
MVAW IAPR Workshop on Machine Vision Applications Dec. 13-15, 1994, Kawasaki

Recognition of Numeric Strings with Notation Rules
Using String Checking

Katsumi MARUKAWA, Kazutoshi TAKAKURA,
Taro HAYASHI, Masashi KOGA, and Yoshihiro SHIMA

Hitachi, Ltd., JAPAN
marukawa @ crl. hitachi. co. jp

Abstract

At1 algorithm ,for recognizing nutvreric strings with
notation rules by using string checking has been
developed. The proposed string check function removes
extraneous characters from recognized character strings by
using the notation rules. This function also determines
whether to carry out recognition error correction. In this
correction process, recognized characters are compared
with string in a dictionary. Errors in character strings are
autotnatically corrected to meaninRfu1 letters by using the
notcltion rules and dictionary. The string space of the
dictionar.~ to be compared is restricted based on the
notation rules; this reduces processing time. The string

characters. These systems that recognize such strings as an
1. D. code as a numeric string are thus unsuitable. These
strings should be read as a word. The above tasks needs to
be solved by utilizing sources of notation rules and a
dictionary.

We propose a string check function that removes
extraneous neighboring characters from recognized
character strings based on notation rules. It also determines
whether error correction is required. Correction is done by
comparing recognized character strings with strings in a
dictionary. This function was determined to be effective by
conducting experiments using a sample set of 3.983 input
pages.

check function improved the string recognition rate from
98.5 % to 99.7 %. and decreases the error rate by 98 %. 2. Numeric String
Itnportant nteanirrgful strings, such as I.D. codes. written
in a &)main with neighboring characters can be recognized
in recil titrre /,?I using this crlgorithm.

1. Introduction

In our information flooded society, paper processing
has become a significant burden on companies and
governmental agencies. Several approaches have been
taken to converting information on paper into electronic
form [I]-[3]. Optical character readers (OCRs) are able to
recognize the contents of forms, such as an I. D. code,
names. and addresses. Key data items are often used to
control other data items. However, OCRs sometimes
misread characters. Operators must therefore check for
recognition errors and correct them. which can be an
expensive process. A paper form processing system thus
needs a function for correcting errors automatically with
high reliability in real time.

Some of paper form processing systems already
developed depend entirely on the OCR output. While some
of these systems correct recognition errors for names and
addresses [4]-[6], numeric strings such as I. D. codes,
depend entirely on the OCR output. None of the developed
systems have an error correction function for numeric
strings. The string recognition rate is represented as PL,
where P is the recognition rate for characters and L is the
string length. The string recognition rate decreases
exponentially. Additionally, a conventional OCR can't
recognize strings written in a domain with neighboring

2.1 Objectives

We developed our string check function with two
objectives in mind. As shown in Fig. 1. a string is a set of
characters and delirniters. When a string is regarded as a set
of recognized characters, the recognition rate is represented
as PL. The recognition rate for strings decreases
exponentially. However, some strings, such as I.D. codes,
have an important meaning as a particular combination of
characters. Our first target was therefore to improve the

Figure 1: Samples of numeric strings in
a domain with neighboring characters.

recognition rate for strings by regarding each string as one
meaningful word.

A problem with conventional OCR is that other
characters are written near the objective string, the
recognition rate drops. Also, conventional OCR recognizes
characters by using format information to specify character
position. In short, conventional OCR has trouble
recognizing strings written in a domain with neighboring
characters or written at a slipped position. Our second
target was to improve the recognition rate for these problem
strings.

