paradigms as graph matching and sub-

graph isomorphism. The match is co-ordinate-independent. Because the localisation
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phase is separated from the recognition phase, such a searching approach is also called

“recognition-followed-by-localisation”.

The difference between these two strategies can be illustrated with a case where the scene

consists of a cubic block. In the model-driven strategy, the features could be represented by

the corner points, which are derived in a low-level stage. The object is also modelled with

the corner points, including geometric constraints about the cube. The matching relies on

the model representation and takes place early in the whole recognition process.

In the data-driven strategy, the features could be defined in terms of the whole object,

with a semantic representation, such as “a cubic block in height, width, length of quantified

values”. This is usually referred to as a volumetric description. Obviously, such higher-level

representation enables the matching simpler, but the representation is more complicated

than the model-driven case.

In fact, the difference between the low-level and high-level representations is not

strictly defined. For example, between the point-based and the volumetric object-based rep-

resentations, there can be alternatives for feature representation, such as line-based or sur-

face-based. Often the representations or feature extraction are thought to be at intermediate

level from the low-level processing to the high-level semantic description. Feature repre-

sentation has been a critical issue in 3D recognition.

In either the model-driven or the data-driven approach, most model-based recognition

systems are domain-oriented and do not provide a general solution. Usually the design for

representation and recognition schemes is more or less application-dependent. The model-

driven strategy is commonly used for goal-driven recognition such as bin-picking tasks. In

general, a complex representation scheme allows the use of a simpler control strategy in

matching, and vice versa. Different approaches to 3D recognition system could be looked

upon as different ways of making a trade-off between the complexity of representation and

the complexity of matching schemes.

One of the most important goals of 3D vision systems is the robustness of the recogni-

tion process. In general, the recognition system should be able to cope with occlusion,

noise, incomplete data, or changes of viewpoints of the scene. The reliability of quantitative

measurements of features will largely effect the robustness of the recognition process. Un-

certainties in low-level and intermediate-level quantitative measurements inherently propa-

gate into the high-level matching phase. Usually a certain tolerance has to be incorporated

or accepted in the matching process. Although techniques in the sense of robust estimation,

e.g., the Hough transform, can be applied, the reliability of a control strategy could still suf-

fer from the lack of the explicit representation of the uncertainties in the low-level and in-

termediate-level measurement. The problem of uncertainties in low-level and intermediate-

level processing has not yet been well treated. The main objective of this thesis is to arrive

at an optimal recognition system using proper modelling of uncertainties in parameter esti-

mation and feature descriptions from range data, with emphasis on reliability of the object

representation.
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1.4 The scope of the thesis

This thesis aims at the representation and recognition of man-made objects from range data,

as obtained by the ranging systems of the OUQ and the MI group. Its core is a methodo-

logical study on optimisation of surface-based quadric representations with range data. The

purpose of the work is to improve the reliability of 3D vision systems.

The expected applications of the ranging systems concerned (either the laser-scanning

system of the OUQ or the structured light ranging system of the UT) allows the restriction

to man-made objects, where the surface of the objects are assumed to be smooth and regu-

larly shaped.

Second order polynomials (quadrics) are employed for shape description, which has

been a popular representation for smooth curved surface primitives. Although the class of

object surfaces is limited to the quadrics family, quadric primitives are powerful to model

also more complicated objects, using boundary representations (B-reps). In such a repre-

sentation a complicated object is described by a list of surface primitives.

The following particular aspects are considered in this thesis:

1. Utilising a surface-based quadric representation, pose parameters can be recovered si-

multaneously with feature extraction. A new concept to improve the estimation results

is introduced.

2. Uncertainties in quadric representations are investigated and a covariance model is

proposed to describe probabilistic characteristics of the estimates. The shape represen-

tation is optimised through an explicit probabilistic model. Based on the modelling of

uncertainties, the surface feature defined on invariants of representations is also de-

scribed with a probabilistic model.

3. Consequently, the feature-based surface recognition, as well as the range image seg-

mentation, is based on a Bayesian framework.

4. A new method of calibration of 3D measurement for the “frequency-difference” laser

scanning 3D sensing system is presented. It is shown that, without point correspon-

dence, a surface fitting algorithm is applicable for optimal estimation of the parameters

of the 3D measurement system.

1.5 Overview of this thesis

After this introduction, in chapter 2 the “frequency-difference” laser-scanning 3D sensing

system is introduced. Its basic principle of operation is explained, and a new method of

calibration of the measurement system is presented.

Chapter 3 focuses on the investigation of parameter estimation in surface-based quadric

representation. The parameters of a quadric primitive are estimated through fitting a set of

range data to a second order polynomial in implicit form. From the various approaches for

quadric fitting, the bias-corrected renormalization method has been chosen. The property
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of unbiased statistics provides the possibility to model the estimates with a general analyti-

cal representation, i.e., the normal probabilistic density function (pdf). However, the esti-

mation with the renormalization method shows up some deficiencies. The problem is in-

duced by inexact formulation in the eigenvector-based solution of the gradient-weighted

least square criterion. An approach is proposed to improve the reliability of the renormali-

zation method, based on an exact formulation of estimation with the eigenvector method.

In chapter 4, the quadric representations to describe the class of surface primitives of

man-made objects are discussed. Using implicit quadric representation, the surface feature,

defined by the invariants of the representation, can be obtained through transformation from

viewer-specific co-ordinates to the surface-specific co-ordinates, i.e., the standard form. In-

variants extraction and recovering the pose parameters (rotation and translation) are per-

formed simultaneously. In order to optimise the parameter and feature representation, this

chapter explores the propagation of uncertainties from the estimate in surface fitting into

the feature representation. The uncertainties are represented with an explicit form, the co-

variance matrix. Thus the primitive representation is described with a covariance model,

consisting of the first and second order moments (expectation and covariance matrix) of the

estimate. Consequently, an analytical normal pdf is employed to establish the Bayesian

framework for feature-based primitive classification. Representation of pose parameters is

also discussed in this chapter.

An important low-level vision task is segmentation of the range image, required to ren-

der the surface-based representation of primitives. In chapter 5, a region-based approach for

segmentation of a range image is proposed. Since the parameter estimates have been ex-

plicitly represented with the probabilistic model, the clustering algorithm is based on an

optimal criterion in a homogeneity test. However, as pointed out by [33] and [66], one of

the difficulties in range image segmentation is the lack of standard evaluation measures for

the segmentation results. Without further quantitative assessment of the “efficiency” or

“validity” of the segmentation results, the proposed algorithm, in the sense of homogeneity

definition, focuses on the reliability of representation of a homogeneous surface primitive.

In chapter 6, experimental results of optimal classification of surface primitives and

range image segmentation with real range images are presented.

Finally, summaries and prospective research are given in chapter 7.
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Chapter 2

The “Frequency-Difference” Laser Scan-

ning Sensing System

Range-sensing systems have been extensively used in autonomous systems for computer

vision as a powerful modality for 3D interpretation. There exist a multitude of range sens-

ing systems designed for various applications with different sensing techniques. One of

them is the “frequency-difference” laser-scanning sensing system, which has been devel-

oped at the Ocean University of Qingdao, China. This system was designed and applied for

inspection of underwater engineering tasks, where man-made objects were stud-

ied/inspected. For example, it has been applied for detection of pipelines for underwater oil

transmission, inspection during repairing some mechanical elements of vessels in water,

etc. A picture of this system is given in figure 2.1. This chapter introduces the characteris-

tics of the “frequency-difference” laser-scanning sensing system and its principle of range

sensing. A calibration method based on the formalisation of a 3D representation in a Carte-

sian co-ordinate system is proposed.

2.1 Background of active range sensing techniques

In contrast with “passive” sensing, which is the case when the source of radiation is not

controlled,  “active” sensing occurs when the illumination (in a wider sense) is either time

or space controlled. Among the modalities of active sensing (optical, ultrasonic, tactile,

etc.), the optical sensing system is used most frequently. Surveys of range finders and their

applications can be found in [7], [12] and [22]. [7] gives also examples of samples from

various optical sensing systems, together with a classification and a comparison.

Optical ranging techniques can be divided into two types: monocular and binocular

systems. The monocular approaches are those used in laser-radar range finders. The meas-

urement is based on the propagation time of light, the so-called “time-of-flight” (TOF).

There are three basic modes of operation. A pulse detector measures the time-of-flight of

discrete light pulses: this time is proportional to the distance between the laser emitting

point and the reflecting target. The frequency-modulated continuous-wave (fm-cw) meas-

ures the time-of-flight indirectly by detecting the beat frequency of the emitted laser beam

and its reflection. The amplitude-modulated continuous-wave (am-cw) measures the time-

of-flight directly by detecting the phase shift between the emitted beam and the reflection.

Generally, the pulse detection is suitable for remote applications while the am-cw or fm-cw

methods are usually used in a restricted working volume and are more attractive in machine
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Fig. 2.1. The “frequency-difference” laser scanning sensing system. (The

picture was taken in the opto-electronic information laboratory of OUQ.)

Laser emitting device
Detecting device

vision. The advantages of these techniques are the direct availability of range information

without subsequent computation and the fact that the measurement accuracy will not de-

grade when used over a larger range. In order to get a sufficiently large set of data points

over the whole working space, a scanning mechanism has to be attached, which results in

higher costs of implementation.

The active binocular technique is in fact the “triangulation” method. In cotrast to the

passive stereo approach, the triangulation technique uses controlled light, so-called “struc-

tured light”, by which the correspondence between projection and sensing has been pre-

defined. Thus the distance can be measured with the well-known triangulation algorithm.

The controlled light pattern can be a set of points, lines or grids, etc, combined with a spe-

cific sensing configuration. Triangulation ranging systems are quite popular for 3D meas-

urements, because of their suitability for 3D surface measurement and scene profiling. At

large working ranges the triangulation method is less accurate and the “missing part” prob-

lem is unavoidable because the projected and detected light beam are not co-axial. How-

ever, at moderate ranges, triangulation systems perform accurate and fast measurement and

are easy to implement ([7]). In active triangulation methods, the illuminating pattern and

the mode of light detection determine the formulation of 3D measurement.

Being able to configure a structured light pattern, laser-scanning techniques have been

paid attention for alternative applications. In a laser-scanning triangulation system, the light

pattern can be either a set of points, directly projected by the laser beam onto the target,
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with a 2D scan mechanism, or a set of lines, created from a laser beam using a strip (slit-

beam) and a cylindrical lens, with a 1D scanning procedure.

A commonly used detector in most triangulation systems is the CCD camera. However,

other opto-electronic sensors might be applied as well.  An example is the photo-multiplier

tube that was used in the laser-scanning system as described in this chapter.

Most ranging systems, no matter what sensing techniques were used, were developed

for on-land applications. When applying a ranging system in another environment, i.e., un-

derwater, difficulties will occur in the sensing process so that a well-performed system on

land would be useless in such special applications. Because the system specified here is as-

sumed to work in water, the influence on the optical sensing process should be investigated

first.

2.2 Optical sensing in an underwater environment

Compared to applications in air, absorption and scattering during light propagation in water

induce some particular difficulties. The mechanisms of absorption and scatter are different.

Whereas absorption causes only reduction of light energy, scattering obstructs the sensing

process in a more complicated way, because it not only reduces the intensity for illumina-

tion, but also causes a back-scattering background, both of which severely degrade the sig-

nal-to-noise ratio of the sensor signals.

Scattering originates from different physical mechanisms; it depends on the composi-

tion and condition of the water, and in particular on the size of particles interacting with

photons. Propagation of scattered light is omnidirectional and scattering occurs wherever

the light passes through the water. In case of turbid water, the forward-scattered and back-

scattered light will strongly influence the illumination and detection process in the entire

field of view.

The imaging systems for underwater applications are mainly used for marine mobile ro-

bots, i.e. ROV (Remotely Operated Vehicle System) and UUV (Unmanned Undersea Vehi-

cle System). They can also be applied for a variety of underwater engineering tasks, such as

monitoring parts of offshore oil-platforms, inspection of underwater pipelines or other con-

structions. Since underwater imaging systems (2D or 3D) have the same functionality as

those for use on-land, they must be able to overcome the influence of the scattering effect

somehow. The reason that many underwater sensing systems utilise acoustic modality (so-

nar) in stead of light is just to avoid the absorption and scattering problems. But the draw-

backs of sonar sensing systems, i.e. poor resolution and low sensing speed, limit their ap-

plications as imagers.

 Several techniques have been developed to solve the scattering problem for optical sensing

systems, all of which are based on the idea of reducing scattered light in the sensed signal. The

polarisation method separates the target light and scattered light through polarising filters in the

projection and detection parts, according to the different polarisation properties of scattered

light and the diffuse target light. The main drawback of the polarisation method is the loss of

light energy during polarisation. The gating method uses pulsed light and controls a gate that

opens only at the moment the target light arrives, so most of the scattered light spread over the
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whole projecting path is blocked during the remaining time. A difficulty of this method is that

the gate is hard to correctly control by predicting the target distance from the pulse-illumination

pattern. The synchronism method uses a synchronous scanning pattern for projection and

detection to reduce the amount of effective scattered light. Figure 2.2 illustrates the principle of

the synchronous scanning method. The light beam from a continuously emitting source scans

the target, while the detector scans synchronously the reflected light within a small field-of-

view. In this way, only the scattering in the overlapping region of the light beam and the

detected field-of-view (the so-call “scattering volume”) will effect the signal-to-noise ratio.

The smaller the scattering volume, the less scattered light will be received. Compared with

other methods, the synchronous scanning method is more effective and suitable for imaging

systems working in a scanning way.

Although these methods were developed for 2D imaging systems, the basic concept can

be applied for 3D sensing systems as well. The “frequency-difference” laser scanning

sensing system, which is introduced here, was designed based on the synchronism tech-

nique, to solve the scattering problem in underwater applications. The mode of illumination

is the laser point scanning. Although a laser slit is common in many laser-ranging systems,

it is not recommended for an underwater environment because the slit-beam will yield a too

large scattering volume, which conflicts with the requirement of a small scattering volume.

Moreover, the “frequency-difference” laser scanning sensing system uses a photo-

multiplier tube as detector in stead of a CCD camera, working in a time-sequential detec-

tion mode to comply with the point-scanning pattern. Since the sensitivity of a multi-photo-

tube is much higher than of CCD elements, the detection range, which is usually small in

water because of low visibility by absorption and scattering, can be increased.

The ranging system described below has been designed particularly for underwater ap-

plications. A novelty in this design is the “frequency-difference” scanning technique ([29]

and [69]). Its advantages include automatic and fast sensing, adjustable resolution and re-

duction of the scattering effect all in one. Moreover, by incorporating a 2D greylevel

imager, real-time 3D display on a 2D monitor can be realised just by combining the outputs

of the two sensors. The real-time data-saving modality at optical sensing speed is still in

development.

2.3 Principles of the “frequency-difference” laser-scanning

sensing technique

In this section, the implementation of the laser scanning triangulation measurement is dis-

cussed and the principle of “frequency-difference” scanning is described.

2.3.1 Principle of laser-scanning triangulation measurement

Figure 2.3 is a simplified model to illustrate the principle of the laser-scanning sensing

system. F denotes the laser emitter and S denotes the detector.  S0 is the distance between

these components, and is called the baseline. The laser point-beam performs scans in lon-
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gitudinal direction (denoted as line scanning), and latitudinal direction (called frame scan-

ning). A slit-shaped detecting plane scans the scene in latitudinal direction. Assume at a

certain time a point P is sensed at a line-scanning angle γ, a frame scanning angle α and a

slit-scanning angle β. The position of P can now be calculated using the concept of trian-

gulation.

Laser-scanning triangulation can be implemented in different ways, for example, a

scanning slit-beam (strip of light) with an array detector such as a line scan CCD camera.

2.3.2 Implementation of the scanning measurement system

The 3D sensing system consists of an optical sensing part and an electronic processing part.

The optical part contains two rotating mirror-faced polyhedrons, deflecting a laser beam as

to realise the two-dimensional scanning (line- and frame- scanning). A sketch of the im-

plementation is shown in figure 2.4(a). The detection device is mechanically independent to

the laser-emitting device.  A slit in front of the multi-photo-tube sensor is located at the fo-

cus of a lens so that a scanning “detecting plane” is generated in space. Scanning of the de-

Fig.2.3working principle of laser scanning triangulation
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β slit-scanning angle
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tecting plane is also carried out by a mirror-faced rotating polyhedron, as shown in figure

2.4(b).

2.3.3 The principle of “frequency-difference” scanning

In the scanning laser point-beam system, a slit in front of the detector is projected onto the

scene to be observed. A virtual “detecting plane” is thus created, whose angle β can be po-

sitioned while keeping the field-of-view in a fixed longitudinal direction. For any angle β,

all visible illuminated object points on this detecting plane will be sensed. The frequency of

the line scanning with respect to γ is much higher than that of the frame scanning with re-

( a ) laser emitting device ( b ) detecting device

Fig.2.4 Implementations of optical scanning and sensing scheme.

    (a) illustrates line- and frame-scanning implementation. M1 is a fixed mirror trans-

forming line-scanning to frame-scanning. The synchronising signal for line-scanning is

generated by laser reflection at a certain pose of the mirror, detected by detector r1,

while the synchronising signal for frame-scanning is generated also by reflected light at a

defined position of the frame-scanning mirror, but an active illuminating source s is

used. M2 is a semitransparent mirror by which reflected light is detected by r2.

    (b) illustrates the slit-scanning implementation. A slit positioned at the focus of a lens

is imaged onto space through the lens and the slit-scanning mirror. Then an imaged

(virtual) “detecting plane “ is scanned using the mirror rotation. Only diffusion of the

point that lies on the detecting plane can be sensed by the sensor behind the slit. The

synchronising signal is generated by illuminating source s and a detector r, coupled by

the semitransparent mirror M.
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spect to α and β. So during one line scan, the track of the laser beam projected on the de-

tecting plane is almost a straight line perpendicular to the x-z plane. Only points on this

track can be sensed by the detector. We call this track the “measurement track”. Thus one

frame scan contains a number of line-scans, resulting in a set of sequential measurement

tracks moving along the depth direction (z-axis direction). All sensed points are the inter-

secting points of these tracks and the object surface (see figure 2.5).

If the scanning frequency

of the detecting plane is ex-

actly the same as (or a multiple

of) the scanning frame, these

measurement tracks will be re-

peated on the same location for

all frame-scans. However, if

there is a small difference be-

tween the frequency of the

scanning detecting plane and

the scanning frame, the loca-

tion of the measurement tracks

change in space with respect to

the different frame-scanning

periods. Consequently, during

the scanning process, the

measurement tracks move over

the scanning field so that the

range sensing is processed

automatically. This is the con-

cept of “frequency-difference”

scanning sensing technique.

Figure 2.6 illustrates the spatial

changes of the measure tracks in

different frame-scanning peri-

ods.

To quantify the “frequency-

difference”, a so-called fre-

quency-difference coefficient is

defined ([29]) as Rsf =ωs /ωf ;

where ωs is the slit-scanning

frequency and ωf  the frame-

scanning frequency. Figure 2.7

shows two instances of the pat-

tern of the measurement tracks

with two different frequency-

difference coefficients (viewed
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at the x-z plane), as generated by a computer simulation ([29]). The parameters are taken

from the real system.

Some of the characteristics of this sensing technique are summarised below.

• By laser point-beam scanning, points are sensed through a time-sequential process.

• The measurement tracks move periodically, i.e., after a few periods of the frame scan-

ning, the measurement tracks will cover the whole scanning space and this process is

repeated. The time needed to complete such a change is defined as the “measurement

period”. This period is determined by the frequencies of both the scanning detecting

plane and the scanning frame. The measurement period is in the order of a few sec-

onds.

• Along the z-direction, the spatial sensing resolution depends on the ratio of the line-

scanning frequency and the frame-scanning frequency while in the x-direction the spa-

tial sensing resolution depends on the ratio of the slit-scanning frequency and the

frame-scanning frequency (Rsf). Along the y-direction, the resolution is determined by

the size of the laser spot and the sampling speed.

The (optical) sensing speed is defined as the maximum number of points to be sensed in

one frame-scanning period. It depends on the point spatial resolution and the frame-

scanning frequency. The sensing speed ([29]) can be up to 0.46µs/point.

Once the scanning frequencies of α, β and γ be designed, the frequency-difference coef-

ficient Rsf can be used to control the sensing resolution.

Fig 2.7 Two instances of simulated pattern of measurement tracks viewed at x-z

plane, corresponding to different frequency-difference coefficients Rsf.

(a) Rsf=11.04, S0=700mm (b) Rsf=1.02, S0=700mm

x

z



Chapter 2 The “frequency-difference” laser scanning sensing system

19

2.4 System set-up

As a reference, some standard parameters of this system are listed below.

Laser: wavelength  532 nm; power   80 mW

Scanning frequency: line 10800Hz; frame  25Hz; slit  300Hz ± (an adjustable range)

Scanning range: vertical   ±20°; horizontal  120° (both in air medium)

Baseline: about 100cm

To get some more insight in the system set up, a schematic diagram is presented in fig-

ure 2.8.

As mentioned in the beginning of this chapter, this system was designed for underwater

applications. Advantages of this system when used underwater are:

(1) The instantaneous field-of-view of the detection is slit-sized while the illuminated re-

gion is spot-sized, so the “scattering volume” is small and the scattered light can be ef-

fectively reduced, improving the signal-to-noise ratio.

(2) The laser-emitting device and detecting device are mechanically independent and the

baseline is adjustable. For targets at different distances, changing the baseline enables

us not only to improve the resolution, but also to reduce the scattering volume.

(3) In stead of a CCD camera, a photo-multiplier tube with high sensitivity was used as

light sensor. The purpose is to improve the working distance in case of poor visibility

in water.

Laser line-scanning frame-scanning 2D sensing slit-scanning 3D sensing

System control

 ComputerData acquisitionMonitor

synch synch synch

Fig. 2.8 Set-up of the “frequency-difference” laser scanning sensing system.
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(a) (b)

Fig. 2.9. Two examples of observation of 3D depth information from the

monitor screen.

2.5 3-D visualisation technique

The “frequency-difference” laser scanning sensing system poses a significant advantage of

the 3D-visualisation facility. Combined with a 2-D imaging system, the 3-D sensing system

is capable of displaying real-time depth information on a video monitor. This possibility

has been implied in the system set-up of figure 2.8. A 2-D sensing system mounted to the 3-

D sensing system generates a grey-level image during the laser-scanning process, and pro-

vides a sequential video signal to a monitor. The output of the 3-D sensing system is added

as an overlay to the 2-D video signal and is displayed in a highlight mode, i.e., the 3-D sig-

nal is shown in binary format. The video signal is synchronised at the start of each line- and

frame- scanning period. According to the working principle, in one scanning frame, differ-

ent scanning lines correspond to different depths in the formation of measurement tracks

(see figure 2.5). Therefore, for 2-D video signals, the monitor displays a grey-level image

corresponding to the x-y plane. When 3-D signals are displayed on the monitor, two neigh-

boured lines represent the depth difference along the z- axis. In other words, the screen can

be interpreted as y-z co-ordinates of the 3-D video signal. Therefore, relative depth infor-

mation can be “visualised” on a simple screen by combining the 2-D grey-level video sig-

nals and the 3-D binary video signals.

As an example, figure 2.9 shows some pictures taken from the monitor screen to illus-

trate the 3D visualisation. The grey-level images were derived from the 2D-video signal,

while the white lines indicate the output of the 3D sensing system. In (a), the white line (the

3D scanning line) covers the ear of the cup, a man’s hand and finger, meaning that the ear

of the cup and the hand and the finger are at the same depth. In (b), only the ear of the cup

and the hand are covered by the white line, meaning that the finger has moved to a different

depth relative to the hand and cup.
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This novel 3D-display technique can be applied for real-time inspection tasks, for ex-

ample, to monitor the relative distance between a gripper and the manipulated object in a

man-interfered mobile manipulation. More details about this characteristic can be found in

[70].

2.6 Implementation of range data acquisition

The acquisition of range data points using a CCD camera is rather straightforward. In this

“frequency-difference” laser scanning sensing system, the 3-D signal is sensed in a differ-

ent, time-sequential way. Since no ready-made facilities are available, a special data acqui-

sition system has been designed.

According to the principle, the position of a sensed point is determined by the three

scanning angles α, β and γ. These scanning angles are expressed by α=α0+ωftf, β=β0+ωs ts

and γ=γ0+ωl tl, where ωf, ωs, ωl are the frequencies for frame scanning, detecting plane and

line scanning, respectively. Therefore, acquisition of a data point equals recording the three

time values of tf, ts, tl at the moment a point is sensed.

Obviously, given the inputs tf, ts, tl, an explicit representation of 3D co-ordinates of the

sensed points can only be given after the definition of a reference co-ordinate system and

the determination of the system parameters involved. The model of this 3D measurement

system, including the definition of the 3D co-ordinate system, the estimation of system pa-

rameters and the computation of 3D co-ordinates, are described in section 2.8. A brief

model of the 3D representation is given in figure 2.10.

Theoretically, the “frequency-difference” sensing technique results in a high-sensing

speed. For example, for the parameters presented in 2.3, and assuming that the number of

sensed points in a line-scanning period is 200, the sensing speed ([29]) can be up to 0.46

µs/point.

Such a high sensing speed is applicable for real-time data acquisition only when the

electronic processing (A/D transfer, communication, etc.) can work at the same speed. Be-

  tf, ts, tl  α, β, γ

Determination of the

line equation of the

laser beam

Determination of the

plane equation of the

detecting plane

3D co-ordi-

nates

System pa-

rameters

Fig.2.10. The principle of computation of 3D co-ordinates.

 ωf, ωs, ωl
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cause of limitations in the present hardware facilities, this has not yet realised in the current

system. However, the 3-D data acquisition was implemented as a man-interfered facility

rather than a real-time acquisition facility. Currently, it is applied only for experimental

studies, while research on data acquisition is going on. The principle of data-acquisition is

explained below, without giving details of the hardware implementation, just for basic un-

derstanding of the 3D measurement system.

Acquisition of the time values tf, ts, tl is performed by a “cursor-positioned” mechanism,

controlled by the 2-D image. A computer-generated cursor is added to the video signal and

displayed on the monitor with the 2-D image. Setting the cursor to a certain position, once

the point of observation corresponding to this position is sensed, the three times are saved

by dedicated computer-interfaced hardware. In the realisation, the values of tf and tl are set

by the cursor position; only ts is recorded instantaneously. The synchronising signals, which

are generated at the beginning of a scanning period, are used to trigger the time counters.

By moving the cursor over the whole region of interest, a set of data point becomes avail-

able.

Clearly, the measurement precision is effected by the stability of the scanning fre-

quency. To compensate for errors caused by this instability, the three scanning periods are

also recorded simultaneously. In the next section, causes of measurement errors are clari-

fied.

2.7 Causes of errors

The major errors of the ranging system are summarised in the following:

 Errors in recording of the scanning time

In contrast to CCD imaging, the output of this system is the recorded scanning time (tf, ts, tl) at

which a point is sensed. The clock frequency of the counter is high enough (~10MHz) so that

the counting errors can be neglected. However, due to non-ideal shapes of the synchronising

signal that triggers the counter (bandwidth limitation, noise, interference etc.), uncertainty in

the determination of the start and end moments of the scanning process occurs. Of course,

improvement in circuit implementation can reduce these errors.

 Extension of the laser point-beam

Since the size of the laser spot is not infinitely small, point ambiguity in the intersecting area of

the laser beam and the surface yields uncertainty in the measured detecting angle β.

This problem becomes significant when the laser beam hits the surface at a small angle,

causing a large spot on the surface. Therefore, object parts with surfaces along the projec-

tion direction may yield larger errors than other parts.

 Extension of the detector slit

The slit scanning detection was realised by imaging a slit through a rotating mirror onto the

scene, as illustrated in figure 2.4(b). The slit is located at the focus point of a lens so that
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the virtual image of the “slit plane” performs the scanning process. Only the light reflected

from the object surface and passing through this slit will be sensed. Due to possible out-of-

focus location, the effective width of the slit, imaged onto the scene, will be expanded. This

also causes uncertainty in the scanning angle β. Obviously, the narrower the effective slit

width, the less is the error. But if the slit width is too small, the light power to be received

decreases so the signal-to-noise ratio degrades. An optimal choice is to let the strip-covered

area be the same as the projecting laser spot. But in reality both the illuminated area and the

detected area change during the measurement, so a practical slit width can only be deter-

mined empirically, according to the application.

 Instability of scanning frequencies

A precise determination of the three scanning frequencies is important for the computation

of the scanning angles α, β and γ, which determine the co-ordinates of the object. To elimi-

nate the effects of unstable scanning frequencies, the scanning periods for α, β and γ are

also recorded simultaneously with tf,  ts and  tl. Then for each record of tf,  ts and tl, the cor-

responding frequencies were used to compute the three angles.

However, the motor speed is irregular so the recorded frequency value is only an aver-

age during a period (e.g., the variation of the slit-scanning frequency is within 10
-3

). There-

fore, there are still errors in the calculated scanning angles due to frequency instability.

A solution of this problem relies on the improvements of the mechanical performances

that can be obtained, but, this will lead to increased costs.

 Other errors

Besides the errors discussed above, a direct consequence of the system implementation, other

errors may originate from the interactive illumination or the sensing process, for instance:

- inter-reflections due to irregularities of the surface,

- specular reflection that causes the extent of the illuminated area,

- inter-reflection below transparent surfaces,

- non-diffuse reflections  causing too small signals.

Since such errors are commonly encountered in many ranging systems, a detailed discussion is

omitted here.

Particularly, in case of underwater applications, scattered light may cause erroneous

sensing when the scattering effect is strong. However, the “scattering volume” is reduced

greatly with the mentioned system, and it can also be controlled by extending the baseline

and reducing the slit width. So it is expected to effectively reduce occurrences of such kind

of errors.

For example, in the experiments using real range data for object recognition (see figure

6.3 in chapter 6), the variance of noise in the obtained range data was within 0.6~1cm
2
,

where the objects were measured at a range within 0.5~1m.
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2.8 Model of the 3D co-ordinate system and calibration

In a broad sense, calibration of a measuring system is to formalise data representation under

a defined co-ordinate system. The focus of a calibration is to determine the system pa-

rameters which are involved in the computation of the output data. A variety of calibration

methods for triangulation-based ranging systems has been presented in [12], [14], [15], [16]

and [49]. All of them were related to CCD imaging modalities. Those for laser-scanning

range finders were quite sparse among the available publications, and moreover, they were

also limited to slit-beam pattern and CCD detection ([14], [15] and [49]). In fact, no avail-

able calibration routines can be directly applied to the “frequency-difference” laser-

scanning ranging system because of the following differences:

- the light pattern in this system is based on points instead of lines.

- the sensing process is time-dependent rather than geometry-dependent in case of a

CCD camera.

However, the basic concept of co-ordinate formalisation and parameter estimation is shared

by all kind of calibration actions. In general, the measurement co-ordinate system can be

defined arbitrarily. It can be fixed to world co-ordinates in case of a static view, or to robot-

centred co-ordinates in case of autonomous vehicles and robots. In all cases the measuring

output of the range sensor itself must be configured and calibrated by coupling it to another

related co-ordinate system.

Calibration of the “frequency-difference” laser scanning system includes modelling the

measurement system and finding the system parameters. In this application, the measure-

ment co-ordinates are defined with respect to the system, that is, they are independent of

either the world co-ordinate system or a kinematic co-ordinate system to which it is related

when it is mounted on a mobile vehicle. Thus the parameters involved in the calculation of

data points are regarded as intrinsic or internal parameters.

In line with other self-calibration methods ([19], [22], [44] and [62]), an optimal ap-

proach is proposed in this chapter to estimate the parameters through planar fitting, by

which the estimation can be evaluated in the sense of accuracy. Moreover, the calibration

errors are evaluated at the stage of time recording, which is thought to be a stationary sto-

chastic process.

2.8.1 Definition of parameters and co-ordinate system

The measurement model is shown in figure 2.11. Suppose the laser beam originates from a

fixed point F (laser source) and scans along longitude and latitude directions by line and

frame scanning. We define F to be the origin of the measuring co-ordinate system and the

y-axis being perpendicular to the frame-scanning plane, denoted by Γ. During the detection

process, the detecting plane, denoted by Ψ, scans the space by rotating around a fixed axis

which direction is represented by the unit vector ns. Supposing ns and the frame-scanning

plane Γ intersect at the point S, then the x-axis of the measuring co-ordinate system is de-

fined along FS. Having defined the x- and y- axes, the z- axis follows according to the right-

hand rule. The distance between F and S, denoted by L, is called the baseline length.
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It should be noted that in this model the rotation axis ns of the detecting plane Ψ, is as-

sumed free-oriented without any constraints with respect to the y-axis, the rotation axis of

the laser frame scanning. Also, the detecting plane Ψ is assumed to be arbitrarily posed

without any mechanical constraints. This freedom in the definition of a co-ordinate system

is important because in practice, it is difficult to guarantee some mechanical constraints

even there are intentions to do so.

Besides the time parameters, pose parameters are also involved in the representation of

a data point with the chosen co-ordinate system. There are four parameters to configure the

pose of ns and Ψ.  Two are used to describe the orientation of ns i.e., azimuth ρ1 and eleva-

tion ρ2 with respect to the x-y-z co-ordinate system.  Another two parameters describe the

relative pose of the detecting plane Ψ with respect to ns, i.e., the angle between ns and plane

Ψ, denoted by θ, and the distance from point S to plane Ψ, denoted by ‘h’ (see figure 2.11).

These four parameters are independent of the scanning process.

In summary, the parameters involved in a 3D measurement in the defined co-ordinate

system are:

α0, β0 and γ0  three initial angles of the periodic scanning for α, β and γ.

ρ1 and ρ2  azimuth and elevation angles describing the orientation of the vector ns re-

ferred to the  x-y-z  co-ordinates (see figure A.2 in Appendix A).

h  distance between S and the detecting  plane Ψ.

θ  angle between  the detecting  plane and sn .

L  baseline determined by the distance between S and F.

Detecting

plane

α

γ

ns

Ψ

P

L

θ

S
x

y

z

Laser beam

T  Γ
h

Fig 2.11 model of co-ordinate system

ns direction vector of rotation axis of Ψ (the normal vector of plane Γ).

h  distance of S to Ψ.

θ  angle between sn and Ψ.

L  baseline between S and F.

F
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Once the above eight parameters are determined by a calibration process, for each data

point associated to the times tf, tl, and ts, the 3-D co-ordinates can be computed in the de-

fined x-y-z co-ordinate system.

The co-ordinate computation is de-

rived from the simple fact that the sensed

point is just the intersecting point of the

laser beam and the detecting plane. Sup-

pose the point P (see figure 2.11) is

sensed at the recorded times indicated as

tf, tl, and ts. Given tf and tl, the line equa-

tion of the laser beam is directly available

in x-y-z co-ordinates from the known α
and γ, which are computed from tf and tl.

Once the equation for the plane Ψ is de-

rived in the same x-y-z co-ordinate sys-

tem, the position of the point P expressed

in the x-y-z co-ordinate system is found

by solving these two equations.

In order to obtain the equation of the detecting plane Ψ in the x-y-z co-ordinate system,

an assistant co-ordinate system with origin at S is defined to describe the pose of Ψ when

scanning. This assistant co-ordinate system, denoted as x’-y’-z’, is built as described here-

after.

Perpendicular to the rotation axis ns, and passing through the point S, a  “scanning-

plane” of Ψ is defined, which is denoted as Γ in figure 2.11 (shown in shadow). The y'-axis

coincides with the vector ns. The x'-axis is defined in the plane Γ along the intersecting line

with the plane formed by the x- and y'-axis. Then the z'-axis is derived by applying the

“right-hand” rule. This assistant co-ordinate system is shown in figure 2.12.

From figure 2.11 it will become clear that rotation of Ψ can be described by a rotation

of the line ST, the distance from S to the Ψ. The scanning angle of ST is β= β0 + ωsts ,

where ωs is the scanning frequency of the detecting plane Ψ and β0 is the initial angle in

each period.

Firstly, the equation of the plane Ψ can be easily represented in the x’-y’-z’ co-ordinate

system. At any time, the normal unit vector of plane Ψ, denoted as e, is expressed in x’-y’-

z’ co-ordinates as:

[ ]Tβθθβθ sincos,sin,coscos −=e (2.1)

So, in x’-y’-z’ co-ordinates, the equation of the detecting plane Ψ is

h=′ ex
T

(2.2)

where h and θ are the parameters defined in figure 2.11.

Secondly, the equation (2.2) is reformulated in the x-y-z co-ordinate system by a co-

ordinate transformation between x’-y’-z’ and x-y-z, which is described by

LxRx +′= (2.3)

Fig. 2.12.  Assistant co-ordinate system x’-

y’-z’ defined in x-y-z.

βx

y
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x'

y'
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S F
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The translation vector L is the vector pointing from F to S. The rotation matrix R consists

of the three base vectors of x’-y’-z’ viewed in x-y-z. According to the definition of x’-y’-z’,

the three base vectors can be expressed in x-y-z co-ordinates, so R can be determined.

The equation of the points (e.g. the point P) on the line coinciding with the laser beam,

expressed in vector notation in x-y-z co-ordinates, is described by

[ ]TK αγγαγ sinsincoscossin=x (2.4)

where K is a scale factor.

Finally, combining (2.2) with (2.4), the position of the point x can be obtained. Details

in co-ordinate representation can be found in Appendix A.

2.8.2 Parameter estimation using a planar fitting algorithm

In a calibration process, reference objects are required as the “ground truth” to formulate

the equations by which the parameters can be estimated. Without loss of generality, cali-

bration by parameter estimation can be issued as follows.

Given a set of known data S and their measured data S′(a), where a denotes the vector

of measurement parameters, find an estimate â of a, satisfying â = Θ(S,S′,a). The cost

function Θ is defined according to the estimation criterion.

After the measurement co-ordinate system of the “frequency-difference” laser-scanning

system is defined, it is expected that all the intrinsic parameters can be determined within

the framework of the modelled co-ordinate system.

Simple and convenient point-matching algorithms for calibration are commonly based

on the assumption that correspondence between the reference point and its measured coun-

terpart has been identified. In practice, there exists no kind of illuminating pattern that can

guarantee an exact positioning of the target point. Therefore, the measured position may

correspond to an ambiguous point, lying in a neighbourhood of the target point. This neigh-

bourhood is determined by the uncertainty in the measured counterpart. Even when the

system parameters are exactly known, such an uncertainty still exists.

Following Besl [7], we distinguish between repeatability and accuracy when quantify-

ing measurement errors in the calibration. Accuracy indicates the difference between the

measured range and the actual range while repeatability indicates the variation of the meas-

ured range with respect to a given target. The error of point-matching measurement is in

fact evaluated in the sense of repeatability. However, the repeatability is less reliable to

evaluate the errors caused by the internal uncertainties of the system. Because of the ambi-

guity in positioning a point target, the known position (the “ground truth” for a given point)

might still be different from its “actual” position at the moment of measurement. In con-

trast, accuracy reflects internal causes of errors of the system excluding external influences,

so it is more robust to evaluate the performance of a system.

Moreover, when parameters are estimated independently within the system itself, only

relative positions of the reference points are known with respect to the defined co-ordinate.

Thus more uncertainties are induced in the computation and the reliability of the estimated

â  will degrade.
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In stead of point correspondence, approaches using line- or plane-correspondence for

calibration were proposed in [16] and [49]. Methods for self-calibration were also devel-

oped for use in mobile applications ([19], [44] and [62]), by which not only the intrinsic pa-

rameters but also the co-ordinates of the reference points are estimated, based on multiple

images of the same field but acquired at different poses of the camera.

The calibration method proposed for the “frequency-difference” laser-scanning system

is in line with previous methods in two aspects, i.e., the correspondence is not point-based

and the constraints for correspondence are relaxed. Advantages of this method are:

(1) no a priori knowledge about the position of the calibration object is required. The pose

of the calibration object (planes) is estimated simultaneously with the system parame-

ters by a fitting algorithm. This implies that the error of calibration is evaluated in the

sense of accuracy.

(2) the errors are evaluated in radian metric, making them independent of the range in tri-

angulation measurement. This guarantees that the calibration fits the assumption of a

stationary stochastic model of errors for LS optimisation.

The concept of self-calibration can be illustrated by the following formulation in case of

point-correspondence. Suppose a point from an unknown plane is measured as x(a), where

a denotes the system parameters, then the planarity constraint yields to

b
T =)(axn (2.5)

Besides the system parameters, stored in the vector a, also the parameters of the plane,

stored in the vector p=(n,b)
T
, should be determined by the self-calibration computations. If

the number of points in the test plane equals the dimensionality of a plus p, and the plane is

properly posed, then a unique solution of a and p is available from the set of non-linear

equations.

However, a reliable result can only be obtained in the framework of optimal estimation

by using more data points. This can be realised by minimising a defined cost function, as

described below. Briefly, our proposed algorithm is to find the parameters of a plane that

fits best to a set of measured planar points. To test the “goodness” of fitting, the distance of

a point to the plane is used as the measure of error. Assuming the noise x∆  to be inde-

pendent identically distributed (i.i.d), then its distance to the plane d=∆x
T
n, where n de-

notes the normal vector of the plane, has also the same distribution. For points from the

same plane, the function

∑
=

=
m

i

idD
1

2
),( pa  (2.6)

can be used to evaluate the variance of noise ∆x in statistical sense.

Using a few planes in different poses as the calibration objects, the cost function can be

further defined as

∑
=

=Θ
K

k

kk D
1

),( pa (2.7)

where K is the number of calibration planes. By minimising the cost function of (2.7), a and

pk (k=1…K) are estimated using the LS criterion.
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Because the cost function is based on the effect of the error ∆x, the solution is obtained

by evaluating errors in the sense of accuracy, rather than repeatability.

2.8.2 Establishing the least-squares criterion in the domain of sensor
variables

When applying the algorithm described in section 2.8.2 to calibrate the “frequency-

difference” laser scanning sensing system, the result was found unreasonable (in our ex-

periments, the computed 3D co-ordinates of a point exceeded a normal range according to

our empirical judgement). The problem was caused by the assumption that the errors meas-

ured in Cartesian co-ordinates were additive i.i.d noise in the image domain, which was not

correct in reality. In fact, for the triangulation measurement, the range measurement in

terms of rij (see [7]) is indexed by angles. For example, the indices (i, j) correspond to the

latitude and longitude angles (α,γ) in the point-beam laser scanning system. After being

converted to the x-y-z form, the errors represented in x-y-z co-ordinates usually do not pre-

serve the properties in the original rij form. For example, if the error in the angles can be

modelled as a stationary stochastic process, then after the non-linear transformation, errors

of x∆  distributed in x-y-z form become a non-stationary pattern. So the LSE criterion with

the noise model in the x-y-z form can yield unreliable results.

Generally, such kind of error performance is shared by all triangulation measurement

systems, in spite of alternatives in sensing patterns. In fact, this is one of the drawbacks that

limit the application of triangulation systems for long-distance measurements. To eliminate

the influence of the non-linear mapping from the input sensor variables to the output x-y-z

representation, the measurements errors should be modelled in the domain of the sensor

variables, rather than the x-y-z form.

The scanning angles are determined by measuring the scanning time. Errors in time re-

cording are thought to fit a stationary stochastic model with constant variance. According to

the “cursor-selected” data-sampling approach, the times tf and tl, corresponding with the in-

stantaneous pose of the scanning laser beam, are pre-determined, so only the error of st  in

the position of the detecting plane is considered.

Given system parameters a, the co-ordinates of a measured point can be expressed in

the form

),,,( sfl tttaXx = (2.8)

In a first-degree approximation, errors in the co-ordinates can be expressed as

s

s

t
t

∆
∂
∂

=∆
X

x (2.9)

Suppose x is measured from a planar point. Then the error will be

s

s

TT t
t

∆



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


∂
∂

=∆
X

nxn (2.10)



Chapter 2 The “frequency-difference” laser scanning sensing system

30

Table 2.1: Result of the calibration of the “space-frequency-difference” laser-scanning system.

Parameters were defined in section 2.8.1. Number of sampled points: 500.

α0 β0 γ0 ρ1 ρ2 h θ L 2

st∆ (s)
2

d (cm)

2.7615 0.9350 1.7870 0.0784 2.4890 0.2714 0.8767 65.818 3.3143x10
-6

1.0630

where n denotes the normal vector of the plane. With
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∆ts can be written as

wdts =∆ (2.11)

Therefore, ∆ts can be interpreted as the “weighted” distance of d in the cost function of

(2.10).

Given a set of planar points, the evaluation of the angle error is reformulated as

∑=
i ii dwD

22
),(

~
pa (2.12)

Assuming the total number of the test plane objects is K, the corrected cost function for

calibration is

∑
=

=Θ
K

k

kk D
1

~
),(

~
pa (2.13)

Minimising the cost function of (2.13) can be carried out with numerical methods.

This algorithm was applied to calibrate the “frequency-difference” laser-scanning

ranging system. The result is shown in table 2.1. The point sets were sampled from a thin

wooden plate (size 280×140 mm) at different poses within a range of 0.5∼1m along the z-

direction. Errors in angle and distance were estimated by the residue of Σi(∆ts,i)
2
 and Σi(di)

2
,

respectively. The gradient-descending numerical method was applied to minimise the cost

function of (2.13). This estimation result was found reasonable according to our empirical

judgement.

2.9 Conclusions

This chapter described the principle of the “frequency-difference” laser-scanning system.

The measurement is based on a laser point-beam scanning triangulation algorithm. The way

of data acquisition differs completely from that with a CCD camera. The sensing approach

is effective to overcome the scattering problem in an underwater environment. Reducing
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the “scattering volume” improves the signal-noise ratio. This system was designed for ma-

chine vision applications in underwater engineering tasks.

A significant element of the sensing technique of this system is the “frequency-

difference” scanning principle. This technique offers automatic and high-speed sensing and

moreover, has the potential of displaying range information in real-time on a 2D monitor. A

real-time data-saving system specifically for this system is still being developed. Currently,

the data points are acquired in a static “cursor-positioned” way.

To model and calibrate the measurement system, a system-specific co-ordinate system

together with system parameters for 3D computation was defined. A new approach to pla-

nar fitting was proposed to estimate the system parameters. The parameters are determined

by minimising the cost function and consequently, the measurement errors are evaluated in

terms of accuracy.

Considering that the transformation from the sensor variables (tf, tl and ts) to the x-y-z

form is non-linear, we establish the LSE estimation criterion in the sensing domain (sensor

variables) rather than in the image domain (Cartesian co-ordinates). Because the recording

of the sensor variables can be treated as a stationary stochastic process, the errors repre-

sented in the sensing domain obey the i.i.d noise model closer than those represented in the

image domain. Computations with real data confirmed this behaviour.
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Chapter 3

Parameter Estimation for Surface Recon-

struction Using a Quadric Representation

In a model-based vision system, the collected data and the object model are described by

mathematical representations. The choice of such a representation is a critical issue in com-

puter vision. The representations are not only used to calculate various properties of objects

in the scene, but also to guide the strategies of recognition, including robustness and effi-

ciency, as well as the segmentation processes.

Given a set of 3-D data obtained from an object surface, the observed shape of the ob-

ject can be reconstructed by fitting the data to a model representation. This yields a set of

model parameters. The surface representations of our interest are the quadric forms. For the

quadric representation, we applied surface fitting based on the “bias-corrected” renormali-

zation method ([68]), but improved the estimation using a novel approach to obtain a more

reliable solution. More generally this approach provides a computational technique to refine

the eigenvector solutions of polynomial fitting problems based on the gradient weighted

least-square criterion.

Some issues concerning surface fitting from range data are discussed in this chapter, in-

cluding the definition of the cost function for parameter estimation, a solution to the mini-

misation problem, the robustness of the estimator, and an alternative LSE criterion based on

the sensor model.

In the beginning of this chapter, some approaches for 3D object representation are in-

troduced in section 3.1. Focus is on surface primitives describing the class of man-made

objects and their quadric representations.

In the first part of section 3.2, the “bias-corrected” renormalization method for surface

fitting is introduced. The approach is derived from the popular gradient weighted least-

squares criterion ([55], [58] and [68]), upon which the algebraic parameters of quadric fit-

ting can be estimated with eigenvector solution in a re-weighting process ([58]). Since the

gradient weighted least-squares estimates are statistically biased ([35] and [68]), the renor-

malization method is applied to compensate for the perturbation of the matrix and the bias

in the iterative computations. In both the re-weighting eigenvector solution and the renor-

malization method the dependency of the gradient weight, to which a perturbation term is

associated, is neglected. In case of low noise level, the perturbation term can be considered

small enough to be neglected. When the noise has a significant level, ignorance will de-

grade the reliability of the cost function. Therefore, although the existing renormalization

method yields “unbiased” estimates in the sense of statistics, an inadequate estimation i m-

plies inaccurate solutions. To correct this problem, we reformulate the eigenvector ap-
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proach of the estimation by taking the dependency of the weight into account. In the same

notion of “bias-corrected” renormalization, an improved algorithm is proposed to refine the

fitting process in the second part of section 3.2.

 The improvements of the new renormalization method are illustrated with experiments

using synthetic data in section 3.3.

With respect to the robustness of parameter estimation, the method of regression diag-

nostics ([5]) was applied to eliminate outliers in data points. The feasibility of this conven-

tional robust method relies on a good initial estimate, obtained from an eigenvector solu-

tion. Ending up in a local minimum of the cost function should be avoided; therefore, find-

ing the global minimum is a critical point in the regression diagnostics approach. This is

illustrated in section 3.4.

The criterion used for gradient weighted least-squares fitting (for the bias-corrected re-

normalization) is based on the assumption that the noise in the data points is additive inde-

pendent identically distributed (i.i.d). Although such an assumption may not be accurate, it

is acceptable because such characterisation offers a (usually good) approximation when an

accurate model is not available. However, errors represented in an x-y-z form are trans-

formed from the errors in the sensing process. In many cases, it is easier to fit the errors in

the “raw” data set obtained in the sensing process (before the transformation) to a stationary

stochastic model compared to those in x-y-z form (after the transformation). Therefore, a

“sensor-driven” fitting algorithm is proposed in the subsequent section 3.5, particularly d e-

signed for the data acquisition method used in the laser-scanning ranging system. Using the

LSE fitting criterion, a cost function was defined at the level of inputs of the sensor, which

fits better to the i.i.d model. Simulation results proved the improvement of the “sensor-

driven” algorithm compared with the fitting algorithm in an x-y-z form.

Finally, some remarks and conclusions on the new surface fitting approach are given in

section 3.6

3.1 Surface representations of 3D objects

Shape descriptions of 3-D objects in range images can be roughly divided into surface-

based, volume-based and discontinuity-based descriptions ([2]). Surface-based representa-

tions describe the surface geometry and topology; discontinuity-based representations pre-

serve information about the surface changes and volumetric representations refer to the

volumes of the objects. The discontinuity-based scheme usually results in 3D curves repre-

senting abrupt changes, so only few memory is required. The disadvantage is that in many

cases discontinuity information only is not sufficient to describe the curved objects. The

volumetric representations, typically superquadrics and generalised cylinders, provide an

efficient shape description for surface-bounded objects, with only a few more parameters

compared to quadrics. However, they exhibit a problem of non-uniqueness, so this class of

representations has been used often for CAD modelling rather than for recognition tasks

([2]). Based on application-specific considerations, we have chosen for surface-based quad-

ric representations for the description of object primitives in this thesis, since our interests

are restricted to man-made objects.
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Various surface representations have been used for graphics and vision tasks. In gen-

eral, surfaces can be expressed in an implicit or explicit form. A review of such methods is

given in [10]. Briefly, an explicit form of a 3D surface description is a function graph of

two independent variables. Most explicit expressions aim at “visible” surface reconstruction

with smoothness constraints and a class of spline functions is employed for an optimal ap-

proximation. The implicit forms of surface reconstruction focus on the extraction of global

properties of these surfaces by parameter estimation. In case of surface representation for

recognition tasks, often implicit forms are chosen because of their mathematical tractability.

The implicit expression of a surface can be defined as f (x,y,z) = 0. It is noted that given

an implicit function, a volume can be defined as f (x,y,z) ≤ 0. As a matter of fact, according

to [10], in that case the distinction between volumetric and surface representation is only

semantic. Among the many implicit expressions for surface descriptions, frequently used

primitives are super-quadrics, generalised cylinders and implicit polynomials. Super-

quadrics and generalised cylinders are also typical for volumetric representations.

Low degree polynomials, i.e., degree 1 or 2, have been very popular to approximate a

large scope of manufactured parts, such as planes, cylinders, spheres or quadrics of revolu-

tion ([11], [23] and [30]). In summary, implicit polynomial representations require only few

parameters for characterising object surfaces; further advantages are low computational

cost, insensitivity to noise or to moderate changes in the subset of data and convenient

translation of operations in “object space” into natural operations in polynomials ([39]).

Many techniques applying high-degree polynomials to represent more complex objects

have been developed in the past decade ([39], [56] and [58]). Particularly, fourth degree

polynomials are proposed, being capable to approximate a variety of complex shapes, in-

cluding super-quadrics. In high-degree polynomial representations, bounded zero sets are

emphasised, based on the argument that all data points originate from a bounded object sur-

face ([39] and [56]). Such bounded polynomials in fact yield volumetric representations.

However, a man-made object is bounded by a set of simply curved or planar surface

patches, so it is easier to characterise them by a surface-specific description rather than by

an object-specific description. Surface-based representations with low degree polynomials

have some advantages, for the following:

•  Representations with more parameters tend to lack uniqueness when dealing with noisy

data because there are more degrees of freedom in parameter space to fit the data set.

Especially when data points originate from a low-degree parameterised surface patch,

higher-degree representations are inherently ill-posed.

•  Volumetric representations are sensitive to occlusion ([2] and [63]). On the contrary,

low degree polynomials are suited to describe the surface-based data set, assuming the

surface of interest is simple-curved. Since they only deal with a “patch” of the bounded

object surface, they are not sensitive to occlusion.

•  Although the surface-based quadric representations usually only generate “partial” d e-

scriptions of a bounded object, mathematical manipulation is easier because of the

fewer number of parameters. Therefore, in the top-down recognition scheme, surface

features represented at an intermediate level could be a good trade-off between the

complexity of data-driven representation and the complexity of model-driven control.
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For man-made object recognition from range data, we opt for the surface-based representa-

tion in quadric form to describe 3D surfaces. Without loss of generality, an implicit quadric

form can be expressed as:

0),,( 321231312
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In addition, the attractivity of the quadric representation emerges also from the fact that

any smooth, continuous curve or surface can be locally approximated by first and second

degree polynomials. Thus, the quadric approximation is controlled by the definition of local

regions.

3.2 Quadric fitting by an improved bias-corrected renor-

malization method

The parameters of a surface representation are estimated during a fitting process. In general,

given a mathematical object representation, parameter estimation faces the following opti-

misation aspects ([68]):

•  definition of a cost function to minimise or maximise (criterion);

•  the method to optimise the chosen function (estimation);

•  the implementation of the solution.

Quadric (or conic in 2D) fitting is a popular topic in parameter estimation. A tutorial review

on conic fitting methods was given in [68].

Given a set of points {xi} = {(xi, yi, zi)}(i = 1,..,n), the coefficients in (3.1) are estimated

by minimising a defined cost function. Many alternative fitting methods have been derived

from the general least-squares criterion, and the cost functions can be defined in the sense

of a distance measure. In this work, the so-called “bias-corrected” renormalization method

([68]), which is based on the gradient weighted least-squares optimisation, is applied for

quadric fitting. It has the following features:

(1) Optimisation of unbiased estimation provides a possibility to describe the uncertainty

of parameters within a statistical model, which is of the major objectives of the work of

this thesis.

(2) The variance of noise is recovered simultaneously, which is necessary to evaluate the

estimate uncertainty.

(3) The non-linear problem can be solved by an iterative eigenvector method, so finding

the global minimum of the cost function is guaranteed. Moreover, a good initial esti-

mate is available so it is possible to early detect outliers using the regression diagnos-

tics ([5]).

(4) Finally, the solution is further optimised, so more reliable estimate can be expected.

In the following sections we discuss successively the gradient weighted least-squares

fitting criterion, the algorithms of the bias-corrected renormalization and the improved op-

timisation method.
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3.2.1 Eigenvector approach for gradient weighted least-squares fitting

The bias-corrected renormalization method for surface fitting is based on the gradient

weighted least-squares criteria. In ordinary least-squares fitting, the squares of the algebraic

distances Σi f 
2 

(xi) are minimised, where f (⋅ ) = 0 is the implicit quadric form of (3.1). In

the gradient weighted least-squares fitting, the squares of the Euclidean distances Σi (di)
2
 are

minimised, where di denotes the orthogonal distance between a point xi and the surface.

Since the expression of di is very complicated ([68]), the distance measure can be approxi-

mated as describe below ([10]).

Suppose a point x is measured from the surface f (x0) = 0, where x0 denotes the true

value. Then, the first-order Taylor expansion is:

xxxx ∆⋅∇+≈ )()()( 00 fff ; (3.2)

where ∆x = x – x0  accounts for the noise. The gradient of f (x0) can be expressed as:

000 )()( nxx ff ∇=∇ ;

where n0 denotes the unit normal vector at point x0. Since f (x0) = 0 and x is close to x0, we

have:

xnxx ∆⋅∇≈ 0)()( ff .

Therefore, the normal projective distance of x to the surface (orthogonal distance) can be

approximated by
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Defining a “weight” w:

2
)(

−
∇= xfw ,

the cost function for the gradient weighted least-squares fitting is defined as:
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 Orthogonal distances are invariant to Euclidean transformations and it can be proved

that the variable d in (3.3) has a constant variance over the surface in first order approxima-

tion (assuming that the errors in range data are i.i.d Gaussian noises) ([68]).

Therefore the gradient weighted least-squares fitting is reliable and accepted as an op-

timal solution of parameter estimation in many applications, including high-degree poly-

nomial representations. Moreover, in many cases the noise term ∆x can be treated as being

i.i.d Gaussian type, so the distance d is also a Gaussian distributed variable. Therefore the

solution by minimising the cost function of (3.4) is optimal in the sense of the Maximum-

Likelihood Estimate (MLE).

Minimising (3.4) is in general a non-linear problem and some well-established non-
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linear minimisation techniques can be applied. However, for quadric (more generally, poly-

nomials) representations of the function f (x), the eigenvector approach is applicable to ob-

tain an approximated solution ([10], [56] and [58]). This is explained next.