2.2 Notation roles

We use notation rules to specify the number of
characters included in a string and how to handle such
delimiters as hyphens. Two example rules are shown in
Fig. 2. Using notation rules improves the recognition rate
and increases the processing speed. As discussed above

(2, 4, I) string pattern

and as shown in Fig. I, a string can be written close to
other characters (Fig. 1 (a)) or written at a slipped position
(Fig. 1 (c)). If strings have notation rules, extraneous
neighboring characters are easily searched for and removed
by using the notation rule delimiters. The string recognition
rate is thus improved. If a set of strings is divided
according to the notation rules, as shown in Fig. 3,
dictionary strings can be divided into groups based on the
notation rules. The number of dictionary strings to be
processed is thus reduced, which reduces the processing
time.

3. Numeric String Recognition Using

Notation Rules

The proposed system automatically corrects recognition
errors to meaningful letters by using notation rules and a
dictionary. The system has four stages (Fig. 4). First, the
OCR scans the page and extracts a partial image. including
the numeric string. The characters in the extracted image
are then segmented. Next, each segmented character image
is recognized and the recognized result is output. In the
final stage. the string check function removes extraneous
neighboring characters and corrects any recognition errors
in the recognized string by using the notation rules and the
dictionary. The recognized string or reject information is
then output.

000-000-0 4. String Check Function

(3, 3, 1) string pattern
4.1 Outline

The string check function consists of three modules

U

Rule 1

4.2 Removal of extraneous characters

(Fig. 5). The first module removes any extraneous
Figure 2: Example notation rules. characters from the string based on the notation rule. If the

recognized string does not have the right notation. the
string check function rejects the page. If it has the right

Extraneous characters are determined by the relative
positions of the characters and delimiters based on the

Figure 3: Sets of notation rules. notation rules. There are three steps in this process (Fig.

I I notation, the second module is activated; it determines
whether there are any recognition errors by searching for
the recognized string in the dictionary. If the recognized
string is found in the dictionary, the string check function
accepts the string. If the recognized string is not found in
the dictionary, the final module is activated to correct the
errors. The final module corrects the errors by using string
matching.

Figure 4: Outline of numeric string recognition system.

Page -m
Image

Pre-Processing -m Segmentation -D
Character

RecOgnitlOn + Result +
r

String Check

7 Accept

Figure 5: Architecure of string check function.

6). First. the delimiters are identified. Next, the notation
rule is discriminated according to the relative positions of
the characters and delimiters. The notation rule is
discriminated according to the number of delirniters and the
number of characters between delimiters. In the final step,
the extraneous characters are identified based on the
notation rule and removed. If the recognized string does
not have the right notation, the string check function rejects
the page. If the recognized string has the right notation. the
second module is activated.

4.3 Verification of string existence

II I1 rl
1 I

Verify that
String Exists

J

Correct String

A

I Search for delimiters I

-Accept

-Reject

Recognized _,
Characters

Discriminate

extraneous characters

Remove
Extraneous
Characters

Figure 6: Removal of extraneous
characters.

The second module verifies string existence in order to
improve processing speed. I t determines if i t is necessary
to run the procedure to correct recognition errors by using
the dictionary. When strings are represented by several
notation rules, the dictionary strings are grouped according
to the notation rules, as shown in Fig. 7. The module
searches for the recognized string only in the dictionary
section corresponding to the recognized string's notation
rule. In other words, the dictionary consists of several
string tables, and the appropriate string table is determined
according to the discriminated notation rule and the

String table for rule 1

recognized string is searched for in the divided string table.
If the recognized string is found in the string table, the
string is regarded as a suitable string. The string check
function then finishes and accepts the string. When the
recognized string is not found in the string table, the string
is regarded as a non-suitable string. The final module is

rule Switch
then activated to correct the recognition errors. table for rule 2

4.4 String correction

The last niodule corrects recognition errors by using
string matching. The recognized strings are conipared with
strings in the dictionary. The string matching is done in the
divided string table space according to the recognized
string's notation rule, as explained above. The degree of
matching between a string and each string in the dictionary
is calculated character by character. A finite state automaton
(FSA) is generated fro111 the recognized characters. It has Figure 7: Selection of string table using
(the number of characters+l) states and two paths ("a notation rules.

string included in dictionary
22, 0086,2 +

other other other other

Figure 8: String matching process.

recognized character" and "other"), as shown in Fig. 8.
The state moves from the starting state to the next state after
each character has been input to the FSA. The degree of
matching is calculated at each state transfer. When the input
character is not a recognized character, the state moves
along the path denoted "other". This process continues
until the last character in the string is input. The degree of
matching represents the ambiguity of the input string. The
string with the highest value is taken as the correction, if its

value is above the threshold. If it is below the threshold,
reject information is output.