With the expression (3.1), and defining the parameter vector and the measurement vec-

tor

( )Tkvvvaaaaaa ,,,,,,,,, 321231312332211=p , ( )Tzyxyxxzxyzyx 1,,,,,,,,,
222=M ,

respectively, the cost function (3.4) can be formulated as

pMMp 







=Θ ∑

=

n

i

T

iiiw
1

 (3.5)
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We have

Npp
T=Θ . (3.6)

In general, minimisation of the function (3.6) can be solved by the Lagrange Multiplier

method. Holding the constraint 1
2
=p , the problem can be transformed into an uncon-

straint minimisation problem by defining an augmented cost function

)1( −−=Θ ppNpp TT L , (3.7)

where L is the Lagrange Multiplier. Minimising the function (3.7) gives
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Substituting (3.6) into (3.8) and ignoring the dependency of wi on p, we have
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1pp

pNp

T

L
 (3.9)

Therefore, the solution of minimising (3.6) is just the eigenvector of N associated to the

smallest eigenvalue L. Because in fact wi depends on p, the solution is obtained in an itera-

tive re-weighting way: initially, set wi=1∀i and compute the eigenvector of N associated to

the smallest eigenvalue as the initial estimate of p. At each iteration step, update wi by the

current value of p and compute the eigenvector of the updated N to get a new estimate. Fi-

nally, a solution is obtained when the iteration shows sufficient convergence.

The advantage of the eigenvector method is that the global minimum is reached auto-

matically without a combinatorial global search. Also, it gives a good initial estimate with-

out any a priori knowledge about the “shape” of the data set, enabling a subsequent outlier

test.
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3.2.2 The bias-corrected renormalization technique

It has been proved that the estimate from the gradient weighted least-squares fitting is sta-

tistically biased ([35] and [68]). The bias-corrected renormalization technique was pre-

sented earlier by Kanatani ([35]). A simple version of the bias-corrected technique was

given in [68]. This technique will be explained next.

Suppose each range point is perturbed by noise ∆xi, with E{∆xi}=0 and a covariance

matrix Cov{∆xi}=σ2
I ∀i (I denotes the unit matrix). Then matrix N is perturbed too with

respect to the ideal matrix N0. The perturbation matrix ∆N = N-N0 can be found from the

noise terms ∆xi∀i associated to each element of N, by applying Taylor expansion. If the

terms of order higher than 2 are ignored, the expectation of ∆N equals:
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where Bi is a matrix consisting of the coefficients of the second-order expansion. The de-

tails of the derivation of Bi are presented in Appendix B.

Let p and p0 be the eigenvectors of N and N0, respectively. According to the perturba-

tion theory, the perturbation of the eigenvector ∆p=p-p0 is linear to the perturbation of ma-

trix, i.e., E{∆p}=O(E{∆N}). Since Bi ≠0∀i (see Appendix B), and according to (3.10), we

have E{N}≠0, hence p is biased.

In order to correct the bias of p, the bias of matrix N is corrected by defining

∑
=

−=∆−=
n

i

iiwE
1

2
}{ BNNNN σ . (3.11)

So 0N =∆ }{E . By replacing N with N , the eigenvector associated with the smallest ei-

genvalue is an unbiased estimate of the ideal parameter p0.

Because the variance of the noise is usually unknown, it is estimated in a so-called re-

normalization process, as explained below.

At each step, the constraint of pNp
T

holds, which argument is based on the fact that

0}{ NN =E  and 0000 =pNpT . If the current smallest eigenvalue λmin≠0, the value of c≡σ2

is updated by ∆c to satisfy the above constraint. From the expression of N , it can be shown

that ([68])
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Setting the initial values c=0 and wi=1∀i, the initial estimate p
(0)

 is obtained. Then by itera-

tive updating c and wi in the renormalization process, a solution is obtained if the process

converges.

3.2.3 Improvement of the bias-corrected renormalization solution

Although the eigenvector method described in the previous section is powerful in solving
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the optimisation problem, the solution is sub-optimal because the dependence of the

“weight” wi on p in the formation of (3.9) has been ignored. This is illustrated by deriving

the complete formulation of the optimisation problem, which takes into account the de-

pendency of the weight wi on the parameters p.

We apply the Lagrange Multiplier method to solve the minimisation problem of (3.6)

and take the dependency of wi on p into account. From (3.7) and (3.8) we find
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Thus the parameters p and L should be solved from (3.12).

Clearly, if the second term in the LHS of (3.12) associated to the dependence of wi on p

is ignored, then (3.12) degenerates to (3.9). However, an exact solution of the optimal

minimisation problem of (3.6) should satisfy the equation (3.12), in which the terms associ-

ated to (∂wi/∂p) explicitly affect the solution of p, rather than (3.9).

In case of noise absence or low-level noise perturbation in the data set, the quantities of

(p
T
Nip) mounted to (∂wi/∂p)∀i are zero or small enough, so difference between solutions

of (3.12) and (3.9) can be ignored. In case of a significant noise level, the solution of (3.9)

could be unreliable. Since the described bias-corrected renormalization algorithm is based

on the formulation of (3.9) but using a “renormalised” matrix N , the bias-corrected esti-

mate is also unreliable. However, the bias-corrected renormalisation algorithm can be im-

proved based on the formulation of (3.12).

As we will show, (3.12) can also be converted to an eigenvector problem in the same

form as (3.9), but with the matrix N reformulated by taking into account the term of

(∂wi/∂p).

First, we reformulate the second term of the LHS of (3.12) in the form
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Suppose the dimensionality of p is m, and denote the m×m matrix
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Then (3.12) can be expressed in the form

( ) ppEN L=+ , (3.14)

We define a matrix

ENN +=
~

,

the solution of p can still be achieved by the re-weighting eigenvector approach as used for

(3.9). The matrix E should also be updated iteratively.
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•  Computing the eigenvector of N
~

There exists a difficulty in direct computation of the eigenvector of N
~

: unlike the matrix N,

E is usually non-symmetric. It can not be guaranteed that the eigenvector is always real at

each step. To get rid of this problem, we propose an approach to obtain the solution in an-

other way.

Since the matrix E is small compared to N, it can be treated as a perturbation of N. Ac-

cording to perturbation theory, the perturbation of the eigenvector is linearly related to the

perturbation of matrix N. Let p and p~ be the eigenvectors of N and N
~

, respectively. Then

we have ([53])

( ) EpUNUUIUppp
TT 1~ −

−=−=∆ λ (3.15)

Here, U is a m×(m-1) matrix whose columns are the other m-1 eigenvectors of N except for

p, and λ is the eigenvalue associated with p.

Therefore, the eigenvector of N
~

 can be computed as ppp ∆+=~ at each iterative step.

To obtain the exact minimiser of (3.6), the solution of (3.9), as used either for gradient

weighted least-squares criterion or for bias-corrected renormalization algorithm, should be

corrected by ∆p at each iterative step. The solution of (3.14) is then achieved when both p

and p~ converge.

Such an improvement of the eigenvector solution can be directly applied for the bias-

corrected estimation. In the same notion of [68], in order to get an unbiased estimate, N
~

should be further replaced by

}
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In the above expression, }
~
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and we have
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Compared with (3.14), we define a new perturbation matrix
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The eigenvector solution can be corrected in the same way as for (3.14), with the substitu-

tions NN →  and EE → .

In this way, the implementation of the “bias-corrected renormalization” algorithm is

improved by the correction in formulating the cost function of (3.6). While the estimate is

unbiased in the sense of statistics, the solution is improved in reliability because of the re-

finement in the estimation.
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3.3 Verification of the improvement with synthetic data

To show the validity of the proposed procedure, experiments of conic fitting with 2D syn-

thetic data have been carried out.

In these experiments, 2D data points were sampled from a number of synthetic ellipses

and Gaussian noise was added to the x and y co-ordinates randomly for each point. The

number of points in each set is 80. Given a set of sampled points, both the existing renor-

malization method as used in [68] and the improved approach proposed in this chapter were

applied to obtain a comparison. The results are depicted graphically in figure 3.1, figure 3.2

and figure 3.3. Since the algebraic coefficients describe the conic shape globally, the closed

curves of the ellipses with the estimated parameters are plotted to give an insight of the ac-

curacy of the estimates.

In figure 3.1, the standard deviation of added noise is σ=0.15, which is the same as the

unit of the x-y co-ordinate. Graph (a) shows the results using the renormalization method

while graph (b) shows the results from the improved approach. The curves in (a) and (b)

were plotted pair-wise, i.e., given a set of data points, the fitting results with the two meth-

ods were plotted both in (a) and (b), respectively. The primitive used in figure 3.2 is the

same as in figure 3.1, but the noise level is σ=0.08. Figure 3.3 shows the results with a dif-

ferent primitive at a noise level of σ=0.15.

From the results we can see that the fittings in the range occupied by the sampled points

were good and almost indistinguishable for both methods, but there is an obvious difference

between the global descriptions. Even larger variations occurred in the original renormali-

zation method, especially in case of high noise level. This demonstrates clearly the im-

provement of the new approach.

Fig 3.1 Fitting results with 2D synthetic data at a noise level σ=0.15. For each set of data

points, the result using the original renormalization method was plotted in (a), while the

result using the new method was plotted in (b). The elliptical primitive for (a) and (b) is

shown in solid lines and the estimates are plotted in dotted lines. Data points were sam-

ples from the shorter segment marked with the symbol “+”.

(a) (b)
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It should be noted that the improved method not only yield a higher accuracy in pa-

rameter estimation but also performs a better convergence capability. Of all trials at a noise

level of σ=0.15 (the number of trials is 100), 8% failed to converge in the original renor-

malization method, whereas the improved approach results in convergence for all trials. It

can be concluded that the term (∂wi/∂p) is associated with a stabilisation function in solving

an (ill-posed) non-linear problem.

Fig 3.2 Results at a noise level of σ=0.08. Data points were generated from the same

primitive within the same part as used in figure 3.1. The estimates by the original renor-

malisation method and the new method are shown in (a) and (b), respectively.

(a) (b)

Fig 3.3 Fitting results at a noise level of σ=0.15. Data points were generated from a dif-

ferent primitive. The estimates by the original renormalisation method and the new

method are shown in (a) and (b), respectively. The sampled region is also marked on the

curve of the primitive.

(a) (b)
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3.4 Eliminating outliers

Least-squares estimators are vulnerable to outliers ([68]). To get a reliable estimate, robust

approaches for parameter estimation have to be conducted. In this thesis, we applied the

technique of regression diagnostics ([5]) to detect outliers. This is carried out with the fol-

lowing steps:

(1) Determine an initial estimate by fitting the total data set to a quadric representation and

compute the distance between each point and the fitted surface and reject all data

points whose values exceed a predetermined threshold.

(2) With the accepted data points, complete the fitting process using the approach as de-

scribed in section 3.2 (the improved renormalization method).

(3) Re-compute the distances to the estimated surface for all points and reject those having

values larger than the threshold.

(4) If there are no updates, output the result of step (2) as the final estimate of the surface

fitting, otherwise go back to step 2.

In practice, the threshold for outlier rejection is set in the form Treshold=r⋅ (d
2
)med , where r

is a constant and (d
2
)med  is the median of square distances between points to the fitting sur-

face.

The initial estimate is critical in applying the regression diagnostics method. Because

the initial estimate is given by the eigenvector solution, it is plausible to find a suitable ini-

tial fit. Moreover, the standard deviation of the noise is estimated simultaneously with the

bias-corrected renormalization algorithm, so the threshold for distance comparison can be

reasonably adjusted during the regressive diagnostic process.

3.5 Fitting sensory data based on characterisation of sensing

errors

For surface reconstruction problems from range data, the assumption that range data are

corrupted by i.i.d noise (either in the three directions of 3D points or only in the depth di-

rection) is valid in most cases.  However, when knowledge about the error propagation in

data representation is available, the estimation of the parameters can be improved further by

optimising the fitting criteria based on the characterisation of errors in the sensing process.

In general, the stochastic behaviour of sensing events, preceding the co-ordinate repre-

sentation, dictates the pattern of errors occurred in 3D point representations. Due to the

non-linear transformation from the input sensor variable to the output formulation in Carte-

sian co-ordinates, the i.i.d noise modelled at the input variables results in a more compli-

cated pattern of error presence in the x-y-z form. In this case, a noise model characterised at

the low level of a sensing event could yield more reliable optimal criteria for LSE than the

assumption of i.i.d noise in the higher-level x-y-z form.

For the range data acquired by the “frequency-difference” laser scanning sensing system,

it is possible to reformulate the optimal estimation problem based on characterisation of

sensing errors hence surface fitting can be refined. This is explained next.
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With the laser-scanning triangulation method, a range measurement is determined by

the scanning angles of α, β and γ. According to the “cursor-positioned” data-sampling

mechanism, α and γ are pre-determined (by setting the time values), so the distance error is

represented by the error in β.

There are many error sources in the sensing process. For example, the finite width of the

receiving slit when imaged by the lens forms a narrow sector-shaped sensing space. Insta-

bility of the synchronising signal leads to uncertainty in triggering the time counting. The

expansion of the laser spot due to laser divergence forms another error source. In general,

errors as represented by ∆β can be treated as a stationary stochastic process, and ∆β is fur-

ther modelled as additive i.i.d noise (assuming the scanning frequencies are stable). There-

fore, after non-linear transformation, the errors represented in the x-y-z form do not pre-

serve the statistics of i.i.d noise. To get more reliable estimates from the LSE criterion, the

cost function for surface fitting should be established on the measure of error ∆β, in stead

of the distance error∆x.

The fitting routine based on modelling noise at the level of sensor input variables can be

interpreted as a “sensor-driven” approach. To distinguish, the routine based on modelling

noise represented in the x-y-z form, i.e., the output of the sensor, is called the “image-

driven” approach hereafter.

Given the system parameters, the co-ordinates of a measured point can be expressed in

the form x=X(α, β, γ), In first-degree approximation, errors in the co-ordinates can be ex-

pressed as

β
β

∆
∂
∂

=∆ X
x .

According to the gradient weighted least-squares fitting criteria, the distance of point x̂  to

the surface is approximated with

β
β

∆

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where n denotes the normal vector of the surface.
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we have

rd≈∆β .  (3.20)

Consequently ∆β can be interpreted as the “weighted” distance of d in expression of (3.3).

Combining with (3.3), the cost function of (3.4) can be re-written as
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Here iii wrw
2= . Now the optimisation is achieved by minimising the cost function (3.21).
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It can be seen that the described “bias-corrected” renormalization algorithm and the

improved approach can be applied straightforwardly to the minimisation problem of (3.21),

just by substituting the “weight” wi with iw . The quantity of Bi in (3.10) should be

reformulated by the second order expansion of ∆β and the noise level of c is interpreted as the

square of the standard deviation of ∆β.

To compare the sensor-driven method and the image-driven method used in section 3.2,

synthetic data were used to obtain the fitting results. The data points were generated from a

synthetic spherical surface by simulating the “frequency-difference” laser-scanning sensing

process. Noise was added to the variable β recorded for each point. Table 3.1 shows some

results for different noise levels.

For comparison, we calculate the distance between an estimate and the true parameters in

the 10 dimensional parameter space as the measure of “goodness”. From these results, we can

see that both approaches had little differences at low level noise perturbation of β. At large

noise levels, the sensor-driven method yields better solutions than the image-driven method,

while its computation was more time-consuming.

 From this comparison with simulated data, the image-driven way seems to perform well at

moderate noise perturbation, even when the noise was nonlinearly transformed into x-y-z co-

ordinates. Since it is relatively easy to implement, it is still recommended as a recommendable

approach in solving quadric fitting problems. However, when the noise significantly influences

the accuracy of the fitting solution, the sensor-driven method should be considered to refine the

estimate.

It should be pointed out that the simulated results were obtained using the improved

algorithm. When trying the existing renormalization approach, the image-driven method more

Table 3.1 Comparison of fitting results with synthetic data using the image-driven and

the sensor-driven method. 400 points were sampled from a spherical surface patch in

the simulated laser-scanning process. Noise is added to angle β (quantity of radian) for

each point. In each row the second line with symbol “*” is the result of the sensor-

driven method.

Noise level Fitting results (coefficients in (3.1) ) (× 10-6)
 Iteration

number

σ=0.0002
     (136,    138,     140,     0,     0,     -6,     -8155,     389,     -22349,    999717 )

 *  (136,    138,     140,     0,    -1,     -5,     -8152,     311,     -22341,    999717)

5

5

σ=0.0005
     (132,    137,     143,     0,    -1,     -15,    -7880,    1012,   -22560,    999714)

 *  (133,    137,     142,     1,    -1,     -12,    -7890,    781,     -22527,    999715)

7

16

σ=0.001
     (124,    135,     147,     0,     -1,     -33,    -7367,   2259,   -22972,    999706)

 *  (127,    135,     145,     2,     -2,     -4,      -7468,   1599,   -22837,    999710)

8

20

True values     (139,    139,     139,     0,      0,       0,      -8331,    0,        -22216,    999718)
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often failed in convergence than the sensor-driven method at high noise level. This also proves

the merit of the sensor-driven approach.

3.6 Conclusions

This chapter discussed parameter estimation in surface fitting. Based on the “bias-

corrected” renormalization algorithm, we proposed a new approach to improve the acc u-

racy of solutions in the renormalisation process. Experiments on 2D synthetic data revealed

a significant improvement in performance, compared with the original renormalization

method.

The fitting criterion in the sense of LSE is applied to minimise the variation of noise in

the measurements. Without any a priori knowledge about data formation in x-y-z co-

ordinates, usually it is assumed that the i.i.d noise is added to each point, either in three di-

mensions or only in depth direction. However, once the error of measurement in the sensing

process is characterised, the fitting criterion can be optimised on the level of sensor input

variables and the estimation can be refined. With respect to the “frequency-difference” laser

scanning sensing system described in chapter 2, this chapter contributes to solving the fit-

ting problem alternatively, using a “sensor-driven” approach.  Compared with the “image-

driven” approach, the “sensor-driven” approach yielded better estimates in simulation e x-

periments.

It should be pointed out that although all discussions are limited to the quadric repre-

sentation, the algorithms described in this chapter can be extended to representations of

higher order polynomials.

Finally, it should be noted that surface reconstruction could be an ill-posed problem, es-

pecially when the inputs contain inadequate information to determine the dimensionality of

the representations. For example, when a surface patch is too “flat” or when the noise level

is high, the surface fitting routine might fail to converge. Although some other non-linear

minimisation techniques could help to find the global minimum, this chapter does not pres-

ent a systematic investigation of solving ill-posed problems in surface fitting.
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Chapter 4

Modelling of Uncertainties in Invariants
and Pose Estimation Based on Quadric
Representations

The goal of a model-based vision system is to identify and to localise objects of interest in a

scene, which is generally achieved through interpretation of the collected data using the a

priori knowledge in a model base. Following the module of object representation with the

range data, the matching between models and the scene is implemented on the basis of

features correspondence. To approach the feature descriptions, invariants, which are ex-

tracted from object representations, have gained in importance and are widely used for

model-based recognition. Since surface-based primitive representation is the focus of this

thesis, the discussion of feature description and classification will be limited to quadric

primitives in this chapter.

In general, invariants are object-centred shape descriptors, which do not change under

some kinds of transformations, especially, to make them viewpoint independent. The use of

invariants enables us to perform the correspondence by direct comparison between the

scene descriptions and models without external factors. Based on the quadric representa-

tions of object surfaces, which have been discussed in chapter 3 as the parametric descrip-

tions for the given range data, this chapter first discusses the invariants descriptions of

quadric primitives for surface-based recognition, incorporated with recovery of pose trans-

formation. Then the uncertainty in invariants extraction, which is of our main interests of

this chapter, is investigated and a model to describe the uncertainties is proposed.

One of the key issues in object recognition is to cope with the inherent uncertainty

problem in measurements. Because of noise presence in data acquisition, errors in parame-

ter estimation of the object representation are inevitable, causing uncertainties in the com-

puted invariants. When using invariants for feature correspondence, the uncertainties in the

estimates of the invariants will consequently cause ambiguity in the decisions resulting

from the matching process. In a statistical framework, the matching criteria are usually

based on the metric of likelihood defined on the object features. There are some approaches

for feature matching, which are applicable ([6], [60] and [61]). However, to establish the

systematic Bayesian-based principle in feature classification, modelling of uncertainties in

feature estimation with explicit formulations is ultimately necessary. Concerning the sur-

face-based quadric representations described in chapter 3, where the algorithm of surface

fitting is specified, the uncertainties in parameter estimation and extraction of invariants, as



Chapter 4 Modelling of uncertainties in invariants and pose estimation…

50

well as in pose representation, are formulated in this chapter with a covariance representa-

tion.

Generally, the model-based surface primitive recognition scheme, proposed in this the-

sis, is established on the estimates of invariants of quadric representation and an explicit

representation of modelling the uncertainties of the estimates, i.e., the covariance matrices.

This enables us to use an analytical probabilistic density function (pdf) to realise the opti-

mal recognition of surface primitives. In other words, the estimate plus the covariance ma-

trix comprise the optimal descriptions of an estimate, both of which are extracted from

measurements, comprising a given set of range data. In the work of this thesis, as will be

described in section 4.5, such optimal descriptions in a model-base are always assumed to

be obtained from measurements. Based on the optimal descriptions, we also propose an ap-

proach to optimise such a modelling process.

The acquisition of the “optimal description” from range data of a quadric primitive is

briefly shown in figure 4.1. An overview of the proposed optimal recognition scheme is de-

picted in figure 4.2.

There has been research published concerning the formulation of uncertainties in object

descriptions. Waite and Ferrie ([63]) discussed the non-uniqueness problem in volumetric

representations. They characterised the ambiguity of parameter estimates in terms of the

“ellipsoid of confidence”, quantifying the level of acceptability of a model and which in-

formation can be used to plan a new direction of view that minimise the ambiguity of sub-

sequent interpretation. As argued by the authors, the representation was limited to partially

communicate nonuniqueness at a single minimum in parameter space. The work of [55]

dealt with object in high order polynomial representations. They used the asymptotic form

of estimates to describe the posterior distribution of the parameters in polynomial fitting,

and a criterion of minimum-error-probability for recognition was proposed. However, the

reality of their probabilistic model, especially the derivation of covariance information, re-

lies on the assumption that a large number of data are involved in fitting. Moreover, the

knowledge of noise perturbation in data acquisition was not adequate for the description of

the uncertainties in parameter estimation.

Based on the quadric representations of surfaces, we derive the formulation of uncer-

tainties in the parameter estimation and the extraction of the invariants within a framework

Range data
Surface
fitting

Invariants
extraction

Computation
of covariance

matrix

Optimal de-

scription

Fig. 4.1. Acquisition of the optimal description

for quadric surface primitive.
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of statistical perturbation. The linear approximation is applied in error analysis for parame-

ter estimates, as it was used in [63]. However, linear approximation in our case is thought to

be reliable for the estimates to possess the property of being statistically “unbiased” in sur-

face fitting. Because the variance of noise in data points has been obtained in estimation,

the linearisation of error propagation from data acquisition to parameter representation re-

sults in explicit formulation of covariance descriptions. For the concerning applications, we

believe that the major statistical behaviour of estimates is contributed by the first and sec-

ond order moments (expectation and covariance). Therefore, a normal pdf (probabilistic

density function) is proposed to describe the estimates of parameters and the invariants.

Although our discussion about the feature-based optimal classification is limited to the

surface primitives, the principles is expected to apply for more complicated objects by util-

ising the knowledge of pose transformation. Because the surface-based representation only

partially communicates the shape information of a bounded object, spatial relations be-

tween surface primitives are expected to communicate the topological structures of a com-

plex-constructed object. In other words, pose representation can be employed in object de-

scription on the scheme of relational structure (RS) representation. Towards this recogni-

tion scheme, discussions about the relational pose between two surface primitives and its

uncertainty in estimation are also included in this chapter.

…

Fig 4.2. The recognition scheme of surface primitives.
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This chapter is organised as follows. In the first section, the invariants for object recog-

nition are introduced. Concerning the quadric representation used in this work, invariants of

a quadric surface are defined as the algebraic coefficients in the normalised standard frame,

and stacked into a vector to describe the surface feature. In the normalisation process, the

rotation and translation of the standard frame with respect to the world co-ordinate frame

can be derived simultaneously.

Section 4.2 discusses the error analysis in parameter estimation and extraction of invari-

ants, focused on the approach of formulating the covariance matrix. In section 4.3, a prob-

abilistic model is proposed, describing the uncertainty in the estimates of the surface fea-

tures as a normal pdf. The likelihood function, conditioned on the knowledge of the feature

of object in model base, is derived in an analytical form. According to the probabilistic

model, the sensor-based modelling scheme can be implemented within an optimal frame-

work to establish the model base. This is described in section 4.4. Section 4.5 presents ex-

perimental results using synthetic data for surface primitive classification by feature corre-

spondence. It demonstrates that the Bayesian-based matching criterion with the statistical

distance, which is defined on the formulated likelihood function, is much more reliable than

the one based on the measure of the conventional Euclidean distance where only the first

order statistics (the estimates) are utilised. The pose representation is discussed in section

4.6. Based on the definition of pose transformation, the relational pose is further specified.

Similar to the analysis of invariants, the covariance of the pose estimate is also discussed.

The conclusions and some discussions are given in section 4.7.

4.1 Extraction of invariants

4.1.1 Invariants for recognition

An invariant is always defined in the context of a particular transformation. As shape de-

scriptors for 3D objects, the invariants associated with geometric properties of the objects

are often used. They are invariant to rotation and translation transformation. Examples are

the lengths of the principal axes of an ellipse or the curvatures at surface points. Extensive

studies on invariants theory and applications can be found in [24], [25], [38], [37] and [57].

According to the descriptive properties in object representations, invariants can be fur-

ther distinguished as global or local. Global invariants are defined at object level, describ-

ing the shape of object as a whole ([51]), such as moment invariants, Fourier descriptors or

algebraic invariants of implicit polynomials (e.g., the principal lengths of an ellipse). Local

invariants are defined at each point of shape. Typical are the differential invariants (e.g., the

curvature at a point on an ellipse). An advantage of local invariants is that they are less sen-

sitive to occlusion. Local invariants usually require the computation of higher order deriva-

tives, so they are vulnerable to noise perturbation. The advantage of global invariants is that

they need neither extraction of local features nor the computation of derivatives, so they are

less sensitive to noise perturbation. But, because they utilise the knowledge of the whole

shape, they are susceptible to partial occlusion.
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Just as the implicit polynomial representations, global invariants are formalised as

functions of polynomial coefficients ([25] and [57]). Since the algebraic coefficients are es-

timated through fitting of data to a specific representation, the influences of occlusion on

global invariants rely on the feature-representation. In general, the more parameters are re-

quired in representations, the more freedom in the shape descriptions in case of occlusion.

For example, the problem of non-uniqueness in volumetric representations (see chapter 3)

is mainly caused by partial occlusion ([63]). However, in case of low-degree polynomial

surface representations, i.e., the quadrics used in this work, occlusion does not significantly

influence the invariants at the level of surface description. This is because the surface repre-

sentation neglects the “volumetric” property of the object, i.e. the surface-based shape de-

scriptors relate only parts of the entity of the whole bounded object (to the quadrics). There-

fore, the invariants we deal with in this section are “global” in the viewpoint of primitive

representations at low level, but “local” in the viewpoint of being components of the scene

descriptions at the higher level recognition phase, as used in the modelling strategy of sec-

tion 4.6. In the notion of [43] and [64], such invariants could be regarded as “semi-global”.

Below, the invariants to describe the quadric representation are defined and extracted

through linear transformation.

4.1.2 Invariants extraction by normalisation

To uniquely determine the geometric properties of a quadric representation, the dimension-

ality of the invariants must be equal to the minimum number of the parameters of the ob-

ject-centred shape description. According to algebra, multivariate quadrics can be con-

verted by linear transformations into their standard forms, which have the minimum num-

ber of parameters required for uniqueness of the representation. For 3D surface representa-

tion in quadrics, the linear transformation can be implemented by a rotation and translation

of the Cartesian co-ordinate systems. The co-ordinate system associated with the standard

form is called the “standard co-ordinate system” or “standard frame”. The standard form of

quadrics uniquely and completely determines the shape of the surface. Naturally, as shape

descriptor, the invariants can be explicitly expressed as the coefficients of the standard

form. For a quadric representation, the extraction of invariants is the process of formulating

the standard frame through a rotation and translation transformation. We call this process

the normalisation of the surface representation.

The advantage of defining the invariants based on the standard form is in the simultane-

ous pose-extraction of a quadric surface as its co-ordinate transformation between the stan-

dard frame and the world frame. In this viewpoint, the normalisation in fact operates as an

action on parameters to map them into a manifold in which the invariant geometry and the

spatial properties are explicitly separated.

Without loss of generality, the standard form of a quadrics can be formulated in a “stan-

dard frame” xs-ys-zs as

0
2

2

2

1

2 =+++ czyx sss γγ (4.1)

In the above expression, distinctions of different quadric types are embedded within the

selection of the coefficients. For example, an ellipsoid corresponds to the positive set
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{γ1,γ2} and negative c. A hyperbola corresponds to the set {γ1,γ2} with at least one of the

invariants being negative. The last case degenerates to a cone if c=0. A cylinder corre-

sponds to the case that one of the invariants of the set {γ1,γ2} is zero. We have imposed a

scale constraint, normalising the implicit function of (4.1) such that the coefficient of the

term x
2
 becomes equal to 1, assuming that the coefficient of x

2
 has the maximum absolute

value among the three quadric terms.