5. Experiment

5.1 Method

We implemented this algorithm on a personal computer
with software written in the C language. The computer had
a 32-bit CPU (clock speed of 20 MHz). Two kinds of
notation rules were used and 3.983 input pages were
tested. The dictionary included 1,238 strings; each string
consisted of seven characters and two delimiters. The
strings were written in domains with neighboring
characters.

5.2 Results

As shown in Table 1, using the proposed function
increased the number of correct strings from 3,922 to
3,969, reduced the number of error strings from 48 to 1,
and increased the number of rejected strings from 4 to 13.
As a result, the string recognition rate improved from 98.5
% to 99.7 %. The string error rate dropped from 1.4 % to
0.1 96. a decrease of 98 %. The string reject rate increased
from 0.1 % to 0.2 %. The processing time was 9.2 msec
per page, which is fast enough for practical use. This
algorithm thus substantially decreased processing time and
improved the recognition rate.

6. Conclusion

A recognition algorithm was proposed for numeric
stlings with notation rules that uses a string check function.
This function removes extraneous characters from
recognized strings based on the notation rules. Errors in

Table 1: Effectiveness of using string
check function.

optical character recognition are automatically corrected to
meaningful letters by using the notation rules and a
dictionary. Testing on 3,983 pages showed that the
recognition rate for strings improved from 98.5 7% to 99.7
%, and the error rate was decreased 98 %.

The tested strings were I . D. codes, such as these used
by companies and governmental agencies. Future research
should be directed to enhancing the error correction
algorithm to deal with other strings. such as personal
codes.

unit: string

References

[I] K. Wong, R. Casy, and F. Walh. "Document
analysis system," IBM Journal of Researclr and
Development, Vol. 26, No. 6, pp. 647-656 (1982).

[2] R. Casy, D. Ferguson, K. Mohiuddin. and E.
Walach, "Intelligent Forms Processing System,"
Machine Vision and Applications, Vol. 5 , No. 3, pp.
143-156 (Summer 1992).

[3] S. L. Taylor, R. Fritzson, and J . A. Pastor,
"Extraction of Data from Printed Forms." Machine
Vision and Applications, Vol. 5, No. 3, pp. 21 1-222
(Summer 1992).

[4] K. Marukawa, K. Nakashima, M. Koga, Y. Shima,
and H. Fujisawa, "A Paper Form Processing System
with an Error Correcting Function for Reading
Handwritten Kanji Strings," Proc. 3rd Annual
Sytnposium on Docunlent Analysis and Infortnation
Retrieval, pp. 469-482. (1994).

[5] K. Marukawa, M. Koga, Y. Shima, and H.
Fujisawa, "An Error Correction Algorithm for
Handwritten Chinese Character Address
Recognition," Proc. ICDAR 91 1st Int. Conf on
Document Analvsis ~ n d Recognition, pp. 9 16-924
(1991).

[6] K. Marukawa. M. Koga. Y. Shima. and H.
Fujisawa. "A Post-processing Method for
Handwritten Kanji Name Recognition Using
Furigana Information." Proc. ICDAR 93 Int. Conf
on Docunrent Analysis and Recognition. pp. 2 18-22 1
(1993).

String check Error

48
(1.4%)

1
(0.1%)

Correct

3,931
(98.5%)

3,969
(99.7%)

Reject

4
(0.1%)

1 3
(0.2%)

Total

31983

3*983