Since the algebraic coefficients in the standard form of (4.1) are independent of its pose,

they are used as invariants to comprise a “feature vector”

[ ]Tc,, 21 γγ≡g (4.2)

The feature vector g uniquely determines the geometric properties of a quadric surface.

The general quadric form of (3.1) represented in world co-ordinates can be rewritten in a

form

0=++ k
TT xvAxx , (4.3)
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According to the definition of (4.2), extraction of invariants equals formulating the standard

form of (4.1) through co-ordinate transformation, i.e., through the normalisation process.

The normalisation is implemented with two steps which are detailed next.

 First a rotation transformation x = Rx' is applied to diagonalise the matrix A . This

yields

0=+′′+′′′ k
TT xvxAx , (4.4)

with A'=RTAR a diagonal matrix which diagonal components are denoted as λ1, λ2, λ3 and

with v'=RTv.
Then we apply the translation transformation to let the origin of the co-ordinate system

to be at the standard position. Let

txx ′+=′ s ,

where t' denotes the translation vector from x' to xs. Then we have

0)2( =+′′+′′′+′+′′+′ kTT

s

TT

s

T

s tvtAtxvAtxAx  (4.5)

Compared with (4.1), the second term in LHS (left hand side) of (4.5) is zero. Thus the

translation can be determined from

02 =′+′′ TT vAt , (4.6)

and so we get
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vAt ′′−=′ −1

2

1
.  (4.7)

The translation from x to xs, denoted as t, is derived by

vAtRt 1

2

1 −−=′= (4.8)

Finally, to convert (4.5) into the expression (4.1), we get the coefficients in the standard

form, i.e., the invariants, as below.
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where

kk TT +′′+′′′=′ tvtAt . (4.10)

Depending on the applied notation, the finally obtained expression is the one of (4.1).

4.2 The covariance matrices to describe the uncertainties in
estimated parameter and feature representation

As stated in the previous section, the invariants and the feature vector defined by (4.2) are

computed from the quadric parameters A, v and k of (4.3) representing the quadric in world

co-ordinates. However, because of noise in the acquired range data, uncertainties propagate

into the estimates of the parameters A, v and k during surface fitting. Consequently the un-

certainties will propagate into the computation of the invariants. Since the surface recogni-

tion is based on the matching of the invariants between the model base and the inputs of the

observations, uncertainties in parameter estimation and feature representation must be con-

sidered in the recognition strategy. To optimise the recognition scheme, knowledge about

the statistical attributes of the estimates of the feature is required. Essentially, the second

order moment of the estimates, i.e., the covariance matrix, can be used to characterise the

uncertainties of the estimates.

Given the estimate of the quadric parameters, obtained from surface fitting, this section

deals with the formulation of the uncertainties in the estimated parameters and the extracted

invariants. In the perturbation framework for error analysis, the statistics of uncertainties

are explicitly expressed by the covariance matrices. To represent the uncertainties in the in-

variants, we start with the uncertainties in the estimated parameters. This step is followed

by the formulation of the covariance matrix of the feature vector, which is derived from the

covariance matrix of the quadric parameters.

In reality, the performance of uncertainties in parameter estimation could be very com-

plicated and it is impossible to perfectly fit an analytical mathematical model. However, in

many cases, the major statistical characteristics of a random variable (or a multivariate ran-

dom vector) can be described by its first and second order moments. The first order mo-
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ment, i.e., the expectation of the estimate of surface parameters, is associated with surface

fitting which is characterised by the bias-corrected optimisation. The second order moment,

i.e., the covariance, can be employed to describe the uncertainties of the estimate. Without

further refinement in statistical analysis, we use the covariance model, including the opti-

mal estimate and the covariance formulation, to represent the overall statistical properties of

the estimated parameters, obtained from surface fitting, and the invariants, extracted from

these parameters.

Because the mapping of perturbations in data points (measurement noise) into uncer-

tainties in the descriptions of invariants, is non-linear, it is not practical to try to formulate

exact expressions for the errors in the estimates in terms of noise in data points. Therefore,

a linear approximation is applied in the error analysis. Moreover, taking into account that

the improved bias-corrected optimisation is used for parameter estimation, it is expected

that the linear approximation used in the following discussion is more reliable than that

used in [55] and [63]. Obviously, the assumption of linearity is acceptable in case of low

noise level. For significant noise levels, non-linearity of the perturbation might violate the

conditions and consequently degrade the reliability of the model. According to the experi-

ments with synthetic data, reliability of the proposed approach for surface classification has

been verified with additive noise of moderate level. More generally, the proposed model

can be treated as a trade-off between the tractability in mathematics and the complexity in

practice of modelling uncertainties in representations.

4.2.1 Perturbation of the invariants in measurement

The errors in the estimated invariants can be approximated by linearisation of their depend-

ency on the errors of the estimated parameters obtained by surface fitting. The linear ap-

proximation is based on the assumption that both the errors of the estimates obtained from

surface fitting and the errors in the derived invariants can be treated as bounded perturba-

tions that are almost linearly related to the noise in the data points.

First of all, a vector representing the surface parameters is defined, by which the uncer-

tainties in the parameter estimation can be properly formalised. The general expression of a

quadric representation was given by the implicit form of (3.1). Since multiplying of (3.1)

with any non-zero constant results in the same quadric representation, a scale constraint on

p, which consists of 10 coefficients (chapter 3), is introduced. Considering the inherent

constraint 1
2

2
=p  among the coefficients, the dimensionality of the parameter space re-

duces to 9. Because the scale constraint for (3.1) does not change the invariants expressed

by (4.1), for simplicity in parameter representation, we choose k=1 as the constraint in (3.1)

and (4.3). This is realised by multiplying a scalar to all of the components of the solution p
in surface fitting. Therefore, we define the parameter vector θθθθ as

[ ]Tvvvaaaaaa 321231312332211 ,,,,,,,,=θθθθ .

In the following, the parameters of A and v in (4.3) are assumed to be represented by the

vector θθθθ.
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Defining vA ˆ,ˆ  as the estimates of the algebraic parameters obtained from surface fitting

of (4.3). To extract the invariants by normalisation, three eigenvalues, denoted as 321
ˆ,ˆ,ˆ λλλ ,

are first derived from the symmetric matrix Â, which incorporates the derivation of the ro-

tation matrix R. Then the normalised variables from (4.9)
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will serve as the invariants represented in the standard form. Because of the deviation of Â
from its ideal values, the derived eigenvalues also deviate from their true values, which

yields the errors in invariants computation. Denoting

}3,2,1{,ˆ ∈∀−=∆ iiii λλλ

as the error in the estimated eigenvalue with respect to its ideal value, within linear ap-

proximation, the errors of the invariants expressed in (4.9) can be expressed as
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To discuss the statistics of the error in the feature vector ∆g = [∆γ1, ∆γ2, ∆c]
T
, we start with

the properties of the perturbation of eigenvalues. Based on the perturbation theory and the

assumption that A∆  is small enough so that we can take the linear approximation. The

perturbation ∆λ of an eigenvalue λ can be approximated, as described in [53], by

Aee ∆≈∆ Tλ  (4.12)

where e is the eigenvector of A associated with the true λ.

A convenient way to express the perturbation of the eigenvalues in terms of parameters

is to select a special co-ordinate system that is formed by using the three eigenvectors of A
as the basis vectors of a new co-ordinate system. From the process of invariant extraction

by normalisation, described in the subsection above, it is easy to see that such a co-ordinate

system is obtained by a rotation transformation with x'=RTx. Hereafter, this transformed co-

ordinate x' is denoted as the “rotation-normalised” co-ordinate, which is always available

because the corresponding eigenvectors and the rotation transformation can be simultane-

ously computed. To avoid confusion, the co-ordinate xs in the final standard form is de-

noted as the “normalised’ co-ordinate.

In “rotation-normalised” co-ordinates, we have

[ ] [ ] [ ]TTT
1,0,0,0,1,0,0,0,1 321 === eee .

Then straight forward we have

}3,2,1{∈∀′∆=∆ iaiiiλ ,  
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with iiiiii aaa ′−′=′∆ ˆ

The â'ii and a'ii are respectively the estimate and the true value of the i
th

 diagonal ele-

ment of the transformed matrix A'. Also from (4.11), the component ∆c can also be ex-

pressed in terms of ∆a'ii and ∆v'i with i=1,2,3 under the same conditions.

Strictly speaking, the “rotation-normalised” co-ordinate is defined by an ideal transfor-

mation for the eigenvectors {ei}∀i∈{1,2,3}, which are associated to the ideal formation of

A. Because only Â, consisting of estimates of the parameters, is known and used for com-

putation of R, errors are unavoidably induced. However, due to the unbiased property of the

parameter estimates, an optimisation exists such that Â is unbiased, and as a result R and x'

too.

Without trivialities in formality from (4.11), the error of the feature vector ĝ  can be

briefly expressed by

θθθθ′∆=∆ Mg  (4.13)

where θθθθ′∆  is the error in the estimate of the surface parameters assuming obtained in the

rotation-normalised co-ordinate and M is a 3×9 matrix associated to the coefficients of

(4.11). Details of the derivatives of (4.13) and the expression of M can be found in Appen-

dix B of this thesis.

In the following, the covariance matrix of θθθθ̂ , describing the uncertainties of estimates in

surface fitting, is generally formulated under the world co-ordinate system. The formulation

with respect to θθθθ′ˆ  can be easily obtained just by applying rotation to those data points in

the expression of covariance matrix with respect to θθθθ̂ . Subsequently, the covariance matrix

of the feature vector ĝ  can be derived from (4.13).

4.2.2 Formulation of the covariance matrix

As mentioned at the beginning of 4.2, the parameters in surface fitting are estimated with a

reliable “bias-corrected” method. Since parameter transformation is linear between differ-

ent co-ordinates, the parameter vector θθθθ′ˆ , estimated in the rotation-normalised co-ordinate

system, can be treated as unbiased. According to (4.13), ĝ  is also unbiased, i.e., we have

E[ ĝ ]=g.

To derive the covariance matrix of ĝ , we have to start from formulating the covariance

matrix of the estimated surface parameter vector θθθθ̂  in the world co-ordinate system. In sur-

face fitting, the estimate θθθθ̂  is obtained by minimising the cost function of (3.4), i.e.,

 0)(
1

2 =
∂
∂
∑
=

n

i
id

θθθθ
.

Substituting the expression of 2

id with (3.3), and applying a linear approximation in the de-

pendency of θθθθ∆  on ii∀∆x , we can obtain the covariance matrix of θθθθ̂ , defined as

[ ]T
E θθθθθθθθ∆∆=Ψ ,
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expressed in terms of {xi} and the estimate θθθθ̂ , as well as the variance of noise in data

points.

The derivation of the covariance matrix ΨΨΨΨ and its formulation is described in Appendix

C.1. The final expression of ΨΨΨΨ is the form of (4.14).

1

1

2

−

=








= ∑

n

i

T

iiiw mmσΨΨΨΨ  (4.14)

where [ ]Tiiiiiiiiiiiii zyxzyzxyxzyx ,,,,,,,, 222=m .

Supposing that the parameter θθθθ̂  is estimated in the “rotation-normalised” co-ordinate,

then its covariance matrix can be expressed by substituting {xi} and θθθθ̂  with {x′i} and θθθθ′ˆ ,

i.e., the values after rotation transformation from world co-ordinate to the rotation-

normalised co-ordinate.

Denoting G the covariance matrix of ĝ , then according to  (4.13), we have

TMMG Ψ=  (4.15)

So it is just required to compute the matrix ΨΨΨΨ in rotation-normalised co-ordinates. Since the

transformation between world co-ordinates and rotation-normalised co-ordinates can be si-

multaneously derived through the computation of R, the computation of G can also be de-

rived simultaneously. In addition, the variance of the measurement noise σ2
 is estimated

simultaneously with surface fitting.

From observation of the expression (4.14), we can find that the covariance matrix ΨΨΨΨ
relates to the measure of condition number of the coefficient matrix in the sense of LSE

solution of parameter θθθθ. When treating the weight {wi} independent of θθθθ, the solution of θθθθ
can be obtained as the LSE solution of the following set of n linear equations Fθθθθ====b with

[ ]Tnnwww mmmF ,..,, 2211=

an 9×n  matrix and

[ ]Tnwww −−−= ,..,, 21b

an 1×n  vector.

To solve this over-determined equation, the linear LSE approach can be applied. Ne-

glecting the details of solution, we just notice that the condition number of the matrix F, de-

fined as 
2

1

2
)( −= FFFcond , is associated to the above covariance matrix ΨΨΨΨ. Since

∑
=

=
n

i

T

iii

T
w

1

mmFF ,

there is

minmax)( ρρ=Fcond  ,
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here ρmax and ρmin  are the maximum and minimum eigenvalues of ΨΨΨΨ.

Because the condition number is a measure for the “stability” of the LSE solution, the

uncertainty in the estimated parameters (the parameter vector θθθθ̂ ) by the covariance matrix

ΨΨΨΨ can be further viewed.

In summary, the optimal feature representation can be implemented with the following

steps:

1. Carry out surface fitting with the given range data in the world co-ordinates, as de-

scribed in chapter 3.

2. Extract invariants by normalisation to form the feature vector g, incorporating retrieval

of rotation and translation, as described in (4.4) to (4.10).

3. Compute the covariance matrix Ψ in the rotation-normalised co-ordinate system by

substituting the measurement of θθθθ̂  and {xi} in the world co-ordinates with θθθθ′ˆ and {x′i}
in the rotation-normalised co-ordinates.

4. Extract the covariance matrix G for g from ΨΨΨΨ with (4.14) and (4.15).

Once the covariance matrix is formulated, the statistical performances of the estimate of

feature g are then further represented using a probabilistic model proposed in the next sec-

tion.

4.3 Modelling the uncertainties of estimates with normal pdf

In the sense of statistical pattern recognition, the Bayesian rule is applicable if the pdf

(probabilistic density function) of the estimates is known. Once an analytical representation

of the pdf is available, all of the statistical attributes of the estimates can be derived from

the pdf. Therefore, given the estimates and the analytical pdf, implementation of optimal

recognition system is straightforward, without the requirement of large samples stored in

the model base.

In this section, an analytical representation based on a normal pdf is proposed to model

the estimate of feature vector ĝ . This representation is suggested from a few aspects:

(1) As noted in the covariance formulation, the approximation of a linear dependency of

the perturbation of parameters on the noise of data points is supported by the improved

“bias-corrected” parameter estimation. Since the noise {∆xi} is treated as Gaussian

noise, the perturbation ∆θθθθ of the parameters stacked in the parameter vector θθθθ is also

approximately normally distributed.

(2) The gradient weighted LSE can be interpreted ([55]) in terms of maximum likelihood

estimation (MLE), whose asymptotic distribution is normal.

(3) In general, the covariance and the expectation reveal the major statistical behaviour of

an estimate. Thus the normal pdf is a tractable model since it describes all statistics of

the estimate by the expectation and the covariance. Therefore, at moderate noise level,

the normal pdf can be used as an analytical probabilistic representation for the estimate

ĝ .
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Denoting with g the “true” parameters describing the object and with ĝ  an estimate ob-

tained from the measurements, the normal pdf of ĝ  is expressed by

{ })ˆ()ˆ(exp)ˆ(
1

2
1 ggGgggg −−−= −T

Cf (4.16)

Here, the covariance matrix G is formulated by (4.15) and C is the normalised constant.

In many cases, the true parameters g can not be obtained exactly. As will be illustrated

in the next section, we consider the establishment of a model base being sensor-based, i.e.

the models used in the recognition phase are also obtained from measurements. Considered

in this way, the matching problem is in fact a correspondence problem between two obser-

vations. Therefore, what we concern in recognition is a probabilistic representation that two

estimates come from the same class, irrespective of what are the “true” parameters of that

class. Below we will see that such a probabilistic representation can be formulated by a

conditional joint pdf of two observed features and further a “statistical distance” that can be

derived to characterise the similarity of the two features.

Suppose that 1ĝ  and 2ĝ  are two estimates of the same surface feature noted by the

same class m and that they are measured independently. Then the joint pdf of 1ĝ  and 2ĝ  is

of the form

( ) ( ) ( )mmm fff ggggggg 2121
ˆˆˆ,ˆ = (4.17)

where gm denotes the true feature of the m
th

 model.

Since gm is unknown, we need to know the joint pdf of 1ĝ  and 2ĝ  only conditioned on

the assumption that both are from the same model, in spite of the true value gm. Under such

constraint, the joint pdf can be expressed by

( ) ( ) ( ) ( )∫∫ == mmmmm dffdfHf ggggggggggg 212121
ˆˆˆ,ˆˆ,ˆ (4.18)

where the constraint is

model same  the tobelong ˆ and ˆ : 21 ggH

Substituting (4.16) into (4.18) and assuming that the covariance matrices both for 1ĝ  and

2ĝ  are constant, the integration of (4.18) yields the following expression

)}ˆˆ()ˆˆ(exp{)ˆ,ˆ( 21

1

2,1212
1

21 ggGgggg −−−= −T
CHf (4.19)

where C  is again the normalised constant and with

212,1 GGG += (4.20)

In (4.20), G1 and G2 are the covariance matrices for 1ĝ  and 2ĝ  that are independently ob-

tained from the measurements. The joint pdf in (4.19) is also called the likelihood function.

Formulations (4.19) and (4.20) enable us to apply the principle of Bayesian recognition

for feature classification. The recognition can be stated as: given observations which classes

are predefined, classify a new observation to one of the classes. This can be interpreted as a

classical hypotheses test problem. Supposing 1
ˆ

mg  and 2
ˆ

mg  are two observations from the
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known class m1 and m2, respectively. Given a new observation sĝ , if we are going to clas-

sify sĝ  to either m1 or m2, the hypotheses are stated as:

},ˆ{}ˆ{: 10 ms EEH gg = },ˆ{}ˆ{: 21 ms EEH gg =

According to the Bayesian rule, assuming that the risks for misclassification are equal, then

the classification is determined by

if 1
)ˆ,ˆ(

)ˆ,ˆ(
)ˆ(

12

01 ≥=
Hf

Hf
r

ms

ms

s gg

gg
g , classify sĝ  to m1; otherwise, classify sĝ  to m2;

where the joint pdf is formulated by (4.19). The ratio r(⋅) is also called likelihood ratio.

Equally we can use the measure of

( ) ( )msms

T

mssmd ggGgg ˆˆˆˆ 1

,2
12 −−= − (4.21)

for comparison, i.e., if (ds,m1)
2≥(ds,m2)

2
, classify sĝ  to m1; otherwise, classify sĝ  to m2.

In case of multiple classes, supposing lĝ , with l∈{1,…,L} is the observed feature of the

l
th

 class of L modelled primitives. Given a measurement sĝ from the scene, it is classified to

i
th

 class if

}{min
2

},..,1{

2

sl
Ll

si dd
∈

= (4.22)

Without confusion, we call the dij
2∀(i,j) defined in (4.21) the “statistical distance” between

two measurements iĝ  and 
jĝ . It is noted that if the modelling process is ideal, i.e., the

“true” model feature gj is available and consequently the covariance matrix Gj is zero, then

dij
2
 is equivalent to the well-known Mahalanobis distance.

4.4 Optimisation in sensor-based modelling process

In model-based recognition, a modelling process is required to establish the reference

knowledge about the objects. As illustrated in figure. 4.1, the models concerned in the work

of this thesis are described with the estimates of features and the covariance matrices with

respect to defined classes of surface primitives.

Generally, two modelling approaches can be distinguished: sensor-based and through a

CAD/CAM system. The sensor-based approach uses actual objects to build model descrip-

tions by measurements. The approach with CAD/CAM system uses a set of predefined

prototypes to construct the CAD model of an object. The former modelling process is usu-

ally noise corrupted while the latter is noise free. Without comparison between these two

schemes, we focus on the sensor-based modelling approach.

In the sensor-based modelling process, we suppose that more than one measurement is

carried out for each primitive which class has been predefined. { km,ĝ , Gm,k} ∀k∈{1,…,K}

are the  K observations for the primitive m. Since the “true” value for class m is unknown,

we need to find a “best” value for model m from the K observations. Based on the prob-
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abilistic representation, i.e., the analytical pdf of the estimates as introduced in section 4.3,

such a “best” description can be obtained as an optimal estimate.

Assuming that these observations are independent with each other, the joint pdf of the

measurements is expressed as

∏
=

=
K

k

mkmmKmm ff
1

,,1, )ˆ()ˆ,...,ˆ( ggggg , (4.23)

where gm represents the “true” feature of the primitive m.

To integrate the information of all the measurements to estimate the parameter gm, the

Maximum Likelihood Estimate (MLE) can be applied because the pdf’s of feature mkĝ

∀k∈{1,…,K} have been explicitly formulated. Thus the feature stored in the model base,

denoted mg , is the one that maximises the joint pdf )ˆ,...,ˆ( ,1, mKmmf ggg . Substituting

)ˆ( , mkmf gg in (4.23) with the normal pdf of (4.16) and let

0)ˆ,...,ˆ( ,1, =
∂
∂

= mm

mKmmf

gg

ggg
g

,
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The result of (4.24) gives an optimal estimate of the feature of a model given a number of

measurements in the modelling process.

The covariance matrix of the estimate mg , denoted as mG , is computed with the ex-

pression

( )( ) ( )( ) }{
T

mmmmm EEE ggggG −−=

Because each mkĝ ∀k is obtained independently, the correlation between miĝ  and mjĝ ∀{i,j|

i≠j} is thought to be zero. Then mG  can be derived with (4.24) as

1

1

1

,

−

=

− 







= ∑

K

k

kmm GG (4.25)

Finally, the pair ( mg , mG ) constructs an optimal description for the model m.

4.5 Optimal classification of surface primitives using syn-
thetic data

Based on the optimal description of surface primitives, the feature-based classification can

be implemented with the Bayesian criterion, using the probabilistic model of the normal
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pdf. This section describes the results of experiments of classification using synthetic data.

Applications for real range images are described in chapter 6. To demonstrate the optimal-

ity of the proposed probabilistic model, the classification results based on the conventional

Euclidean distance, which only relies on the estimates of the feature itself without charac-

terisation of the covariance, is also reported for a comparison.

The 3-D data points were generated from synthetic quadric surfaces. Four ideal ellipsoid

prototypes labelled with l∈{1,2,3,4} were selected as the four classes for classification. The

surface primitives were generated from the four prototypes within a 2×2 window at x-y

plane, corrupted with additive Gaussian noise. The sampling distance at both x and y direc-

tions is 0.1. The number of used points is 400 for all trials. In the following, all the meas-

urement values have been normalised in an arbitrary unit.

Assuming that the sensor-based modelling process was applied, the model base was es-

tablished from measurements with the same conditions used for getting inputs of the

scenes. Hereafter, the “model” refers to the estimate of feature in the model base obtained

from the noise-corrupted measurement and the “prototype” refers to the ideal value.

Given the surface primitive of 3-D data points sampled from each prototype, Gaussian

noise was added to the three co-ordinates of each data point. Then the optimal description

for the primitive, i.e., the estimate of feature vector and the covariance matrix, was obtained

through the procedure as shown in figure 4.1.

First, each model of the four classes was constructed only from one randomly selected

set of measurements. It means that such a model is less “accurate” than what is obtained in

a number of observations. The feature and the covariance matrix for class m is noted as

{gm,l,Gm,l} ∀l∈{1,2,3,4}. The features of the ideal prototypes and their generated models

are listed below. The standard deviation of the added noise is σ=0.02 for each model.

class 1 2 3 4

Prototypes [0.667,0.333,-1.667]T [0.727,0.455,-1.819]T [0.8,0.6,-2]T [0.889,0.778,-2.222]T

Models [0.605,0.306,-1.425]T [0.671,0.416,-1.589]T [0.777,0.586,-1.932]T [0.837,0.719,-2.039]T

Then trials of inputs as the observations of the surface primitives were repeatedly gen-

erated from the four prototypes, with added Gaussian noise. The feature of each input

scene, denoted gs, and the associated covariance matrix Gs were obtained in the same way

as in the modelling process.

Applying the Bayesian recognition algorithm stated in (4.21), the classification was

carried out using the following criterion:

Classify gs to class i, if it satisfies the condition:

( ) ( ) ( ) ( ) }4,3,2,1{,      with, ,,

1

,,,

1

,, ∈≠∀−−≤−− −− jiijjmsjs

T

jmsimsis

T

ims ggGggggGgg

where Gs,i = Gs+Gm,i.

To test the reliability of the approach, the inputs comprised 50 trials for each prototype.

Because the classification is determined by the “statistical distance” defined in (4.21), a
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comparison of the classification results respectively based on the statistical distance, de-

noted as (dstd)
2
 and the Euclidean distance, denoted as (deuc)

2
, is given.

The classification results are listed in table 4.1 and table 4.2 for noise levels of σ=0.05 and

σ=0.02. All inputs generated from the four prototypes were classified to one of the labels

l∈{1,2,3,4} and the “miss-classifications” were counted, i.e., the kind of errors that a trial is

classified as “not matching” to its actual model is considered and the ratios were computed.

The experimental results strongly demonstrate what was already expected, that the Euclid-

ean distance based classification could be unreliable if the surfaces “shapes” are similar, as

is the case involved in the experiment. In contrast, using the proposed optimal description

via the probabilistic model, the classification based on the statistical distance yields much

better results.

Intuitively, the capability of a recognition system to “identify” different objects depends

on the measure of “closeness” between two observations for the same object. In such a no-

tion, the statistical distance and Euclidean distance were used to measure the “closeness”

between a model and its observations in experiments. A number of inputs were generated

from the prototype of label l=2 with 100 trials (with noise level of σ=0.05) and the dis-

tances between each trial and the fixed model gm,2 were computed in terms of “statistical

distance” and Euclidean distance. The histograms of the distance distribution within these

trials are shown in figure 4.3 and figure 4.4. In order to give a comparison of their capabili-

ties of measure of “closeness”, the distance measure was normalised by a factor, which was

selected as the median among the distances to model gm,1 of all trials. Therefore, the quan-

tities along x-axes in figure 4.3 and figure 4.4 indicate relative distances.

From these results we see that the dispersion in the case of the statistical distance is

smaller then that of the Euclidean distance. It implies that the statistical distance yields a

better “identification” for different classes. In other words, since the distances have been

normalised, the histograms reflect the distributions of likelihood ratio for two kinds of like-

lihood, (dstd)
2
 and (deuc)

2
. Comparing the results of figure 4.3 with figure 4.3, we also con-

clude that using the statistical distance (dstd)
2
 in stead of (deuc)

2
 is more “likely” to correctly

classify an observation.

Given a group of trials generated from one primitive, the mean values of the statistical

distance (dstd)
2
 and the Euclidean distance (deuc)

2
 to each model are listed in table 4.3 and

table 4.4, respectively. Comparing the (relative) distance of the corresponding model and

other models, we can further see that the statistical distance performs better identifications

than that of the Euclidean distance.

4.6 Pose description with surface representations

In general, recovery of pose information of objects is included in the model-based recogni-

tion. The success of matching between an observed object and its established model always

implies a proper interpretation of the rotation and translation transformation between the

measuring co-ordinate system and the model co-ordinate system. The importance of pose

representation can be viewed from two aspects:



Chapter 4 Modelling of uncertainties in invariants and pose estimation…

66

Fig. 4.3. Histogram of distance dis-

tribution in terms of statistical dis-

tances between gm,2 and the trials

generated from the same prototype.
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Fig.4.4 Histogram of distance distri-

bution in terms of Euclidean dis-

tances between gm,2 and the trials

generated from the same prototype.
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Table 4.1. Error ratio of classification

with statistical distance and Euclidean

distance. Inputs were generated from the

4 prototypes with 50 trials. The noise

level is σ=0.05.

correspondence 1 2 3 4

Using (dstd)
2

0.1 0.14 0.1 0

Using (deuc)
2

0.54 0.66 0.5 0.34

Table 4.2. Error ratio of classification

with statistical distance and Euclidean

distance. Inputs were generated from the

4 prototypes with 50 trials. The noise

level is σ=0.02.

correspondence 1 2 3 4

Using (dstd)
2

0 0 0 0

Using (deuc)
2

0.26 0.78 0.52 0.24

Table 4.3. Mean value of statistical dis-

tances (dstd)
2
   between gs,i, i∈{1,…,4}

and gm,j j∈{1,…,4}. The noise level is

σ=0.05.

gm,1 gm,2 gm,3 gm,4

gs,1 1.42 10.84 44.84 76.09

gs,2 12.45 1.66 13.72 38.60

gs,3 29.31 10.87 1.01 8.29

gs,4 64.71 34.91 9.62 1.14

Table 4.4. Mean value of Euclidean dis-

tances (deuc)
2
 between gs,i, i∈{1,…,4} and

gm,j, j∈{1,…,4}. The noise level is

σ=0.05.

gm,1 gm,2 gm,3 gm,4

gs,1 0.31 0.24 0.33 0.48

gs,2 0.35 0.22 0.21 0.31

gs,3 0.56 0.32 0.10 0.11

gs,4 0.91 0.59 0.22 0.15
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(1) In most applications, localisation of objects is required for robotic manipulations

and is a task of machine vision;

(2) Pose description provides a geometric configuration of the spatial relations between

two surface patches, which is often necessary for scene interpretation.

It should be noted that the latter argument can be utilised to approach the object representa-

tions. As mentioned in chapter 3, quadric representations are surface-based and neglect the

volumetric properties of objects. Assuming that a bounded object can be decomposed into

several quadric surface primitives, the relational pose transformations between these spatial

correlated surface patches describe the topological structures of the object. When treating

each surface patch as a ”node” and the spatial relation between a pair of connecting sur-

faces as the “connection”, then the object can be interpreted with a symbolic Attributed

Relational Graph (ARG). Such kind of a rela-

tional graph belongs to the so-called Relational

Structure (RS) representations ([17]) for object

modelling. In this notion, the quadric repre-

sentations can be consequently extended to-

wards “volumetric” object representations.

While the invariant feature of each single sur-

face primitive describes the unary properties of

the node, the descriptions of the relational pose

between adjacent surface primitives can be

utilised as the binary features to specify the

joints between these nodes. The RS represen-

tation of object model is illustrated in figure

4.5.

 This section discusses pose representation of quadric surfaces. Based on the pose repre-

sentation of a quadric surface with respect to world co-ordinates, the relational pose be-

tween two surfaces is further formulated by defining a feature vector for pose description.

Because the pose of a surface patch is recovered from the formulation of the quadrics, er-

rors in surface fitting also lead to uncertainties in pose estimation. In the context of section

4.2 and 4.3, uncertainties in pose estimation are also described with a covariance model, by

which the pose representation, in the sense of feature description, is optimised.

4.6.1 Formulation of pose representation

The pose of an object is usually described by rotation and translation transformations with

respect to a pre-defined Cartesian co-ordinate system (the world co-ordinate system). As

described in section 4.2, the advantage of applying quadric representations for the model-

ling of object surfaces is in the simultaneous recovery of the pose of a surface patch from

the normalisation process for extraction of invariants, which is expressed by the rotation

matrix R and the translation vector t. Denoting with xs-ys-zs the standard co-ordinate system

and with xwywzw the world co-ordinate system, the pose transformation is expressed by

)( txRtRxx ′+=+= ssw , (4.26)
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Fig. 4.5. The surface-based RS rep-

resentation for object model.
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where the vectors xs and xw denote the 3D co-ordinates with respect to the frames xs-ys-zs

and xw-yw-zw, respectively. Because R consists of the three basic vectors of the normalised

standard frame, there are only three degrees of freedom in the formation of R. Thus the

maximum number of degrees of freedom in pose description is six. To formulate the pose

representation, the parameters to describe the rotation must be specified. Together with the

translation vector t, the pose parameters can be defined in a vector form.

Naturally, the rotation parameters can be selected as the three rotation angles about the

(world) co-ordinate axes xw-yw-zw, denoted as α, β and γ. Thus the rotation matrix R is ex-

pressed by
















−

















−













 −
=

γγ
γγ

ββ

ββ
αα
αα

cossin0

sincos0

001

cos0sin

010

sin0cos

100

0cossin

0sincos

R ,

Here the angles are defined in the range 0≤α,β ,γ≤2π. To distinguish the rotation and the

translation, we define a vector µµµµ=[α,β ,γ]T
 to represent the rotation transformation. For con-

venience of computation, we define the translation vector as t'=RTt, instead of t in (4.26).

 Consequently, the pose parameters represented in the world co-ordinate can be defined

as

[ ]Tzyxw ttt ′′′= ,,,,, γβαττττ (4.27)

In translation representation, a special case is formed by cylindrical surface because the

origin of the standard co-ordinate system of a cylindrical form is non-fixed.  According to

the normalisation process for the extraction of invariants, a cylindrical surface is ideally ex-

pressed in the standard form as λxx
2
+λyy

2
+1=0. So the diagonal element λz of the matrix A'

in (4.4), associated to the term of z is zero. According to the normalisation process stated by

(4.3)-(4.10), t' is computed by 2t'A'+v'
T
=0, so the value of t'z can be arbitrarily selected. As

a result, there are only two deterministic parameters to represent the parameter vector t'. In
other words, the 3D point represented by vector t' degenerates to a straight line. In such a

case, the pose vector ττττw also degenerates to

[ ]Tyxwc tt ′′= ,,,, γβαττττ  (4.28)

In reality, the eigenvalue λz can not be ideally zero, because of the uncertainties occur-

ring in the parameter estimation by surface fitting, even when the object is in fact a cylin-

der. However, the special case should be distinguished because too small (absolute) value

of λz not only yields an unreliable solution of t'z, but also might cause numerical difficulties

in computation since the domain of translation is infinite. In reality, identification of a cyl-

inder is possible by comparing λz with a threshold. If it is lower than the threshold, it can be

treated as a perturbation from zero and the cylindrical constraint is imposed. Alternatively,

in using invariants for model-based recognition, success of matching to a model can also

provide the a priori knowledge of the surface type of the observed instance.

To suffice the descriptions of man-made objects, we have to deal with planar surfaces.

This simple surface type is not included in the discussions of surface representation of
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chapter 3. Because either curved or planar surfaces are extracted in the segmentation

process, the approach of planar fitting is described in the next chapter, which is related to

the segmentation algorithm. In reality, because a planar representation does not possess

unary features for shape identification, only the pose of a plane can be utilised to describe

the spatial relations between it and other surfaces. For compactness, we conduct the pose

definition of a planar surface in this section as a supplement.

Suppose a plane is expressed by the implicit form nTx-k=0, where n=[nx,ny,nz]
T
 is the

unit vector representing the surface normal and k is the distance between the origin of the

co-ordinate system to the plane. Considering that there are two degrees of freedom in n, we

simply define a pose vector ρρρρw with respect to the world co-ordinate system by

[ ]Tyxw knn ,,=ρρρρ (4.29)

with
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4.6.2 Representation of relational pose between two surfaces

The relational pose representation is used to parameterise the spatial constraint between two

surfaces. It is defined as the pose transformation between the standard frames of two quad-

ric surface representations. To approach the RS representation of a 3D object, the relational

pose can be employed as the binary feature description, while the invariants of a single sur-

face is the unary feature description.

Let (Ra,t'a) and (Rb,t'b) denote the pose transformations between the world co-ordinate

frame and the standard frame of two surfaces a and b, respectively. Then:

)( aaaw txRx ′+= ; )( bbbw txRx ′+= .  (4.30)

When using the standard frame of a as the reference co-ordinate system, the pose transfor-

mation between a and b can be derived from (4.30) as

abbb

T

aa ttxRRx ′−′+= )( (4.31)

Now defining

b

T

aab RRR =  and a

T

abbab tRtt ′−′=′ , (4.32)

we obtain

)( abbaba txRx ′+= . (4.33)

Thus (4.33) is of the same structure as the one in (4.26). Therefore, the relational pose can

be defined with the vector ττττ in the same form as (4.27), but the rotation angles and transla-

tion components are derived from Rab and t'ab. To avoid confusion, we use the notation ττττ to
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represent the relational pose and ττττw to represent the pose of a single surface with respect to

the world co-ordinate system. Obviously, ττττw can be treated as a special case when the stan-

dard frame of surface a is identical to the world co-ordinate system.

Analogous to the derivation of (4.28), the relational pose in case of cylindrical expres-

sion of one of the two surfaces or both is defined specifically. Assuming that b is expressed

with a cylindrical form, the relational pose is consequently defined by (4.28), where the pa-

rameters are derived from Rab and t'ab in (4.33). Another degenerated, but perhaps fre-

quently encountered, case occurs when both a and b are cylindrical surfaces. Since both t'a,z

and t'b,z are underdetermined in that case, from (4.32) and (4.33), we see that t'ab can not be

derived as a point vector, but can only be configured with a single constraint when elimi-

nating the two unknown parameters. To be clear, we express t'ab =[t'x,t'y,t'z]
T
 in (4.32) with

the following equations:
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   (4.34)

Treating t'az and t'bz as two variables, (4.34) states a surface representation in the space of t'
in an explicit form. By eliminating the two variables t'az and t'bz, (4.34) can be converted

into an implicit form as

l
T =′tu , (4.35)

where u is a coefficient vector consisting of only rotation parameters; l is a constant deter-

mined by both the rotation parameters and the known (t'ax, t'ay, t'bx, t'by). It means that in

case of two cylindrical surfaces, their relational translation t' is only configured by a plane

equation. Consequently, we define a one-dimensional parameter tl=l to represent the map-

ping from t' to this planar constraint. In fact, tl corresponds to the geometric distance be-

tween two straight lines, i.e., the central axes of these two cylinders.

Hence the relational pose in the case of two cylindrical representations is defined as

[ ]Tlcc t,,, γβα=ττττ  (4.36)

To deal with planar surfaces, the relational pose should be defined specifically. Suppose

that one of the two surfaces, e.g., surface b, is planar, the relational pose is just the expres-

sion (4.29) under the standard co-ordinate system of a, i.e.,

[ ]Taayaxa knn ,,=ρρρρ (4.37)

The components in (4.37) can be derived from the normal vector of plane b and the rotation

matrix of surface a with respect to the world co-ordinate system. Detailed expressions of

(4.37) are formulated in Appendix C.2.

A further degenerated case is the one where surface a is cylindrical and b is planar. In

this case, the parameter ka is unknown, thus the definition of (4.37) degenerates to be

[ ]Tayaxac nn ,=ρρρρ (4.38)



Chapter 4 Modelling of uncertainties in invariants and pose estimation…

71

If both a and b are planar surfaces, their relational pose is only described by the angle be-

tween the two normal vectors, i.e., we define

b

T

ann nn=ρρρρ , (4.39)

to represent the relational pose of the two planes.

4.6.3 Descriptions of uncertainties in pose estimation

Following the principle applied to the formulation of the uncertainties of the estimated in-

variants, we can also use a covariance model to describe the uncertainties in the pose esti-

mation. We first cope with the uncertainty problem of pose estimation for a single quadric

surface in the world co-ordinate system. Then by applying linear approximation, the co-

variance expression with respect to the relational pose of two surfaces will be derived.

Suppose that wττττ̂  is the estimate of the pose parameters of a single surface in quadric

fitting, and wττττ  is the ideal parameter vector. According to (4.27), the error of wττττ̂  is ex-

pressed by

[ ]Tzyxw ttt ∆′′∆′∆∆∆∆=∆ ,,,,, γβαττττ .

Because the components of wττττ̂  are derived from the estimates of surface parameters θθθθ̂ ,

∆ττττw is uniquely determined by the errors of θθθθ̂ . However, it is not convenient to formulate

directly the expression of ∆ττττw through the dependency on ∆θθθθ, because of its non-linearity.

In stead, we derive the formulation of ∆ττττw in the same way as used for the analysis of ∆θθθθ.

It should be noticed that in the normalisation process the invariants, i.e. the definition of

feature g with respect to the equation of (4.1), are defined as the algebraic coefficients rep-

resented in the transformed “standard frame”, and the transformation, i.e., the definition of

ττττw, is represented by the pose parameters. This process can be interpreted as a one-to-one

mapping between the quadric parameters θθθθ observed in the world co-ordinate system and

the feature g together with the pose parameters ττττw, i.e., θθθθ⇔g∪ττττw. Therefore, the quadric

surface can be equivalently represented by the parameter vector defined as ηηηη=(g
T
 ,ττττw

T
)

T
.

While the estimate θθθθ̂  is obtained through surface fitting, ηηηη̂  minimises the cost function at

the same time. Alternatively, the estimation is converted as
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Therefore, we can apply the same analysis used in section 4.2 to derive the covariance ma-

trix of θθθθ̂ , to obtain the linear approximation in dependency of ∆ηηηη on {∆xi}∀i. Then the co-

variance matrix ΦΦΦΦ = E[∆ηηηη∆ηηηηT
] is formulated. Since only the pose parameters are of con-

cern, the covariance matrix of wττττ̂ , denoted Tw, can be directly derived with the low-right

sub-matrix of ΦΦΦΦ.

 To obtain the covariance matrix of the relational pose estimate ττττ̂  with respect to surface

a and b, we have to utilise the definition of the relational pose expressed in (4.32). By fur-

ther applying the linear approximation, the error ∆ττττ can be expressed in terms of (∆µa, ∆µb,

∆t′a, ∆t′b). Then the covariance matrix of ττττ̂ , denoted as T, can be derived from the covari-

ance matrices Twa and Twb. To avoid trivialities in mathematics, the derivation of the co-

variance matrix of the relational pose is neglected in this chapter. More details of the dis-

cussions, including the degenerated situations for pose representation, are presented in Ap-

pendix C.3.

Once the uncertainties of pose estimates are explicitly expressed with a covariance matrix,

we think that the main statistical performances of the pose estimate ττττ̂  are configured by its

covariance. Therefore, we can apply the probabilistic model of the normal pdf to describe

the pose estimates, either for a single surface measurement or the relational pose measure-

ment. Especially, the explicit pdf model for description of the relational pose estimate en-

ables us to deal with the binary feature in object representation and recognition in an opti-

mal framework as used for the unary feature of invariants of a single surface representation.

Consequently, the RS representations of objects and ARG’s-based matching scheme are

systematically optimised.

4.7 Conclusions

In this chapter, we discussed the feature representation of quadric primitives, which are

used as shape descriptors for surface-based recognition. In order to establish a systematic

optimal recognition framework, we cope with the uncertainty problem in parameter estima-

tion with a covariance representation, by which an optimal description of a quadric primi-

tive becomes available as the combination of the estimate and its covariance matrix. Con-

sequently, an analytical probabilistic representation with a normal pdf is proposed to char-

acterise the statistical attributes of the estimates and enabling the application of the Baye-

sian criterion for optimal classification of surface primitives. The major points in our in-

vestigation are summarised below.

• Extraction of invariants of quadric primitives

The feature vector of quadric surfaces was defined from the invariants of the implicit repre-

sentation of quadrics. The invariants are presented as the standard form of quadrics, which

describe the global geometric properties of the surface. A merit of using such feature defi-

nition is that the pose information can be recovered simultaneously through the extraction
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of invariants, i.e. the normalisation process via transformation of rotation and translation

from the viewer-centred frame to the standard frame.

• Describing the uncertainties in parameter/feature estimation with the covariance
representation

Because of noise presence in data acquisition, errors exist in parameter estimation by sur-

face fitting and uncertainties are conducted in feature extraction. This chapter aimed at

modelling the uncertainties with an explicit representation, i.e., derivation of the covariance

matrix of an estimate. To do that, we started from the formulation of the surface fitting

problem and applied the linear approximation in the expression of errors of estimates. Un-

der the assumption of Gaussian noise in range data, the computation of covariance matrix

of the estimate in surface fitting, as well as the estimate of feature vector, were explicitly

formulated.

Based on the optimal description of the features of surface primitives, we proposed a

probabilistic model, i.e. the analytical normal pdf, to characterise the statistical attributes of

the estimates. It should be noted that such an analytical model relies on the assumption of

linear dependency of uncertainties of estimates and noise. However, it was also argued to

be supported by the optimal characteristics of the estimates in surface fitting, i.e. the refined

“bias-corrected” solution.

• Optimisation in establishing the model base

Assuming that the model base in terms of feature descriptions was established from meas-

urements, the modelling process can be optimised as the outcome of applying the probabil-

istic model for feature estimates. Given artificially trials of measurements generated in the

modelling process, the optimal descriptions in the model base were obtained under the op-

timal criterion of MLE.

• Pose/relational pose representations

The last part of this chapter discussed the problem of pose representation. More of our in-

terests, the relational pose between two surface primitives was characterised in an explicit

expression. By the normalisation process for extraction of invariants, pose parameters, rep-

resented under the viewer-centred co-ordinate system, were first derived. Then the rela-

tional pose, describing the geometric connectivity between two surface primitives, was

formulated. The aim of formulating the relational pose is to extend the surface-based

primitive description to represent more complicated objects through an object representa-

tion scheme of RS (relational structure) representation. By regarding the features of surface

primitives as the “unary” features and the relational pose as the “binary” features, the object

recognition can be implemented with the scheme of ARG (symbolic Attributed Relational

Graph). Because of the simplicity of quadrics in mathematical manipulations, it is expected

to arrive at a sophisticated object recognition strategy as a trade-off between the complexity

of representation in low and intermediate level and the complexity of control in higher

level. Furthermore, the approach to represent the uncertainties in pose estimates was also

discussed.
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As an application of modelling of uncertainties in surface parameter estimation, segmenta-

tion of a scene from range data can be implemented based on an optimal description of the

surface primitive, using the region-based approach. Because the success of segmentation in

region-based approaches rely on the reliability of parameter estimation of surface regions,

the optimal description of parameter estimates enables us to carry out the primitive cluster-

ing algorithm within an optimal framework. This is discussed in chapter 5.
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Chapter 5

Segmentation of Range Images Based on

the Optimal Description of Surface

Primitives

This chapter discusses the segmentation of range images, which is an essential low-level

task for image analysis and object recognition. Once having obtained the range image with

the ranging system, segmentation is accomplished to build up partitioned primitives of the

scene. The primitives are then classified by matching with the models of primitive descrip-

tions in the subsequent recognition stage. Since the object recognition scheme in this thesis

is obtained through surface-based representations, the purpose of segmentation in this

chapter is to partition the input raw range data into a group of regions each of which is de-

scribed with a quadric (or planar) representation.

Generally, segmentation of (greylevel or range) images can be defined as a process of

partitioning a given image into a set of meaningful regions. A meaningful region represents

a region in which all pixels (or voxels) possess similar properties. Then symbolic descrip-

tions can be made of the partitioned regions, to be used by higher level modules. Critical in

segmentation is the definition of “similarity” or “homogeneity” of partitioned regions. It is

often impossible to define the homogeneous property purely from a strict mathematical

context, because the requirements to the result of segmentation are usually guided by the

subsequent recognition module in machine vision, or by the visual interpretation of human

beings. For 2D greylevel images, the homogeneity criterion is based on segments of “visu-

ally pleasing regions”, i.e., segments of the image are in accordance with our perceptual

experience about the pattern of illumination. But such intuitive visual judgement is mean-

ingless for 3D data. In fact, in segmentation of range images, the partitioning principles not

only depend on the nature of the input image, but also on the kind of symbolic representa-

tions of the objects, because any segmentation task must be put in perspective with the final

objective of a vision system.

According to the surface-based object representations discussed in the previous chapter,

this chapter applies to a region-based algorithm in segmentation. A homogenous region is

thought to be a piece of the surface that fits either a planar or a quadric representation. Thus

the output of the segmentation is a group of surface primitives that are ready to pass

through the subsequent process of object recognition using surface-based representations.

The segmentation approach proposed in this chapter consists of three modules. First,

outlier detection is applied to the input range image by testing the local properties of the

data. In this process, data points near the boundaries or edges of objects, as well as the
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sparse distant points due to noise, are extracted and marked as outliers. These data points

thus are excluded from the region-growing process of the second module. Second, the

whole range image is partitioned into small regions with a grid pattern. Then these over-

segmented regions are merged in an iterative region-growing scheme. In this process, the

merging criterion is based on an optimal estimation-based clustering algorithm in parameter

space. Finally, based on the results of the segmentation of the second module, a point-based

refinement is applied in the third module, which yields the labelled final segments and un-

labeled points. This approach contains the assumptions that the objects involved in the

scene are piecewise smooth and that each segment of the surfaces can be described by ei-

ther a quadric or a plane. Being based on the optimal description of the surface primitives,

the segmentation is approached within an optimal framework.

This chapter is organised as follows. Section 5.1 briefly reviews related work on seg-

mentation of range images. Restricting to the class of man-made objects only, in section 5.2

an approach for region-based segmentation for such objects is proposed, based on an opti-

mal criterion for homogeneity. Considering that planar surfaces are frequently encountered

in man-made objects, the segmentation algorithm deals with planar surface estimation sepa-

rately. Section 5.3 discusses the method of separation and parameter estimation of planar

surface regions. Finally, discussions and conclusions are given in section 5.4.

5.1 Background of segmentation of range images

For a recognition system, segmentation is a very important and perhaps the most difficult

task. One should note that in this work, pixels are the greylevel representations of 3D dis-

tance measurements, which will have its consequences for the development of a segmenta-

tion algorithm.

Typical segmentation difficulties are described in [33]. According to the assessment of

the state-of-the-art in planar range image segmentation, it is asserted here that this problem

is “not solved”. There is no universal solution of segmentation for all instances of images,

because of the possible complexities of the scene, neither for 2D greylevel images nor for

3D range images.  An important reason is the lack of a unified metric to assess the seg-

mented outputs. On the other hand, segmentation is often followed by higher level proc-

essing, so the algorithm of segmentation should usually be implemented taking into account

the available a priori information and guided by the strategy of description and recognition

of a vision system.

Conventional methods of range image segmentation can be classified into two ap-

proaches: region-based and edge-based. In region-based methods, pixels having similar

properties are grouped together and finally the images are partitioned into a set of “ho-

mogenous” regions. This is often implemented by the region growing technique, in which a

seed of region is expanded by checking neighbours with a defined homogeneity criterion

through an iterative process ([46], [31], [8], [59] and [32]). A homogenous region is usually

described by some uniformity properties such as planar, quadric, convex or concave, etc.,

based on the assumption that the object surface is piecewise smooth. One of the representa-

tive works was described by Besl and Jain ([8]). In their method of variable-order fitting,
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any piecewise smooth surface is partitioned into a few fundamental primitives based on dif-

ferential geometry, then the simply described surfaces pass through a fitting stage using

variable-order polynomials.

Another widely used segmentation scheme is based on edge-based methods. The edge-

based methods obtain the segments from edge descriptions of images. Some researchers

combine both region-based and edge-based techniques for segmentation of range images

([47], [65] and [9]). In the past decade, robust estimation techniques have been applied for

segmentation of range images, which can be categorised as primitive extraction through ro-

bust estimation ([66] and [13]).

In region-based segmentation of range images, homogeneity of a region needs to be de-

fined. Generally this is based on exploration of the properties of each pixel and its neigh-

bours, i.e., it is assumed that range image data embed surface coherence ([8]). The defini-

tion of homogeneity properties of a region can vary depending on different surface descrip-

tions. In many cases, criteria such as “the same sign of curvature” of a smooth surface

could yield segments being intractable for high level description because of the shape

variations of smooth surfaces. However, when surface-based object representation is util-

ised in intermediate and high level vision tasks, homogeneous regions can be defined by

parametric primitives, such as the quadric description as used in this thesis. Using param-

eterised models, a homogenous region is thought to “fit well” the parametric description

whereas two regions are thought to be homogenous if they can be expressed as two obser-

vations of the same surface primitive. Commonly used parametric models in segmentations

are piecewise polynomials ([8], [58] and [52]).

Since region-based approaches are guided by the detection of similarities of data sub-

sets, techniques for clustering of data subsets are required. Basically, a homogeneity test

determines the process of clustering. Many segmentation algorithms employ some thresh-

old parameters for the purpose of clustering, which are usually set by training to account

for the noise in the data and errors in the estimation of homogeneity properties ([33]). Natu-

rally, for parameterised models, homogeneity between two sub-regions is inferred from

parametric descriptions. However, the reliability of the homogeneity test by estimation-

based algorithms could suffer from the lack of explicit representation of uncertainties of re-

gion estimates. In [42], a Bayesian segmentation methodology is proposed, using paramet-

ric models. In that approach, instead of direct parameter estimation, a so-called “probability

of homogeneity” is derived from the a posteriori probability conditioned by two joint ob-

servations in the spatial domain. Thus the uncertainties in parameterisation of region primi-

tives are considered in the homogeneity test in an implicit way. Although that methodology

provides an optimal test of homogeneity between regions using parametric models (this re-

quires integration among the multidimensional parameter manifold), it is still unknown

how a homogeneous region “fits” the used model, because no parameters are estimated in

that approach. However, once the parameter uncertainties are known explicitly, an estima-

tion-based optimal clustering algorithm can be implemented, with equal optimality of the

approach of [42]. Moreover, the “degree of fitting” of a homogeneous region to a paramet-

ric model is represented as well.

Following the surface-based object representation used in this thesis, we apply the re-

gion-based segmentation algorithm using the parametric model; this is described in section
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5.2. Because the uncertainties in surface estimation have been represented with the ap-

proach in chapter 4, an optimal estimation-based clustering criterion in parameter space can

be established.

5.2 The algorithm of the optimal region-based segmentation

As stated previously, the major objective of the vision system concerned in this thesis is to

recognise and localise man-made objects, where in most cases the objects can be repre-

sented mathematically by quadrics. Naturally, the parametric primitives to characterise the

region homogeneity are selected as quadric or planar descriptions. The representations for

surface primitives in the proposed approach are the same as in [36], i.e., second-order poly-

nomials. But the segmentation algorithm proposed here is different from that of [36] which

was in fact based on edge extraction (although the surface representations were employed).

As we will see below, the approach proposed in this chapter is driven by surface represen-

tations (and surface data points). The key point of the method is the optimisation in region-

based parameter estimation. A flowchart of the segmentation approach is depicted in figure

5.1.

The new method consists of three modules. In the first stage, outliers (including edge or

boundary points and distant error points) are extracted. This is achieved by fitting the data

points in a small sampling window to a planar description and testing the goodness of fit.

The central point of the window whose planar fitting is recognised as “bad” is marked as an

outlier. By moving the sampling window over the whole range image, centred at each pixel

each time, we extract the outliers of the input range image. In the second module, the whole

image is initially partitioned into small regions with a rectangular grid pattern. According

to [52], these initial grid regions are noted as “surface elements”, or sels.  These sels then

pass through the merging process, according to the criterion of homogeneity. The merging

process starts with a seed of subregions consisting of a few neighbouring sels. Such a group

of neighbouring sels is called a patch. When the growing of a patch stops, a new seed patch

is selected and the process repeats until no more seeds can be found. At the end of the sec-

ond module, the merged regions form several isolated segments with different labels in the

range image. Such a segment is denoted as dominant region. In the last module, a process

of point-based refinement is applied, with which the points near the boundary of dominant

regions are re-classified according to a measure of the distance between the point and the

estimated surface.

In the process of computing the seed patch, a planarity test is applied according to the

result of the quadric fitting of the seed patch. If the seed turns out to be planar, then it is

represented as such and the updated region is estimated using the planar representation in

the subsequent merging process. Otherwise, the seed and its updated region are estimated

through a quadric representation.

Finally, the outcomes of the segmentation include the labelled regions, either in quadric

or planar representations, and the unlabeled points.
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Outlier detection

Range image

Initial partitioning

Selection of seed patch

Separation of quadric/planar

representations

Region growing by

merging sels

quadric planar

Estimation of region parameters

and covariance matrix

Point-based refinement

sels

Dominant regions

Labelled segments Unlabeled points

Fig 5.1 Flowchart of the segmentation algorithm

First module

Second module

Third module
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5.2.1 Outlier detection

To hold the condition of piecewise smoothness for surface fitting, boundary or edge points

of the objects, as well as the distant data points, are detected and excluded from surface fit-

ting. To do that, we model the points within a local region as a set of 3D random data

points and the outliers are detected according to the pattern of their 3D distributions.

Given the raw input range data, a small rectangular window is used as the mask to test

the local property of each point. The size of the window is pre-defined, according to the

sampling resolution of the range data as well as the size of the objects in consideration. As

an example, the window size used in our experiments is 5×5 (point
2
). The window is cen-

tred at each point and all points covered by the window are considered. Because these

points are locally distributed, they are hypothesised coming from a planar patch of the

smooth object surface and the result is subjected to a planarity test. Obviously, if the win-

dow covers the boundary and partially embeds different object surfaces or different objects,

or contains any local irregularity of an object, this region will fail to pass the planar fitting

test. Then the centre point of the window is considered as an outlier.

Treating the points sampled within the window as 3D random points, we can use the al-

gorithm of principal-component extraction to describe the spatial variance of these points

for surface fitting. Supposing {xi} {i = 1,..,m} are the points of the window, the matrix

( )( )Ti

m

i

im
xxxxZ −−= ∑

=
−

1
1

1  , where ∑
=

=
m

i

im
1

1 xx ,

is an unbiased estimate of the covariance of the set {xi}. The three eigenvectors of Z are

called the principal components and the eigenvalues represent the variance at these princi-

pal directions. Naturally, if {xi}∀i belongs to a plane in the spatial domain, the smallest ei-

genvalue is ideally zero and its corresponding eigenvector is just the normal vector of that

plane. Therefore, the smallest eigenvalue of Z, denoted cmin, can be used as a measure to

characterise the uniformity of these points. If cmin exceeds a threshold, then this patch is

thought to be inhomogeneous and the centre point is classified as outlier.

For different range data, the predefined threshold, denoted Twin, should vary according

to different noise levels. Commonly in robust estimation, the threshold is set by

mincrT winwin ⋅= ,

where minc  is the median of minc  for all of the windows in the range data, and rwin is a cho-

sen constant. If cmin ≥ Twin, the centre point is classified as outlier, otherwise it is a normal

point.

At the same time, another criterion is used to test the irregularity of the centre point. If

the difference in depth values between the centre point and its nearest neighbouring point

exceeds a pre-defined threshold, this centre point is thought to be outlier. The threshold is

chosen as mincrT depthdept ⋅= , where minc  is the same as used above, and rdepth is a selected

constant.

Moving the window over the entire range image, centred at each point, the outliers are

extracted using the above two criteria. Examples of the detected outliers are shown in fig-
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ure 6.6 (b) in our experiments (chapter 6), where the detected outliers are displayed high-

lighted (white points).

Although there are more refined methods for the outlier detection, such as those used

for edge-based segmentation algorithms, the outlier detection in the first module is not

critical for the proposed region-based segmentation approach. As we can see in the exam-

ples of experiments described in chapter 6, sometimes it was difficult to find all the edge

points near the connection part of two surfaces in case of a “roof” edge. The segmentation

still succeeded in the second module, i.e. the region-based clustering process. The first

module provides a preliminary description of the “inhomogeneity” of the scene. More im-

portant, a successful outlier detection reduces the risk of falsely merging two inhomogene-

ous regions, as well as the computational burden of surface fitting in the region-growing

process. The extracted outliers will be re-evaluated in the third module.

5.2.2 Estimation-based region-growing scheme

After detection of outliers, the range image passes through the estimation-based region-

growing stage. Initially, the range image is manually partitioned into a set of small subre-

gions using a rectangular grid pattern. Then the region-growing process starts with this

over-segmented small partitions, i.e., the “surface elements” or sels. Selecting the size of a

sel is done manually. On one hand, it should be small enough so that points from a smooth

surface lying within the sel are thought to be homogeneous and planar descriptive. On the

other hand, a too small size of the sel might cause difficulties in parameter estimation at the

beginning of growing because of insufficient shape information in a very small patch.

Moreover, the smaller the sels, the more iterations the updating process takes and the more

computational time will be required. In practice, the size of the sel can be set about the

same as that of the window used in outlier detection.

If the number of outliers in a sel exceeds a threshold, it is marked as “ambiguous”,

meaning that it may cover part of the object boundary or local irregularities. Others are

termed as “ordinary” sels. Only the ordinary sels participate in the region-growing process.

For each of these ordinary sels, the local variance of the noise is estimated by applying the

computing algorithm used in outlier detection, i.e., the variance of noise is estimated with

the value of cmin.

     At the beginning of the region growing, a subregion should be selected as a seed; this

subregion is noted as patch. The patch is an array of neighbouring sels with a selected

number. In our approach, the type of array is selected in notion of a second order neigh-

bourhood system, treating the grid-pattern sels as “pixels” (see figure 5.2). So the maxi-

mum size of a patch is nine sels and the minimum size is set to six, which is a subset neigh-

bouring with each other.

Starting with such a seed patch, the region grows by merging it with the ordinary sels

that are neighbours of the current region and the region is updated in an iterative way. This

process is controlled by the criterion of the homogeneity test, which can be interpreted as

the clustering principle of the sels. The clustering principle is based on the hypothesis test

implemented in parameter space. The uncertainties in parameter estimation have been ex-
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plicitly represented, as discussed in chapter 4. The test criterion is established based on the

Bayesian principle as worked out in this chapter.

Denote the current region at the k
th

 iteration as R
(k)

. For a neighbouring sel S, the

merged region is represented as

SRR
kk )()1( =+

.

Suppose (θθθθk , ΨΨΨΨk ) are the estimates of parameters for the current region R
(k)

, where θθθθ de-

notes the surface parameter vector and ΨΨΨΨ denotes the covariance matrix. After merging the

sel S, the estimates for R
(k+1)

 are (θθθθk+1 , ΨΨΨΨk+1 ).  Assuming that R
(k)

 and S belong to the same

surface that can be represented with their primitive representation, then the estimates of the

surface parameters θθθθk  and θθθθk+1  are two observations of the same primitive.

Assuming that the expectations of the two estimates are kθθθθ  and 1+kθθθθ , respectively, the

hypotheses are stated as:

10 : += kkH θθθθθθθθ (R
(k)

 and S  are homogeneous)

11 : +≠ kkH θθθθθθθθ (R
(k)

 and S  are inhomogeneous)

Applying the covariance model proposed in chapter 4, both estimates θθθθk and θθθθk+1 are de-
scribed with a normal pdf. We define

11, ++ −= kkkk θθθθθθθθεεεε .

When hypothesis H0 holds, the same way as used to derive (4.19), εεεεk,k+1 is also expressed

with the normal pdf as

)exp()( 1,

1

1,1,2
1

1, +
−
+++ −= kkkk

T

kkkk Cf εεεεΨΨΨΨεεεεεεεε ; ( 11, ++ += kkkk ΨΨΨΨΨΨΨΨΨΨΨΨ ),

where C is the normalisation constant. Therefore, the “statistical distance”

1,

1

1,1,2
12

1, +
−
+++ = kkkk

T

kkkkd εεεεΨΨΨΨεεεε (5.1)

can be used to test the hypothesis. If dkk Td ≥+
2

1, , where Td is a selected threshold, then H0 is

rejected and H1 is accepted, meaning R
(k)

 and S are inhomogeneous. Otherwise, they are

thought to be homogeneous and merging of S with R
(k)

 is acceptable. The threshold Td is as-

sociated with the so-called significance level, denoted α, which can be expressed as Td =

t(α). The significance level α is just the probability of type-1 error, that is

{ } α= trueis  rejecting 00 HHP .

Theoretically, the value of α can be chosen according to the design of the probability of the

type-1 error and to the distinction of different object surfaces. However, as the covariance

computation was derived only approximately, so in reality, the threshold Td should be de-

termined empirically.

Once the sel passes the test and is merged, the region R
(k+1)

 is represented with the up-

dated description (θθθθk+1 , ΨΨΨΨk+1 ) and the next neighbouring sel is tested. If all of the neigh-

bouring sels of the current region fail to pass the test, the growing process of the selected
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seed stops. From the remaining ordinary sels, a new seed patch is selected and the growing

process as described above repeats. The whole process is finished when no more seed

patches can be found. At the end of this module, the input range image is segmented into

several fundamental regions each of which consists of a set of sels, which are noted as the

dominant regions. The rest of the range image includes “ambiguous” sels and some ordi-

nary sels, which number of neighbourhood is less than the minimum requirement of a

patch. Examples of the dominant regions after merging sels are shown in figure 6.6(c) of

chapter 6.

5.2.3 New features of the estimation-based merging algorithm

In this section, we address some features of the region-growing process. .

5.2.3.1 Where to look next

In general, any segmentation implemented with the region-growing principle meets two

fundamental questions:

(1) When does the growing stop?

(2) In which order should the candidate sels be chosen for merging with the patch?

The answer of the first question is in fact the criterion of the homogeneity test for region-

based approaches. The second question, however, has not yet fully treated until now. An

intuitive answer to the second question is that the points adjacent to the current region with

the “best” output from the homogeneity test, are given highest priority for merging. For ex-

ample, the sel that generates the smallest value of (dk,k+1)
2
 could be taken into R

(k+1)
 firstly.

However, such a priority only comes from the “closeness” in the homogeneity test, but the

“reliability” of the estimate of the homogeneous region itself is neglected. In other words,

merging the “best homogeneous” points can not guarantee to yield the “best estimate” of

the updated region R
(k+1)

. This is because the uncertainties in parameter estimation not only

depend on the noise level of the data points involved in the surface fitting, but also depend

on the spatial locations of these points. This can be illustrated with the heuristic example of

figure 5.3. Suppose that the current region R
(k)

 is a rectangular portion of a cylindrical sur-

face which length extends along the axis of the cylinder, and that both of the sels S1 and S2

pass the homogeneity test. If merging S1 into R
(k)

, usually the estimate of R
(k+1)

 is less reli-

able than that of merging S2 into R
(k)

.  Intuitively, the merging of S1 results in an extension

of the length of R
(k)

 along the axis, so R
(k+1)

 is still  “flat” somehow (assuming its width is

narrow compared with the radius of the cylinder) so the parameter estimation of R
(k+1)

 is un-

stable. On the contrary, merging of S2 will embed more information of the “curve” of the

surface in estimating R
(k+1)

, resulting in less uncertainty (assuming the noise level remains

the same). Therefore, although S1 could result in a smaller distance measure between R
(k)

and R
(k+1)

, the sel S2 should have higher priority for merging in view of the reliability of

surface representation.
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In fact, from the expression of the statistical distance of (5.1), it can be seen that a large

value of the covariance matrix ΨΨΨΨk+1 results in a small value of (dk,k+1)
2
. However, this is not

equivalent to improve the reliability of the representation of the current region R
(k+1)

.

According to the above argument, in the proposed approach, the merging priority in the

region-growing process is determined by the measure of uncertainties in the estimate of the

updated region. For that purpose, the measure of uncertainties is defined by the quantity

2
  ΨΨΨΨ≡ty uncertainmeasure of .

Therefore, among all the neighbouring sels that pass the homogeneity test, the one that

generates the smallest 
21+kΨΨΨΨ  is merged first. In order to reduce the burden of parameter

estimation for each candidate sel, in the experiments the value of 
21+kΨΨΨΨ  is estimated only

by approximation. In stead of re-computing the region parameters after merging each sel,

the current estimate θθθθk is used for the computation of 
21+kΨΨΨΨ , just by adding data points of

each sel into the current group of points in R
(k)

.  Thus the sel with the smallest 
21+kΨΨΨΨ  has

the highest priority of passing through the homogeneity test. If it fails to pass the homoge-

neity test, the next is the second in the queue ordered by the value of 
21+kΨΨΨΨ  from the

smallest to the largest.

5.2.3.2 Selection of the seed patch

Although there is more than one candidate for the patch to be selected as the seed of grow-

ing, an optimal choice is still based on the reliability of representation in surface estimation.

Following the same principle as discussed above, the patch with the smallest measure of

uncertainty 
2

patchΨΨΨΨ  is selected as the seed. Here patchΨΨΨΨ  is the covariance matrix esti-

mated in fitting data points in the patch to the quadric representation. It should be noticed

that the selection of the proper seed patch is important in the region-growing approach.

Since the estimates of parameters for the homogeneous region are updated while the patch

expands, an improper choice of the seed patch could lead to an unreliable result in surface

representation.

S1

S2

R
(k)

Fig 5.3 selection of the candidate

sel for the next merging

Fig 5.2 The array of

sels consisting of the

maximum-sized patch.

sel
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Proceeding the same way as for selecting the queued sels, the selection of the seed for

the next region is also queued according to the value of 
2

patchΨΨΨΨ in the search of the rest

candidates.

5.2.3.3 The computing process

The overall region-growing approach consists of the following steps:

1. Partition the range image into sels, and classify these sels as ambiguous or ordinary.

2. Find all possible patches that occur, by merging a set of neighbouring sels and estimate

the quadric parameters together with their covariance matrices, by applying the surface

fitting method described in chapter 3. From these patches, select the seed patch that has

the smallest value of measure of uncertainty.

3. Starting from the seed patch, the region is updated by merging its neighbouring sels

that pass the homogeneity test. The smaller the measure of uncertainty in merging the

sel, the higher priority in the queue for merging. The region parameters are updated

after each merge.

4. If all neighbouring sels of the current region fail to be merged, the growing process

stops and the region is labelled.

5. For the remaining sels, repeat step 2 to 4 to generate newly labelled regions. The whole

process ends if no more patch can be found.

At the end of the second module we obtain a set of labelled regions, i.e., the dominant re-

gions that are formed with sels. But in reality, the partitions of the range image, represent-

ing different clusters in parameter space for surface representations, will not be exactly

separated by the boundaries of the sels in the spatial domain. Points near the boundaries of

these segments should be treated in a refined process, i.e., these sels should be split at point

level and further classified. This is implemented in the third module, as described below.

5.2.4 Point-based refinement

There are two kinds of sels that should be considered to pass through the refinement proc-

ess: merged and non-merged. The merged sels are those at the boundary between labelled

dominant regions. In this situation, points in these boundary sels are re-classified as either

their original segment or one of their neighbouring segments. The non-merged sels adjacent

to a segment are split down to points and these points are further classified as surface points

of the known segment or non-surface points. In both situations, the criterion for classifica-

tion is based on the spatial “closeness” of a point to the specified surface. Typically, we can

use the geometric distance between a point and a surface as the measure of such spatial

closeness.

As worked out in chapter 3, estimation of surface parameters is based on the gradient

weighted least-squares criterion. The solution is derived by minimising the sum of squares

of distances from points to the estimated surface. Assuming i.i.d Gaussian noise added to

each point, we have shown that the signed distance, i.e., the projection at the normal direc-

tion of the surface, can also be approximated as Gaussian noise with expectation of zero
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and variance of σ2
 (σ is the standard deviation of noise in the data points). Denoting d(θθθθ)

the distance from point x to the surface which parameters are noted by θθθθ, its pdf can be ex-

pressed by



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According to the discussion in chapter 3, the distance d(θθθθ) is computed by
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where h(⋅) = 0 is the implicit quadric representation of the surface.

Therefore, identification of a surface point is still based on the hypothesis test algo-

rithm. Given a significance level α0, if
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2
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02

2

α≤
σ
θθθθd

,

it is identified as a surface point with respect to surface of θθθθ. Otherwise, it is identified as a

non-surface point. Therefore, for the case of non-merged sels, a threshold is selected to set

t(α0). This threshold can be fixed according to the noise level of the whole range image.

Considering that the noise estimates might be different for different segments, we select the

threshold of d
2
(θθθθ) to be T = rpoint ⋅ cseg, where cseg is the estimate of noise variance for the

concerned segmentation and rpoint  is a constant.

If there is more than one surface for which the criterion satisfies, then it becomes an

optimal classification problem, in which case the point is classified as belonging to the sur-

face to which the distance is the smallest. The above principle is also applied for the adja-

cent merged sels.

It should be pointed out that in this process, the outliers that are detected in the first

module also participate in the classification. This is because some of the detected outliers

are in fact surface points, but located near the boundaries or edges of the object. If the out-

lier is caused by a local irregularity, its distance to the surface of the segment will be large

and it will be classified as a non-surface point. For simplicity, during the computation of

the squared distance d
2
(θθθθ), the surface parameters θθθθ keep the values of the estimates from

the last version in the region-growing process. After reclassifying those points, the surface

parameters of the refined segment are re-computed.

Finally, the outcomes of the third module are the labelled final segments and the unla-

beled points. In figure 6.6(d), the final segmentation results in our experiments are given.

5.3 Separation of planar regions

Most of the objects in the scene of interest are bounded by simple surface primitives:

curved and planar surfaces. Therefore, the quadric description is expected to fit most of the
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surface segments that are tractable for the purpose of recognition. For the planar surfaces,

however, they are not suitable to be described by quadrics. Although a planar surface can

also be represented by higher order polynomials, the representation may suffer from non-

uniqueness. Supposing a planar surface is described by a plane equation in the form:

0=+++ kczbyax ,

then if a quadric representation fits this plane, it must have the following form:

( )( ) 0=++++++ kczbyaxgfzeydx . (5.2)

Obviously, any (non-zero) value of the parameters {d, e, f, g} represents the same planar

surface. In other words, quadric representations for planar surfaces are under-determined.

Thus when applying quadric fitting for planar surface, theoretically the solutions are non-

unique. In case of noise presence, there can be a single solution associated to the minimum,

but the solution is heavily unstable because it is an intrinsically ill-posed problem.

To avoid this problem, in the second module, where the region parameters are esti-

mated, we apply a routine of planarity test to identify the planar surfaces. Then the planar

surfaces are estimated using the planar representation instead of quadric representation and

their region-growing proceeds with planar representations. In the next section a method for

planarity testing is introduced first, then the parameter estimation in planar representation,

together with the description of uncertainties, are discussed.

5.3.1 Planarity test

According to the procedure for quadric fitting stated in chapter 3, the first step is to obtain

an initial estimate of the quadric parameters using the eigenvector solution. If we transfer

expression (5.2) into the general form of a quadric representation, i.e., in the form of the pa-

rameter vector p ====[a11, a22, a33, a12, a13, a23, v1, v2, v3, k]
T
, p does not uniquely represent a

plane, due to the freedom in selecting {d, e, f, g}, as shown before. To find out when this

situation will occur, a test method should be developed.

Suppose that {xi} (i====1,..,n) are points, sampled from a planar surface and they are used

to fit a quadric presentation

0)( ==⋅ mpTf , where [ ]Tzyxyzxzxyzyx 1,,,,,,,,, 222=m ,

if using the fitting criterion

}min{ arg
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 the solution of p is the eigenvector of the matrix
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associated with the smallest eigenvalue. In the noise-free ideal case, the smallest eigenvalue

of M is zero. However, since the solution of p is not unique, there are more than one eigen-

vectors with zero eigenvalue. Considering the normalisation requirement for the algebraic

coefficients, there are four eigenvectors with zero eigenvalues. Therefore, when ordering

the ten eigenvalues as λ1≥λ2≥ .. ≥λ10 , ideally λ7 = .. = λ10 = 0.

So, we can identify a set of planar points in quadric representation just by checking the

eigenvalue of λ7. Of course in reality, the value of λ7 is non-zero because of noise, but it

can be expected that for very “flat” surfaces, this eigenvalue is small. Therefore, we can

simply use a threshold Tplane to test the planar points. The criterion is

 If  plane
7 )( T

n
≤

λ
 (n is the number of points) (5.3)

the points belong to a planar surface, otherwise a quadric surface.

In the second module, the seed patch is searched from the candidate patches before the

region-growing process. In this searching stage, each patch is subjected to the planarity test.

Of all planar patches that are found, a seed is selected and the growing is performed in pla-

nar representation.

5.3.2 Homogeneity test in planar representation

The homogeneity measure used for merging planar regions is also based on a parametric

representation. By modelling the uncertainties of the estimated planar parameters, the crite-

rion for the homogeneity test can thus be established within an optimal framework.

Normally a planar surface can be represented by the implicit form:

 0=+ b
T
xn , (5.4)

where n = [nx , ny , nz ]
T
 is the unit normal vector of the plane. The parameter estimation

with respect to the representation of (5.4) is described in Appendix D.

Since the sels are spatially connected, only the normal vector n of a plane is of concern.

To convert the parameter as unconstrained, we define a vector, denoted θθθθn, as the planar

representation:

[ ]Tzyzxn nnnn ,=θθθθ . (5.5)

Applying the method of modelling uncertainties in the quadric estimate, as described in

chapter 4, we can derive the covariance matrix of the vector θθθθn.

Defining a general surface parameter

[ ]Tz

T

nnb nb,θθθθθθθθ = , (5.6)

the estimate of θθθθnb  can be treated as the solution of minimising the cost function

nbp

T

nb θθθθθθθθ M=Θ ;
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where ∑= T

ppp mmM ;  [ ]Tp yx 1,,=m .

In the same way as the analysis in section C.1.1 of Appendix C.1, we can derive the covari-

ance matrix of θθθθnb with the expression

12 −= pnb MσΨΨΨΨ (5.7)

Consequently, the covariance matrix for the parameter vector θθθθn , denoted ΨΨΨΨn , is obtained

as the top-left 2×2 matrix of ΨΨΨΨnb.

Using the covariance model for the planar representation, classification of planar esti-

mates can also be implemented within an optimal framework. The “statistical distance”

between the estimate θθθθn,i of the i
th

 region and the estimate θθθθn,j of the j
th

 region is then de-

fined as

)()( ,,

1

,,,

2

, jninijn

T

jninjid θθθθθθθθΨΨΨΨθθθθθθθθ −−= −   ( jninijn ,,, ΨΨΨΨΨΨΨΨΨΨΨΨ += ). (5.8)

According to the discussion above, the growing process in the planar representation is per-

formed in a similar way as used for the quadric representation.

5.4 Conclusions

This chapter presented a region-based algorithm for range image segmentation. The feasi-

bility of using the region-based technique arises from two aspects: the assumption of piece-

wise smoothness of the object surfaces and modelling of the uncertainties in the estimates

of the region parameters, which has been described in chapter 4. The preference of using a

region-based method instead of an edge-based method is inherently driven by the strategy

of surface-based object representation and recognition, where the output of segmentation is

represented with surface parameters.

The proposed approach consists of three modules. In the first stage, a planar approxi-

mation is applied to the local set of data points within a sampling window and the outliers

are detected. This can be regarded as a pre-processing stage. In the second stage, a region-

growing algorithm is applied by iterative merging of the initially over-segmented elemen-

tary regions (the sels). In this stage, region parameters are estimated either using a  quadric

representation or a planar representation, associated with the proposed geometric model.

The features of the estimation-based clustering algorithm are:

(1) The distance between two clusters in parameter space is measured with the “statistical

distance”, so the clustering is performed in an optimal framework.

(2) The reliability of region estimates is specified. By defining the measure of uncertain-

ties, the selection of the seed for region growing is determined in view of “being the

most reliable in representation”. Furthermore, the growing process always runs to-

wards the most stable state in representation, where the candidate sels to be merged are

ordered according to the measure of uncertainties.
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In the last stage, the fundamental segments resulting from the region growing stage are

further refined through point-based classification.

The planar regions and quadric regions are treated separately in this approach. To dis-

tinguish between planar and quadric regions, a method of planarity test was proposed. It

should be pointed out that in case of noise presence, there is no exact criterion to define the

“planarity” of a surface. In fact, the purpose of separating the planar representation from the

quadric representation is to avoid the possible ill-posed problem when a very “flat” surface

is represented in quadric form. As we can see from the experimental results in chapter 6, in

reality, the quadric representation can be used to describe most of the surface segments,

even though some of them are expected to be “planar” from our visual judgement.
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Chapter 6

Experimental Results with Real Range

Data

The surface-based recognition algorithm introduced in chapter 4 and the region-based seg-

mentation approach introduced in chapter 5 were applied to experiments with real range

data. Most of the range images were acquired with the range imaging system developed at

the UT (a system description is given in [18]). Some images were obtained from the “fre-

quency-difference” laser scanning sensing being developed at the OUQ (this system was

introduced in chapter 2 of this thesis). The former system generates dense range images

within a smaller measurement area of the scene and the latter generates scattered 3D data

within a larger area of the scene. In the approaches proposed in this thesis, both types are

considered as composed of scattered 3D data.

In this chapter, the experimental results of the surface-based recognition algorithm are

given first. All samples came from man-made objects, whose surfaces are assumed to be

modelled by quadric representations. Figure 6.1 shows the objects used in experiments in a

greylevel image and figure 6.2 shows the range images of the objects, as obtained from the

ranging system of [18]. Figure 6.3 shows the greylevel pictures of the objects that were

used to obtain the scattered 3D data points with the laser scanning ranging system. For each

of these objects, a quadric representation has been used to describe the visible surfaces.

Range data of these objects as acquired with the ranging systems act as the inputs for the

recognition. The model base was established by applying the sensor-based modelling

scheme as proposed in section 4.4. The results of this recognition experiment are described

in section 6.1. The experiments on scene segmentation with the range images acquired from

the ranging system of [18] are detailed in section 6.2. Finally, brief conclusions are given in

section 6.3.

6.1 Surface-based recognition in quadric representations

In chapter 4, the optimal classification algorithm of quadric surfaces with range data has

been described. The uncertainties of the estimated parameter are represented by a covari-

ance matrix that is obtained simultaneously in feature extraction. Then a probabilistic

model with normal pdf is applied to describe the statistical properties of the estimated fea-

tures. Therefore the classification can be implemented within a Bayesian framework, by

which the decision rule is established on the measure of “statistical distance” (section 4.3).
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Fig 6.1Greylevel pictures of the objects corresponding to the range images of (a) ~ (e).

a b c d e

Fig 6.2 Range images of the objects used in the experiments. The images were obtained

with the range system of the UT. The re-sampled data points from image b are plotted in f.

M

Re-sampled surface data points of

object b.

f
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The purpose of the experiments is

to test the optimal descriptions for

quadric feature representation, as pro-

posed in chapter 4. The experiments

follow the recognition scheme as il-

lustrated in figure 4.2, according to

the algorithms of modelling and rec-

ognition described in chapter 4.

For each object in figure 6.2,

range images have been obtained with

different poses of the object. A range

image contains 3D data points of both

the visible surface of the object and

the flat background, see the examples

displayed in figure 6.2. Since the

scene was composed of (part of) a

quadric surface and a piece of the pla-

nar background only, the surface

points were simply extracted just by thresholding the depth value. These surface data points

in the dense range images were re-sampled with a lower resolution. The purpose of this re-

sampling are: (1) to reduce the computational burden, because the dense data set is often

redundant for low degree (quadric or planar) surface representations, as is the case in our

experiments; (2) to obtain a better approximation of the measurement error model (as i.i.d

noise), because the noise in neighbouring pixels of a dense range image is possibly strongly

correlated.

For the range images of (a)~(d) in figure 6.2, the re-sampling interval in horizontal di-

rection is two pixels and that in vertical direction is three pixels. For the image of (e), the

intervals in both horizontal and vertical directions are two pixels.

Fig 6.3 The objects used to obtain 3D data with the frequency-difference laser

scanning system that was developed at the OUQ (The pictures displayed here are

greylevel images made by a camera).

1 2 3 4

M1

Fig 6.4 The 3D surface data points obtained with

the laser-scanning sensing system for the object 3

in figure 6.3
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After re-sampling the range images, the model base was established using a number of

trials of each of the objects.

First, the surface fitting process as introduced in chapter 3 was applied to obtain the sur-

face parameters. The next step is to derive the invariants of the quadric representation, to

build up the feature vector. The computation of the covariance matrix is performed simul-

taneously. The feature vector and the covariance matrix stored in the model base were ob-

tained with the MLE algorithm for each of the objects, according to (4.24) and (4.25). The

number of images to construct each object model was about 10.

After the modelling process, more range images were obtained and re-sampled to act as

inputs for recognition. The feature vector and covariance matrix were extracted for each in-

put range data. In the recognition stage, the statistical distances between the input feature

vector and each of the model vectors are computed according to (4.21). Denote the input

feature as s and each model as l ∀l∈{1,..,L}. So, the input s is classified to model l′ if

}min{
22

ldd slls ∀=′ , where 2

sld  is the distance between s and the model l.

 Using range images from the UT ranging system

The five objects in figure 6.2, whose surfaces are either cylinders or cones, were used as

primitives for the purpose of classification. In order to test the discriminatory power of the

statistical distance as described in chapter 4, the classification results using the statistical

distance are compared to the results using Euclidean distance. Table 6.1 lists two sets of

feature vectors in the model base describing the objects in figure 6.2. The first, denoted as

mg , is obtained by MLE with the joint pdfs of a set of measurements, according to the pro-

posed optimal modelling process. They are printed in bold. The other set is obtained just as

the mean of a set of measurements, and is denoted as ng . Obviously, in case only first or-

der statistics of the measurements is available, ng  is the optimal estimate of the expectation

of the feature vector. However, when higher order statistics of the feature are recovered,

i.e., the pdf, mg  is the optimal estimate.

The number of samples measured as inputs for each object in figure 6.2 is between 17

and 20. The samples were obtained for different poses within a limited field of view. The

estimated variance of the noise in the range images is within a range of 0.01~0.08 (mm
2
).

Table 6.2 lists the classification results. The models are given row wise, the inputs column

wise. The cells contain the number of inputs that were classified to the model in the first

column; empty cells indicate no hits. The upper number corresponds to the classification

results based on the statistical distance; the lower one (in round brackets) is the result based

on the Euclidean distance.

Figure 6.5 shows an overview of the relative distance measures for the trials from class

a and e, plotted as distance distribution patterns. For a given input, the distance to the actual

model (for instance a in the upper left part of the figure) and the distance to one of other

models (for instance b in the upper left) are displayed using a two-dimensional point (a

diamond symbol) in the x-y plane. The y co-ordinate represents the distance to its actual

model and x represents the distance to the other. So for each input four such diagrams are

given, corresponding to the actual model and the four other models. The discriminatory line
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model Feature vector )( nm gg

a
[ 0.3904  0.00004162  -28.42 ]

T

[ 0.3956  –0.0002171 –28.98 ]
T

b
[ 0.4618 0.0004876  -49.03 ]

T

[ 0.4607 0.0006075 –54.81 ]
T

c
[ 0.5452  -0.001241 –85.99 ]

T

[ 0.5393 –0.001184 –84.08 ]
T

d
[ 0.3715  -0.001938  12.02 ]

T

[ 0.3779  -0.001834  5.431 ]
T

e
[ 0.3628  -0.0008914 -9.567 ]

T

[ 0.3989  -0.002049   -27.91 ]
T

Table 6.1 Feature vectors obtained in the mod-

elling process for the objects in figure 6.1. The

bold lines refer to MLE and the second lines re-

fer to means.

Input [number of trials]

a [20] b [18] c [17] d [18] e [20]

a
18
(9)

1
(3)

1
(1)

5
(4)

b
2

(4)
17

(14)
1

(1) (4)

c (2) (1)
16

(16)
1

(1)
1

d (1)
16

(13)
3

(8)

Model

e (4) (3)
11
(4)

Table 6.2 Classification results: the number of trials in the

associated columns to be classified to the model in the asso-

ciated rows. Classification results using  the Euclidean dis-

tance are shown in round brackets
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 < a-b > < a-c >

< a-d > < a-e >

(1).All trials are from class a. Distances to model a and to models b, c, d, e are

displayed separately.

< e-a >   < e-b >

 < e-c >    < e-d >

(2).All trials are from class e. Distances to model e and to models a, b, c, d are

displayed separately.

Fig 6.5 Measurement of distances. For any input, the y co-ordinate represents the distance

to the actual model, and the x co-ordinate represents the distance to another model. In (1),

all trials are from class a, and in (2) all trials are from class e. The statistical distances are

marked by a diamond symbol and the Euclidean distances are marked by a  “+” symbol.

x

y
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y = x is also plotted in each diagram. Obviously, a correct classification for an input occurs

only if all the positions of this input in the four diagrams are below the discriminatory line:

this means that the distance to the actual model is smaller than all of the others. For the

purpose of comparison, the Euclidean distances are plotted too, as plus-symbol. For the

purpose of visibility, the x and y co-ordinates in these diagrams have been differently

scaled.

As expected, the classification results in Table 6.2 illustrate that the classification errors

in case of the statistical distance are less than when the Euclidean distance is used. This

proves that the statistical distance has a better discriminatory power than the conventional

Euclidean distance. From the results, we also conclude that more errors occurred in classi-

fying object e. This is explained by the fact that the surface data points of e were sampled

over a smaller region, so the uncertainty in parameter estimation is consequently larger than

for the other objects. Therefore, it makes sense taking into account such uncertainties in

feature estimates, to reduce ambiguities in the classification, as is illustrated by comparing

the outcomes in table 6.2. The overall results in this experiment show that the statistical

distance measure results in a better class separability than the Euclidean distance measure.

This is the essential advantage of using the statistical distance in classification.

It should be noted that in general the computed statistical distance between an input and

its actual model is larger than what could be predicted by the normal pdf model. This is due

not only to the approximations made in the computation of the covariance matrix, but also

to the fact that the noise in a real measurement has not the ideal Gaussian i.i.d property.

Non-linear errors in the ranging process result in shape deformation of the object in the rep-

resentations. However, according to the experimental results, together with the results from

the synthetic data as described in chapter 4, it can be concluded that the proposed covari-

ance model is a good approximation to optimise quadrics-based surface representations and

the associated object recognition.

 Using range data from the OUQ laser-scanning system

The 3D data obtained with the frequency-difference laser scanning system, which has been

introduced in chapter 2, were also subjected to the recognition process. Since the imple-

mentation of this sensing system is not yet finished, the number of samples obtained for

experiments was limited. The four objects used in this experiment, as shown in figure 6.3,

are four cups of which two have the shape of a cylinder and two have a conical shape. As

an illustration, figure 6.4 shows an instance of the scattered 3D data points obtained by this

system, generated from object 3 in figure 6.3.

The feature vectors of the models and the inputs are listed in Table 6.3, together with

the estimates of the variance in noise. The classification results are listed in Table 6.4.

Again, the left column contains the models and the top row indicates the inputs. The cells

contain the values of the distance measures with respect to all models. At the upper lines,

results are given based on the statistical distance; those in brackets refer to Euclidean dis-

tances. The smallest value in each row is printed in bold, indicating that the input in the

corresponding column is classified to the model in the corresponding row. Alternatively,
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where the Euclidean distance is used as the criterion, the classification results are marked

by “+”, corresponding to the smallest value in the column.

From these results, all inputs were correctly classified when using the statistical dis-

tance. However, an error occurred using the Euclidean distance, notably object s4 was mis-

classified to object m2. This is not surprisingly, because the surface shapes of these two

s1 s2 s3 s4

m1 215.2

+(0.7920)

1562

(88.97)

304.9

(29.41)

1390

(79.73)

m2 1630

(113.3)

11.07

+(0.2207)

1487

(232.1)

230.8

+(1.733)

m3 414.1

(23.68)

1373

(226.0)

2.636

+(0.06556)

1127

(211.8)

m4 1412

(61.89)

209.5

(5.406)

1076

(155.4)

5.293

(3.358)

Table 6.4 classification results for the inputs and models shown in

table 6.3. The smallest statistical distance between an input to all

models (in one column) is shown in bold type. Figures in brackets

are Euclidean distances; the smallest value in one column is

marked with “+”.

model Feature vector σ2
(cm

2
)

m1 [-0.7429  0.2011  -0.8934]
T

0.9552

m2 [0.7532  -0.1169  -10.68 ]
T

0.4172

m3 [-0.6213  -0.2433  4.762]
T

0.6029

m4 [0.3687  0.1469  -7.916 ]
T

0.4404

input Feature vector σ2
(cm

2
)

s1 [-0.3785  0.1322  -0.0844]
T

0.8134

s2 [0.7068  -0.01314  -10.21]
T

0.3586

s3 [-0.5785  -0.2256  4.509]
T

0.5508

s4 [0.4083  0.1463  -9.748]
T

0.3318

Table 6.3 Feature vectors and noise variance obtained

from the objects in figure 6.3 with the frequency-

difference laser scanning system.
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objects are very close. Although one is (part of) a cylinder (label 4) and the other is a cone

(label 2), the estimated surface parameters in feature space are closer to each other than to

object 1 and 3, the latter having larger diameters. However, when considering the uncer-

tainties in the parameter estimation, the class separability can be improved because the

probabilistic representation provides an optimal measure of the separability.

6.2 Segmentation with region-based approach

In section 6.1, the objects involved in the experiments were considered as isolated quadric

primitives (in figure 6.2 and figure 6.3), and used for examining the optimal classification

algorithm based on modelling of uncertainties in feature extraction. A practical scene may

consist of a set of objects, or one object could be described with a combination of primi-

tives. Prior to the recognition task, segmentation is to partition the input image into a set of

meaningful regions that can be described with primitives.

In view of the surface-based quadric representations used in this work, the objects in the

images need be partitioned as to describe them as a set of quadric surface primitives. The

range images used in these experiments are shown as (a) in figure 6.6. All have been taken

from the range system of the UT.

As described in chapter 5, the segmentation algorithm used in this work is based on a

region-based approach. The main stream of processing consists of three modules: outliers

detection, region growing by merging the sels and finally point-based refinement. For these

experiments, the range images have been re-sampled at a lower resolution. In the following,

we will always refer to points from re-sampled images.

In the first module, a small rectangular window moves stepwise over the whole image

area, centred at a data point at any instant. Points covered by this window are assumed to

belong to a planar patch; the mean squared distance from data points in the window to the

estimated patch surface, denoted 
2σ̂ , is calculated. If the result satisfies 

22ˆ σσ winr≥ , then

the centre point of the window is marked as outlier. Here 2σ  is the median of all 2σ̂  and

rwin is a pre-defined coefficient. In the experiments, the size of the moving window is 5×5

(point
2
) and rwin = 25.  Furthermore, if the depth value of the centre point differs to one of

its neighbouring points (4-connective) over a threshold Tdepth, that centre point is marked as

outlier. Empirically, we selected Tdepth = 1(mm) in the experiments.

In the second module, the input range image, of which the outliers have been marked, is

initially partitioned into a group of grid areas, i.e., the sels (as shown in figure 6.6b). The

size of each sel in the experiments is 5×5 (point
2
). If a sel contains a number of outliers ex-

ceeding a pre-defined fraction, i.e., 20% of the total points in a sel, this sel is marked as

ambiguous and will not participate in the merging process. All others are considered to be

ordinary sels. Of these ordinary sels, a subregion consisting of a few neighbouring sels is

searched as the seed for region growing, which is termed as the seed patch. The number of

sels in a patch is limited between 6 and 9. For each candidate patch, the quadric parameter

is estimated by surface fitting and the covariance matrix ΨΨΨΨ is computed simultaneously.

Applying the measure of uncertainty in the quadric representation defined in chapter 5, i.e.,
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2
ΨΨΨΨ , the patch that has the minimum value of measure of uncertainty is selected as the

seed. In the region-growing process, the seed patch expands successively by merging its (8-

connective) neighbouring sels. The criterion for merging is

( ) ds Td ≤′′ ΨΨΨΨΨΨΨΨ ,,,
2

pp ,

where 
2
sd  is the statistical distance between the regions before and after merging, (p,ΨΨΨΨ)

and (p′,ΨΨΨΨ′)  are the quadric parameters and covariance matrices before merging and after

merging and Td is the selected threshold. During this merging process, the quadric parame-

ters are successively updated with the current merged data points.

Another criterion to control the merging process is that if there are enough points in the

sel whose distances to the current surface exceed a certain threshold (these points are re-

garded as non-fitted points), the current merging is rejected. The threshold of distance is
22

medd drd ≥ , where 2

medd  is the median of the squared distances within the sel, while the

constant used in the experiment is rd = 25. The threshold of the number of non-fitted points

was Tn = 20% of the total number of the sel.

According to the growing strategy as proposed in chapter 5, the sel that is predicted to

have the smallest value of measure of uncertainty has the highest priority to enter the test of

the merging criterion. Then the second candidate is the one having the smallest measure of

uncertainty of the remainder, and so on. If all neighbouring sels fail to pass the merging

criterion (evidently the ambiguous sels fail for merging) or have been merged previously,

the region growing stops. A new seed is searched from the remaining sels and the above

process is repeated. The whole merging process is finished if no more seed can be find in

the range data.

It is noted that the bias-corrected renormalization approach for surface fitting often fails

to result in convergence at the start of region growing, because of noise and the limited size

of the seed patch. In stead, we applied the gradient weighted least-squares criterion for sur-

face fitting. The noise variance used in the covariance computation was estimated from

planar fitting. After fitting data points of a sel to a planar representation, the mean squared

distance of those points to the fitted plane is obtained. Then averaging the mean squared

distances among the merged sels results in an estimate of the noise variance with respect to

the current patch. As stated in chapter 3, the estimate using the gradient weighted least-

squares criterion is biased. However, because the sel is small and is merged one by one, the

bias in the estimated parameters before and after merging does not significantly change.

Approximately, in the computation of the statistical distance, both biases are cancelled out

with each other. In all cases, the marked outliers in sels were excluded from surface fitting.

An important parameter in the merging process is the statistical distance threshold Td.

Usually, a large value of Td may cause under-segmentation, i.e., inhomogeneous sels are

merged into one primitive representation, whereas a small value of Td could cause over-

segmentation, i.e., homogeneous sels fail to be merged. In practice, the value of Td should

be selected empirically. However, in the view of hypothesis test, the value of Td determines

the “significance level” in the test. So the selection of Td makes sense of optimality in the

definition of homogeneity.
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To set the threshold automatically, a proper value of Td can be found by referring to the

histogram of the statistical distances between all the candidate seed patches and their

neighbouring sels. In the process of finding the seed patch, the distance 2

sd  for each candi-

date patch (between that before and after merging and its neighbouring sel) that has the

lowest measure of uncertainty was recorded and the histogram of 2

sd  is calculated. We

found experimentally to set Td around the last peak of the histogram, which is thought to be

the bound of the “permitted” distances between two homogeneous regions. The selected

values of Td and the histograms for the instances of (1) ~ (4) are depicted in figure 6.7.

As stated in chapter 5, in order to avoid the ill-pose problem in surface fitting, we dis-

tinguish between the planar surfaces and the curved surfaces at the start of a merging rou-

tine. In searching the seed, a planarity test is carried out for all candidate patches. In the ex-

periments, the threshold for the planarity test in (5.3) of chapter 5 was set to Tplane = 0.0005.

Once a candidate patch was found to be planar, it grows by merging with its neighbouring

sels in the planar representation and stops if all neighbouring sels either failed to pass the

merging criterion or have been merged to other labels.

After region growing, the homogeneous sels are grouped together and labelled. These

labelled sels, parameterised either with quadric or planar representations, comprise the

dominant regions of the scene.

In the third module a point-based refinement is applied to modify these dominant re-

gions into the final segments. First, points in the boundary sels of two connected different

regions are re-classified to the one having the smallest distance between this point and the

surface. Second, all of the neighbouring sels of these merged regions, whether ambiguous

or ordinary, are split at point level. If the distance of a point to the labelled surface is less

than a certain threshold, it is merged. Experimentally, this threshold was selected to be

Tpointdist = 0.8(mm). After that, points whose distance exceeds this threshold and those in the

sels that are not neighbours of the labelled region are marked as “unlabeled”.

Figure 6.6, (1)~(4) shows four instances of the input range images and their segmenta-

tion results. The scene includes object(s) in a background (a flat table in the system set-up).

The greylevel of the image is associated to the depth value of a pixel to the background. As

an example, in scene (1), picture (a) is the original input range image. This image is re-

sampled with a resolution of 2 pixels/point). Picture (b) shows the result of outlier detection

(the first module), in which the detected outliers are displayed highlighted (white points). It

is noted that the point size has been doubled to keep the same size of the original image.

The whole image of (b) has been initially segmented with a grid of sels. Picture (c) shows

the result of region growing by the second module. Four separate groups of sels have been

merged and form the dominant regions (displayed in different greylevels). Finally, picture

(d) shows the result of refinement by the third module.

For the inputs of (2) and (4) the re-sampling resolution was also 2 pixels/point, but for

(3) it is 3 pixels/point.
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Fig 6.6 Segmentation results with real range images (1 ~ 4) obtained with the ranging

system of the UT. Picture (a) is the original range image (depth value is mapped to

greylevel). (b) shows the result of outlier detection (the bright pixels), where the initial

grid of sels is also displayed. (c) shows the result of merging sels. The labelled seg-

ments i.e., the dominant regions, are shown with different greylevels (outliers are also

displayed with higher brightness). (d) shows the final segmentation result after the re-

finement step.

Of the dominant regions in picture (c), the planar regions have been marked with

letter “p”, others are regarded as quadric regions.

< 1 >

p

( c ) ( d )

( b )( a )
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< 2 >

 ( a )  ( b )

 ( c )  ( d )

Fig 6.6
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< 3 >

( a ) ( b )

p

p

( c ) ( d )

Fig 6.6
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< 4 >

( a ) ( b )

( c ) ( d )

Fig 6.6
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It should be pointed out that in the second module of the segmentation, some regions

that were thought to be planar returned as quadric and have grown in the quadric represen-

tation. A typical example is a part of the background. This is due to noise in the input range

images, leading to errors in the shape description of the planar patch. Of course, if the

threshold Tplane in the separation of planarity increases, more regions could be recognised as

being planar, but the risk of mis-recognising a quadric patch as planar also increases, be-

cause a small patch could easily fit to a planar representation. In order to avoid an over-

segmented result, we prefer reducing the risk of returning a curved patch to a planar de-

scription. Therefore, Tplane was set to a small value. In fact, the reason to separate planar and

quadric representations is to avoid the possible ill-posed problem when fitting low-

dimensional surface data to a higher dimensional representation. As long as the ill-posed

y1
i1

x1
i1

0.1 1 10 100 1 10
3

Result of scene <1> in figure

6.6. The used threshold Td =30.

y2
i2

x2
i2
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Result of scene <2> in figure

6.6. The used threshold Td =15.
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6.6. The used threshold Td =90
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Result of scene <4> in figure 6.6.

The used threshold Td =80

Fig 6.7 The histogram of 2

sd in the process of searching the seed patch. The x

co-ordinate is on a log-scale. The values of  Td as used in the experiments are

also given.
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problem is tolerated, a low threshold value for Tplane is recommended. In these segmentation

results, the planar segments were marked with “p” and others were in quadric representa-

tion.

From the experiments, it was noticed that the boundary points of a curved surface were

usually difficult to be merged. This might be due to inaccurate range data acquisition at the

boundaries (for example, the results of <3> and <4> in figure 6.6). Such results seem “im-

perfect” according to our visual judgement. However, as pointed out in the description of

the region-based algorithm in chapter 5, what we concerned and expected from the seg-

mentation is the reliability of surface representation. A “visually pleasing” judgement for

range image segments should be discarded.

The segmentation algorithm was also applied to synthetic data. In figure 6.8 (a), the 3D

scattered data points generated from a synthetic object surface and a planar background are

depicted. Gaussian noise has been added to the three co-ordinates of each point. With the

same unit, the radius of the larger cylinder portion equals 20 and the length of the whole

object (along y axis) equals 56. The standard deviation of the noise is σ = 0.02. The re-

sampling interval at x and y direction is 0.8.

The same segmentation approach was applied as for the images in figure 6.6. Also the

parameters have been selected the same, except for the threshold of the statistical distance

in the merging criterion, which is set to Td = 100, and the size of the sel, now being 4×4.

The segmentation result of the dominant regions is illustrated in figure (b) with a perspec-

tive view at the z direction. The histogram of 2

sd  is depicted in (c). Finally, the seven seg-

mented regions are shown in (d) after applying the process of point-based refinement (in

exploded view along the z direction, for the purpose of visualisation). All those regions re-

turned as quadrics, although in fact the regions “5”, “6” and “7” are planar. Other points are

marked as unlabeled.

A notable result of the segmentation is that the bottom cylinder portion in figure (b) was

over-segmented into two regions, i.e., labels “3”’ and “4”. This was caused by noise in the

data points. However, according to the final estimate of the surface parameters for each

segment, it can be found that one of the two segments of this over-segmented cylinder sur-

face, i.e., label “3”, has well recovered the true parameters of this cylinder representation.

But the other gives an unexpected result. The recovered surface parameters of the object

surface regions and the actual surface parameters are listed in Table (6.5).

 It can be seen that the regions with label “1”, “2” and “3” in fact recover their original

surfaces. From this example, we can also conclude that for range image segmentation, the

reliability of surface representation is most critical and should be focused in the develop-

ment of segmentation approach, rather than a result of “visually pleasing” outcome.
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(c) The Result of the histogram of 2

sd .

The used parameter Td = 100

y
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x
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(d) The final result of refinement. The

figured regions correspond to the labels

in (b). In order to view different

segments, labelled regions have been

detached at z direction.

M

1

2

7

3 4

5

6
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data. The radius of the larger cylinder
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ordinates for the purpose of plotting).
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6.3 Conclusions

This chapter presents the experimental results of optimal classification of quadric primi-

tives and region-based segmentation of range images, both being based on the approach of

modelling uncertainties in quadric representation as proposed in chapter 4.

In section 6.2, the algorithm of the Bayesian classification through feature extraction of

quadric representation has been tested. The range data used in the experiments were sam-

pled from object surfaces which were assumed quadric primitives. The results demon-

strated that the classification using the statistical distance as the measure of likelihood for

feature correspondence is more reliable than the conventional Euclidean distance measure.

It should be noted that the parameter estimation was carried out by applying the improved

approach of quadric fitting proposed in chapter 3. So it was expected that the improved so-

lution of surface parameter estimates could increase the reliability of the likelihood measure

even for Euclidean distances. However, in order to establish the optimal framework of ob-

ject classification, modelling of uncertainties in feature representation is ultimately re-

quired. Because of the complexity of noise in real measurements and errors in parameter

estimation, the proposed covariance model is only an approximate model for feature repre-

sentation. However, as a trade-off between the accuracy of classification and the complex-

ity of mathematics, the experimental results presented in this chapter, together with the re-

sults of synthetic data in chapter 4, suggested that the proposed approach is practical in op-

timal classification for surface-based quadric representations.

The approach of range image segmentation proposed in chapter 5 was applied for real

range images, as well as synthetic data. The experiments in section 6.2 were concerned

with the cases where the scene in a range image contains object(s) consisting of quadric or

planar surfaces and a planar background only. The method used in this work, which is dis-

cussed in chapter 5, can be regarded as the region-based approach. But the uncertainties in

Estimate of surface parameters Actual values

1
8.2×10-5,  0,  8.3×10-5,  0,  0,  0,

-0.016464,  -0.000037,  -0.008264

8.3×10-5,  0,  8.3×10-5,  0,  0,  0,

-0.016529,  0,  -0.008264

2
1.06×10-4, -3.4×10-5,  1.02×10-4,  0, 1×10-6, 4×10-6,

-0.021221,  0.006540,  -0.010630

1.06×10-4,-3.3×10-5,1.06×10-4, 0,0,0,

-0.021246, 0.006557  ,-0.010623

3
8.1×10-5,  0, 8.2×10-5,  0,  -2×10-6,  -1×10-6,

-0.016155,  -0.000032,  -0.007954

4
3.2×10-5,  0,  5.5×10-5,  -2×10-6,  8.9×10-5,  -6×10-6,

-0.011376,  0.000846,  -0.015185

8.1×10-5,  0,  8.1×10-5,  0,  0,  0,

-0.01613,   0,  -0.008064

Table 6.5. Estimated parameters of the segmented surfaces of the object in figure 6.8.

Their actual values are also given.
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parameter estimation have been explicitly included in the surface description. Conse-

quently, the definition of surface homogeneity has been optimised by applying the pro-

posed probabilistic model.

As mentioned in chapter 5, one of the difficulties in range image segmentation is find-

ing proper criteria for the assessment of a segmentation result. The experimental results

showed that the proposed method is practical, i.e., it gives the expected results. However,

as argued in the discussion of chapter 5, since the criterion for region growing is estima-

tion-based, the assessment of segmentation of range images should also be representation-

based, rather than a “visually pleasing” judgement. This argument might be emphasised

when we keep in mind that usually the segmentation module is followed by a module of

primitive recognition at a higher level in a recognition system. Because of noise in range

image acquisition and the possible deviations of a physical surface to the mathematical

model, the segmentation results could be different to what we expected or assumed. As

shown in experiments, data points near the boundary of the curved surface (for example,

the case of <3> in figure 6.6) were difficult to be merged. A notable example is the seg-

mentation result with synthetic data, shown in figure 6.8. Although the small cylinder was

falsely partitioned into two regions (label “3” and “4”), the surface parameters were still

well recovered by one of them (label “3”). Therefore, we can argue that such a result of

segmentation is false for our perceptual geometry, but correct for parameterised representa-

tion. From this point of view, the segmentation method proposed in this chapter seems

more close to the notion of “primitive extraction”. Therefore the reliability of homogeneity

test was in fact the focus of the experiments described above.

According to the results presented here, we expect that the proposed approach based on

modelling of uncertainties in parameter estimation have improved the reliability of region

estimation. However, a comparison with other methods required.

A susceptible question in using this segmentation method is the determination of the pa-

rameter Td, the threshold of statistical distance in the homogeneity test. Too small or too

large values could cause either over segmentation or under segmentation. Theoretically, the

selection of Td controls the quantitative definition of homogeneity, or the class separability,

in the sense of statistical classification. However, it is not realistic to fix this parameter for

all kinds of range images. A solution to determine this parameter is to consider the number

of final clusters in a given scene as a priori information. This relates to research work on

the specification of the number of clusters called cluster validation ([34] and [67]), in

which the number of clusters is determined by the maximum entropy principle. In this ex-

periment, it was found to set the parameter Td just empirically, simply by referring to the

histogram obtained in the process of searching the seed patch from the candidates. Moreo-

ver, according to the experimental results, small changes of the value of Td (for example,

variation within ±20%) did not significantly change the segmentation results. This also il-

lustrates that the statistical distance yields a reliable measure for class separability.



Chapter 7 Conclusions and prospects

111

Chapter 7

Conclusions and Prospects

7.1 Conclusions

This thesis is about surface-based representations for the recognition of man-made objects

from range data. Quadric primitives are thought to be appropriate for modelling the class of

man-made objects, where in most cases the objects are reconstructed from simply shaped

surface patches. In a top-down recognition strategy, representations of objects and models

are usually established at a low level or intermediate level of the vision system, meaning

that the outcomes of a feature description are highly data-driven. Because of the error pres-

ence in the raw range data, uncertainties inherently exist in representations and could fur-

ther plague the robustness of higher level matching schemes. The theme of this thesis is

thus to improve the reliability of primitive representations, being restricted to the class of

quadric representations in our work.

The research of this thesis has been subdivided in a few topics: (1) Extension of the

“frequency-difference” laser scanner, from a visual inspection system to a 3D measurement

system. (2) Parameter estimation with quadric primitive representation, where a new com-

puting algorithm for quadric fitting was proposed to improve the reliability of the estimates.

(3) A study on the uncertainties of estimates of quadric representations, where a covariance

model was proposed to explicitly represent the uncertainties in feature space. (4) Range im-

age segmentation, where the covariance model of surface estimates was applied to optimise

the region-based estimation and the representation of surface homogeneity.

•  3D measurements with the “frequency-difference” laser scanning sensing system

Firstly, chapter 2 gave an introduction of the “frequency-difference” laser scanning sensing

system, by which this thesis was initially motivated. Its particular scanning technique, i.e.,

the “frequency-difference” scanning, and the extension of the sensing modality, requires the

design of special hardware and software. A new planar fitting algorithm has been proposed,

that allows the accurate estimation of metric parameters in a 3D co-ordinate system. The

measurement error is defined with respect to the sensor variables, rather than to the general

x-y-z form, because they are closely related to the model of the independent identically dis-

tributed (i.i.d) noise. In this chapter we denoted this technique the “sensor-driven” manner.

By a more detailed analysis, we also illustrated that estimates of parameters using the pla-

nar fitting algorithm are more reliable in terms of accuracy than those using a method based

on point correspondence.   
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•  Parameter estimation with quadric primitive representation

In chapter 3, a new approach for parameter estimation through surface fitting with range

data has been described. Quadric fitting is a popular issue in surface reconstruction and a

variety of estimation methods are applicable. We focussed on the bias-corrected renormali-

zation approach because unbiasedness is a desired feature in the sense of optimisation.

More important, we can incorporate the estimates of surface parameters with a popular sta-

tistical model, i.e., the normal pdf, for which only the statistics of expectation and covari-

ance are required. However, in spite of having optimised the estimation, the solution of that

approach is still deficient. We have proved that such a deficiency arises from the inexact

formulation of a gradient-weighted least squares criterion in the eigenvector implementa-

tion, although it is commonly applied in alternative methods for quadric and conic fitting.

To obtain better solutions with the renormalization approach, as well as for alternatives

based on the general gradient-weighted least squares criterion, we proposed an approach to

improve the reliability of the solutions in eigenvector implementations. Experimental re-

sults of conic fitting using synthetic data have confirmed the improvement.

We also studied the parameter estimation method incorporated in the sensing mecha-

nism. Specific to the “frequency-difference” laser-scanning sensing technique, a sensor-

driven approach for surface fitting has been proposed. Since the measurement errors are

characterised based on a refined analysis of the sensing process, the estimates can also be

improved. Simple simulations have verified the improvement (although slightly). A further

indication for this improvement was obtained from the 3D measurement system (described

in chapter 2), where the planar fitting utilised the sensor-driven algorithm (in contrast, the

image-driven routine generated unexpected results). Considering that most of the 3D sens-

ing modalities are application-specific, the sensor-driven strategy can facilitate undoubtedly

the optimisation of the solutions in many low-level processing problems.

•  Uncertainties in estimates of quadric representation

Chapter 4 focused on the subject of modelling the uncertainties in parameter estimation and

feature extraction with an explicit form. First, the quantitative feature of a quadric repre-

sentation is defined by algebraic invariants. For the implicit quadric form, the invariants can

be explicitly expressed by the coefficients of the standard form of quadrics, for which a

standard co-ordinate system is specified. Due to the simple structure of quadrics, feature

extraction is implemented through a transformation between the sensor-specific representa-

tion (in the world co-ordinate system) and the feature-specific representation (in the stan-

dard co-ordinate system). The pose parameters (rotation and translation) are derived simul-

taneously.

Starting from the surface fitting routine, second order statistics of the estimates of quad-

ric parameters, i.e., the covariance, were investigated. Within the perturbation framework

and under the assumption of i.i.d Gaussian noise to model the errors in the raw range data,

the covariance matrix of the estimate, as well as the feature vector, were formulated. Next,

the parametric representation was established on an optimal framework  estimate plus co-

variance, which has been termed as the covariance model in this thesis. Therefore, the sta-

tistical behaviour of the representation can be formulated with an explicit form of a normal
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pdf. This enables us to implement the routine of feature classification within the Bayesian

principle.

It has been noticed that such a probabilistic model is an approximation. The basic

assumption is the low-level i.i.d Gaussian noise to model the measurement errors in range data.

Although such an assumption seems popular in image processing, errors in real measurements

are much more complicated. This can explain the fact that in the experiments of optimal

classification of surface primitives, the results when using synthetic data (described in chapter

4) were more optimistic than that with real range images (described in chapter 6). However,

according to the experimental results of this thesis, the reliability of surface classification using

the proposed optimal representation (based on the “statistical distance”) was indeed improved,

compared with that of a conventional representation (only the first-order statistics used, i.e.,

based on the Euclidean distance). For example, in the experiments with real range images, for

the used trials, the lowest ratio of “correct classification” by the statistical distance was 55%,

while that by the Euclidean distance was 20%. Of course, we can expect that further

characterisation of measurement errors, particularly associated to certain sensing modalities,

will improve the reliability of the covariance computation and, perhaps, refinement of the

formulation of the probabilistic model.

Another notable topic discussed in chapter 4 is a pose description for surface represen-

tations. In most 3D vision systems, localisation of objects is ultimately required. Utilising

quadric representations, pose parameters can be simultaneously derived via feature extrac-

tion at a surface-based primitive level. More attention has been paid to the formulation of

“relational pose” parameters, by which the topological geometry between surface primitives

of a solid object is specified. As will be mentioned in the next subsection, quadric primi-

tives and relational pose can be combined to provide a generic modelling strategy for 3D

object recognition.

•  Region-based range image segmentation through an optimal estimation-based

implementation

Chapter 5 discussed the low-level task of range image segmentation. Region-based seg-

mentation requires the representation of a region, no matter how the surface region is pa-

rameterised. In a general sense, robustness of segmentation relies on the reliability of region

representations. From this viewpoint, we regard the proposed region-based segmentation

approach being optimised at the representation level.

Most existing approaches for range image segmentation, either edge-based or region-

based, aim at application-independent interpretations of the scene. Some generic properties

about the surface geometry, in particular surface-smoothness, are emphasised for the defi-

nition of surface homogeneity. Such general characteristics are used in low-level vision

tasks because the data-driven strategy requires an application-independent process. How-

ever, because the outcomes of the segmentation are closely interrelated to the representation

scheme, the role of surface representation in controlling segmentation requires sufficient

attention. Such an idea has been expressed in our approach through a few points:

(1) the region-growing routine is estimation-based, i.e., the homogeneity is defined in the

domain of surface representation using a parametric description.
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(2) the reliability of representation has been considered in the homogeneity test, i.e., the

“statistical distance” was used so the measure was in fact taken in probability space.

(3) the region-growing process was guided by the “measure of uncertainty”, leading the

process towards the reliable representation of the segments.

Therefore, the strategy of region-based segmentation used in our approach can also be re-

garded as “representation-based”. In other words, we are more interested in how reliable the

representations of these segments are, rather than how the scene is partitioned. This has

been further illustrated with the experiments in chapter 6. Compared with other presented

approaches, it seems that our method is more close to the spirit of “primitive extraction”.

It should be pointed out that there is still space for improvement. Except for the possible

refinement of the covariance model in quadric representation, the selection of the threshold

in the merging criterion used in our method is basically a heuristic criterion. To set the se-

lection of the threshold within a more mathematically rigorous solution, an optimistic

scheme is to tackle this problem with the topic of cluster validation, with which the number

of final clusters (the segments) is determined through other clustering principles based on a

stochastic modelling procedure. Thus the threshold to distinguish different clusters can be

inferred from the solution of cluster validation. This will be one of the topics in future re-

search.

7.2 Prospects of 3D object recognition with quadric primi-

tives

The work of this thesis was limited to a surface-based representation scheme, which was

largely at low and intermediate level. Since the goal of a vision system is ultimately the in-

terpretation of the scene, the consequence of this work falls in the high-level recognition

phase.

For that, a natural extension of the research of this thesis is to utilise the optimal

representation of quadric primitives to facilitate a generic object recognition scheme.

One of the general methodologies to model 3D objects is the surface-primitive model-

ling strategy, i.e., a set of surfaces and a graph describing their connectivity is sufficient to

represent complex solid objects (the idea of so-called boundary representation, or B-rep).

A typical example is the Delaunay triangulation (polyhedral patches) technique to describe

arbitrary shaped objects ([48]). In the high level stage, the objects are usually modelled in a

relational structure (RS) scheme and the techniques of matching of attributed relational

graphs (ARG’s) can be used in the recognition routine ([21]).

Compared with the polyhedral patches, quadric surfaces can generate representations

for more complicated objects. In the ARG modelling scheme, the features of a quadric rep-

resentation, as formulated in chapter 4 of this thesis, describe the intrinsic attributes of the

graph, while the relational poses (also defined in chapter 4) describe the extrinsic attributes

of the graph. Then the recognition can be implemented using graph matching techniques.

In image analysis, an optimal and systematic scheme is the Markov Random Field (MRF)

model. Using the stochastic model for scene description, the knowledge-based matching is
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formulated by the maximum a posteriori probability estimation. The MRF model is widely

used in 2D image analysis (mostly for low-level tasks such as image segmentation) and

extension to higher-level recognition receives much attention. Based on the studies of this

thesis, optimisation in quadric primitive representation enables us to apply an explicit prob-

abilistic model for object (scene) description within an ARG scheme. Till now, the subject

of object recognition or scene interpretation using MRF model at high level has not yet well

studied, especially in the field of 3D object recognition. However, scene interpretation

based on primitive representations using the MRF model (or alternative optimal ap-

proaches) seems an attractive and optimistic solution for 3D vision, which could be a re-

search subject in future work.
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List of Symbols

Chapter 1:

rij a regularly organised range image, where r indicates the range measurement

associated to a specified co-ordinate system and (i, j) is a pair of integers as

the indices.

Chapter 2:

S0 baseline of laser scanning triangulation

P point of the object being sensed

F laser emitter and the origin of the measuring co-ordinate system

x-y-z the measuring co-ordinate system; its origin is F, and the y-axis is perpen-

dicular to the frame-scanning plane Γ
S detector

L baseline length = distance between F and S.

α frame-scanning angle of laser scanning triangulation α=α0+ωftf

β slit-scanning angle of laser scanning triangulation β=β0+ωs ts

γ line-scanning angle of laser scanning triangulation γ=γ0+ωl tl

α0 initial angle of the periodic scanning for α
β0 initial angle of the periodic scanning for β
γ0 initial angle of the periodic scanning for γ
tf time with respect to starting time of frame-scanning at which the point P is

scanned

ts time with respect to starting time of slit-scanning at which the point P is

scanned

tl time with respect to starting time of line-scanning at which the point P is

scanned

ωf frame-scanning frequency

ωs slit-scanning frequency

Rsf frequency-difference coefficient defined as the quotient of ωs and ωf.

Ψ detecting plane

Γ frame-scanning plane

ns unit vector indicating the direction of the axis about which the detecting

plane Ψ rotates

ρ1 azimuth angle of ns with respect to the x-y-z co-ordinate system

ρ2 elevation angle of ns with respect to the x-y-z co-ordinate system

θ angle between ns and plane Ψ
h the distance of point S to plane Ψ
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x’-y’-z’ assistant co-ordinate system connected to the frame-scanning plane Γ
e unit normal vector of the plane Ψ expressed in x’-y’-z’ co-ordinates

L translation vector pointing from F to S with length L

S set of known data

a parameters of the measurement system

S′ (a) measured set of data of S

â estimate of a

Θ cost function defined according the estimation criterion

Chapter 3:

xi the i
th

 data point in x-y-z co-ordinates in vector form

f(x,y,z) implicit form to describe a surface

x0 the true value of the point on the surface f(x0)=0

∆x = x-x0 represents the noise

n the normal vector of the surface at x

d the distance of a data point x to the surface measured in the direction of n

wi weight ≡
2

)(
−

∇ if x

p parameter vector consisting of the algebraic coefficients of quadrics

p0 the ideal parameter vector

M measurement vector defined as [x
2
, y

2
, z

2
, xy, xz, yz, x, y, z,1]

T
 associated with

a data point x

Ni the matrix formed by the vector product MiMi
T
 with Mi the measurement

vector for the i
th

 data point xi

N the weighted sum of matrices ≡ Σi=1…n wiNi

∆N perturbation matrix defined as N-N0

L Lagrange multiplier

σ2
the variance of the Gaussian noise ∆xi ∀i

Bi a matrix consisting of the coefficients of the second-order expansion with re-

spect to ∆xi of each of the elements of Ni

N matrix defined as N-E[∆N]

p
(0)

initial estimate of p

c ≡σ2
, being estimated in the renormalisation process

E matrix introduced in the derivation of the improved bias-corrected renor-

malisation solution defined as

∑
=

















∂
∂

≡
n

i

i

Tiw

12

1
Np

p
E

N
~

matrix defined as ENN +=~

p~ eigenvector of N
~

N
~

matrix defined as N
~

-E[∆N
~

]

Chapter 4:

xs-ys-zs standard co-ordinate system or frame
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{γ1,γ2,c} the set of invariants, determining the type of quadric

g the feature vector defined as [γ1, γ2, c]
T

A, v the symmetric 3×3 matrix A and the 3×1 vector v describing a quadric in

world co-ordinates as x
T
Ax+v

T
x+k=0

R the rotation matrix of the rotation transformation between Cartesian co-

ordinates

A', v' the surface parameters represented in the rotation-transformed co-ordinate

system

t' the translation vector of the transformation from the rotated co-ordinate sys-

tem to the standard co-ordinate system

t the translation vector of the transformation from the world co-ordinate sys-

tem to the standard co-ordinate system

θθθθ the unconstrained parameter vector as [a11, a22, a33, a12, a13, a23, v1, v2, v3]
T
,

while setting k=1 in quadric expression

x' the “rotation-normalised” co-ordinate system, in which the matrix A' is di-

agonal

θθθθ' estimate of the surface parameters assuming that they are obtained in the ro-

tation-normalised co-ordinate system

M a 3×9 coefficient matrix (see appendix B) relating the perturbations ∆g and

∆θθθθ' by ∆g=M∆θθθθ'

ΨΨΨΨ covariance matrix of  θθθθ
G covariance matrix of g

f( ĝ |g) the normal pdf of the estimate ĝ with respect to the ideal g

f( 1ĝ , 2ĝ |gm) the joint pdf of 1ĝ  and 2ĝ , as two observations of the ideal gm

f( 1ĝ , 2ĝ |H) the joint pdf of 1ĝ  and 2ĝ , conditioned on the hypothesis H

Gij matrix defined as Gij = Gi+Gj

Gi covariance matrix of iĝ

mĝ observation from the known class m

sĝ observation from the scene

 (ds,m)
2

the “statistical distance” defined as ½(
sĝ - mĝ )

T
Gs,m

-1
(

sĝ - mĝ )

mg the feature stored in the model base for the m
th

 primitive

mG the covariance matrix stored in the model base for the m
th

 primitive

µµµµ vector defined as [α, β, γ]T
 containing the rotation angles of the rotation ma-

trix R

ττττw the vector representing the pose parameters of a surface under the world co-

ordinate system, defined as [α, β, γ, t'x, t'y, t'z]T

ττττwc pose vector of a cylindrical surface

ρρρρw pose vector of a plane

Rab rotation between the two standard co-ordinate systems of surfaces a and b

t'ab translation between the two standard co-ordinate systems of surfaces a and b

ττττ vector representing the “relational pose” of two surfaces

ττττcc relational pose vector of two cylindrical surfaces
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ρρρρa vector representing the relational pose of planar surface b with respect to sur-

face a

ρρρρac vector representing the relational pose of planar surface b with respect to cy-

lindrical surface a

ρρρρnn vector representing the relational pose of two planar surfaces

ηηηη vector of surface parameters consisting of feature vector and the pose vector

Tw covariance matrix of ττττw

ΦΦΦΦ covariance matrix of ηηηη

Chapter 5:

Z the estimate of the spatial covariance of a set of points {xi} in a window

cmin  the smallest eigenvalue of Z
Twin the threshold of cmin to detect outliers

Tdepth the threshold of the depth difference between the centre point of a window-

and its nearest point to detect outliers

R
(k)

the merged region at k
th

 step

(θθθθk , ΨΨΨΨk ) the estimate of the surface parameter vector and the covariance matrix of the

region R
(k)

εεεεk,k+1 ≡ θθθθk - θθθθk+1

2

1, +kkd the statistical distance between the regions before and after merging a sel (R
(k)

and R
(k+1)

)

Td the threshold of 
2

1, +kkd  for homogeneity test

2kΨΨΨΨ the measure of uncertainty of the region R
(k)

cseg estimate of the variance of noise in the segmented region

Tplane the threshold for planarity test

θθθθnb vector representing the parameters of a planar surface

θθθθn vector representing the orientation of a planar surface (part of θθθθnb)

ΨΨΨΨnb covariance matrix of θθθθnb

ΨΨΨΨn covariance matrix of θθθθn
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Appendix A

Computation of 3D Co-ordinates of the

Range Data Acquired with the “Fre-

quency-Difference” Laser Scanning Sens-

ing System

After defining the measurement parameters in chapter 2, we can formulate the three-

dimensional co-ordinates of the sensed point under the defined Cartesian system. To illus-

trate the principles of deriving the 3D formulations, we combine Fig 2.8 and Fig 2.9 to

show the co-ordinate definitions in Fig A.1.

θ

αβ

FS L

γ

x

y

z

x’

y’ (ns)

z’

P

Laser beamDetecting plane

(Sensed point)

Fig A.1 The measurement co-ordinate system.

Ψ

h

T
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Notations of the co-ordinate system for 3D measurement are explained below:

F  Origin of the scanning laser beam.

S   Intersecting point of the rotation axis ns and the frame scanning plane (the x-z plane),

from which the x-axis is defined.

L  The distance between F and S, i.e., the baseline.

ns  The direction of rotation axis of the detecting plane. The detecting slit runs around this

central axis in representation of β.

h  The distance between point S and the detecting plane Ψ.

θ  The angle between ns and the plane Ψ.

Obviously, a sensed point P is just the intersection of the scanning laser beam and the de-

tecting plane Ψ. Therefore, if we express the plane equation of Ψ and the line equation of

the laser beam under the defined x-y-z co-ordinate system, then the solution of these two

equations give rise the formulation of the 3-D co-ordinates of point P.

It is easy to write down the expression of the line equation of the laser beam under the

x-y-z co-ordinate system. We can express it in a vector form as

qx KK =

















=

γα

γ

γα

sinsin

cos

sincos

,  (A.1)

where K is the scale factor and q is the unit vector of the line. To express the plane equation

under the x-y-z co-ordinate system, we need to utilise the assistance of the system parame-

ters.

First, we define an assistant co-ordinate system x’-y’-z’, which is originated at point S.

The y’- axis is defined on ns. The x’- axis is defined that it is orthogonal to y’ and lies on the

plane consisting of y’- and x- axes. Then z’- axis is defined as the cross production of x’ and

y’ (the right-hand rule).

Under the x’-y’-z’ co-ordinate system, it is easy to express the plane equation of Ψ as

h
T =′ ex , (A.2)

where e is the unit normal vector of Ψ, which can be formulated as

















−=

θβ

θ

θβ

cossin

sin

coscos

e  (A.3)

Second, we use the transformation LxRx +′=  to represent the express of (A.2) under

the x-y-z co-ordinate system:

hT =− ReLx )( .  (A.4)
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Substituting (A.1) into (A.4), we get:

eqR

eLR
TT

TT
h

K
)(

)(+
= . (A.5)

Then the 3-D co-ordinates of point P can be expressed according to (A.1) and (A.5).

Now we further derive the expressions of (A.5) in form of the system parameters. De-

noting the three basic vectors of the co-ordinate system x’-y’-z’ as (vx, vy, vz), the rotation

matrix R can be expressed as

[ ]zyx vvvR = .

According to the definition of the co-ordinate system x’-y’-z’ , we know that vy= ns, there-

fore,

















=

















=

21

1

21

sinsin

cos

cossin

ρρ

ρ

ρρ

z

y

x

y

n

n

n

v ,  (A.6)

where ρ1 and ρ2 are the azimuth and elevation angles of ns (see Fig A.2).

Because the axes of ns, x and x’ are co-planar, we can derive the vector vx from the fol-

lowing expression:

sx aa nvi )sin()cos( += ,  (A.7)

where i is the unit vector of the axis x, a is the angle between x and x’ (see Fig A.3). There-

for,

ρ1

ρ2x

y

z

ns

Fig A.2. Azimuth and

elevation angles of ns.

x

y

z

x’

y’ (ns)
z’

a

Fig A.3 definition of the angle (a).

Noted that x, y’ and x’ are coplanar.
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















−

−

−

=
−

=

zx

yx

x

s
x

nn

nn

n

aa

a

21

)cos(

1

)cos(

)sin( ni
v . (A.8)

Here we have used the relations of

[ ]T
0,0,1=i ; xna =)sin( .

Finally the vector zv can be derived from yxz vvv ×= . According to (A.8), we get










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





−=×=

y

zsz

n

n
aa

0

)cos(

1
)(

)cos(

1
niv  (A.9)

Now the three basic vectors (vx, vy, vz) have been formulated in terms of the parameters ρ1

and ρ2  through (A.6), (A.8) and (A.9).

Denoting q′ =R
T
q, we can obtain the following results:

)(sin1)cos(     ;cossin)sin(

)sinsincoscossinsin(

)sinsinsinsincoscoscossincos(sin

))sin(cos(sin

2

21

121)cos(
1

21121)cos(
1

)cos(
1

aaa

q

q

qaq

az

ay

yax

−==
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++=′

′−=′

ρρ

αγργρρ

αγρργραγρρ

αγ

 (A.10)

Denoting L′ =R
T
L, we can obtain

0

cossin

))sin((

21

)cos(
1

=′

=′

′−=′

z

y

yax

L

LL

LaLL

ρρ  (A.11)

Expanding (A.5) in the form of

zzyyxx

yyxx

eqeqeq

eLeLh
K

′+′+′

′+′+
= ,  (A.12)

and combining (A.3), (A.10) and (A.11), the parameter K can be further expressed with the

system parameters.

Finally, the 3-D co-ordinates are represented in the form









=

=

=

αγ

γ

αγ

sinsin

cos

cossin

Kz

Ky

Kx

,  (A.13)

where K is computed from (A.12).
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Appendix B

Expression of the Matrix Bi Used in (3.10)

To derive the expression of the matrix Bi, first we write down the matrix Ni in (3.5) with its

expression


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







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N  (B.1)

Because of noise presence in 
n

ii 1}{ =x , the matrix Ni is perturbed from its ideal value. Ac-

cording to [68], we carry out the Taylor expansion to each of the elements of matrix Ni in

term of ∆xi, ∆yi and ∆zi,. Under the assumption of i.i.d Gaussian noise, i.e.,

0x =∆ }{ iE ; Ixx 2
}{ σ=∆∆ T

iiE ,

we get the expectation of iN∆ in the form

i

iiiii

iiiii

iiiii

iiiiiiiiiiiiii

iiiiiiiiiiiiii

iiiiiiiiiiiiii

iiiiiiiiiiiiii

iiiiiiiiiiiiii

iiiiiiiiiiiiii

i c

yxzzz

zxyyy

zyxxx

yzzyyxzxzyzyzy

xzyxzxzyzxzxzx

xyzxzyyxyxyxyx

zyxzyzxyxzzyzx

zyxzyzxyxzyyyx

zyxzyzxyxzxyxx

E BN =







































+

+

+

++

++

++

=∆

0000000111

010003

001003

000103

0033

0033

0033

13336

13336

13336

}{
22

22

22

22222

22222

22222

2σ (B.2)

The matrix Bi in (3.10) is thus expressed by (B.2).
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Appendix C.1

Formulation of the Covariance Matrices of

Surface Parameters

Within the perturbation framework, the covariance matrices of the estimated surface pa-

rameters and the derived feature vector can be formulated by applying the linear approxi-

mation.

C.1.1 Covariance matrix of surface parameters

In chapter 4, we defined the parameter vector of a quadric surface as

[ ]Tvvvaaaaaa 321231312332211 ,,,,,,,,=θθθθ .

The cost function for surface fitting is

∑
=

=Θ
n

i

id
1

2
,

where di∀i=1,..,n is the geometric distance between the point xi to the surface.

Denoting θθθθ0 the true parameters in case of noise-free estimation and xi0 is the ideal

measurement of xi, we can take the Taylor expansion of di
2
 up to second order approxima-

tion:
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   (C.1)

where ∆xi = xi − xi0 is the noise perturbation and ∆θθθθ = θθθθ − θθθθ0  is the error in the estimated

parameter θθθθ.

Because in case of noise-free measurement, θθθθ0 is just the estimate by minimising the

cost function, there are

i
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Therefore, taking the operation of ∂Θ/∂θθθθ = 0 and substituting (C.1) with the expression of

di
2
, we get
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where
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Assuming that ∆xi ∀i is i.i.d Gaussian noise, there are
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thus the covariance matrix of θθθθ is formulated as
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The expression of (C.4) can be further simplified. Because d(xi0, θθθθ0 ) = 0 ∀i, from the ex-

pression of (C.3), we have
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In (C.4), we can rewrite the expression
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Call in mind that 
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= ; where if i ∀=⋅ 0)( is the implicit form of surface equation, we

have
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Then (C.6) is simplified as
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Combing (C.4), (C.5) and (C.7), we obtain
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Since

 i

T

i

i
f

d mθθθθ
∇

=
1

;

where [ ]Tiiiiiiiiiiiii zyxzyzxyxzyx ,,,,,,,,
222=m , (C.8) is finally expressed as
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where 
2−

∇= ii fw , which is the same of (4.14).

C.1.2 Covariance matrix of the feature vector

The feature vector of quadric representation consists of the invariants defined by (4.9).

Perturbations of the invariants are expressed by (4.11). For further illustration, we rewrite

(4.11) below.

2

1

12

1

2
1 λ

λλ
λ
λ

γ
∆

−
∆

=∆  ; 
2

1

13

1

3
2 λ

λλ
λ
λ

γ
∆

−
∆

=∆ ; 
2

1

1

1 λ
λ

λ
∆′

−
′∆

=∆
kk

c . (C.10)

In (C.10), λi i∈{1,2,3} are the eigenvalues of A in the quadric form of (4.3), and k′  is ex-

pressed by (4.10).

As discussed in section 4.2 of chapter 4, the perturbation of the eigenvalue in (C.10) can

be approximately expressed by

}3,2,1{∈∀′∆=∆ iaiiiλ , (C.11)

where ∆a'ii are the errors of parameters estimated in the rotation-normalised co-ordinate

system. In the transformed rotation-normalised co-ordinate system, the errors of estimates

of parameter θθθθ′  can also be computed using the covariance matrix (C.9), just transforming

the measurement of xi ∀i into the representation of x′ i ∀i. Therefore, the covariance matrix

of the feature vector can be derived from the relation of (C.10) and the covariance matrix of

θθθθ′ .

To do that, we express the dependency of the errors of invariants on the errors of ele-

ments of θθθθ′  in an explicit form. From (C.10), we have
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From (4.7) and (4.10), we get
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Note that according to the scale constraints in definition of parameter θθθθ, in fact 10 =k .
Also applying the linear approximation to (C.13), we have
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From

[ ]Tc∆∆∆=∆ ,, 21 γγg ;

[ ]Tvvvaaaaaa 321231312332211 ,,,,,,,, ′∆′∆′∆′∆′∆′∆′∆′∆′∆=′∆θθθθ ,

From the dependencies of (C.12.a) ~ (C.12.c) and combining with (C.13) and (C.14), we

get

θθθθ′∆=∆ Mg , (C.15)
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Therefore, the covariance matrix of g can be formulated as

T
MMG ΨΨΨΨ= ,  (C.16)

where ΨΨΨΨ is the covariance matrix of the parameters θθθθ′ .
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Appendix C.2

The Relational Pose in Degenerated Cases

In section 4.6.2, we defined the relational pose between two surface primitives, denoted as

a and b. Generally, the relational pose parameters are defined by three “relational” rotation

angles and a “relational” translation vector, which are derived from (4.32). But for some

degenerated cases, the expressions of the relational pose are derived specifically.

In case of one of the two surfaces being planar, the relational pose was defined specifi-

cally. Without loss of generality, supposing surface b to be planar, the relational pose is

thus defined by (4.37), i.e., the pose parameters of plane b viewed in the standard frame of

a.  It is

[ ]Taayaxa knn ,,=ρρρρ . (C.17)

To compute the components of ρρρρa, we first need to express the plane equation under the co-

ordinate system of a, which is in the form

0=− aa

T

a kxn .  (C.18)

Supposing in the world co-ordinate system, the plane of b is expressed as

0=− kw

T
xn , (C.19)

According to (4.30), there is
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T
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T
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Expressing the matrix Ra in the form [ ]azayaxa vvvR ,,= , therefore,
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therefore, ρρρρa  in (C.17) can be expressed from (C.18) ~ (C.21) with
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Other degenerated cases in our concerns have been discussed in section 4.6.2 of chapter 4.
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Appendix C.3

Formulation of the covariance matrix of

pose parameters

C.3.1 Formulation of the covariance matrix of pose parame-

ters

As stated in section 4.6.3, the covariance matrix of the pose parameters is also derived from

the formulation of surface fitting. In stead of the algebraic parameters θθθθ, we utilise a new

representation ηηηη= [g
T
, ττττT

w ]
T
, where g is the feature vector and ττττw is the pose vector, to for-

mulate the minimisation problem. Then the fitting is stated as
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Here
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Now, applying the same principle used for derivation of (C.2), we get
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In the computations of the above matrices, the transformation between x in the world sys-

tem and xs in the standard system is used. Then the covariance matrix of ηηηη can be expressed

by

[ ] T
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,,

12ηηηηηηηη (C.26)

Then the covariance matrix of ττττw, denoted Tw, can be directly derived with the low-right

sub-matrix of Φ.

C.3.2 Formulation of the covariance matrix of the relational

pose parameters

According to (4.32), the three rotation angles associated to Rab, denoted α, β and γ, are de-

rived from the rotation angles of Ra and Rb associated to the standard frames of a and b,

which are independently obtained in the world co-ordinate system. In form of vector µµµµ to

represent the three rotation angles, there is

)()()()()( bba

T

abba

T

aab µµµµµµµµµµµµµµµµµµµµ RRRRR ∆+∆=∆ . (C.27)

When substituting the expression of R with respect to α, β and γ into (C.27) and using lin-

ear approximation, we get

bbaaab µµµµµµµµµµµµ ∆+∆=∆ DDD (C.28)

where Dab, Da and Db are 3×3 matrices derived from the differential operations to those

components of Rab, Ra and Rb  respectively. Then the errors of relational rotation parame-

ters can be expressed as

bbabaaab µµµµµµµµµµµµ ∆+∆=∆ −− DDDD
11

(C.29)

The errors of relational translation parameters can also be derived from (4.32) in the form

a

T

abab tRtRtt ′∆−′∆−′∆=′∆ )(µµµµ  (C.30)

The expression of (C.30) can be further formulated as

a

T

abtb tRDtt ′∆−∆−′∆=′∆ µµµµ , (C.31)

where Dt is also a 3×3 matrix. Combined with (C.29) and (C.31), finally the errors of the

relational pose can be expressed in the form

wbbwaa ττττττττττττ ∆+∆=∆ MM  (C.32)

where Ma and Mb are 6×6 coefficient matrices that can be computed out with the estimated

pose parameters. Therefore, the covariance matrix of ττττ̂  can be derived as



Appendix C.3 Formulation of the covariance matrix of pose parameters

139

T

bwbb

T

awaa

TE MTMMTMT +=∆∆= }{ ττττττττ , (C.33)

where Twa and Twb are the covariance matrices of pose parameters for surfaces a and b, re-

spectively. Note that in formulation of (C.33), the pose estimates of a and b are thought to

be non-correlated.

At last, we discuss the cases that planar surfaces involve in the relational poses. The errors

of estimate aρρρρ̂  in (C.17) can be expressed from (C.19) and (C.20) as

 a

T

aa

T

aa

T

ai

T

aiai kkzyxin tntnnvnv ′∆−′∆−∆=∆∈∆+∆=∆   };,,{ ; (C.34)

Without trivialities in mathematics, the covariance matrix of aρρρρ̂ can be expressed in the

form

TT

wa 2211 mmmTmT ΥΥΥΥ+=ρ (C.35)

where Twa is again the covariance matrix of pose estimate of a in the world co-ordinate

system; m1 is a 3×6 coefficient matrix. The notation ΥΥΥΥ is the covariance matrix of the esti-

mate of planar parameter wρρρρ̂  in the world co-ordinate system, which can be obtained in

planar fitting; m2 is a 3×3 coefficient matrix.

The same way in analysis of (C.34), in case of surface a being cylindrical, covariance

matrix for acρρρρ̂ is expressed as

T

cc

T

cwacc 2211 mmmTmT ΥΥΥΥ+=ρ (C.36)

As for two planar surfaces, the pose parameter is defined as a one-dimensional variable and

its variance can be obtained directly from the definition of (4.39) and the computation of

(C.34).
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Appendix D

Bias-corrected Parameter Estimation of a

Planar Representation

A planar surface can be represented by the implicit form:

 0=− b
T
xn (D.1)

where n is the unit normal vector of the plane. In general, the parameters n and b are esti-

mated by fitting data points to the expression of (D.1). To do that, we first derive the vector

n with the method of principal component extraction, as used in the variance estimation in

outlier detection of chapter 5.

Given a set of points {xi} {i = 1,..,m}, the normal vector n is estimated by the eigen-

vector of the matrix
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associated to the smallest eigenvalue. Then the parameter b is estimated by

xn
T

b ˆˆ = . (D.3)

Analogous to the analysis of [68] in chapter 5, we can obtain the “bias-corrected” estimate

of the normal vector n̂ . Let
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Suppose point xi is perturbed with noise ∆xi , then Zi is perturbed with ∆Zi. When applying

the Taylor expansion to the components of Zi to derive ∆Zi, only the diagonal elements are

associated to the second order term of ∆xi. For the first diagonal component, there is

22
)())((2)( xxxxxxxx iiii ∆−∆+∆−∆−=−∆ . (D.4)

Under the assumption of i.i.d Gaussian noise, there is

ixExE ii ∀=∆=∆ ;}{  ;0}{ 22 σ and jixxE ji ≠∀=∆∆ 0}{
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where σ is the standard deviation of noise. From simple computations, we obtain

212})({ σ
m

m
i xxE −=−∆ (D.5)

So the expectations of ∆Z is

IZZ
2
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mEE
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i

i , (D.6)

where I is the unit matrix. Defining

}{ ZZZ ∆−= E , (D.7)

then the eigenvector of Z  associated to the smallest eigenvalue is the “bias-corrected” e s-

timate of n. The parameter b is estimated from (D.3). The variance of noise σ2
 is estimated

from the smallest eigenvalue of the matrix Z.


